174 research outputs found

    Fairing arc spline and designing by using cubic bézier spiral segments

    Get PDF
    This paper considers how to smooth three kinds of G 1 biarc models, the C-, S-, and J-shaped transitions, by replacing their parts with spiral segments using a single cubic Bézier curve. Arc spline is smoothed to G 2continuity. Use of a single curve rather than two has the benefit because designers and implementers have fewer entities to be concerned. Arc spline is planar, tangent continuous, piecewise curves made of circular arcs and straight line segments. It is important in manufacturing industries because of its use in the cutting paths for numerically controlled cutting machinery. Main contribution of this paper is to minimize the number of curvature extrema in cubic transition curves for further use in industrial applications such as non-holonomic robot path planning, highways or railways, and spur gear tooth designing

    Blending techniques in Curve and Surface constructions

    Get PDF
    Source at https://www.geofo.no/geofoN.html. <p

    Smooth path planning with Pythagorean-hodoghraph spline curves geometric design and motion control

    Get PDF
    This thesis addresses two significative problems regarding autonomous systems, namely path and trajectory planning. Path planning deals with finding a suitable path from a start to a goal position by exploiting a given representation of the environment. Trajectory planning schemes govern the motion along the path by generating appropriate reference (path) points. We propose a two-step approach for the construction of planar smooth collision-free navigation paths. Obstacle avoidance techniques that rely on classical data structures are initially considered for the identification of piecewise linear paths that do not intersect with the obstacles of a given scenario. In the second step of the scheme we rely on spline interpolation algorithms with tension parameters to provide a smooth planar control strategy. In particular, we consider Pythagorean\u2013hodograph (PH) curves, since they provide an exact computation of fundamental geometric quantities. The vertices of the previously produced piecewise linear paths are interpolated by using a G1 or G2 interpolation scheme with tension based on PH splines. In both cases, a strategy based on the asymptotic analysis of the interpolation scheme is developed in order to get an automatic selection of the tension parameters. To completely describe the motion along the path we present a configurable trajectory planning strategy for the offline definition of time-dependent C2 piece-wise quintic feedrates. When PH spline curves are considered, the corresponding accurate and efficient CNC interpolator algorithms can be exploited

    Smooth path planning with Pythagorean-hodoghraph spline curves geometric design and motion control

    Get PDF
    This thesis addresses two significative problems regarding autonomous systems, namely path and trajectory planning. Path planning deals with finding a suitable path from a start to a goal position by exploiting a given representation of the environment. Trajectory planning schemes govern the motion along the path by generating appropriate reference (path) points. We propose a two-step approach for the construction of planar smooth collision-free navigation paths. Obstacle avoidance techniques that rely on classical data structures are initially considered for the identification of piecewise linear paths that do not intersect with the obstacles of a given scenario. In the second step of the scheme we rely on spline interpolation algorithms with tension parameters to provide a smooth planar control strategy. In particular, we consider Pythagorean–hodograph (PH) curves, since they provide an exact computation of fundamental geometric quantities. The vertices of the previously produced piecewise linear paths are interpolated by using a G1 or G2 interpolation scheme with tension based on PH splines. In both cases, a strategy based on the asymptotic analysis of the interpolation scheme is developed in order to get an automatic selection of the tension parameters. To completely describe the motion along the path we present a configurable trajectory planning strategy for the offline definition of time-dependent C2 piece-wise quintic feedrates. When PH spline curves are considered, the corresponding accurate and efficient CNC interpolator algorithms can be exploited

    Reconstruction of undersampled signals and alignment in the frequency domain

    Get PDF
    Imperial Users onl

    Path Planning For Persistent Surveillance Applications Using Fixed-Wing Unmanned Aerial Vehicles

    Get PDF
    This thesis addresses coordinated path planning for fixed-wing Unmanned Aerial Vehicles (UAVs) engaged in persistent surveillance missions. While uniquely suited to this mission, fixed wing vehicles have maneuver constraints that can limit their performance in this role. Current technology vehicles are capable of long duration flight with a minimal acoustic footprint while carrying an array of cameras and sensors. Both military tactical and civilian safety applications can benefit from this technology. We make three main contributions: C1 A sequential path planner that generates a C2 flight plan to persistently acquire a covering set of data over a user designated area of interest. The planner features the following innovations: • A path length abstraction that embeds kino-dynamic motion constraints to estimate feasible path length • A Traveling Salesman-type planner to generate a covering set route based on the path length abstraction • A smooth path generator that provides C2 routes that satisfy user specified curvature constraints C2 A set of algorithms to coordinate multiple UAVs, including mission commencement from arbitrary locations to the start of a coordinated mission and de-confliction of paths to avoid collisions with other vehicles and fixed obstacles iv C3 A numerically robust toolbox of spline-based algorithms tailored for vehicle routing validated through flight test experiments on multiple platforms. A variety of tests and platforms are discussed. The algorithms presented are based on a technical approach with approximately equal emphasis on analysis, computation, dynamic simulation, and flight test experimentation. Our planner (C1) directly takes into account vehicle maneuverability and agility constraints that could otherwise render simple solutions infeasible. This is especially important when surveillance objectives elevate the importance of optimized paths. Researchers have devel oped a diverse range of solutions for persistent surveillance applications but few directly address dynamic maneuver constraints. The key feature of C1 is a two stage sequential solution that discretizes the problem so that graph search techniques can be combined with parametric polynomial curve generation. A method to abstract the kino-dynamics of the aerial platforms is then presented so that a graph search solution can be adapted for this application. An A* Traveling Salesman Problem (TSP) algorithm is developed to search the discretized space using the abstract distance metric to acquire more data or avoid obstacles. Results of the graph search are then transcribed into smooth paths based on vehicle maneuver constraints. A complete solution for a single vehicle periodic tour of the area is developed using the results of the graph search algorithm. To execute the mission, we present a simultaneous arrival algorithm (C2) to coordinate execution by multiple vehicles to satisfy data refresh requirements and to ensure there are no collisions at any of the path intersections. We present a toolbox of spline-based algorithms (C3) to streamline the development of C2 continuous paths with numerical stability. These tools are applied to an aerial persistent surveillance application to illustrate their utility. Comparisons with other parametric poly nomial approaches are highlighted to underscore the benefits of the B-spline framework. Performance limits with respect to feasibility constraints are documented

    Generalized Advanced Propeller Analysis System (GAPAS). Volume 2: Computer program user manual

    Get PDF
    The Generalized Advanced Propeller Analysis System (GAPAS) computer code is described. GAPAS was developed to analyze advanced technology multi-bladed propellers which operate on aircraft with speeds up to Mach 0.8 and altitudes up to 40,000 feet. GAPAS includes technology for analyzing aerodynamic, structural, and acoustic performance of propellers. The computer code was developed for the CDC 7600 computer and is currently available for industrial use on the NASA Langley computer. A description of all the analytical models incorporated in GAPAS is included. Sample calculations are also described as well as users requirements for modifying the analysis system. Computer system core requirements and running times are also discussed
    corecore