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Abstract

Attribute-Based Encryption (ABE) is an emerging cryptographic technique that allows one to
embed a fine-grained access control mechanism into encrypted data. In this paper we propose a
novel ABE scheme called SEA-BREW (Scalable and Efficient Abe with Broadcast REvocation
for Wireless networks), which is suited for Internet of Things (IoT) and Industrial IoT (IIoT)
applications. In contrast to state-of-the-art ABE schemes, ours is capable of securely performing
key revocations with a single short broadcast message, instead of a number of unicast messages
that is linear with the number of nodes. This is desirable for low-bitrate Wireless Sensor and
Actuator Networks (WSANs) which often are the heart of (I)IoT systems. In SEA-BREW, sen-
sors, actuators, and users can exchange encrypted data via a cloud server, or directly via wireless
if they belong to the same WSAN. We formally prove that our scheme is secure also in case
of an untrusted cloud server that colludes with a set of users, under the generic bilinear group
model. We show by simulations that our scheme requires a constant computational overhead on
the cloud server with respect to the complexity of the access control policies. This is in contrast
to state-of-the-art solutions, which require instead a linear computational overhead.

Keywords: Industrial IoT, Attribute-Based Encryption, Wireless Sensors and Actuator
Networks, CP-ABE, Key Revocation, Broadcast.

1. Introduction

In the Internet of Things (IoT) vision [1, 2, 3, 4], ordinary “things” like home appliances, ve-
hicles, industrial robots, etc. will communicate and coordinate themselves through the Internet.
By connecting to Internet, things can provide and receive data from users or other remote things,
both directly or via cloud. Cloud-based services are in turn provided by third-party companies,
such as Amazon AWS or Microsoft Azure, usually through pay-per-use subscription. On the
other hand, outsourcing sensitive or valuable information to external servers exposes the data
owner to the risk of data leakage. Think for example of an industrial IoT network that communi-
cates and processes business-critical information. A data leakage could expose a company or an
organization to industrial espionage, or it can endanger the privacy of employees or customers.
Encrypting data on cloud servers is a viable solution to this problem. An emerging approach is
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Attribute-Based Encryption (ABE) [5, 6, 7, 8, 9, 10], which is a cryptographic technique that em-
beds an access control mechanism within the encrypted data. ABE describes data and decrypting
parties by means of attributes, and it regulates the “decryptability” of data with access policies,
which are Boolean formulas defined over these attributes. In ABE, encrypting parties use an
encryption key, which is public and unique, whereas any decrypting party uses a decryption key,
which is private and different for each of them.

Unfortunately, state-of-the-art ABE schemes are poorly suitable for the majority of IoT appli-
cations. The biggest problem is not computational power as one may think, since ABE technol-
ogy and elliptic curve operations have proven to be well-supportable by mobile devices [11, 12]
and modern IoT devices [13, 14]. The most problematic aspect is the recovery procedure in case
of key compromise, which requires to send an update message to all the devices [8]. Sending
many update messages could be quite burdensome for wireless networks with a limited bitrate,
like those employed in IoT [15, 16]. Indeed modern IoT networks use low-power communi-
cation protocols like Bluetooth LE, IEEE 802.15.4, and LoRA, which provide for low bitrates
(230Kbps for BLE [17], 163Kbps for 802.15.4 [18], 50Kbps for LoRA [19]).

In this paper, we propose SEA-BREW (Scalable and Efficient ABE with Broadcast REvoca-
tion for Wireless networks), an ABE revocable scheme suitable for low-bitrate Wireless Sensor
and Actuator Networks (WSANs) in IoT applications. SEA-BREW is highly scalable in the
number and size of messages necessary to manage decryption keys. In a WSAN composed of n
decrypting nodes, a traditional approach based on unicast would require O(n) messages. SEA-
BREW instead, is able to revoke or renew multiple decryption keys by sending a single broadcast
message over a WSAN. Intuitively, such a message allows all the nodes to locally update their
keys. For instance, if n = 50 and considering a symmetric pairing with 80-bit security, the tra-
ditional approach requires 50 unicast messages of 2688 bytes each, resulting in about 131KB of
total traffic. SEA-BREW instead, requires a single 252-byte broadcast message over a WSAN.
Also, our scheme allows for per-data access policies, following the Ciphertext-Policy Attribute-
Based Encryption (CP-ABE) paradigm, which is generally considered flexible and easy to use
[7, 20, 11]. In SEA-BREW, things and users can exchange encrypted data via the cloud, as well
as directly if they belong to the same WSAN. This makes the scheme suitable for both remote
cloud-based communications and local delay-bounded ones. The scheme also provides a mech-
anism of proxy re-encryption [8, 21, 22] by which old data can be re-encrypted by the cloud to
make a revoked key unusable. This is important to retroactively protect old ciphertexts from re-
voked keys. We formally prove that our scheme is adaptively IND-CPA secure also in case of an
untrusted cloud server that colludes with a set of users, under the generic bilinear group model.
Furthermore, it can also be made adaptively IND-CCA secure by means of the Fujisaki-Okamoto
transformation [23]. We finally show by simulations that the computational overhead is constant
on the cloud server, with respect to the complexity of the access control policies.

The rest of the paper is structured as follows. In Section 2 we review the current state of
the art. In Section 3 we explain our system model; furthermore, we provide a threat model, the
scheme definition, and the security definition for SEA-BREW. In Section 4 we show the SEA-
BREW system procedures. In Section 5 we mathematically describe the SEA-BREW primitives,
and we also show the correctness of our scheme. In Section 6 we formally prove the security
of SEA-BREW. In Section 7 we evaluate our scheme both analytically and through simulations.
Finally, in Section 8 we conclude the paper.
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Schemes Immediate Key Revocation Revocation Type Re-Encryption Broadcast WSAN Update
Liu et al.[33] 3 Direct 7 7

Attrapadung et al.[32] 7\3 Indirect\Direct 7\7 3\7

Touati et al.[28] 7 Indirect 7 7

Bethencourt et al. “Naive”[7] 3 Indirect 7 7

Cui et al.[34] 3 Indirect 7 7

Qin et al.[35] 3 Indirect 7 7

Yu et al.[8] 3 Indirect 3 7

SEA-BREW 3 Indirect 3 3

Table 1: A summary of prominent ABE schemes that provide a revocation mechanism.

2. Related Work

In 2007 Bethencourt et al. [7] proposed the first CP-ABE scheme, upon which we built SEA-
BREW. Since then, attribute-Based Encryption has been applied to provide confidentiality and
assure fine-grained access control in many different application scenarios like cloud computing
[24, 8, 25, 26], e-health [27], wireless sensor networks [10], Internet of Things [28, 29], smart
cities [9], smart industries [30], online social networks [31], and so on.

With the increasing interest in ABE, researchers have focused on improving also a crucial
aspect of any encryption scheme: key revocation. In the following, we show many ABE schemes
that features different key revocation mechanisms, so that we can compare SEA-BREW to them.
First, we recall the notions of direct and indirect revocation, introduced by [32]. Direct revocation
implies that the list of the revoked keys is somehow embedded inside each ciphertext. In this way,
only users in possession of a decryption key which is not in such a list are able to decrypt the
ciphertext. Instead, indirect revocation implies that the list of the revoked keys is known by the
key authority only, which will release some updates for the non-revoked keys and/or ciphertexts.
Such updates are not distributed to the revoked users. In this way, only users that have received
the update are able to decrypt the ciphertexts.

In table 1 we provide a summarized visual comparison of SEA-BREW with other schemes.
In the comparison we highlight the following features: (i)“Immediate Key Revocation” which
is the ability of a scheme to deny -at any moment in time- access to some data for a com-
promised decryption key; (ii) “Revocation Type”, which can be either direct or indirect; (iii)
“Re-Encryption”, which is the ability of a scheme to update an old ciphertext after a revocation
occurs; and (iv) “Broadcast WSAN Update”, which is the ability of a scheme to revoke or renew
one or more keys with a single message transmitted over a WSAN.

The scheme of Bethencourt et al. [7] lacks functionalities for key revocation and ciphertext
re-encryption, which we provide in our scheme. However, a naive indirect key revocation mech-
anism can be realized on such a scheme, but it requires to send a new decryption key for each
user in the system, resulting in O(n) point-to-point messages where n is the number of users.
In contrast, SEA-BREW is able to revoke or renew a decryption key by sending a single O(1)-
sized broadcast message over a wireless network, and it also provides a re-encryption mechanism
delegated to the untrusted cloud server.

Attrapadung et al. [32] proposed an hybrid ABE scheme that supports both direct and indirect
revocation modes, hence the double values in the associated row of table 1. According to the
authors, this flexibility is a great advantage to have in a system, because the devices can leverage
the quality of both approach depending on the situation. The indirect revocation mechanism is
based on time slots. When a key revocation is performed in the middle of a time slot, it is effective
only from the beginning of the next time slot, therefore revocation is not immediate. Instead,
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their direct mechanism implies also the immediate key revocation. Notably, with their indirect
revocation mechanism, it is possible to revoke or renew a decryption key by sending a single
broadcast message over a WSAN. However, such message is usually O(log(n))-sized where n is
the amount of the users in the system, including the ones revoked in the past. Moreover their
scheme does not provide any mechanism of re-encryption, therefore if a revoked user somehow
is able to get an old ciphertext, he/she is still able to decrypt it. Instead, SEA-BREW is able to
revoke or renew a decryption key by sending a single O(1)-sized broadcast message, and it also
provides a re-encryption mechanism.

Liu et al. [33] proposed a Time-Based Direct Revocable CP-ABE scheme with Short Re-
vocation List. Since the revocation is direct, the revocation list is embedded in the ciphertext,
therefore achieving immediate key revocation. Furthermore, the authors managed to condense
the entire revocation list in few hundreds bytes, as long as the number of total revocation does
not overcome a threshold value. However, since the revocation list is destined to grow uncontrol-
lably over time, they propose also a secret key time validation technique. This technique allows
a data producer to remove a compromised decryption key from the revocation list once such a
decryption key has expired. Unlike SEA-BREW, this scheme does not provide re-encryption of
old ciphertexts. Furthermore, the direct revocation mechanism implies that each data producer
must know the revocation list. In fact, in SEA-BREW, data producers encrypt their data without
knowing any information about revoked consumers.

Touati et al. [28] proposed an ABE system for IoT which implements an indirect key revo-
cation mechanism based on time slots. In their work, time is divided in slots, and policies can be
modified only at the beginning of a slot. This approach is efficient only if key revocations and
policy changes are known a priori. An example is an access privilege that expires after one year.
Unfortunately, in many systems there is not the possibility to know beforehand when and which
access privilege should be revoked. For example, in case a decryption key gets compromised the
system must revoke it as soon as possible. Our scheme gives this possibility.

Cui et al. [34], and Qin et al. [35] proposed two indirect revocable CP-ABE schemes which
do not require to communicate with data producers during a revocation process. However, their
schemes require all data producers to be time-synchronised in a secure manner. This could be
quite difficult to achieve and hard to implement in a WSAN where data producers are often
very resource constrained sensors. Their schemes do not provide a re-encryption mechanism nor
an efficient key update distribution, unlike SEA-BREW. Furthermore, SEA-BREW has not the
constraint of a tight time synchronization.

Yu et al. [8] proposed an ABE scheme to share data on a cloud server. The scheme revokes
a compromised decryption key by distributing an update to non revoked users. The update is
done attribute-wise: this means that only users that have some attributes in common with the
revoked key need to update their keys. Such update mechanism provides indirect and immediate
key revocation, as well as ciphertext re-encryption. Notably, their revocation mechanism is not
efficient for WSAN, as it requires O(n) different messages where n is the number of decrypting
parties that need to be updated. On the other hand, SEA-BREW is able to revoke or renew a
decryption key by sending a single O(1)-sized broadcast message over the wireless network.

Finally, from the table, we can see that the scheme proposed by Yu et al. [8] is the one with the
most features similar to SEA-BREW. Indeed, we will compare the performance of SEA-BREW
and the scheme in [8] in section 7
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Figure 1: SEA-BREW system model.

3. System Model and Scheme Definition

Figure 1 shows our reference system model. We assume a low-bitrate WSAN, composed of a
set of sensors and actuators, which upload and download encrypted data to/from a cloud server.
Sensors and actuators access the cloud server through an Internet-connected WSAN gateway
node, belonging to the WSAN. Sensors and actuators inside the WSAN can also communicate
directly, without passing through the cloud server. We assume that some sensors and some ac-
tuators are outside the WSAN, and they can also upload and download encrypted data to/from
the cloud server, but they cannot communicate directly. In addition, human users outside the
WSAN can upload and download encrypted data to/from the cloud server. The encrypted data
received by an actuator could be a command that the actuator must execute, as well as a mea-
surement from a sensor that the actuator can use to take some decision. The cloud server is an
always-on-line platform managed by an untrusted third-party company which offers storage and
computational power to privates or other companies. Finally, a fully trusted key authority is in
charge of generating, updating and distributing cryptographic keys.

In the following, we will call producers all those system entities that produce and encrypt
data. This includes sensors internal or external to the WSAN, which sense data, as well as users
that produce data or commands for actuators. Similarly, we will call consumers all those system
entities that decrypt and consume data. This includes actuators internal or external to the WSAN,
which request data and which receive commands, as well as users that request data. For the sake
of simplicity, we keep the “producer” and the “consumer” roles separated, however SEA-BREW
allows a single device or a single user to act as both. Producers that are inside the WSAN will
be called WSAN producers, while those outside the WSAN will be called remote producers.
Similarly, consumers that are inside the WSAN will be called WSAN consumers, while those
outside the WSAN will be called remote consumers.

As an use-case example, consider a smart factory with many sensors and actuators which
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must communicate in a delay-bounded way to implement a real-time application [36]. Given the
strict requirements, sensors and actuators must communicate directly through the WSAN, with-
out losing time in remote communications with the cloud. The WSAN inside the smart factory
use IEEE 802.15.4 as a link-layer protocol, which is low-energy and low-bitrate. As a conse-
quence, communications and key management operations must be as lightweight as possible.
In addition, employees, external sensors and external actuators involved for remote applications
will upload or download data to/from the cloud server.

Each producer encrypts data by means of an encryption key (EK). Each consumer decrypts
data by means of a decryption key (DK). The encryption key is public and unique for all the
producers, whereas the decryption key is private and specific of a single consumer. A single piece
of encrypted data is called ciphertext (CP). Each consumer is described by a set of attributes
(γ), which are cryptographically embedded into its decryption key. The access rights on each
ciphertext are described by an access policy (P). We assume that the key authority, the cloud
server, and the WSAN gateway have their own pair of asymmetric keys used for digital signature
and encryption (e.g., RSA or ECIES keys). In addition, each producer and each consumer has
a unique identifier called, respectively, producer identifier (PID) and consumer identifier (CID),
which are assigned by the key authority. If a device acts as both producer and consumer, then it
will have both a producer identifier and a consumer identifier.

When a decryption key needs to be revoked (e.g., because it is compromised or because a
consumer has to leave the system), the key authority must ensure that such a decryption key
will not be able to decrypt data anymore. This is achieved by Proxy Re-Encryption (PRE). Re-
Encryption consists in modifying an existing ciphertext such that a specific decryption key can
no longer decrypt it. This is important to retroactively protect old ciphertexts from revoked keys.
In SEA-BREW, as in other schemes [8], the Re-Encryption is “proxied” because it is delegated
to the cloud server, which thus acts as a full-resource proxy for the producers. Therefore, data
producers do not have to do anything to protect data generated before a revocation. The cloud
server, however, re-encrypts blindly, that is without accessing the plaintext of the messages. This
makes our scheme resilient to possible data leakage on the cloud server. Our PRE mechanism is
also “lazy”, which means that the ciphertext is modified not immediately after the key revocation,
but only when it is downloaded by some consumer. This allows us to spread over time the
computational costs sustained by the cloud server for the PRE operations. We implement the lazy
PRE scheme by assigning a version to the encryption key, to each decryption key, and to each
ciphertext. When a key is revoked, the key authority modifies the encryption key, increments its
version, and uploads some update quantities to the cloud server. The set of these update quantities
is called update key. The update key is used by the cloud server to blindly re-encrypt the ABE
ciphertexts and increment their version before sending them to the requesting consumers. The
cloud server also uses the update key to update the encryption key used by producers, and the
decryption keys used by consumers. Inside the low-bitrate WSAN, instead, the update of the
WSAN consumers’ decryption keys is achieved with a constant-ciphertext broadcast encryption
scheme, like the one shown in Boneh et al.’s work [37]. The broadcast encryption scheme allows
the WSAN gateway to broadcast the update key encrypted in such a way to exclude one or more
WSAN consumers from decrypting it. To do this, the WSAN gateway uses a broadcast public
key (BPK), and each WSAN consumer uses its own broadcast private key (dCID). Table 2 lists
the symbols used in the paper.
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EK Encryption key
MK Master key
DK Decryption key
KDK Key distribution key
PID Producer identifier
SK Signature verification key
CID Consumer identifier
KID Symmetric key identifier
SymKey Symmetric key
P Access policy
γ Attribute set
BPK Broadcast public key
dCID Broadcast private key
CP Ciphertext
U Update key
M Message

Table 2: Table of Symbols

3.1. Threat Model

In this section, we model a set of adversaries and we analyze the security of our system
against them. In particular, we consider the following adversaries: (i) an external adversary,
which does not own any cryptographic key except the public ones; (ii) a device compromiser,
which can compromise sensors and actuators to steal secrets from them; (iii) a set of colluding
consumers, which own some decryption keys; and (iv) a honest-but-curious cloud server as
defined in [8, 9, 38], which does not tamper with data and correctly executes the procedures, but it
is interested in accessing data. We assume that the honest-but-curious cloud server might collude
also with a set of consumers, which own some decryption keys. Note that the honest-but-curious
cloud server models also an adversary capable of breaching the cloud server, meaning that he
can steal all the data stored in it. In order to do this, he can leverage some common weakness,
for example buffer overflows or code injections, or hardware vulnerabilities like Meltdown or
Spectre [39]. We assume that who breaches the cloud server only steals data and does not alter
its behavior in correctly executing all the protocols, basically because he tries to remain as stealth
as possible during the attack. Note that this reflects real-life attacks against cloud servers1. In the
following we analyze in detail each adversary model.

The external adversary aims at reading or forging data. To do so, he can adopt several strate-
gies. He can impersonate the key authority to communicate a false encryption key to the pro-
ducer, so that the data encrypted by said producer will be accessible by the adversary. This attack
is avoided because the encryption keys are signed by the key authority. Alternatively, the external
adversary can act as a man in the middle between the key authority and a new consumer during
the decryption key distribution. The attacker wants to steal the consumer’s decryption key, with
which he can later decrypt data. This attack is avoided because the decryption key is encrypted
by the key authority with asymmetric encryption. Using the encryption key, which is public,

1https://www.bbc.com/news/technology-41147513
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the external adversary may also try to encrypt false data and upload it to the cloud server. This
attack is avoided because he cannot forge a valid signature for the encrypted data, thus he cannot
make the false data be accepted as valid by the legitimate consumers. To sum up, the external
adversary cannot access legitimate data neither inject malicious data.

The device compromiser can compromise a producer or a consumer. If he compromises a
producer, then he gains full control of such a device and full access to its sensed data and to
its private key used for signatures. He cannot retrieve any data sensed before the compromise,
because the producer securely deletes data after having uploaded it to the cloud server. Nonethe-
less, he can indeed inject malicious data into the system, by signing it and uploading it to the
cloud server, or by transmitting it directly to WSAN consumers if the compromised producer
belongs to the WSAN. When the key authority finds out the compromise, it revokes the com-
promised producer. After that, the compromised producer cannot inject malicious data anymore
because the private key that it uses for signatures is not considered valid anymore by the con-
sumers. On the other hand, if the adversary compromises a consumer, then he gains full access
to its decryption key. The attacker can decrypt some data downloaded from the cloud server or, if
the compromised a consumer belonging to the WSAN, transmitted directly by WSAN producers.
Notably, the adversary can decrypt only data that the compromised consumer was authorized to
decrypt. When the key authority finds out the compromise, it revokes the compromised con-
sumer. After that, the compromised consumer cannot decrypt data anymore. The reason for this
is that our re-encryption mechanism updates the ciphertexts as if they were encrypted with a
different encryption key.

A set of colluding consumers can try by combine somehow their decryption keys to decrypt
some data that singularly they cannot decrypt. However, even if the union of the attribute sets of
said decryption keys satisfies the access policy of a ciphertext, the colluding consumers cannot
decrypt such a ciphertext. In Section 6 we will capture this adversary model with the Game 1,
and we will provide a formal proof that SEA-BREW is resistant against it.

The honest-but-curious cloud server does not have access to data because it is encrypted, but
it can access all the update keys and part of all the consumers’ decryption keys. The update
keys alone are useless to decrypt data because the cloud server lacks of a (complete) decryption
key. However, if the cloud server colludes with a set of consumers, then it can access all the
data that the consumers are authorized to decrypt. Interestingly, if the honest-but-curious cloud
server is modelling an adversary capable of breaching the cloud server, recovering the breach
is easy. It is sufficient that the key authority generates a new update key, without revoking
any consumers. This has the effect of making all the stolen update keys useless. On the other
hand, in case of an actual honest-but-curious cloud server, generating a new update key does
not solve the problem, because the cloud server knows the just generated update key and thus it
can update the revoked decryption keys. In any case, the honest-but-curious cloud server and the
colluding consumers cannot combine somehow the update keys and decryption keys to decrypt
some data that singularly the colluding consumers cannot decrypt. In Section 6 we will capture
this adversary model with the Game 2, and we will provide a formal proof that SEA-BREW is
resistant against it.

3.2. Scheme Definition

Our system makes use of a set of cryptographic primitives (from now on, simply primitives),
which are the following ones.
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(MK,EK) = Setup(κ): This primitive initializes the cryptographic scheme. It takes a se-
curity parameter κ as input, and outputs a master key MK and an associated encryption key EK.

CP = Encrypt(M,P,EK): This primitive encrypts a plaintext M under the policy P. It
takes as input the message M, the encryption key EK, and the policy P. It outputs the ciphertext
CP.

DK = KeyGen(γ,MK): This primitive generates a decryption key. It takes as input a set
of attributes γ which describes the consumer, and the master key MK. It outputs a decryption
key DK, which is composed of two fields for each attribute in γ, plus a field called D, useful to
update such a key.

M = Decrypt(CP,DK): This primitive decrypts a ciphertext CP. It takes the ciphertext
CP and the consumer’s decryption key DK as input, and outputs the message M if decryption
is successful, ⊥ otherwise. The decryption is successful if and only if γ satisfies P, which is
embedded in CP.

The following primitives use symbols with a superscript number to indicate the version
of the associated quantity. For example, MK(i) indicates the i-th version of the master key, DK(i)

indicates the i-th version of a given decryption key, etc.

(MK(i+1),U(i+1)) = UpdateMK(MK(i)): This primitive updates the master key from a ver-
sion i to the version i + 1 after a key revocation. It takes as input the old master key MK(i), and
it outputs an updated master key MK(i+1), and the (i + 1)-th version of the update key U(i+1).
Such an update key is composed of the quantities U(i+1)

EK , U(i+1)
DK , U(i+1)

CP , which will be used after
a key revocation respectively to update the encryption key, to update the decryption keys, and to
re-encrypt the ciphertexts.

EK(n) = UpdateEK(EK(i),U(n)
EK): This primitive updates an encryption key from a version

i to the latest version n, with n > i, after a key revocation. The primitive takes as input the old
encryption key EK(i) and U(n)

EK , and it outputs the updated encryption key EK(n).

D(n) = UpdateDK(D(i),U(i)
DK ,U

(i+1)
DK , . . . ,U(n)

DK): This primitive updates a decryption key
from a version i to the latest version n, with n > i, after a key revocation. What is actually
updated is not the whole decryption key, but only a particular field D inside the decryption key.
This allows the cloud server to execute the primitive without knowing the whole decryption key,
but only D which alone is useless for decrypting anything. The primitive takes as input the old
field D(i) and U(i)

DK ,U
(i+1)
DK , . . . ,U(n)

DK , and it outputs the updated field D(n).

CP(n) = UpdateCP(CP(i),U(i)
CP,U

(i+1)
CP , . . . ,U(n)

CP): This primitive updates a ciphertext from
a version i to the latest version n, with n > i, after a key revocation. The cloud server executes
this primitive to perform proxy re-encryption on ciphertexts. The primitive takes as input the old
ciphertext CP(i), and U(i)

CP,U
(i+1)
CP , . . . ,U(n)

CP. It outputs the updated ciphertext CP(n).

The concrete construction of these primitives will be described in detail in Section 5.
Moreover, SEA-BREW also needs a symmetric key encryption (e.g., AES, 3DES, . . . ) scheme
and a digital signature scheme (e.g., RSA, DSA, ECDSA, . . . ). However, those will not be
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covered in this paper since such a choice does not affect the behavior of our system.

3.3. Security Definition

We state that SEA-BREW is secure against an adaptive chosen plaintext attack (IND-CPA)
if no probabilistic polynomial-time (PPT) adversary A has a non-negligible advantage against
the challenger in the following game, denoted as Game 1. Note that IND-CPA security is not
enough in the presence of an active adversary, however a stronger adaptive IND-CCA security
assurance can be obtained in the random oracle model by means of the simple Fujisaki-Okamoto
transformation [23], which only requires few additional hash computations in the Encrypt and
the Decrypt primitives.

Setup. The challenger runs the Setup primitive and generates EK(0), and sends it to the adversary.

Phase 1. The adversary may issue queries for:

• encryption key update: the challenger runs the primitive UpdateMK. The challenger sends
the updated encryption key to the adversary.

• generate decryption key: the challenger runs the primitive KeyGen using as input an at-
tribute set provided by the adversary. Then, the challenger sends the generated decryption
key to the adversary.

• decryption key update: the challenger runs the primitive UpdateDK using as input a de-
cryption key provided by the adversary. Then, the challenger sends the updated decryption
key to the adversary.

• ciphertext update: the challenger runs the primitive UpdateCP using as input a ciphertext
provided by the adversary. Then, the challenger sends the ciphertext updated to the last
version to the adversary.

Challenge. The adversary submits two equal length messages m0 and m1 and a challenge policy
P∗, which is not satisfied by any attribute set queried as generate decryption key during Phase 1.
The challenger flips a fair coin and assigns the outcome to b: b ← {0, 1}. Then, the challenger
runs the Encrypt primitive encrypting mb under the challenge policy P∗ using EK(n) and sends
the ciphertext CP∗ to the adversary. The symbol n is the last version of the master key, i.e., the
number of time the adversary queried for an encryption key update.

Phase 2. Phase 1 is repeated. However the adversary cannot issue queries for generate decryp-
tion key whose attribute set γ satisfies the challenge policy P∗.

Guess. The adversary outputs a guess b′ of b. The advantage of an adversary A in Game 1 is
defined as Pr[b′ = b] − 1

2 .

We prove SEA-BREW to be secure in Section 6.

4. SEA-BREW Procedures

In the following, we describe the procedures that our system performs.
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4.1. System Initialization

The system initialization procedure is executed only once, to start the system, and it consists
in the following steps.
Step 1. The key authority runs the Setup primitive, thus obtaining the first version of the master
key (MK(0)) and the first version of the encryption key (EK(0)). We indicate with vMK (master
key version) the current version of the master key. The key authority initializes the master key
version to vMK = 0, and it sends the encryption key and the master key version to the cloud server
with a signed message.
Step 2. The cloud server, in turn, sends the encryption key and the master key version to the
WSAN gateway with a signed message.
Step 3. The WSAN gateway generates the broadcast public key (see Figure 1) for the broadcast
encryption scheme.

4.2. Producer Join

The consumer join procedure is executed whenever a new producer joins the system. We
assume that the producer has already pre-installed its own pair of asymmetric keys that it will
use for digital signatures. Alternatively the producer can create such a pair at the first boot. We
call signature verification key (SK, see Figure 1) the public key of such a pair. The procedure
consists in the following steps.
Step 1. The producer sends the signature verification key to the key authority in some authen-
ticated fashion. The mechanism by which this is done falls outside the scope of the paper. For
example, in case the producer is a sensor, the human operator who is physically deploying the
sensor can leverage a pre-shared password with the key authority.
Step 2. The key authority assigns a new producer identifier to the producer, and it sends such an
identifier and the encryption key to the producer with a signed message. The encryption key em-
beds an encryption key version (vEK), which represents the current version of the encryption key
locally maintained by the producer. Initially, the encryption key version is equal to the master
key version (vEK = vMK).
Step 3. The key authority also sends the producer’s identifier, signature verification key and
encryption key version to the cloud server with a signed message. The cloud server adds a tuple
〈PID, SK, vEK〉 to a locally maintained Producer Table (PT, see Figure 1). Each tuple in the PT
represents a producer in the system.

If the producer is remote, then the procedure ends here. Otherwise, if the producer is inside
the WSAN, then the following additional steps are performed.
Step 4. The key authority sends the producer identifier and the signature verification key to the
WSAN gateway with a signed message. The WSAN gateway adds a tuple 〈PID, SK〉 to a locally
maintained WSAN Signature Table (see Figure 1). Each tuple in the WSAN Signature Table rep-
resents a producer in the WSAN. Through this table, both the gateway and the consumers are
able to authenticate data and messages generated by the producers in the WSAN.
Step 5. The WSAN gateway finally broadcasts the signed message received from the key au-
thority to all the WSAN consumers. The WSAN consumers add the same tuple 〈PID, SK〉 to a
locally maintained copy of the WSAN Signature Table.

4.3. Consumer Join

The consumer join procedure is executed whenever a new consumer, described by a given
attribute set, joins the system. We assume that the consumer has already pre-installed its own
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pair of asymmetric keys that it will use for asymmetric encryption. Alternatively the consumer
can create such a pair at the first boot. We call key distribution key (KDK, see Figure 1) the public
key of such a pair. The procedure consists in the following steps.
Step 1. The consumer sends the key distribution key to the key authority in some authenticated
fashion. Again, the mechanism by which this is done falls outside the scope of the paper.
Step 2. The key authority assigns a new consumer identifier to the consumer, and it generates
a decryption key with the KeyGen primitive, according to the consumer’s attribute set. The key
authority sends the consumer identifier and the decryption key to the consumer with a signed
message, encrypted with the consumer’s key distribution key.
Step 4. The key authority sends the consumer identifier and the field D of the decryption key
to the cloud server with a signed message. The cloud server initializes a decryption key version
(vDK), which represents the current version of the consumer’s decryption key, to the value of
the master key version. The cloud server adds a tuple 〈CID,D, vDK〉 to a locally maintained
Consumer Table (CT, see Figure 1). Each tuple in the CT represents a consumer in the system.

If the consumer is remote, then the procedure ends here. Otherwise, if the consumer is a
WSAN consumer, then the following additional steps are performed.
Step 5. The key authority sends the consumer identifier and the key distribution key to the
WSAN gateway with a signed message.
Step 6. The WSAN gateway sends the WSAN Signature Table to the consumer with a signed
message, along with the broadcast public key and the consumer’s broadcast private key which is
appropriately encrypted with the consumer’s key distribution key. Finally, the WSAN gateway
adds a tuple 〈CID,KDK〉 to a locally maintained WSAN Consumer Table.

4.4. Data Upload by Remote Producers

The data upload procedure is executed whenever a producer wants to upload data to the cloud
server. Remote producers and WSAN producers perform two different procedures to upload a
piece of information to the cloud server. We explain them separately. The data upload procedure
by remote producers consists in the following steps.
Step 1. Let P be the access policy that has to be enforced over the data. The remote producer
encrypts the data under such a policy using the Encrypt primitive. The resulting ciphertext has
the same version number of the producer’s locally maintained encryption key (vCP = vEK).
Step 2. The producer securely deletes the original data. Then it signs and uploads the ciphertext
to the cloud server, along with its producer identifier.
Step 3. The cloud server verifies the signature, and then it stores the ciphertext.
Finally, if the ciphertext version is older than the master key version, the cloud server executes
the remote producer update procedure (see Section 4.10).

4.5. Data Upload by WSAN Producers

SEA-BREW aims at saving bandwidth in the WSAN also during data upload. However, en-
crypting data directly with the Encrypt primitive introduces a lot of overhead in terms of data
size, as it happens in the typical ABE scheme. Therefore, we want to obtain the access control
mechanism provided by the Encrypt primitive, and at the same time producing the small cipher-
texts typical of symmetric-key encryption. Broadly speaking, we achieve this by encrypting a
symmetric key using the Encrypt primitive, and then using such a symmetric key to encrypt all
the data that must be accessible with the same access policy. To do this, each WSAN producer
maintains a SymKey Table (see Figure 1), which associates policiesP to symmetric keys SymKey.
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Figure 2: Data upload by WSAN producers procedure.

More specifically, the SymKey Table is composed of tuples in the form 〈KID,P, SymKey〉, where
KID is the symmetric key identifier of S ymKey. The symmetric key identifier uniquely identifies
a symmetric key in the whole system. The data upload procedure by WSAN producers consists
in the following steps (Figure 2).
Step 1. Let P be the access policy that has to be enforced over the data. The producer searches
for a tuple inside its SymKey Table associated with the policy. If such a tuple already exists, then
the producer jumps directly to Step 4, otherwise it creates it by continuing to Step 2.
Step 2. The producer randomly generates a symmetric key and a symmetric key identifier. The
symmetric key identifier must be represented on a sufficient number of bits to make the proba-
bility that two producers choose the same identifier for two different symmetric keys negligible.
The producer then encrypts the symmmetric key under the policy using the Encrypt primitive,
and it signs the resulting ciphertext together with the key identifier. The result is the signcrypted
key. The producer uploads the signcrypted key and its producer identifier to the cloud server.
Step 3. The cloud server verifies the signature, and then it stores the signcrypted key in the same
way it stores ordinary encrypted data produced by remote producers.
Step 4. The producer inserts (or retrieves, if steps 2 and 3 have not been executed) the tuple
〈KID,P,SymKey〉 into (from) its SymKey Table, and it encrypts the data using the symmetric
key associated to the policy. Then, the producer signs the resulting ciphertext together with the
symmetric key identifier. The result is the signcrypted data. The producer uploads the sign-
crypted data and its producer identifier to the cloud server, and it securely deletes the original
data.
Step 5. The cloud server verifies the signature, and then it stores the signcrypted data.
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Figure 3: Download signcrypted data procedure.

4.6. Data Download

The data download procedure is executed whenever a consumer wants to download data from
the cloud server. Consumers perform two different procedures to download a piece of informa-
tion from the cloud server, depending whether such piece of information has been produced by a
remote producer or by a WSAN producer. We explain them separately. The download procedure
of data produced by remote producers consists in the following steps.
Step 1. The consumer sends a data request along with its consumer identifier to the cloud server.
Step 2. The cloud server checks in the CT whether the decryption key version of the consumer is
older than the master key version and, if so, it updates the decryption key by executing the remote
consumer update procedure (see after). The cloud server identifies the requested ciphertext and
checks whether its version is older than the master key version. If so, the cloud server updates
the ciphertext by executing the UpdateCP primitive (see Section 5).
Step 3. The cloud server signs and sends the requested data to the consumer.
Step 4. The consumer verifies the server signature over the received message. Then, it executes
the Decrypt primitive using its decryption key.

Now consider the case in which a consumer requests a data produced by a WSAN producer.
Each consumer maintains a SymKey Table (see Figure 1), which associates policies P to sym-
metric keys SymKey. The download procedure of data produced by WSAN producers consists in
the following steps (Figure 3).
Step 1. The consumer sends a data request along with its consumer identifier to the cloud server.
Step 2. The cloud server signs and sends the requested signcrypted data to the consumer.
Step 3. The consumer searches for a tuple with the same key identifier as the one contained in
the received signcrypted data inside its SymKey Table. If such a tuple already exists, then the
consumer jumps directly to Step 6, otherwise the consumer creates it by continuing to Step 4.
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Step 4. The consumer performs a data download procedure, requesting and obtaining the sign-
crypted key associated to the received symmetric key identifier.
Step 5. The consumer decrypts the signcrypted key thus obtaining the symmetric key, and it adds
the tuple 〈KID,P,SymKey〉 to its SymKey Table.
Step 6. The consumer decrypts the signcrypted data with the symmetric key.

4.7. Direct Data Exchange

The direct data exchange procedure is executed whenever a producer wants to transmit data
to one or more consumers in a low-latency fashion inside the WSAN. To obtain a low latency
the producer broadcasts the data directly to the authorized consumers in an encrypted form,
instead of uploading such data to the cloud server. Furthermore, to save WSAN bandwidth we
want that the data exchanged is encrypted with symmetric-key encryption, under the form of
signcrypted data as it happens for data uploaded by WSAN producers. To ease the reading we
assume that the producer has already a tuple associated to the policy it wants to apply. Otherwise
the producer should previously perform a data upload procedure to the cloud in which it uploads
the signcrypted key it will use.

The procedure consists in the following steps.
Step 1. Let P be the access policy that has to be enforced over the data. The producer retrieves
the symmetric key associated to such policy inside its SymKey Table. The producer encrypts the
data with such a symmetric key, and signs it together with the symmetric key identifier. It thus
obtains the signcrypted data.
Step 2. The producer broadcasts the signcrypted data in the WSAN, and securely deletes the
original data.
Step 3. Perform Steps 3-6 of the download procedure of data produced by WSAN producers.

4.8. Producer Leave

The producer leave procedure is executed whenever one or more producers leave the system.
This happens in case that producers are dismissed from the system, or the private keys that they
use for signatures are compromised. In all these cases, the private keys of the leaving producers
must be revoked, so that data signed with such keys is no longer accepted by the cloud server.
The procedure consists in the following steps.
Step 1. The key authority communicates to the cloud server the identifiers of the leaving pro-
ducers with a signed message.
Step 2. The cloud server removes the tuples associated to such identifiers from the PT.

If at least one leaving producer was a WSAN producer, the following additional steps are
performed.
Step 3. The key authority communicates the identifiers of the leaving WSAN producers to the
WSAN gateway with a signed message.
Step 4. The WSAN gateway removes the tuples associated to such identifiers from the WSAN
Signature Table, and it broadcasts the signed message received by the key authority to all the
WSAN consumers.
Step 5. The WSAN consumers remove the tuples associated to such identifiers from their locally
maintained copy of the WSAN Signature Table.
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Figure 4: Consumer leave procedure.

4.9. Consumer Leave

The consumer leave procedure is executed whenever one or more consumers leave the sys-
tem, as depicted in figure 4. This happens in case that consumers are dismissed from the system,
or their keys are compromised. In all these cases, the decryption keys of the leaving consumers
must be revoked, in such a way that they cannot decrypt data anymore. The procedure consists
in the following steps.
Step 1. The key authority increases the master key version, and it executes the UpdateMK prim-
itive on the old master key, thus obtaining the new master key and the quantities U(vMK )

EK , U(vMK )
DK ,

and U(vMK )
CP . Then, the key authority sends the identifiers of the leaving consumers and the quan-

tities U(vMK )
EK , U(vMK )

DK , and U(vMK )
CP to the cloud server with a signed message, encrypted with the

cloud server’s public key.
Step 2. The cloud server verifies the signature, decrypts the message, retrieves the consumer
identifier from the message, and removes the tuples associated to those identifiers from the CT.
Note that the cloud server could now re-encrypt all the ciphertexts, by using the quantity U(vMK )

CP
just received. However, the re-encryption of each ciphertext is deferred to the time at which a
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consumer requests it (Lazy PRE). Then, the cloud server signs and encrypts U(vMK )
EK and U(vMK )

DK
with asymmetric encryption, and it sends them to the gateway.
Step 3. The gateway broadcasts the quantity U(vMK )

EK and U(vMK )
DK over the local low-bitrate WSAN,

so that all the producers and consumers that belong to it can immediately update their encryption
key and decryption key, respectively. To do this the gateway sends a single broadcast message,
composed as follows. The gateway encrypts the U(vMK )

DK quantity with the broadcast public key,
in such a way that all the WSAN consumers except the leaving ones can decrypt it. This allows
the gateway to share said quantity only with the WSAN consumers, excluding the compromised
ones if there are any. The gateway then signs the concatenation of the quantity U(vMK )

EK , and the
quantity U(vMK )

DK (encrypted), and broadcasts said message over the WSAN.
Step 4. Each producer updates its encryption key upon receiving the broadcast message; each
consumer then decrypts the received message using its broadcast private key dCID, and executes
the UpdateDK primitive using its old decryption key and the just received U(vMK )

DK . The WSAN
producers and the consumers delete their SymKey Tables.
Step 5. The cloud server updates inside the PT the versions of the encryption keys of all the
WSAN producers, and inside the CT the versions of the decryption keys of all the WSAN con-
sumers.

Note that SEA-BREW updates all the devices inside the low-bitrate WSAN with a single
O(1)-sized broadcast message (Step 3). This makes SEA-BREW highly scalable in the number
and size of messages necessary to manage decryption keys. Note also that, regarding remote con-
sumers and remote producers, the computational load of the consumer leave procedure is entirely
delegated to the cloud server, leaving the producers and consumers free of heavy computation.
This enables SEA-BREW to run on a broader class of sensors and actuators.

4.10. Remote Producer Update

The producer update procedure is executed by the data upload procedure by remote producers
(see Section 4.4), and it consists in the following steps. Step 1. The cloud server signs and
sends the last quantity UEK received from the key authority to the remote producer that must be
updated.
Step 2. The producer verifies the signature and retrieves UEK . Then, it executes the UpdateEK
primitive using its encryption key and the received quantity UEK as parameters.
Step 3. The cloud server updates the producer’s encryption key version to vMK inside PT.

4.11. Remote Consumer Update

The consumer update procedure is executed as specified in the data download procedure (see
Section 4.6), and it consists in the following steps.
Step 1. The cloud server executes the UpdateDK primitive using the consumer’s decryption
key and the last (vMK − vDK) quantities UDKs received from the key authority. The cloud server
encrypts and signs the output of that primitive, D(vMK ) using the consumer’s key-encryption key,
and sends it to the consumer.
Step 2. The consumer verifies the signature and decrypts the message, thus obtaining back D(vMK ).
Then, the consumer replaces the old field D of its decryption key with the received quantity.
Step 3. The cloud server updates the consumer’s decryption key version to vMK inside CT.
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5. Concrete Construction

We now explain in detail how the CP-ABE primitives previously introduced at the beginning
of Section 3.2 are realized.

(MK(0),EK(0)) = Setup(κ)
The Setup primitive is executed by the key authority. This primitive computes:

EK(0) = {G0, g, h = gβ, l = e(g, g)α, vEK = 0}; (1)

MK(0) = {β, gα, vMK = 0}, (2)

where G0 is a multiplicative cyclic group of prime order p with size κ, g is the generator
of G0, e : G0 × G0 → G1 is an efficiently-computable bilinear map with bi-linearity and
non-degeneracy properties, and α, β ∈ Zp are chosen at random.

CP = Encrypt(M,P,EK(vEK ))
The Encrypt primitive is executed by a producer. From now on, P is represented as a policy tree,
which is a labeled tree where the non-leaf nodes implement threshold-gate operators whereas
the leaf nodes are the attributes of the policy. A threshold-gate operator is a Boolean operator of
the type k-of-n, which evaluates to true iff at least k (threshold value) of the n inputs are true.
Note that a 1-of-n threshold gate implements an OR operator, whereas an n-of-n threshold gate
implements an AND operator. For each node x belonging to the policy tree the primitive selects
a polynomial qx of degree equal to its threshold value minus one (dx = kx − 1). The leaf nodes
have threshold value kx = 1, so their polynomials have degree equal to dx = 0. The polynomials
are chosen in the following way, starting from the root node R. The primitive assigns arbitrarily
an index to each node inside the policy tree. The index range varies from 1 to num, where num
is the total number of the nodes. The function index(x) returns the index assigned to the node x.
Starting with the root node R the primitive chooses a random s ∈ Zp and sets qR(0) = s. Then, it
randomly chooses dR other points of the polynomial qR to completely define it. Iteratively, the
primitive sets qx(0) = qparent(x)(index(x)) for any other node x and randomly chooses dx other
points to completely define qx, where parent(x) refers to the parent of the node x. At the end, the
ciphertext is computed as follows:

CP = {P, C̃ = Me(g, g)αs,C = hs, vCP = vEK

∀y ∈ Y : Cy = gqy(0),C′y = H(att(y))qy(0)},
(3)

where Y is the set of leaf nodes of the policy tree. The function att(x) is defined only if x is a leaf
node, and it denotes the attribute associated with the leaf. H is a hash function H : {0, 1}∗ → G0
that is modeled as a random oracle. The encryption key version vEK is assigned to the ciphertext
version vCP.

DK = KeyGen(MK(vMK ), γ)
The KeyGen primitive is executed by the key authority. This primitive randomly selects r ∈ Zp,
and r j ∈ Zp for each attribute in γ. It computes the decryption key DK as:

DK = {D = g
(α+r)
β , vDK = vMK

∀ j ∈ γ : D j = gr · H( j)r j ,D′j = gr j }.
(4)
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M = Decrypt(CP,DK)
The Decrypt primitive is executed by a consumer. This primitive executes the sub-function De-
cryptNode on the root node. DecryptNode(DK,CP, x) takes as input the consumer’s decryption
key, the ciphertext and the node x. If the node x is a leaf node, let i = att(x) and define the
function as follows. If i ∈ γ, then:

DecryptNode(DK,CP,x) =
e(Di,Cx)
e(D′i ,C

′
x)
. (5)

Otherwise, if i < γ, then DecryptNode(DK,CP, x) =⊥. When x is not a leaf node, the primitive
proceeds as follows. First of all, let ∆i,S be the Lagrange coefficient for i ∈ Zp and let S be an
arbitrary set of element in Zp : ∆i,S (x) =

∏
j∈S , j,i

x− j
i− j . Now, for all nodes z that are children of x,

it calls recursively itself and stores the result as Fz. Let S x be an arbitrary kx-sized set of children
z such that Fz ,⊥ ∀z ∈ S x. Then, the function computes:

Fx =
∏
z∈S z

F
∆i,S ′x

(0)
z = e(g, g)r·qx(0). (6)

where i = index(z), and S x = index(z) : z ∈ S x. The Decrypt(CP,DK) primitive first calls De-
cryptNode(DK,CP,R) where R is the root of the policy tree extracted by P embedded in CP.
Basically, the sub-function navigates the policy tree embedded inside the ciphertext in a top-
down manner and if γ satisfies the policy tree it returns A = e(g, g)rs. Finally, the primitive
computes:

M = C̃/(e(C,D)/A). (7)

(MK(vMK+1),U(vMK+1)) = UpdateMK(MK(vMK ))
The UpdateMK primitive is executed by the key authority. This primitive increments vMK by
one, chooses at random a new β(vMK ) ∈ Zp, and computes:

U(vMK )
CP =

β(vMK )

β(vMK−1) ;

U(vMK )
EK = gβ

(vMK )
;

U(vMK )
DK =

β(vMK−1)

β(vMK ) ;

U(vMK ) = {U(vMK )
CP ,U(vMK )

EK ,U(vMK )
DK }.

(8)

Then it updates the master key as:

MK(vMK ) = {β(vMK ), gα, vMK}. (9)

In order to avoid ambiguities, we specify that the first ever update key is U(1) and not U(0) as the
value vMK is incremented before the creation of U. The careful reader surely have noticed that
UCP and UDK are reciprocal. In practice, we can use only one of these quantities and compute
the other by inverting it. In this paper we chose to keep those quantity separated for the sake of
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clarity.

EK(vMK ) = UpdateEK(EK(vEK ),U(vMK )
EK )

The UpdateEK primitive is executed by the producers. Regardless the input encryption key’s
version, this primitive takes as input only the last update key generated, namely U(vMK )

EK . The
primitive substitutes the field h inside the encryption key with the last update quantity, and
updates the encryption key version to the latest master key version, thus obtaining:

EK(vMK ) = {G0, g, h = U(vMK )
EK , l = e(g, g)α, vEK = vMK}. (10)

D(vMK ) = UpdateDK(U(vDK+1)
DK , . . . ,U(vMK )

DK ,D(vDK ))
The UpdateDK primitive is executed by the cloud server and by the WSAN consumers. The
decryption key on input has been lastly updated with U(vDK )

DK , and the overall latest update is
U(vMK )

DK , with, vMK > vDK . This primitive computes:

U′DK = U(vDK+1)
DK · · · · · U(vMK )

DK ;

D(vMK ) = (D(vDK ))U′DK .
(11)

CP(vMK ) = UpdateCP(CP(vCP),U(vCP+1)
CP , . . . ,UCP

(vMK ))
The UpdateCP primitive is executed by the cloud server. The ciphertext on input has been
lastly re-encrypted with U(vCP)

CP , and the overall latest update is U(vMK )
CP , with, vMK > vCP. This

primitive computes the re-encryption quantity U′CP as the multiplication of all the version
updates successive to the one in which the ciphertext has been lastly updated.

U′CP = U(vCP+1)
CP · · · · · U(vMK )

CP . (12)

Then, re-encryption is achieved with the following computation:

C(vMK ) = (C(vCP))U′CP . (13)

Finally, the primitive outputs the re-encrypted ciphertext CP′ as:

CP(vMK ) = {P, C̃,C(vMK ), vCP = vMK ,

∀y ∈ Y : Cy = gqy(0),C′y = H(att(y))qy(0)}.
(14)

5.1. Correctness.

In the following we show the correctness of SEA-BREW.
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Decrypt equation (6):

Fx =
∏
z∈S z

F
∆i,S ′x

(0)
z

=
∏
z∈S z

(e(g, g)r·qz(0))∆i,S ′x
(0)

=
∏
z∈S z

(e(g, g)r·qparent(z)(index(z)))∆i,S ′x
(0)

=
∏
z∈S z

e(g, g)r·qx(i)·∆i,S ′x
(0)

= e(g, g)r·qx(0).

(15)

Decrypt equation (7):

C̃/(e(C,D)/A) = C̃/(e(hs, g
α+r
β )/e(g, g)rs)

= Me(g, g)αs/
(
e(g, g)βs· α+r

β /e(g, g)rs
)

=
Me(g, g)αs

e(g, g)αs = M.

(16)

UpdateDK equation (11):

D(vMK ) = (D(vDK ))U′DK = g
r+α

β(vDK ) ·
β(vDK )

β(vMK ) = g
r+α

β(vMK ) . (17)

UpdateCP equation (13):

C(vMK ) = (C(vCP))U′CP = g
sβ(vCP )·

β(vMK )

β(vCP ) = gsβ(vMK )
. (18)

6. Security Proofs

In this section, we provide formal proofs of two security properties of our scheme, related to
two adversary models described in Section 3.1. Namely, we prove our scheme to be adaptively
IND-CPA secure against a set of colluding consumers (Theorem 1), and against a honest-but-
curious cloud server colluding with a set of consumers (Theorem 2).

Theorem 1. SEA-BREW is secure against an IND-CPA by a set of colluding consumers (Game
1), under the generic bilinear group model.

Proof. Our objective is to show that SEA-BREW is not less secure than the CP-ABE scheme by
Bethencourt et al. [7], which is proved to be IND-CPA secure under the generic bilinear group
model. To do this, we prove that if there is a PPT adversary A that can win Game 1 with non-
negligible advantage ε against SEA-BREW, then we can build a PPT simulator B that can win
the CP-ABE game described in [7] (henceforth, Game 0) against the scheme of Bethencourt et
al. with the same advantage. We will denote the challenger of Game 0 as C. We describe the
simulator B in the following.

Setup. In this phase C gives to B the public parameters EK of Game 0, that will be exactly EK(0)

in Game 1. In turn, B sends toA the encryption key EK(0) of Game 1.
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Phase 1. Let us denote with the symbol n the latest version of the master key at any moment.
In addition let us denote with the symbol k a specific version of a key or a ciphertext lower than
n, so that k < n at any moment. The query that an adversary can issue to the simulator are the
following.

• encryption key update: B chooses U(n+1)
DK at random from Zp. Then, B computes

h(n+1) = (gβ
(n)

)
1

U(n+1)
DK , (19)

and sends EK(n+1) to A. Finally, B increments n. Please note that B does not know
β(i),∀i ∈ [0, n], but it does not need to. B needs to know only the relationship between any
two consecutive versions, which are exactly:

U(i)
DK =

β(i−1)

β(i) ,∀i ∈ [1, n] (20)

• generate decryption key: when A issues a query for DK(n)
j (i.e., a decryption key with a

given attribute set γ j, and latest version n) to B, B in turn issues a query for DKj to C, and
receives DK(0)

j . Then B upgrades such a key to the latest version n executing the primitive

UpdateDK, using as input said key and U(i)
DK ,∀i ∈ [1, n]. Finally B sends toA the desired

decryption key DK(n)
j .

• decryption key update: when A issues a query for upgrading an existing decryption key
DK(k)

w ,B upgrades such a key to the last version n executing the primitive UpdateDK, using
as input said key and U(i)

DK ,∀i ∈ [k, n]. Finally B sends to A the updated decryption key
DK(n)

w .

• ciphertext update: whenA issues a query for upgrading an existing ciphertext CP(k), B up-
grades such a ciphertext to the latest version n executing the primitive UpdateCP, using as
input said ciphertext and (U(i)

DK)
−1
,∀i ∈ [k, n]. Finally B sends toA the updated ciphertext

CP(n).

Challenge. A submits two equal length messages m0 and m1 and a challenge policy P∗ to B,
which in turn forwards them to C. C responds with CP∗ to B, that will be exactly CP∗(0) of
Game 1. Then, B upgrades such a ciphertext to the latest version n executing the primitive
UpdateCP, using as input said ciphertext and (U(i)

DK)
−1
,∀i ∈ [1, n]. Finally B sends to A the

updated challenge ciphertext CP∗(n).

Phase 2. Phase 1 is repeated.

Guess. A outputs b′ to B, which forwards it to C.
Since a correct guess in Game 1 is also a correct guess in Game 0 and vice versa, then the

advantage of the adversaryA in Game 1 is equal to that of the adversary B in Game 0. Namely,
such an advantage is ε = O(q2/p), where q is a bound on the total number of group elements
received by the A’s queries performed in Phase 1 and Phase 2, which is negligible with the
security parameter κ.
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Please note that, in the encryption key update query, the adversary A cannot distinguish an
U(i)

DK provided by B from one provided by the real scheme. Indeed, even if the generation of such
a quantity is different, its probability distribution is uniform in Zp as in the real scheme. This
allows the simulator B to answer to all the other queries in Phase 1 and Phase 2 in a way that it
is indistinguishable from the real scheme. This concludes our proof.

We now consider a honest-but-curious cloud server colluding with a set of consumers. We
state that a scheme is secure against an IND-CPA by a honest-but-curious cloud server colluding
with a set of consumers if no PPT adversary A has a non-negligible advantage against the chal-
lenger in the following game, denoted as Game 2. Game 2 is the same as Game 1 except that:
(i) for every encryption key update query in Phase 1 and Phase 2 the adversary is given also the
update quantities U(i)

DK ,∀i ∈ [1, n]; and (ii) during Phase 1 and Phase 2 the adversary can issue
the following new type of query.

• generate decryption key’s D field: the challenger runs the primitive KeyGen using as in-
put an attribute set provided by the adversary. Then, the challenger sends the field D of
generated decryption key to the adversary.

Note that differently from the generate decryption key query, when issuing a generate decryption
key’s D field query the adversary is allowed to submit an attribute set that satisfies the challenge
policy P∗.

Theorem 2. SEA-BREW is secure against an IND-CPA by a honest-but-curious cloud server
colluding with a set of consumers (Game 2), under the generic bilinear group model.

Proof. We prove that if there is a PPT adversary A that can win Game 2 with non-negligible
advantage ε against SEA-BREW, then we can build a PPT simulator B that can win Game 1
against SEA-BREW with the same advantage. We can modify the simulator B used in the proof
of Theorem 1 to prove this theorem. In the Phase 1 and Phase 2, B additionally gives to A the
update quantities U(i)

DK ,∀i ∈ [1, n], which B creates at each encryption key update query. During
Phase 1 and Phase 2, when A issues a generate decryption key’s D field query, B treats it in the
same way of a generate decryption key query with an empty attribute set γ = {∅}. Note indeed
that a decryption key component Dγ j is indistinguishable from a complete decryption key with
no attributes. Hence, we can say that the advantage of A in Game 2 is the same as that of B
in Game 0. Namely, such an advantage is ε = O(q2/p), which is negligible with the security
parameter κ.

7. Performance Evaluation

In this section we analytically estimate the performances of SEA-BREW compared to: (i)
the Bethencourt et al.’s scheme [7] provided with a simple key revocation mechanism, denoted
as “BSW-KU” (Bethencourt-Sahai-Waters with Key Update); and (ii) Yu et al. scheme [8], de-
noted as “YWRL” (Yu-Wang-Ren-Lou). We considered these two schemes for different reasons.
BSW-KU represents the simplest revocation method that can be built upon the “classic” CP-
ABE scheme of Bethencourt et al. Thus the performance of this revocation method constitutes
the baseline reference for a generic revocable CP-ABE scheme. On the other hand, YWRL rep-
resents a KP-ABE counterpart of SEA-BREW, since it natively supports an immediate indirect
key revocation, and a Lazy PRE mechanism.
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Size of Number/size of Total
broadcast unicast
message messages
(bytes) (bytes) (bytes)

SEA-BREW
consumer leave 252 - 252
producer leave 48 - 48

BSW-KU
consumer leave 256 50×2,688 134,656
producer leave 48 - 48

Table 3: Traffic overhead of key revocation procedures in the WSAN.

The revocation mechanism of BSW-KU works as follows. The producer leave procedure
works in the same way as SEA-BREW: the WSAN gateway simply broadcasts a signed message
containing the producer identifier to all the WSAN consumers, which remove the tuples asso-
ciated to such an identifier from their locally maintained copy of the WSAN Signature Table.
The consumer leave procedure requires the WSAN gateway to send a signed broadcast message
containing the new encryption key to all the WSAN producers, and in addition an encrypted
and signed message containing a new decryption key to each WSAN consumer. This procedure
results in O(n) point-to-point messages where n is the number of WSAN consumers. In contrast,
SEA-BREW is able to perform both a consumer leave procedure by sending a single O(1)-sized
signed broadcast message over the WSAN.

7.1. WSAN Traffic Overhead

In this section we analytically estimate the traffic overhead that the key revocation mechanism
of SEA-BREW generates in the WSAN, compared to the simple key revocation mechanism
of BSW-KU. In both SEA-BREW and BSW-KU schemes, for implementing G0, G1, and the
bilinear pairing we consider a supersingular elliptic curve with embedding degree k = 2 defined
over a finite field of 512 bits. For the signatures of the unicast and broadcast messages we
consider a 160-bit ECDSA scheme. Moreover, for the selective broadcast encryption used in
the SEA-BREW scheme we consider the Boneh et al. scheme [37] with the same supersingular
elliptic curve as above. This gives to both schemes an overall security level of 80 bits. We assume
that, in both SEA-BREW and BSW-KU schemes, all elliptic-curve points are represented in
compressed format [40] when they are sent over wireless links. This allows us to halve their size
from 1024 bits to 512 bits. We further assume a low-bitrate WSAN composed of one gateway,
50 consumers, and 50 producers. Each consumer is described by an attribute set of 20 attributes.
We assume that the consumer identifiers and the producer identifiers are both 64-bit long.

Table 3 shows the traffic overhead of consumer leave and producer leave procedures of SEA-
BREW and BSW-KU schemes. In SEA-BREW, the broadcast message sent by the WSAN gate-
way during the consumer leave procedure is composed by the ECDSA signature (40 bytes), UEK

(64 bytes), and UDK encrypted with the broadcast public key (148 bytes). Here we assumed that
UDK is encrypted by one-time pad with a key encrypted by the Boneh et al.’s broadcast encryption
scheme [37], so it is composed of 20 bytes (the one-time-padded UDK) plus the broadcast en-
cryption overhead (128 bytes). As can be seen from the table, inside a low-bitrate WSAN, SEA-
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Primitive Pairings G0 exp.’s G1 exp.’s
SEA-BREW

Encrypt - 2|P| 1
KeyGen - 2|γ| + 1 -
Decrypt 2|P| + 1 - |P| + 2

UpdateCP - 1 -
UpdateDK - 1 -
BSW-KU
Encrypt - 2|P| 1
KeyGen - 2|γ| + 1 -
Decrypt 2|P| + 1 - |P| + 2

UpdateCP (not available)
UpdateDK - 2|γ| + 1 -
YWRL [8]

Encrypt - |γ| 1
KeyGen - |P| -
Decrypt |P| - |P|

UpdateCP - |γ ∩Arev| -
UpdateDK - |P ∩ Arev| -

Table 4: Comparison between SEA-BREW, BSW-KU, and YWRL schemes in terms of the computational cost of
the primitives. For the YWRL scheme, the UpdateCP and the UpdateDK primitives correspond respectively to the
AUpdateAtt4File and AUpdateSK of the original paper.

BREW produces the same traffic overhead as the BSW-KU scheme when performing producer
leave procedure. However, the overhead is merely the 0.2% of that produced by the BSW-KU
scheme when performing a consumer leave procedure. Indeed, SEA-BREW is able to revoke
or renew multiple decryption keys by sending a single 252-byte (considering 80-bit security)
broadcast message over the WSAN, opposed to the one 256-byte broadcast message plus 50 uni-
cast messages of 2688-byte each (total: ∼131KB of traffic) necessary to update a network with
50 consumers (each of them described by 20 attributes) in a traditional CP-ABE scheme. With
bigger WSANs (more than 50 consumers) or bigger attribute sets (more than 20 attributes) the
advantage of SEA-BREW with respect to the BSW-KU scheme grows even more. Moreover,
SEA-BREW also provides a re-encryption mechanism delegated to the untrusted cloud server,
which is absent in the BSW-KU scheme.

7.2. Computational Overhead

In Table 4 we compare the computational cost of the primitives of SEA-BREW with those
of BSW-KU and of YWRL, in terms of number and type of needed operations. In the table, the
symbol Arev indicates the set of attributes that have been revoked, therefore the attributes that
need to be updated in ciphertexts and decryption keys. The symbol |P| is the number of attributes
inside the policy P, and the same applies for |γ|. The expression |γ ∩ Arev| is the number of
attributes belonging to both γ andArev, and the same applies to |P ∩Arev|. The operations taken
into account are pairings, exponentiations in G0, and exponentiations in G1. In all the three
schemes, we consider the worst-case scenario for the Decrypt primitive, which corresponds to
a policy with an AND root having all the attributes in γ as children. This represents the worst
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case since it forces the consumer to execute the DecryptNode sub-primitive on every node of the
policy, thus maximizing the computational cost.

From the table we can see that SEA-BREW and BSW-KU pay the flexibility of the CP-
ABE paradigm in terms of computational cost, especially concerning the Encrypt and Decrypt
operations. However, this computational cost is the same of that in Bethencourt et al.’s scheme
[7], which has proven to be supportable by mobile devices [11] and constrained IoT devices
[13]. Note that our UpdateCP and UpdateDK primitives have a cost which is independent of
the number of attributes in the revoked decryption key. Such primitives require a single G0
exponentiation, and a number of Zp multiplications equal to the number of revocations executed
from the last update of the ciphertext or the decryption key. However, the latter operations have
a negligible computational cost compared to the former one, therefore we can consider both
primitives as constant-time.

Since modern cloud services typically follow a “pay-as-you-go” business model, in order to
keep the operational costs low it is important to minimize the computation burden on the cloud
server itself. We investigated by simulations the cloud server computation burden of our Lazy
PRE scheme compared to the YWRL one, which represents the current state of the art. We can
see from Table 4 that in both SEA-BREW and YWRL, the cloud performs only exponentiations
in G0.

The reference parameters for our simulations are the following ones. We simulated a system
of 100k ciphertexts stored on the cloud server, over an operation period of 1 year. We fixed an
attribute universe of 200 attributes. We fixed a number of 15 attributes embedded in policies
and attribute sets. We modeled the requests with a Poisson process with average of 50k daily
requests. Finally, we modeled that several consumer leave procedures are executed at different
instants, following a Poisson process with average period of 15 days. In order to obtain more
meaningful statistical results we performed 100 independent repetitions of every simulation.

Fig. 5 shows the average number of exponentiations in G0 performed by the cloud server,
with respect to the number of attributes in ciphertexts and decryption keys, which is a measure
of the complexity of the access control mechanism.

As we can see from the figure, SEA-BREW scales better than the YWRL as the access
control complexity grows. This is because in the YWRL scheme every attribute has a singular
and independent version number, and the revocation of a decryption key requires to update all
the single attributes in the key. The cloud server re-encrypts a ciphertext with a number of
operations equal to the attributes shared between the ciphertext and the revoked key. Such a
number of operations grows linearly with the average number of attributes in ciphertexts and
decryption keys. On the other hand, in SEA-BREW the master key version number is unique for
all the attributes, and the revocation of a decryption key requires to update only it. The cloud
server re-encrypts a ciphertext with an operation whose complexity is independent of the number
of attributes in the ciphertext and the revoked key.

Fig. 6 shows the average number of exponentiations in G0 performed by the cloud server
with respect to the average daily requests, which is a measure of the system load. The number of
attributes in ciphertexts and decryption keys is fixed to 15.

Fig. 6 shows the average number of exponentiations in G0 performed by the cloud server
with respect to the average daily requests, which is a measure of the system load. The number
of attributes in ciphertexts and decryption keys is fixed to 15. As we can see from the figure
the computational load on the cloud server grows sub-linearly with respect to the increase of the
requests. This behavior allows SEA-BREW to scale well also with high number of requests.
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Figure 5: Average number of exponentiations over a year, varying policies and attribute sets dimension. 95%-confidence
intervals are displayed in error bars.

8. Conclusion

In this paper, we proposed SEA-BREW (Scalable and Efficient ABE with Broadcast REvoca-
tion for Wireless networks), an ABE revocable scheme suitable for low-bitrate Wireless Sensor
and Actuator Networks (WSANs) in IoT applications. SEA-BREW is highly scalable in the
number and size of messages necessary to manage decryption keys. In a WSAN composed of n
decrypting nodes, a traditional approach based on unicast would require O(n) messages. SEA-
BREW instead, is able to revoke or renew multiple decryption keys by sending a single broadcast
message over a WSAN. Intuitively, such a message allows all the nodes to locally update their
keys. Also, our scheme allows for per-data access policies, following the CP-ABE paradigm,
which is generally considered flexible and easy to use [7, 20, 11]. In SEA-BREW, things and
users can exchange encrypted data via the cloud, as well as directly if they belong to the same
WSAN. This makes the scheme suitable for both remote cloud-based communications and local
delay-bounded ones. The scheme also provides a mechanism of proxy re-encryption [8, 21, 22]
by which old data can be re-encrypted by the cloud to make a revoked key unusable. We formally
proved that our scheme is adaptively IND-CPA secure also in case of an untrusted cloud server
that colludes with a set of users, under the generic bilinear group model. We finally showed by
simulations that the computational overhead is constant on the cloud server, with respect to the
complexity of the access control policies.
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