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ABSTRACT

This thesis describes a technique for the digital reconstruction 
of one and two dimensional signals from a series of undersampled 
versions. To do the necessary alignment of the signals, a novel 
technique of shift estimation is developed, based on the phase of 
the Fourier components. The effects of windowing, when finite 
length signals are processed, are also studied.

The reconstruction technique- is based on the frequency domain, 
and requires that the signal is bandlimited and the total number 
of samples is adequate. The technique is evaluated in the 
presence of noise and with alignment errors. The relative shift 
between the sampled signals is found to sub-sample resolution 

using the phase of consecutive harmonics. Particular attention 
is paid to the effect of aliasing on the delay estimate. The use 
of data windows for processing finite length signals is 
investigated for both the signal alignment and reconstruction 
methods. The usefulness and reliability of the complete 
reconstruction algorithm is evaluated on simulated one and two 
dimensional signals and a number of real images.

It is concluded that the shift estimation technique developed 
provides an efficient and useful new algorithm. The investi­
gation into windowing shows that the required window properties 
here are different to the usual ones in spectral estimation. The 
reconstruction technique was found to be sensitive to noise and 
errors in alignment but could recover detail lost in digitizing 
the signals.
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STATEMENT OF ORIGINALITY

The author believes the following techniques, which were
developed, analysed and evaluated in this thesis, to be original.

1. Frequency domain reconstruction of bandlimited signals:

(a) Combining multiple, delayed, undersampled versions of signals 
to enhance spatial (or temporal) resolution, using the 
frequency domain.

(b) Analysis of noise and distortion in the reconstructed signal 
in the presence of noisy inputs and inaccurate delay 
estimates.

(c) Implementation of the technique for one and two dimensional 
signals and experimental evaluation.

2. Delay estimation based on the phase of consecutive
frequencies:

(a) Development of a signal alignment technique, together with 
Dr. D.M. Monro, based on the phase of consecutive 
frequencies (PCF); in particular the phase unwrapping and 
minimum variance delay estimation.

(b) Implementation for both one and two dimensional signals and 
experimental evaluation of this technique.

(c) Investigation of delay estimates in the presence of aliasing.

(d) Investigation of data windows in the estimation of signal 
phase and phase difference.
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(e) Development of a least-mean-square-error criterion for 

assessing windows applied to delayed versions of signals.

(f) Comparison of Tukey, rectangular and trapezium windows on the 
basis of this criterion.

3. The reconstruction and delay estimation combined:

Evaluation of signal reconstruction, with PCF alignment and 
tapered data windows on one and two dimensional signals.
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1. INTRODUCTION

1.1. BACKGROUND TO THE TECHNIQUES PRESENTED

New techniques and applications in Digital Signal Processing are 
described in this work. These involve the reconstruction of 
sampled signals (both one and two dimensional ones), the 
estimation of the relative shift between signals and windowing of 
the data. The reconstruction technique aims to increase the 
detail visible in signals, which is to increase the spatial 
resolution of images or temporal resolution of one dimensional 
signals. The alignment technique, necessary for signal recon­
struction, estimates motion of images and delay in signals. The 
principal advantage of the new technique developed lies in 
efficiently finding estimates to sub-sample resolution. The 
study of data windows gives results for applications where 
delayed versions of signals are processed. Suitable windows for 
such applications are suggested.

In Fig. 1.1. the basic idea behind the signal reconstruction 
technique is shown. An image is sampled on the regular grid 

indicated by the crosses in Fig. 1.1.a. The samples are too far 
apart however, and information is lost in the sampling process. 
This is referred to as undersamp1ing. The image is then sampled 
again (Fig. l.l.b), on the same grid, just slightly shifted. 
Superimposing a series of such sampled images leads to the 
irregular sampling pattern seen in Fig. 1.1.c, where 'bunches' of 
samples are repeated. The reconstruction technique described in 
Chapter 2 interpolates from this irregular grid onto a regular
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one containing the same total number of samples (Fig. 1.1.d) .
Provided the distance between samples on this grid is 

sufficiently low (adequate sampling rate - see 1.2.), the 
original continuous image may now be found from these regularly 
spaced samples by well known techniques of filtering.

Fig. 1.1 Reconstruction of undersampled signals

Fig.1.1.a. Undersampled image Fig.l.l.b Shifted, undersampled 
image

Fig.l.i.c. Superimposed samples 
from four such images

Fig.l.l.d. Reconstructed, sampled 
image
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Fig. 1.1.e Repeated ''bunches' 
of samples with 
Delay D.

The reconstruction is also illustrated for one-dimensional, time 
varying data. The continuous signal and the non-uniformly spaced 
samples are shown in Fig. 1.1.e and the uniformly spaced samples 
of the reconstructed signal in Fig. l.l.f.

A series of undersampled versions of the same scene are thus 
combined to form an adequately sampled signal. In this way 
spatial (or temporal) resolution of the digital signals may be 
improved. An algorithm for this is presented in Chapter 2.

In order to carry out the interpolation described above, the 
distance between the samples in the 'bunches' (D in Fig. 1.1.e) 
must be known. This distance corresponds to the shift of the 
sampling grid, or the shift of the signal if the grid remains 

stationary. This shift may be estimated from the sampled data 
using the novel signal alignment algorithm of Chapter 3. One of 
the main advantages of this new method lies in its resolution 
being finer than the distance between the samples of each signal 
(sub-sample resolution). This technique operates in the 
frequency domain: the samples situated on a regular grid in the 

space (time) domain, are expressed as a series of sine and cosine 

waves (the frequency domain) using the Discrete Fourier Transform
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(see 1.2.). Translatory shift of the images and time-delay for 
one dimensional data can readily be estimated from the trans­

formed signals.

Fig. 1.2 Windowing a shifted image

The third major issue considered in this work is that of data 
windows. In digital signal and image processing techniques, only 
finite regions of the data (windows on the data) can be 
processed. The windowed versions of shifted images overlap over 
only part of their area as shown in the clear region in the 
centre of Fig. 1.2. The two images do not correspond to each 
other near the edges (the shaded region). This can cause errors 
in the results of the signal alignment and reconstruction 
techniques. These errors may be reduced by multiplying the 
signal f(x,y) by a window w(x,y) which is tapered near the edges 
to form g(x,y) = f(x,y).w(x,y). Thus the weighting given to the 
regions near the edges is reduced. One dimensional windows are 
studied in Chapter 4 and functions suitable for the alignment and 
reconstruction techniques suggested.
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In the complete signal reconstruction technique, the series of 
undersampled signals are multiplied by a suitable tapered window 
function before performing the Discrete Fourier Transform on each 
of these windowed signals. Using the alignment technique 
presented, the relative shift between each of these signals is 
then estimated. With this result, interpolation from the bunched 
samples is performed in the frequency domain. Through an Inverse 
Discrete Fourier Transform the space (or time) domain signal of 
higher resolution is found.

New techniques in digital signal processing are presented here, 
which may be applied to many problems of digital signal 
processing. However, the alignment technique may find the most 
widespread use. The analysis of the algorithms presented, 
provide valuable new insights into signal processing theory and 
sheds new light onto established knowledge. This gives the 
understanding necessary for the further development of these 
techniques.

A considerable number of techniques for signal alignment have 

been developed in the past which are used in applications such as 
coherent averaging, control of robots, target tracking etc. The 
technique developed in Chapter 3 is believed to be a valuable 
addition to the available methods, with the major advantage of 
efficiently giving sub-sample resolution.

The results of the investigation into windowing (Chapter 4) may 
be used where delayed versions of the same signal are processed. 
Applications such as coherent averaging and delay or motion
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estimation may benefit.

For the complete signal reconstruction algorithm, inter­
polation together with windowing and signal alignment, typical 
applications envisaged are in the processing of satellite images, 
forensic data and medical images as well as on one dimensional 
data.

The reconstruction technique requires a series of shifted, under­
sampled versions of the same analog data. In one dimensional, 
time varying signals, this might be derived from sampling a few 
periods of a periodic signal when the sampling frequency is too 
low. In satellite imaging, multiple copies of the same scene 
might be obtained by repeated 'shots' of the same area. 
Geostationary satellites (eg. Meteosat) remain over the same 
point on the earth's surface with only slight drift or jitter, 
which gives the shift necessary for signal reconstruction. Other 
satellites (eg. SPOT) are able to 'grab' repeated images of the 
same area as it passes over.

Medical image processing presents a further possible application 

of the technique. It was the consideration of such images that 
originally lead to the development of the technique. Digital 
systems are becoming increasingly popular in many areas of 
medical imaging. X-ray systems are now frequently converted to 
digital format to allow for computer processing of the data (see 
below). Here the spatial resolution of the system may be limited 
by the sampling process (Kruger et al., 1981) . By taking a 

series of digital images with slight movement of the patient (or 
camera) between frames, the detail visible may be increased
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through the reconstruction technique presented here.

The technique could be applied whenever undersampled versions of 
a signal are available which have slight translatory shift 
between them. If the original data is not undersampled, the
signal can be reconstructed by simpler methods which are more 
stable (eg. Fourier interpolation, Monro (1979)). Furthermore, 
information lost prior to sampling cannot be recovered. The 
technique will fail if there is no shift between signals or if 
the shift happens to be exactly (or very close to) an integer 
number of sample spacings. In this case the samples in the 
bunches of Fig. 1.1.c merge and additional undersampled versions 
do not provide additional information. In general it is better 

to sample the data at a higher rate initially than to reconstruct 
from undersampled versions. The technique presented here
addresses the case when this initial high sampling rate cannot be 
achieved.

In order to explain some of the difficulties arising in the 
application of the techniques developed in this work, the 
example of a digital X-ray imaging system is now described 
(Kruger et al., 1981) .

In traditional X-ray systems, the image is projected onto a 
screen which is in close contact with a photographic film to 
record the picture. In a digital system, the picture is 
converted into digital format by splitting the image into a 
square grid of commonly 512 x 512 'picture elements'. The
intensity value of each of these 'pixels' is converted to an
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integer value. Eight bits are commonly used to store this value 
giving a range between 0 (black) and 255 (white). The
resultant matrix of 512 x 512 x 8 bit integers represents the 
digital image. The process of digitizing the image is usually 
carried out on special purpose hardware connected to a video 
camera. The camera scans across the lines of the image, from the 
top-left to bottom-right hand corner. This time-varying signal 
is sampled at regular intervals in time. Each of these samples 
represents a pixel. Provided the sampling rate is fast enough, 
i.e. the pixels are close enough together, the original
continuous image can be reconstructed perfectly from the digital 
one. For a European Standard 625 line black and white video
. 2image, 512 samples are sufficient. The sampling theorem, which 
deals with this rigourously is discussed in 1.2.

A complete digital X-ray system is given in Fig. 1.3 (Kruger et 
al., 1981) .

Here the X-ray image is projected onto the image intensifier 
which converts the picture into one in the visible spectrum and 
amplifies its intensity. The result is fed into the video camera 
whose output is sampled by the analog-to-digital converter, which 
converts the analog data into digital (numerical) format. This 
may be stored and processed by the computer and converted back 
into analog form for display on the monitor.

Common forms of processing this digital data are filtering 
operations to enhance the visibility of particular features such 
as edges (Gonzales and Wintz, 1987, pp. 176), or to reduce to 
effects of noise (Gonzales and Wintz, 1987, pp. 161) which
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usually appears as ' speckle'. Addition (averaging) of images of 
the same scene, pixel by pixel, can also reduce the effects of 
noise (Castleman, 1979, pp.101-103). Subtraction of two images 
has been used to enhance changes in the picture over time 
(Mistretta, 1981) .

Fig. 1.3 A typical digital X-ray imaging system

Analog-to-Digital
converter

Image
intensifier

Computer

Monitor Digital-to-analog 
converter

The quality of the digital image generated by a system such as 
the one given in Fig. 1.3. is affected by each stage in the 
imaging chain between X-ray source and the computer, as well as 
by the nature of the object viewed, a living body in this 
application. Of particular interest here is the spatial reso­
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lution of the system and the noise content of the images. The 
requirements by these two criteria depend upon particular 
applications and vary among different procedures in diagnostic 
imaging.

The spatial resolution of digital X-ray systems is generally 
inferior to that of photographic film, unless video systems with 
a greatly increased number of lines are used (Roehrig et al., 
1981). In the system described above, resolution may be limited 
by the size of the focal spot of the X-ray source, the region of 
the body imaged, the optical characteristics of the image 
intensifier and video camera, the video system and the monitor. 
For digital systems, the line frequency of the video camera and 
the number of samples in the image places a further bound on the 
resolution. In the system described by Kruger et al. (1981) for 
example, it was found that the spatial resolution of the complete 
system was limited by the X-ray source and the digitizer.

Visibility of detail is also determined by the contrast of the 
structure together with the noisiness of the image (Nudelman et 
al., 1982). Psychophysical factors relating to human perception 
impose further limits (T'Hoen, 1982).

The digital images are degraded by noise (Nudelman et al., 1982), 
which generally appears as speckle in the images. This is due to 
noise sources along the entire X-ray and video chain. At the 
X-ray source, quantum statistical noise is generated. The X-ray 
photons arrive at the screen according to a random (Poisson) 

process. The number of photons is kept low in order to limit
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dosage to the patient and is much lower than for visible scenes 
in daylight (Roehrig et al.f 1981). Further noise (and distor­
tion) in the image arises from the interaction of X-rays with the 
patient through scatter. The image intensifier screen (photo 
cathode) has only limited efficiency (approximately 50%) , further 
increasing the noisy appearance of the image. Electronic noise 
is added in the image intensifier, video camera, amplifier and 
monitor. Quantization noise arises in the analog-to-digital 
converter: each sample in the analog video signal is assigned an 
integer grey-level value and hence is accurate to only + 1/2 grey 

level spacing. This appears as noise in the resultant image. If 
the grey-level spacing is sufficiently small, i.e. the number of 
grey-levels (bits) of the converter is sufficiently large, 
quantization will add little additional error to the already 
noisy data. For digital imaging systems based on common video 
equipment, 256 grey levels is generally sufficient. The human 
observer is also not able to distinguish much smaller differences 
in intensity (Castleman, 1979, p.40).

A further problem in medical images arise from viewing a living 
body. This may move while the images are being acquired. The 
patient may move as a whole (especially if she is uncomfortable) 
or parts of the body move due to breathing, pulse and swallowing, 
leading to image distortion. Movement of the object during image 
acquisition can lead to blurring. Movement of the object between 
images can cause major problems in the averaging or subtraction 
of frame sequences (Mistretta, 1981). The signal reconstruction 
technique presented here can however make use of motion to 
enhance the resolution of images.
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The above discussion has centred on one example of a digital
imaging system and has highlighted the major issues in the appli­

cation of techniques described here: spatial resolution, noise 
and distortion in the raw data.

The signal reconstruction technique presented here can improve 
the spatial resolution of images degraded by an inadequate 
sampling rate. It cannot restore details lost prior to sampling. 
In the above example, if the focal spot size is too large, lens 
apertures too small or the video camera inadequate, resolution 

is degraded and cannot be recovered. Other techniques based on a 
fundamentally different approach, such as inverse filtering 
(Gonzales and Wintz, 1977, p.199-207) can be applied in this case 
to improve the resolution.

In most signal processing techniques, noise causes problems. The 
example of an imaging system given above showed how this may 
arise in the digital pictures. It may be possible to reduce the 
amount of noise in the signals through better quality equipment, 

but it cannot be avoided completely. For example, the very 
process by which the X-ray images are generated is noisy as a 
result of the physical law, governing the arrival of photons.

Noise limits the improvement in image quality that may be 
achieved in the signal reconstruction process. In the following 
chapters the effect of noisy inputs on the reconstructed signals 
are analysed in some detail. This shows the limitations of the 
reconstruction process. The results point towards future 
improvements in the technique.
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Noise also reduces the accuracy which can be obtained by the 
alignment technique. For the estimator developed, noisy data is 
assumed and a best estimate (in some sense) of shift between two 
signals is found under these conditions. When inaccurate 
estimates of delay between the signals are later used in the 
reconstruction process, the reconstructed signal will also be 
degraded. The effects of inaccurate delay estimates on signal 
reconstruction are investigated.

Distortion in images limits the application of the reconstruction 
and alignment techniques. The methods presented here can only 
deal with simple translatory motion along the x and y axis, but 
not rotation, scale changes and changes of shape in the pictures. 
In some instances it may be possible to assume translatory motion 
over a small sub-region of the data and to apply the techniques 
there.

Different types of images each bring with them their own specific 
problems. The earth's surface remains fairly unchanged over 
periods of time, but in satellite images clouds, haze and changes 
in lighting can cause serious problems. Images, produced by 
video monitoring cameras may be distorted by moving foreground 
obscuring background scenes, etc. It is therefore necessary to 
consider each application prior to processing and to inspect the 
results obtained for any obvious errors.

The approach taken has been first to develop the reconstruction 
technique (Chapter 2) for one dimensional data. This is followed 

by experimental work on simulated signals and an analysis of

31



errors due to inaccurate delay estimates and noisy input data. 
Some comparison is made between this technique and alternative 
interpolation methods. The reconstruction algorithm for two 

dimensional (image) data is then derived.

The signal alignment technique (Chapter 3) is developed, again 
first on one dimensional signals. The technique is tested on 
simulated signals and the results are again compared with alter­
native, well established methods. The effects of undersampling 
on delay estimates are investigated. Finally, the alignment 
technique is generalized for application to two dimensional 
signals.

Both the reconstruction and the alignment technique are applied 
in the frequency domain. The Discrete Fourier Transform, 
achieved by the Fast Fourier Transform algorithm, is used for the 
transformation from space (time) to frequency domain and assumes 
periodic data (see 1.2.). For this reason only periodic signals 

are considered in Chapter 2 and Chapter 3. This assumption is, 
of course, not justified in most applications of the techniques. 
In order to minimize errors arising as a result, tapered windows 
are applied to the data before performing the transform.

These data windows are investigated in Chapter 4. The phase 
difference between two delayed signals is used in the delay 
estimator, and the effect of windows on these is studied first. 
Then a least mean square criterion is developed for the choice of 

optimal windows for delayed signals. A series of common windows 
are compared using this criterion and a suitable one selected for
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the current application.

A review of relevant literature is given at the beginning of each 
of these chapters.

The complete reconstruction algorithm with windowing and shift 
estimation is tested and evaluated on simulated one dimensional 
signals and on images. The results of these are given in 
Chapter 5.

Summary of the results, conclusions and suggestions for further 
work are presented in Chapter 6.
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1.2 Theoretical Background

The theoretical basis of the techniques developed, is now given. 
To begin with, some of the mathematical principles and tools that 
are fundamental to this work are described.

One dimensional signals are functions of one variable, generally 
time ( f(t) ). Much of signal processing has been developed for
applications involving audio, seismic, ultrasonic and medical 
signals. Images are two dimensional signals, the grey-level 
being a function of two variables, x and y ( f(x,y) ). Mathema­
tically, one dimensional signals are much simpler and the results 
of any analysis are easier to display in graphical form and hence 
more easily interpreted. For these reasons most of the initial 
work is carried out on one dimensional data, with a later 

extension to two dimensional signals. In this respect the 
historical development of image processing is followed.

Much of the work in the following chapters is based on the 
frequency domain and the Discrete Fourier Transform (Papoulis, 
1984 a, p. 79 ff.). This has long been a useful tool in signal 
processing.

Let the signal f(t) be periodic with period T, then f(t) = f(t + 
nT). Let this signal further be the sum of sine and cosine 
functions (Kreyszig, 1983, p.465 ff.).

OO

f(t) = ag + X [ an cos (2;mt/T) + bn sin(2;rnt/T) ] Eq.1.1
n=l

This is called the Fourier Series and its coefficients an and 
bn may be calculated from:
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Eq.1.2.a
T/2

aQ = 1/T S f (t) dt 
-T/2
T/2

an = 2/T _f f (t) cos (2TCnt/T) dt Eq.l.2.b
-T/2

T/2
bn = 2/T J f(t) sin (27Cnt/T) dt . Eq.l.2.c

-T/2

Provided the function is piecewise continuous over T and has
left- and right-handed derivatives at each point in that
interval, the integrals above exist and the Fourier Series
converges to f(t) except at the discontinuities where the sum is 
the average of the left- and right-handed limits of f (t) 
(Kreyszig, 1983, p.469).

The above equation can be expressed more conveniently using the 
complex forms.

00

f(t) = 1/T E F(nQ)e^nQt Eq.1.3
n = - o o

where Q = 27C/T, the angular frequency and j = V (-1) 
and

T/2
F (n£2) = J f(t) e“jnilt dt Eq.1.4

-T/2

(Papoulis, 1984 a, p.69 ff.). Here the factor 1/T has been moved 
from the forward (Eq.1.2) to the inverse (Eq.1.1, Eq. 1.3) path.

From = cos(nQt)+ j.sin(nQt) it follows that F(nft) = T/2.
(an + jt>n) . (T/2 an) and (T/2 bn) represent the real and
imaginary part of the complex number:
F (CO) = re {F (0)) } + j . im{F ((D) } = T/2 (an + jbn) (0 = n Q

= 0 otherwise.
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This can be expressed in polar form as F (CO) = | F (co) where
| F (CO) | is the amplitude and <$) (to) the phase of F ((0) as illustrated 
in the complex plane in Fig. 1.4.

Fig. 1.4 A complex number in the complex plane: F (CD) |F(CD) |e^.

Then

1 F (CO) I = [ (re{F«D) })2 + (im{F (CD) }) 2 ]1/2
<t> (CO) = arg (F(CD) } = tan-  ̂ ( im{F(CD) } / re{F(CD) } ) + 2%n

where n is an integer.

The functions f(t) and F (CD) form a unique pair and are hence
written as f (t) <— > F (CD) ; f (t) is the function in the time

domain and F (CD) its equivalent in the frequency domain. The
conversion f(t) -> F (CD) is often called the forward, and F (CD) ->
f(t) the inverse transform.

The advantage of using the frequency rather than the time domain 
in signal processing is that many operations may be expressed 
more simply and implemented more efficiently in the frequency 
domain.
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Convolution, the operation carried out by a linear filter, is 
one example of this: In the time domain this is defined as

OO

g(t) = f(t) ® h(t) = S  f (T).h(t-T) dx
— OO

where f(t) is the input signal, g(t) the output signal and h(t) 
the impulse response of the filter.

Convolution corresponds to multiplication in the frequency 
domain (Papoulis, 1984 a, p.71):
g (t) = f(t) ® h (t) <— > G (0)) = F (0) . H (GO) Eq.1.5
where f(t) <— > F ((D) , g(t) <— > G (CD) and h(t) <— > H (0) .

The frequency domain representation is mathematically and compu­
tationally much simpler. In a similar manner, multiplication in 
the time domain corresponds to convolution in the frequency 
domain.

Signal delay is a second example of a time domain operation 
giving a simple frequency domain expression: Let the input
signal f(t) be delayed by time D then

g (t) = f(t-D) <— > G((D) = F(0) .e"^®15 . Eq .1.6

Both the examples above will be used repeatedly throughout this 
work.

The energy spectrum of a deterministic signal f(t) is
pgiven by the magnitude of its Fourier components |F(0 ) | (where 

| F (0) | is the amplitude), the phase spectrum by <J) (0) = arg 
(F (0) } .

For most work in digital signal processing, attention has been
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focused on the amplitude or the energy spectrum, rather than
phase. In this work, particularly in considering alignment, it
is the phase which is of primary interest.

In the 'Phase of Consecutive Frequencies' (PCF) alignment 
algorithm derived in Chapter 3, the delay estimate is based on 
Eq. 1.6. The phase difference between the original signal f(t) 
and the delayed version g(t) is given by arg {F (CD) } - arg {G(CO) } 
= COD. By estimating the gradient of phase-difference over
frequency, D is found.

So far the signals have been assumed to be periodic, leading to 
the Fourier Series F(nQ). But the frequency domain approach is 
not confined to periodic signals. The Fourier Transform is
defined as

OO

F (CO) = J f(t)e~3wt dt Eq.1.7
—OO

and
OO

f(t) = 1/2* J Ffcoje^ dCO. Eq.1.8
— OO

For aperiodic signals the spectrum is continuous (it is a 

spectral density) and unlike the Fourier Series does not consist 
of a series of discrete harmonics (F (CO) = 0 for GO ^ nQ) .

For many signals the energy spectrum is zero above some 
frequency W, F ((0) = 0 , co > W. Such signals are termed band- 
limited. This simplifies many frequency domain calculations 
considerably, as the Fourier Series and Fourier Transforms then 
extend only over a finite range. Bandlimited signals also have a 

range of very interesting and useful properties (Papoulis, 1984
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a, p.185 ff.). One of these is that the signal is uniquely 
specified by its value at a number of discrete points (samples). 
This is stated by the Shannon Sampling Theorem as quoted by Jerri 
(1977) :

"If a function f(t) contains no frequencies higher than W cps 
(cycles per second) it is uniquely determined by giving its 
ordinates at a series of points spaced 1/2W s apart".

This sampling rate is called the Nyquist rate (Papoulis, 1984 a, 
p.142). Usually these samples are spaced uniformly, with a 
constant distance between the samples.

The sampling theorem holds for both periodic and aperiodic 
signals. A simple proof of this theorem for periodic signals can 
be found by considering the frequency domain (Fig. 1.5).

Sampling the function f(t) (Fig. 1.5.a) is equivalent to multi­
plying the signal by a pulse train (comb function, h(t), Fig. 
1.5.b), consisting of a series of impulses (5) repeated every Tg: 
h(t) = 8(t-nTs) where n is any integer. The Fourier Series of 
this, H (co) , is again a pulse train, with the pulses spaced ©s _ 

2 k / 1 s apart. From the converse of Eq. 1.6, f(t)h(t) <— >
F (GO) ®H (00) it follows that the sampling operation in the time 
domain corresponds to a convolution in the frequency domain 
(Fig.l.5.c). As a consequence, the spectrum of the sampled 
signal G( CO) consists of periodic repetitions of F (CO) , centred on 
multiples of the sampling frequency, n.00s .
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Fig. 1.5 Sampling and aliasing in the time and frequency domain.

< = >
signal

fh (t)

Time < = >
Fig.l.S.b. The sampling function

< = >
Fig.l.5.c. The sampled signal

<=>
Fig. 1.5.d The undersampled signal with its aliased spectrum.

When W < G>s/2, adjacent copies of F (CO) in G (CO) do not overlap, 
and the spectrum of the original signal can be recovered from 
that of the sampled signal, by setting all harmonics above ®s/2 
to zero. When the original spectrum F (CO) is recovered, the 
original signal f(t) may then also be found using the inverse 

transform. In practice, the signal is recovered from its samples

40



by means of a low-pass filter, with a cut-off frequency of ©s/2.

If the sampling rate is too low (undersampling, ©s < 2W) , 
adjacent copies of F (to) overlap (Fig. 1.5.d) . This is called 
aliasing and the original data f(t) cannot, in general, be recov­
ered from the sampled signal g(t). In aliasing, frequencies are 
'folded' down: the spectrum of a cosine wave with a frequency ©, 
sampled at a the frequency © < ©s < 2© is identical to that of a 
cosine wave of frequency ©s - ©. Brief consideration of the 
sampled values confirms this: at a sampling frequency of ©s, 
samples obtained from the function cos(©t) are identical to those 
from cos((©s-©)t). Aliasing is a fundamental issue in the work 
presented in the following chapters.

Usually the interval between samples (Ts) is constant (as shown 
in Fig. 1.5), but this is not necessary. Jerri (1977) quotes the 
result that an average sampling rate exceeding the Nyquist rate 
is sufficient for signal recovery. A proof for this, based on 
signal reconstruction similar to that described in Chapter 2, was 
given by Gori and Guattari (1971). This will be discussed in 
that chapter. So, provided the number of samples per unit time 
exceeds twice the highest frequency present in the signal, the 
set of samples completely defines the signal.

One example of this non-uniform sampling are bursts of samples at 
a high rate followed by a gap with no samples. The sampling 
theorem states that the signal in this gap may be found 
accurately from the known regions. This is not as surprising as 
it may at first seem, since bandlimited signals are analytic
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(Papoulis 1984 a, p.186). For such a signal, extrapolation from
a known, continuous, finite segment is possible, using, for 
example, the Taylor series.

The reconstruction algorithm developed in Chapter 2 is an example 
of reconstruction from non-uniform sampling. A series of 
undersampled versions of the same signal are available (see Fig. 
1.1.a and b), with different amounts of delay for each. 
Reconstruction from any one of these signals is impossible as 
aliasing has occurred. However, when the undersampled signals 
are aligned and superimposed, the average sampling rate is 
increased (Fig. 1.1.c). If this is not less than the Nyquist 
rate, reconstruction becomes possible. This forms the basis of 
the reconstruction technique of Chapter 2. It assumes that each 
individual digital signal is undersampled, but together the 
average sampling rate is sufficient. The reconstruction relies 
on the assumption that the signals are bandlimited and hence it 
is termed the 'bandlimited' (BL) reconstruction technique.

For uniform sampling, the interpolation from sampled to contin­
uous signals can be performed by an ideal (flat) low-pass filter 
with a cut-off frequency of 0)s/2. For non-uniform sampling this 
is much more complicated. In BL reconstruction, the samples 
collected in the irregular sampling pattern (Fig. 1.1.c and e) 
are used to interpolate the values in a regular sampling pattern 
(Fig. 1.1.d and f). From this regularly sampled data, the 
continuous signals may again be recovered by low-pass filtering. 
For the work over the following chapters, a computer is used for 
all processing so only the digital signals (undersampled and
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reconstructed) are of interest.

For sampled signals, the Discrete Fourier Series (Transform) is 
defined. Let f^ be the uniformly sampled version of a periodic 
signal f(t) (f̂  = f(iTg)) with a period of N samples and an
interval of Ts between samples. Without loss of generality, let 
T = 1. The Discrete Fourier Series is then given by

N-l
Fk = 2 fn wNkn E^-1-9n=0

N-l
fn = 1/N E Fk WN"kn Eq.1.10

k=0
where WN = e ~ ^ TĈ N (Oppenheim and Schafer, 1975, p.89) .
Variants of this definition exist, where the negative exponent is 
used on the forward (Eq.1.9), rather than the inverse (Eq. 1.10) 
transform (cf. Papoulis, 1984 a, p.79). Some authorities also 
place the 1/N in the forward rather than the inverse path, or
even i/Vn in both. Care must therefore be taken that the correct
transform pairs are used together.

The Discrete Fourier Transform deals with finite length signals, 
not periodic ones. The finite length signal is however regarded 
as one period of a periodic signal (Oppenheim and Schafer, 1975, 
p.101). The definition of the Discrete Fourier Series (DFS) and 
the Discrete Fourier Transform (DFT) are identical over the range 
0 to N-l in both forward and inverse direction. Beyond that, F^ 
and f^ are disregarded by the DFT. There appears to be some 
variation in the literature however, about the exact distinction 
between the DFT and the DFS. For practical purposes they are
identical since in both the time and frequency domain, only
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samples between 0 and N-l are of interest.

Fig. 1.6 A periodic signal f(t) of period T = 1 and a circularly 
delayed version f(t-D).

The periodicity implied in the DFT has important consequences for 
signal processing operations carried out in the frequency domain. 
In particular convolution and delay will be circular, as if the 
signals were periodic. This is illustrated in Fig. 1.6., where 
delayed signals are seen to 'wrap around': the end of the delayed 
signal reappears at the beginning of the data.

In many applications of the DFT, finite segments of infinite 

length signals are processed. This finite section is a windowed 
version of the signal g(t) = f(t)w(t), where w(t) = 0 , |t| > 
Tw/2 with Tw the length of the window and w(t) some function
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which may be a rectangle or have some taper at the ends. Fig. 
1.7. shows a signal, the window and the windowed signal. The DFT 
and all subsequent processing is carried out on this windowed 
version.

Fig. 1.7 A signal with a data window.
a) The signal f(t).
b) The window w(t) of length T = 1.
c) The windowed signal f(t).w(t).

With the Discrete Fourier Transform, periodic signals are 
implied, so any delay is assumed to be circular. Errors are 

likely to arise if this assumption is not justified. Frequently 
the signals are extended with zeros and these then wrap around, 
so non-circular delay is simulated. This does not, however, 

eliminate the problem. If the delay is small, the difference
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between the results of circular and noncircular delay is small.
Such errors as arise can be reduced further by choosing a 
suitable window function w(t). A tapered window, such as a 
trapezium function, reduces the 'weighting' given to the
end-region of the signals which are affected by wraparound (Fig. 
1.6). The purpose of a window in delay estimation is to minimize 
the difference between circular and non-circular delay. This is 
quite different to the requirements of spectral estimation for 
which most previous work on windowing was done. Windowing is 

investigated in Chapter 4 where it will be seen that the best 
windows for delay estimation are different to those chosen for 
spectral estimation. These windows are then applied to the
signal before the DFT is found and before PCF estimation and BL 
reconstruction is carried out.

The Discrete Fourier Transform is a very convenient tool in
Digital Signal Processing, but its calculation is computationally
. . , . , , ointensive. Following the definition for a length N DFT, N
multiplications are required. But more efficient algorithms are 
available which can reduce this to a number proportional to 

N.logN operations. These Fast Fourier Transform (FFT) algorithms 
can be used for particular values of N and are not approximations 
of the DFT, but more efficient methods for calculating the 
coefficients.

The most common one is the Decimation-in-Time algorithm
(Oppenheim and Schafer, 1975, p.286) for N=2n (n any integer).

This relies on breaking down the N point signal into two shorter 
ones consisting of even and odd samples respectively. These two
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signals are then broken down further in the same way, until the 
original N length sequence has become N/2 signals of 2 samples 
each. By using the periodicity of the coefficients of the 
Discrete Fourier Series and symmetry in Wjq, the FFT algorithm 
finds the coefficients for the N point signal in an efficient 
manner.

In all experimental work described below, the calculations were 
carried out on an LSI-11 (PDP-11) minicomputer and all DFT's were 
calculated using the FFT routine of its array processor.

The mathematical fundamentals for Digital Signal Processing have 
so far been discussed only for one dimensional signals. The 
Discrete Fourier Transform, sampling theorem and FFT algorithms 
are now given for two dimensional signals such as digitized 
images.

The two dimensional Fourier Transform has become a useful tool in 
image processing: f(x,y) <— > F(u,v), with horizontal and 
vertical coordinates x,y and corresponding frequencies u,v. In 
one dimensional Fourier analysis the signals were decomposed into 
a series of sine and cosine waves. For two dimensional signals 
these become planes with a sine and cosine shape along one axis 
(like corrugated iron). A two dimensional periodic signal can 
then be synthesized from a series of such planes with different 
frequencies and different angles of orientation. In the two 
dimensional spectrum, the distance of a component from the origin 
corresponds to its frequency, the angle to the angle of 
orientation of the (co)sine shaped plane.
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Eq.1.11
The definition of the two dimensional Fourier Transform is

OO 00
F(u,v) = _f J f(x,y)e~^ux + vy  ̂ dx dy

— OO —00
0 0  OO

f(x,y) = l/4m2 J J f(x,y)e^(ux + vy) du dv Eq.1.12
—  OO — OO

Again a periodic signal will produce a discrete spectrum (Fourier 
Series) and an aperiodic signal a continuous one (Fourier 
Transform).

The sampling theorem too has two dimensional extensions: a signal 
bandlimited to a spatial frequency W is completely defined by 
samples spaced less than 1/2W apart (Jerri, 1977) .

The two dimensional DFT of a sampled signal f(m, n) of size N x M 
samples is then defined as:

M-l N-l
F(i,j) = Z Z f(m,n) WMmi WNn  ̂ Eq.1.13

m=0 n=0
and the inverse

M-l N-l
f(m,n) = 1/MN Z Z F(i,j) WM“mi WN"n3 Eq.1.14

m=0 n=0
where WK = e (2k /K) ^

As with one dimensional applications, periodicity of the signal 
is implied when using the two dimensional DFT.

For most applications in image processing, including those in 
this work, the images are square, i.e. M = N. This leads to 
square spectra.

Closer inspection of the equations for the two dimensional DFT 

show that these may be calculated by one dimensional DFTs first
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on the rows (columns) of the image f(m, n) followed by a transform

of these results along the columns (rows). For these one dimen­
sional transforms the FFT algorithm may be used. In this manner,
the multiplications involved in a N x N two dimensional DFT is

? 4approximately proportional to N logN, rather than N suggested by 
the definition. The inverse transform can be performed in a 
similar way using the one dimensional inverse FFT algorithm.

Undersampling of images causes aliasing in their spectrum. The 
two dimensional extension of the BL reconstruction algorithm 
removes this aliasing by combining a number of misaligned, under­
sampled versions of the image. In order to double the spatial 
resolution along both the x and y axes, four images must be 
combined. The reconstruction from 4 signals is implemented, 
though the technique may be used on any number of signals.

For the one dimensional experimental work, Markov 1 random 
processes are used as examples of signals. These correspond to 
the autoregressive signal models (Jain, 1981; Chatfield, 1984, p. 
44 ff.) which have been used widely in modelling time series (eg. 
Hannan and Thomson , 1981; Wang and Hunt, 1984) and for the lines 
of images (Jain, 1981).

The sample values of first order Gaussian Markov 1 processes are 
defined as
x(i) = px(i-l) + e(i) Eq.1.15
(Jain, 1981) where £(i) is a stationary random Gaussian process, 

and 0 < p < 1. Each value of £(i) is independent of previous 
values and they follow a Gaussian probability density function.
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It is assumed that the x(i) thus generated are samples of some
band limited continuous signal x(t), sampled at an adequate rate. 
The delayed versions of these signals are generated using 
Discrete Fourier Transforms (i.e with Fourier interpolation for 
delays that are fractions of the sample spacing), which is 
consistent with the above assumption. Undersampled signals are 
simulated by discarding all odd-numbered samples.

Examples of these signals are shown in Fig. 1.8. Two realiza­
tions of data with the same statistics are shown. For the
signals in Fig.1.8.a, p = 0.9, for those in Fig. 1.8.b, p = 0.5. 
The latter are seen to have generally smaller amplitudes, fluctu­
ating more rapidly. In terms of spectra, there is more high 
frequency content in the signals with p = 0.5 than in those with 
p = 0.9.

The signals are defined in terms of their statistics. The mean
value is the expected value E{x(i)}, the variance var {x(i)} =

. 2E{ [x(i) - E{x(i)}] }. The square root of the variance is the
standard deviation. The autocorrelation is defined as R(i,j) = 
E{x(i)x(j)} = E{x(i)x(i+Ai)}, where Ai = j - i .

When the statistics of a process are invariant to a shift in
origin, the process is called stationary (Papoulis, 1984 b,
p.219-220). It is called wide sense stationary, if only mean and 

autocorrelation are invariant. The autocorrelation then depends 
only on Ai and not on i.
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Fig. 1.8 Two examples of Markov 1 signals with sample corre­
lations of a) p = 0.9, b) p = 0.5.

The power spectrum of a wide sense stationary process is the 
Fourier Transform of its autocorrelation function. (Papoulis, 
1984 b, p.265). For the Markov 1 process used, the statistics 
are derived in Appendix 1.1. and the power spectra are plotted in
Fig. 1.9. This confirms the observation made above that a
decrease in p increases the high frequency content of the
signals. In the extreme case, when p =0, all samples in the
signal x(i) are independent and the spectrum becomes flat, with 

equal values at all frequencies. Such a random signal is termed 
white noise.
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Fig. 1.9 Power spectra of Markov 1 signals (theoretical) with 
sample correlations of a) p = 0.2, b) p = 0.5 and c)
p = 0.9

In order to generate the Markov 1 signals used in the experimen­
tal work, the procedure listed in Appendix 1.2. was used. The 
Gaussian random numbers that lie at the basis of this signal are 
generated using a random number generator whose values are uncor­
related and form a uniform distribution between 0 and 1. The 
Central Limit Theorem (Papoulis, 1984 b , p.194 ff.) states that 

the probability distribution resulting from the addition of 
independent random variables approaches a normal (Gaussian) curve 
as the number of such additions increases. The addition of 12 
such values was used to approximate the normal distribution.

The Markov 1 signals were then generated using these Gaussian

52



1 ) added to a fraction (p) of. ?random numbers (with variance a = 
the previous value of the signal. It is clear that for 
signal to remain within finite bounds, p must be less than 1.0.

the
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1.3 Summary

The basic idea behind the signal reconstruction, alignment and 
windowing techniques described in this work have been introduced. 
Some of the problems involved in applying these techniques have 
been described using the example of a digital X-ray imaging 
system. An outline has been given of the general approach taken 
in the development of these novel signal processing techniques. 
An introduction was then given to some of the fundamental 
theorems and mathematical tools used in this work.

The principles behind the techniques developed in this work have 
been introduced. The band-limited reconstruction technique 
combines a series of undersampled versions of the same signal to 
eliminate aliasing. In the phase-of-consecutive-frequency (PCF) 
alignment the relative shift between signals is estimated, based 
on the phase difference of the Discrete Fourier Transform 
components. Windowing is discussed in the context of shifted 
versions of the same signal. A detailed literature review will 
be given at the beginning of the appropriate chapters.

The aim of the work presented here is to describe and analyse 
these novel methods. It is hdped that they will be of benefit in 
many applications, but in particular the alignment technique 
could gain widespread use where sub-sample delay or motion 
estimation is required. The investigations into signal 
processing theory provide new insights and could form the basis 
of further development of these signal and image processing 
techniques.
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2. SIGNAL RECONSTRUCTION

2.1. INTRODUCTION

In this chapter the algorithm to reconstruct a signal from a 
series of undersampled versions of it is described for both one 
and two dimensional applications. In one dimension a series of 
delayed and undersampled versions gQ (i) , g-̂ (i), ... gn (i) (where i 
is an integer) of a signal f(t), with random alignment, present 
the appearance of irregularly spaced samples (Fig. l.l.e). The 
undersampled signals are all uniformly sampled at the same rate. 

Each signal has different delay and none of the samples coincides
with any other. It is shown how to reconstruct a regularly
sampled version f (i) of f (t) from this set of undersampled
signals with the aliasing removed. This reconstruction is 
performed in the frequency domain. The technique is based on the 
assumption that the signal is bandlimited and is therefore 

referred to as BL reconstruction. The performance of the 
algorithm under a range of error conditions is investigated. By 
this novel approach to signal reconstruction, a series of low 

resolution signals or images are combined to increase their 
temporal or spatial resolution.

In the previous chapter it was stated that equally spaced samples 
are not required by some sampling theorems (Jerri, 1977), even 
though it is these that are usually available. The 'folk 
theorem' states that no information is lost by sampling, provided 

the average sampling rate is at least twice the maximum frequency 
contained in the signal. This has been proven for the general
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case (Jerri, 1977) and an outline of the proof for periodically 
repeated 'bunches' of samples (Gori and Guattari, 1971) is given 
in 2.3.2. Hence it is possible to interpolate perfectly from the 
irregular sampling pattern shown in Fig. 1.1.e to a regular 
pattern (Fig. l.l.f), under the ideal conditions of:
1. Sufficient average sampling rate in the input data,
2. No noise in the sampled versions gg (i) , g-̂ (i), ... gn (i),
3. Length of the signal processed is infinite or the full period 

of a periodic signal is used,
4. Known relative sample positions (delay of signals gg(i) , 

gx(i), ... gn (i) ).

Throughout this chapter it is assumed that the average sampling 
rate is sufficient and that signals are periodic. Errors arising 
in the reconstructed signal when the input data is noisy and 
delay estimates are inaccurate are investigated by experiment and 
mathematical analysis. Distortion in the reconstructed signal as 
a result of processing only a finite segment of an aperiodic 
signal can be reduced by the choice of an appropriate data 
window. This is considered in Chapter 4.

First some of the previously published work on the reconstruction 
from undersampled signals and from 'bunched' samples will be 
reviewed. The BL reconstruction algorithm is then developed for 
one dimensional signals. Some experimental work on simulated 

data is carried out to investigate the performance of the 
algorithm in the presence of additive noise in the input data and 
when delay estimates are inaccurate. The BL reconstruction
technique is compared with an alternative approximation method
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under these conditions and found to give generally less noise and

less distortion.

The effect of uncorrelated additive noise in the input signals 

gQ(i), g-̂ ti), ••• gn (i) is investigated mathematically. An 
expression is derived to estimate the noise in the reconstructed 
signal in terms of the delay estimate and noise power spectrum of 
the input signals.

For the reconstruction technique, knowledge of the relative 
position of the samples is required (such as delay D in Fig.
l.l.e). This is also the delay between the signals gQ(t) and 
g^ft), gQ (t) and g2 (t) etc. For most applications these values 
will have to be estimated. The novel PCF alignment algorithm for 

this is described in Chapter 3. For the present it is assumed 
that an estimate of the delay is available. If these estimates 
are inaccurate however, errors arise in the reconstruction. 
These are investigated experimentally and mathematically. An 
expression is given to estimate the distortion in the recon­
structed signal in terms of estimated and true delay and signal 
power spectrum. In this respect the current application of 

non-uniform sampling is different from examples previously 
analysed in the literature, where the relative sample positions 
are usually fixed and known accurately.

It is concluded that BL reconstruction can, as expected, 
accurately reconstruct undersampled signals. This method 
provides a novel way in which undersampled versions of the same 
data can be combined to increase spatial resolution of images or 
temporal resolution of one dimensional data. The technique is
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however sensitive to errors in delay estimates and to noise in 
the input data, especially when the samples in the 'bunches' are 
close together. The BL reconstruction technique generally 
compares favourably in accuracy with cubic spline interpolation. 
Both techniques perform best when the overall sampling is 
regular, as might be expected.

Throughout this chapter the notation f (t) <— > F (CD) is used for 
the original continuous (and periodic) signal and its spectrum. 
For the sampled signals, the Discrete Fourier Transform (Series) 
is used with the notation f(i) <— > F(h) and g(i) <— > G(h) where 
i and h are integers. Distinction between the discrete and 
continuous cases are clear from the parameters (t,C0 or i,h) and 
in the interest of simplicity a more precise notation such as 
f' (i) <— > F' (h) is generally avoided.

The signals throughout this thesis are real, with the consequent 
Hermite spectrum F (CD) = F* (-CD) , F (h) = F* (-h) . It is also 
assumed that the signals are periodic and all delays therefore 
circular, i.e. the delayed signals 'wrap around'. Delays are 

given in units of samples. A delay of 1 sample corresponds to 
the distance between two samples of the uniformly sampled recon­

structed (not undersampled original) signal.

The term 'severity of aliasing' is used to indicate the amount of 
distortion of the spectrum due to aliasing. This should not be 
confused with the term 'degree of aliasing', an integer value 
introduced below, giving the number of spectra that overlap.
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2.2. LITERATURE REVIEW

2.2.1. Introduction

There are two main areas of research which are relevant to the 
BL reconstruction of undersampled signals:
1. Techniques to reduce or eliminate aliasing when only a single 

undersampled version of the signal is available, together 
with some a priori knowledge (or assumptions) about the 
signal.

2. Interpolation techniques for non-uniformly sampled signals.

The interpolation methods are of greater direct relevance to the 
BL reconstruction than the methods to reduce aliasing and more 
work has been published in this area. Some of the work on both 
these topics will now be reviewed.

In Chapter 1 the concept of aliasing was introduced which is 
illustrated in Fig. 1.5. Usually aliasing refers to the dis­
tortion of spectra due to undersampling in the time (space) 
domain. When a continuous signal is sampled, its spectrum is 
repeated periodically in the frequency domain, centred around 

multiples of the sampling frequency. For a signal bandlimited at 
W, a sampling rate w < 2W causes adjacent copies of the spectrum 
to overlap. The resultant distortion of the spectrum is called 
aliasing. Marks (1982) defined the order of aliasing as the 
number of spectra which overlap ( see Fig. 1.5.d where two 
spectra overlap in the shaded region). For a signal bandlimited 
at W, no aliasing occurs if the sampling rate w > 2W. If W < w < 
2W, first order aliasing occurs, second order aliasing for 2W/3 <
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w < W, etc. The situation is rather unclear, when w = 2W, w = W,

w = 2W/3 etc. According to Marks, first order aliasing occurs 
when w = 2W. At this sampling frequency there is an overlap of 
spectra at the frequency W. A sampling rate of w = 2W has been 
considered adequate by some authorities (Jerri, 1977) while 
others state that a sampling rate strictly greater than 2W is 
required (eg. McGill and Dorfman, 1984; Papoulis, 1966). For the 
work presented here w = 2W will be considered adequate, with 
allowances made for the distortion in F (W) of the sampled signal. 
The order of aliasing will therefore be defined as n = 2W/w - 1, 

rounded up. First order aliasing then occurs in the range W < w 
< 2W.

2.2.2. Reconstruction from a single aliased signal

When signals are uridersampled and therefore aliased, information 
is lost. Accurate reconstruction of the signal from its samples 
is not possible unless further a priori information about the 
signal and/or the sampling function is available. A number of 
techniques have been described in the literature to recover such 
undersampled signals with uniform sampling, either by approxi­
mation or by using further a priori knowledge.

Undersampled periodic signals with known upper and lower bounds 
on their period were reconstructed by Rader (1977) . Since the 
period of the waveform was unknown the major difficulty was 
deciding on the sequence in which the samples obtained should be 
placed in the reconstruction. Without rigourous justification an 
intuitively reasonable criterion was selected: the sequence for 

which the variation was minimum, i.e. the smoothest recon­
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struction. All possible sequences of samples within the known 

limits of the period were tested. This still leaves some 
uncertainty, the generally small range of possible signal periods 
with the same sample sequence.

Marks (1982) worked on the reconstruction of continuously sampled 
signals. These are obtained by periodically setting a band- 
limited continuous signal to zero. Here the sampling function is 
not a train of impulses but a square wave of some mark to space 
ratio. The 'continuously sampled' signal then follows the

original signal over finite periodic intervals and is set to zero 
between them. These signals will be aliased if the period of the 
sampling function is below the Nyquist rate. Recovery of the 
original signal is however possible. The analytic property of 
bandlimited signals (Papoulis,1984 a, p.185) allows for extra­
polation in the time domain from finite segments of it, e.g. 
using the Taylor series.

00

f(t) = Z f (m)(tx).(t - t ± )m  /m! 
m=0

where t-̂ is some given time and f ̂  (t) the m-th derivative of 
f(t). This is computationally expensive and is prone to large 
errors as is common when derivatives of a signal are employed. 
By considering the aliasing in the frequency domain, Marks 
derived a reconstruction technique based on multiplying the 
sampled signal by a periodic function determined by the sampling 
period and the degree of aliasing. The reconstruction of the 
continuous signal was completed by low pass filtering.

Marks and Kaplan (1983) analysed the noise performance of this
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technique. Wide sense stationary, zero-mean noise was added to 
the signals after sampling. They found that the noise in the 
output signal was zero-mean but non-stationary. As may be 
expected, the noise power in the reconstructed signals was 
considerably higher than that added to the sampled signals, and 
increased dramatically as the duty cycle of the sampling function 
decreased. The location of the maximum noise level in the recon­
structed signal moved along the sampling interval, as the degree 
of aliasing and the duty cycle of the sampling function varied.

An interesting problem of aliasing was considered by Swaminathan 
(1985). He developed a technique to reconstruct signals aliased 
in time, rather than in the frequency domain. Here adjacent 
copies of a signal (not spectrum) overlap. He modelled the 
signal by a rational pole-zero function whose parameters were 
estimated from the aliased input data. Good results were 

obtained in simulations where the signals conformed to the type 
of model used. An equivalent reconstruction technique, based on 
a model of the spectrum could be developed for the more usual 
aliasing in the frequency domain.

2.2.3. Reconstruction of Non-uniformly Sampled Signals

A considerable number of techniques have been developed to recon­
struct signals from irregularly spaced samples. These are 
generally interpolating functions or filters operated in the time 

domain. The ones of greatest relevance to BL reconstruction are 
those based on the assumption that the signals are bandlimited.
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The accurate interpolation in the time domain of bandlimited 
signals was considered by Yen (1956). For this he derived 
'composing functions' ^(t) such that 

00

f<t> = 2 f i w *m=-°o

where f(t) is the sampled and reconstructed function and Tm are 
the sample positions. Each sample therefore has its own
composing function ^m (t), which, together with the sample values 

f(xm) gives the function f(t).

He considered a number of different sampling sequences:
1. In a uniform sampling pattern, a finite number of sampling 

positions are moved.
2. In a uniform pattern, half the samples (e.g. t > 0) are

moved by a constant offset.

3. Recurrent non-uniform sampling ('bunched' sampling), when a 
group of arbitrarily spaced samples is repeated regularly.

The last case is the same as that dealt with by the BL 
reconstruction technique.

Let there be N points in each group of samples and these bunches 
be repeated with a period of N/2W, where W is the bandlimit of 
the signal. Let the sample positions within the bunches be t , p 

= 1 .. N, such that the signal is sampled at T = t + mN/2W,
irAl1 r-'

m = .. -1 , 0, 1, .. . Using the frequency domain, Yen derived
the composing functions for this sampling pattern as
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V (t)

N
( - 1 ) ™ ® n sin[ (27CW/N) . (t-tp) ]

q=l
N

(27CW/N) (t-t -mN/2W) n sin [ (27CW/N) (tp-tq) ]
q=l

such that
oo n

f(t) = Z Z f(xpm) Tpm(t).
m=-«> p=l

SAMPLES

Fig. 2.1 Composing function for a recurring group of two samples 
with a distance between samples of a) D = 1; b) D =
0.8; c) D = 0.6; d) D = 0.4; e) D = 0.2. (Yen, 1956).

In Fig. 2.1. a composing function for a repeated group of two 

samples is given. H^ft) is plotted for N = 2 and tx = 0 and a

range of t2 values. When t2 = 1, uniform sampling occurs and
f'pm (t) becomes the sine function, well known for the
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interpolation of bandlimited signals from uniform samples (eg. 
Jerri,1977). As t£ approaches t]_, the peak of the composing 
function becomes larger. Yen (1956) pointed out that this
results in errors in the sample values (noise) being amplified in 
the reconstructed signal. This is confirmed by results given in 
2.4. using BL reconstruction rather than Yen's interpolation.

The equations derived by Yen are very awkward to use. The compu­
tations required to find the composing functions ^pm (t) are quite 
complex and must be repeated for every t at which f(t) is to be 
found and for every sample Tpm . The interpolation of f(t) 
involves an infinite number of such samples and hence only an 
approximation to f(t) can be found by this technique in any 
practical application in digital signal processing. A
modification of the technique for periodic signals would allow 
for some reduction in the computational load.

Yao and Thomas (1967) analysed the stability of 'sampling 
expansions'. They defined as stable the sampling sequences for 
which the power of the reconstructed continuous signal was 
bounded such that
oo oo
J | f ( t ) I 2d t  < C Z  I f ( t n l 2 ,

—  OO n  =  —  OO

where f(tn) are the samples of the function f(t) at the times tn . 
f(t) is the reconstructed signal and C a constant independent of 
the function f(t).

They found that a sequence for which samples deviate from the 
uniform pattern by more than 1/4 of the sample spacing, may not
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be stable. Yen's (1956) statement, that non-uniform sampling may 
result in increased noise in the interpolated signal had already 
suggested problems of instability. By Yao's criterion however, 
even the expansion of a signal which is uniformly sampled at 
greater than the Nyquist rate, is unstable. Both Yao and Thomas 
(1967) and Papoulis (1966) give examples of instability in 
reconstructions from oversampled data, but the functions used are 
unlikely to occur in practice. Their criterion of instability is 
of little relevance to the problem considered in this thesis but 
confirms that problems should be expected due to noise.

Dunlop and Phillips (1974) considered non-uniform sampling for 
time-compression multiplexing (TCM), in which short sequences of 
samples from a signal, sampled at a high rate, are transmitted, 
followed by bursts of samples from the next channel, etc. This 
corresponds to a discrete version of 'continuous sampling' 
considered by Marks (1982) and described in 2.2.2 . When recon­
structing the signal, these bursts of samples are expanded to 
find the value of samples uniformly distributed in time and at a 
lower frequency. They expressed the non-uniform sample values in 
terms of a linear sum of the uniform values (assuming bandlimited 

signals) and then truncated this series. The uniform values were 
then derived by matrix inversion, as a finite sum of the non- 
uniform values. They further investigated errors arising from 
the truncation of the sums and the ill-conditioning of the 
matrix.

Non-uniform sampling may also arise when the bandwidth of a Pulse 
Code Modulation (PCM) system is to be expanded by using more than
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one channel for each signal. The analog signal is fed into more 
than one channel, such that the samples from one channel lie 
between those from others. In this way a second sample is used 

to transmit samples which lie in between those of the first 
channel. In Fig. 2.2. one frame of an 8 channel PCM system is 
illustrated. Here channel 1 and 5 are used to transmit alternate 
samples of the same signal. Because of the framing bit however, 
the time interval between channel 1 and 5 is less than that 
between channel 5 and the following channel 1. The resulting 
sampling pattern is therefore non-uniform.

Fig. 2.2 
Channel

Sample

Time-Division-Multiplex (TDM) frame 
1 2 3 4 5 6 7 8  1 2

Time

\ 2Framing Bit

Flood and Hoskins (1965) investigated the effect of using such a 
system without any correction for non-uniform sampling and 
concluded that this led to unacceptable errors. This investi­
gation was limited to signals consisting of a single frequency.

Messerschmitt (1975) developed a technique of filtering to 
compensate for this bunched sampling. This was based on 
frequency-domain derivations and treated the non-uniform samples 
as sets of interleaved uniform samples, leading to sets of 
aliased signals. These are filtered and combined to give the 
reconstructed signal. Again bandlimited signals were assumed. 
The filter coefficients were derived from Yen's (1956) composing

67



functions for recurrent non-uniform sampling. Practical 

limitations led to the development of a simpler system using 4 
channels per signal which allows some residual distortion.

The reconstruction from repeated groups of bunched samples was 
also investigated by Gori and Guattari ( 1971). Their technique 
also relied on separating the bunched samples into sets of uni­
form samples whose transforms are linearly combined for signal 
reconstruction. They were only interested in passive filters, 

and showed that severely non-uniform sampling leads to 
reconstructions very much reduced in amplitude.

Kahn and Liu (1965) investigated the reconstruction of continuous 
signals from unequally spaced samples. They derived an 
expression for the noise in the reconstructed signal when the 
noise in the undersampled input signals is uncorrelated. Optimal 
filters were then found for the reconstruction under these 
conditions and also for the case of inadequate average sampling 
rate.

The techniques of Messerschmitt (1975), Rupprecht (1976) and Kahn 
and Liu ( 1965) were aimed at continuous streams of samples. The 
reconstruction of continuous signals was achieved by means of 
filters and in this respect differs from the BL reconstruction 
method developed below. There, a finite set of samples is used 
to reconstruct the signal at a finite number of points.

Chen and Allebach (1987) studied the reconstruction of non­

periodic and bandlimited two dimensional signals from a finite 
set of irregularly spaced samples. Precise reconstruction of the
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continuous signal is impossible, as the requirements of the
sampling theorem are not fulfilled by the finite number of 
samples available. Instead, they derived a minimum mean square 
error estimator of bandlimited signals. The algorithm is imple­
mented in the space domain. This was found to give the minimum 
energy signal for the given sample values. They showed further 
that regularly spaced samples give minimum error in the recon­
struction.

The least mean square estimator as developed by Chen and Allebach 
(1987) gives one possible way to reconstruct a non-periodic 

signal from a finite set of (non-uniform) samples. In an 
alternative approach, the one taken in this work and common in 
many other applications, the finite length signal available is 
assumed to be one period of a periodic signal. Windowing, as 
discussed in Chapter 4, is then employed to reduce errors when 
the signals are not, in fact, periodic. The assumption of 
periodic signals allows for the use of the Discrete Fourier 
Transform and the FFT algorithm in signal reconstruction which 
reduces the computational load.

Reconstruction from a finite data set can also be achieved by a 
polynomial interpolator. These are approximation techniques 
which do not rely on the assumption that the signals are band- 
limited. Reconstructions using these techniques are compared 
with BL reconstructions in 2.4.

Prenter (1975, p.24 ff.) discusses Lagrangian Interpolates, which 

are defined as polynomials Pn (t) of degree n fitted through a set 

of n+ 1 points on the function f(t), such that f(t^) = Pn^i^ t 0 <
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ti . . < tn - Such an interpolation is unique and the error in the 
interpolation may be made arbitrarily small by an appropriate 
choice of n and t^. However, in practice an increase in n tends 
to lead to wild fluctuations of the polynomial between sample 
points. An upper bound on the maximum absolute error (max {|f (t) 
- Pn (t)|} ) is determined by the maximum distance between samples 
(max {t^+-̂ - t^} ) and the maximum of the (n-l)th derivative of 
the function (if this is defined).

Rather than fitting one polynomial of degree n to the n+1 
datapoints, piecewise Lagrange interpolation may be used. Here 
Lagrange Interpolators of fixed degree m < n are fitted over 
successive groups of m+1 points. These may be better behaved 
than one polynomial of degree n.

An extension of this technique is the commonly used method of 
fitting cubic splines (Prenter, 1975, p.77 ff.; Sedgewick, 1983, 

p . 6 8 ff.). Here the piecewise cubic interpolator has the added 
constraint of a continuous second derivative and a correct first 
derivative (i.e the same as df(t)/dt) at the endpoints. The 

latter is often not available, so the natural spline has been 
defined, in which the first derivative at the end points is set 
to zero.
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2.3. BL RECONSTRUCTION OF ONE DIMENSIONAL SIGNALS

2.3.1 First order aliasing

Above, some techniques described in the literature for the recon­
struction from 'bunched' samples were discussed. Some of these 
are unsuitable for the present application, being aimed at 
continuous data streams (Messerschmitt, 1975), some require a 
large amount of computation (Yen, 1956) and some are approxi­
mations which do not consider (directly) the bandlimited nature 
of the signals to be processed (eg. cubic splines). Here an 
alternative is presented, which can be implemented very easily 
and efficiently in the frequency domain and gives accurate recon-
structions of bandlimited signals, The derivation is similar to
that of Messerschmitt (1975), Gori and Guattari (1971) and
others, but is shown in detail here. The way in which the
technique is applied and consequently the problems which arise, 
are different however.

The reconstruction algorithm in one dimension for first order 

aliasing is derived initially. As stated in 2.2, first order 
aliasing means that the sampling rate is at least 1 / 2  that 
required by the Nyquist criterion. Two of these undersampled 
signals must therefore be superimposed to achieve an adequate 
average sampling rate. In this section the reconstruction from 
two signals only is given. These results are extended for a 
larger number of signals in the next section.

Let f(t) be a periodic and continuous signal with a Fourier 
transform F (CO) bandlimited at (0=Q. The sampling theorem states
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that this signal needs to be sampled at an angular frequency of
at least 2Q. Further, let gg(i) be a sampled version of this 
signal, sampled at angular frequency ©s such that Q < ©s < 2Q.

In BL reconstruction, a uniformly sampled version f(i) of f(t) is 
found. The discrete Fourier transforms (DFT) are denoted by f(i) 
<— > F(h) and g(i) <— > G(h), where h and i are integers. h
gives the frequency of the harmonics h = (NT/27C) .©, where N is 
the number of samples in the DFT and T the time between samples. 
Without loss of generality it will be assumed that T=l, resulting 
in the more usual © = (2k /N) .h, where N is the number of samples 
in the reconstructed signal. Then the sampling frequency is w =

(N/27E) ©s ancj t^e ^and n mit is W = (2;c/N)£). The samples in the 
reconstructed signal f(i) occur at an adequate frequency such
that N > 2.W. In the remainder of this chapter it is assumed 
that W = N/2. Since a signal bandlimited at W is also band-
limited at > W, the results obtained apply equally to W < N/2.

By considering the spectrum of sampled signals with first order 
aliasing (Fig. 1.5, Hall, 1979, p.490 ff.) it is clear that for 
0 < h < w

G0 (h) = a.(F(h) + F(h-w)) Eq. 2.1

where a is a constant scaling factor as described below. Gq (h) 
is the sum of two harmonics. This is the result of the frequency 
domain convolution produced by multiplying the time domain signal 
by the sampling function - as described in 1 .2 .

Let f(t) now be delayed by D (in units of samples) such that 
f^(t)=f(t-D) and 
Fx (h) =F (h) e ~ i {2;c/N) hD
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Then
G 1 (h) = a. (F (h) e j<2jc/N)hD + f (h-w) e j<27t/N)D(h w> ) Eq. 2.2

= a .e~^ (2jc/N) hD (F(h) + F (h-w) (27Ĉ N) wD)

(Gori and Guattari, 1971; Messerschmitt, 1975).

From Eq.2.1 and 2.2 for Gq (h) and G-̂  (h) , F(h) and F (h-w) may be 
found. These two equations form the basis of the reconstruction 
from two signals.

Here f(i) and gg(i) are in alignment (zero delay) and all delays 
are given with respect to these signals. This convention is 

adopted throughout this work.

The number of signals processed determines the scaling factor (a) 
for the amplitude of the harmonics as will be shown now.

From the definition of the inverse DFT 
N-l

f (i) = 1/N Z F(h)e^ (27C/N)hi
h=0

it follows:

If the number of samples (N) is increased n-fold by eg. padding 

the spectrum F(h) with zeros (Fourier Interpolation, Monro, 
1979), the magnitude of F(h) must also be increased n-fold in 
order to maintain f(i). An alternative is to place the factor 
1/N in the forward rather than the inverse transform (Monro, 
1979) such that F(h) remains unchanged when the length of the 
transform (N) is altered.

Scaling is also necessary in BL reconstruction, as indicated 
by the scaling factor a in Eq. 2.1. and 2.2. Here two DFTs of
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length N/2 (Gq (h) and G-̂  (h) ) are combined to find the N-length 
DFT coefficients F(h).

For the undersampled signals gQ(i) and g^(i) the scaling factors 

are not as obvious as for the adequately sampled case given 
above. For aliased signals the spectra are distorted and 
additional samples do more than just change the scaling of the 
DFT components. The more detailed consideration of this case 
given below shows however that the scaling factor remains the 
same as for Fourier Interpolation.

In the sampling process, the function f(t) is multiplied by 
the pulse train

OO
s(t) = E 5 (t-iT)

i = - o o

where T is the distance between samples. The Fourier transform 
s(t) <— > S (CO) then gives also a pulse train.

The multiplication of the signal and sampling function in the 
time domain corresponds to convolution in the frequency domain. 
Let g(t) = f(t).s(t), then in the frequency domain G((D) = F (<o) 0 

S (C O ) where 0 denotes convolution, resulting in the repetition of 
the spectrum in the frequency domain, illustrated in Fig. 1.5.

When the sampling rate is reduced by a factor of n (2 for first 
order aliasing) such that Nn = N/n and Tn = T.n, the magnitudes 
of the Fourier components of the sampling function S (C O ) is also 
reduced by the same amount. This follows from the theorem on 
time-scaling given by Papoulis (1984 a, p.61). The aliased 
spectra are therefore also scaled down by a factor of n. It
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follows that the scaling factor in Eq. 2.1. and 2 . 2 . , a = 1/n.

From Eq. 2.1. and 2.2 and for a reconstruction of length N 

therefore
G0 (h) = 1/2 (F(h) + F(h-N/2))
Gx (h) = 1/2 e-3khD (F (h) + F (h-N/2) e ^ 0) Eq. 2.3
where k = 27i;/N and 0 < h < N/4

Hence
F (h) = 2(G0 (h) - G-l (h)e^D(kh-7C) ) / (1 - e " ^ 0)
F (h - N/2) = 2(G0 (h) - Gx (h)e^khD) / (1 - e^710) Eq. 2.4

Inspection of these equations shows that F(h) and F(h-N/2) are 
linear combinations of Gg (h) and G-̂ (h) . F(h) and F (h-N/2) can 
be found efficiently by only 4 complex multiplications at each 
value of h.

Harmonics from h = 1 to N/4-1 must be processed in this way. The 
Hermite property of the transforms of real signals F(h)=F*(-h) 
(where signifies complex conjugation), may be used to find
F (-h) and F (N/2-h) .

The 'DC-component', h=0, must be considered separately, however, 
since Gg(0) and G-̂ (O) are always real and give the real valued 
components F(0) and F(N/2). Special consideration of this
frequency has already been suggested by the discussion of the 
order of aliasing in 2 .2 .1 .

Gg (0) = 1/2 (F (0 ) + F (N/2) + F (-N/2) )

G-^O) = 1/2 (F (0) + F(N/2)e"^7rD + F (-N/2) e ^ 0) Eq. 2.5
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From the Hermite property of F(h)

G0 (0) = 1/2 (F(0) + 2 re{ F(N/2) })
G^O) = 1/2 (F (0) + 2 cosjcD re { F(N/2) })

where re {.} denotes the real part.

When the periodic and continuous signal f(t) <— > F(h) band-
limited at N/2, is 'adequately sampled' at w=N (Jerri, 1977), the 
imaginary component of F(N/2) is lost. For this sampled signal 
the Fourier component at N/2 is F'(N/2) = 2 re { F(N/2) }. This 
component, at half the sampling rate, is the only harmonic (|h| 
< N/2) for which the spectrum of the sampled signal, F'(h), is 
different to that of the continuous one, F(h) (apart from any 
scaling factor). The adequately sampled signal f(i) is found by 
BL reconstruction, so only F'(N/2) needs to be calculated.

It follows that

F (0) = 2(G0 (0) - G ± (0) /COS7CD) / (1-1/COS7TD)
F' (N/2) =2(G 0 (0) - G ± (0) ) / (1-cosTCD) . Eq. 2.6

2.3.2 Higher Order Aliasing

Above only first order aliasing was dealt with. These results 
are now extended to higher order aliasing.

Let f(t) be again the continuous, periodic original signal and 
F(h) its discrete spectrum, bandlimited at N/2. Let the under­

sampled signals gQ(i), g-̂ (i) ... gm (i) each of length M samples

be shifted relative to gg(i) by D-̂ , D2 ... Dm respectively.
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Following the definition in 2.2.1. the order of aliasing n is the

the integer value > N/M - 1, rounded up. Further let s(h,D) = 
ejkhD where k = 2tc/N.

By considering frequency domain convolution (and including the 
scaling factor derived in 2.3.1.) it is clear that the aliased 
spectra are:

G0 (h) = M/N [ F(h) + F(h-M) + F(h+M) +
+ F(h-2M) + F(h+2M) + .. + F(h-<n/2>M) ]

G1 (h) = M/N [ F(h)s(hf-D1) + F(h-M)s(h-M,-D-^) +
F(h+M)S(h+M,~D1) +
.... + F (h—<n/2>M) s (h—<n/2>M,-D-^) ]

Gm (h) = M/N [ F(h)s(hfDm) + F(h-M)s(h-Mf-Dm) +
F (h+M) s (h+M, -Dm) +

___ + F(h-<n/2>M)s(h-<n/2>Mr-Dm) ] Eq. 2.7

0 < h < M/2, but excluding those harmonics involving half the
sampling rate of the reconstructed signal N/2 (see below). 
|<n/2>| is the largest integer such that |h + <n/2>M| < N/2.
(Gori and Guattari, 1971; Messerschmitt, 1975).

In this chapter it is assumed that all delays, D-̂  . . . Dm are 
known (given or already estimated). In Eq. 2.7 there are n+1 

unknowns ( F(h), F(h-M), F(h+M) ... F(h-<n/2>M) ) which require
n+ 1 equations for a solution. n+ 1 undersampled signals 
are therefore required to perform the reconstuction from n-th 

order aliased data. So m > N/M, and the total number of samples
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is at least N, as required by the sampling theorem (Jerri, 1977) .

The algorithm for the reconstruction from m aliased signals is 
now derived. It is assumed that the average sampling rate is 
sufficient to satisfy the Nyquist criterion and n = m .

To solve for F(h), Eq. 2.7 is rewritten.

Gq (h) = M/N [ F(h) + F(h-M) + F(h+M) + ___ F(h-<m/2>M) ]

Gx (h) = s (-h,Dx) .M/N [ F (h) + F (h-M) s (M, Dx) + F (h+M) s (-M, D1) +
.... + F(h-<m/2>M)s(<m/2>M,D1) ]

Gm (h) = s(-h,Dm).M/N [ F(h) + F(h-M)s(M,Dm) + F(h+M)s(-M,Dm) +
.... + F(h-<n/2>M)s(<m/2>M,Dm) ]

Eq. 2.8
Hence there is only one s(.,.) term on the right hand side of Eq. 
2.8 which depends on the frequency h. By moving this to the left 
hand side the matrix equation

G(h) = s F(h) Eq. 2.9

is formed, where

G(h) = [ G0 (h) G 1 (h)s(h,D1) . . . .  Gm (h)s(h,Dm) ]T 

F(h) = [ F(h) F(h-M) F(h+M) F(h-2M) . . F(h-<m/2>M) ]T
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1 1 1 1
1 s(M,D1) s (~M,D1) .... s(<m/2>M,D1)

S = M/N . .

1 s(M,Dm) s(-M,Dm) .... s(<m/2>M/Dm)

OTo find F(h) for all values of h, the (m+1) matrix s needs to be 
inverted only once.

The matrix s is a Vandermonde matrix (Prenter, 1975, p.32; Gori 
and Guattari, 1971) which is known to be nonsingular, provided 
s(M,D^) s(M,Dj), i ^ j. Since s(M,D) = ejkMD^ it follows that 

this is satisfied if kMD^ ^ kMDj + 2Jtn (n any integer) , hence 
Dj + n.N/M. This means that the sample positions must be 

distinct. When the sample positions of two undersampled signals 
coincide, the additional samples do not give any additional 
information and the average sampling rate is not increased by
superimposing undersampled versions. Gori and Guattari (1971)
used the singularity of the matrix s above, to prove the sampling 
theorem for non-uniform samples.

When the samples move closer to each other, i.e. -> Dj, the
matrix s becomes ill-conditioned. A solution for F(h) is still 
possible until the samples coincide, but the results become 
progressively less stable. Small errors in the estimates of

delay (Dj) and noise in the signals gj(i) as well as numerical 
limitations of the computer, result in increasing errors in F(h). 
These errors, which may be explained in terms of the ill- 
conditioning of the reconstruction matrix s, are discussed in
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greater detail in 2.4.

As an alternative to the complex process of matrix inversion, LU 
decomposition with partial pivoting (Kronsjo, 1979,p.90 ff.; 
Monro, 1982, p.240 ff.) was used in implementing the BL
reconstruction. Here s is decomposed into a lower (L) and an 
upper (U) matrix from which G(h) = LUF(h) can easily be solved by 
forward and back substitution. The LU-decomposition need only 
be performed once for signal reconstruction but substitution is 

repeated M/2 times, once at every value of h, 1 < h < M/2.

In order to reconstruct one harmonic of a signal from n-th order 
aliased data (n+ 1 undersampled versions), n + 2 multiplications 
are required. The matrix s is of size (n+1) ; each substitution

, pstage gives n+ 1 harmonics of F(h) and requires (n+1 ) multi­
plications. In order to find G(h) prior to substitution, n+1
further multiplications are necessary. The calculation of F(h) 
therefore requires an average of n+2 multiplications, once LU- 
der.nmnnsi t ion has been performed un ».

A minor modification to standard LU-decomposition introduced 
into the reconstruction algorithm was storing reciprocals of the 
diagonal elements in the LU-matrix. This replaces complex 
division by multiplication of these elements during the substi­
tution stage which is generally more efficient. A Pascal imple­
mentation of the LU-factorization algorithm is listed in Appendix
2 .1.

As for first order aliasing, harmonics involving half the 
sampling frequency of the reconstructed signal f(i) must be
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considered separately. When n is a power of two, this involves 
only the 'DC' components of the undersampled signals, Gq (0), 
Gl(0) ... Gm (0).

Let now s(N/2,D) = cos (7iD) , then similar to Eq.2.7

Gq (0) = M/N [ F (0) + F(-M) + F(M) + ____ + F'(N/2) ]
G1 (0) = M/N [ F (0) + F(-M)s(M,D1) + F(M)s(-M,D1) + ....

+ F'(N/2)s(-N/2,D1) ]

Gm (0) = M/N [ F (0) + F(-M)s(M,Dm) + F (M) s (-M, Dm) + ---
+ F'(N/2)s(-N/2,Dm) ]

Eq. 2.10

where F'(N/2) is again the DFT-component of the adequately 
sampled signal f(i) at the frequency N/2.

This equation is based on the assumption that iiu{ F(n /2) } = 0,
which was ensured in all simulations. In 'real signals' this may 
well not be true (even though the DFT will always give this 
result), in which case accurate reconstruction of F(N/2) is 

impossible, unless other a priori information concerning this 
harmonic is available.

LU decomposition is applied to Eq. 2.10 to find the F(.) and 
F'(N/2) values.

The complete reconstruction algorithm hence requires two LU- 
decompositions, one for the DC components of the undersampled 
signals and the other for the remaining harmonics.
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The complete reconstruction algorithm for n-th 
a power of 2) is given in Appendix 2.2, 
procedure.

It should be noted that BL reconstruction is 
since the reconstructed spectrum is a weighted 
spectra. This proves to be of great importance 
distortion analysis below.

order aliasing (n 
again as a Pascal

a linear process, 
sum of the aliased 
in the noise and

82



2.4. EVALUATION OF THE RECONSTRUCTION TECHNIQUE 

2.4.1. Introduction

The BL reconstruction technique derived above was found to recon­
struct signals accurately under the ideal conditions of
1. Sufficient average sampling rate
2. No noise
3. Circular delay

4. Accurate delay values.

It is the purpose of this section to find the noise and dis­
tortion generated in the reconstructed signals when the input 
data is noisy and when delay estimates are inaccurate. Errors in 
BL reconstructed signals are quantified and conditions found 
under which the algorithm performs best. The comparison of BL 
reconstruction with an alternative method gives some indication 
of the relative merit of this approach.

In any practical application of the signal reconstruction tech­
nique, the sampled signals are noisy. In this application, the 

undersampled signals are obtained on separate sampling runs. For 
this reason the noise added to the samples in each 'bunch' are 
assumed to be uncorrelated. In this respect this application of 
reconstruction from bunched samples is different to others
considered in the literature, where all samples are obtained on 
the same run (eg. PCM, TDM). There the largest component of 
additive noise at the irregularly spaced samples is likely to be 

correlated, if the noise input is bandlimited eg. by an
anti-alias filter.
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It is intuitively obvious that as the samples in the bunches
move closer together, uncorrelated noise in these samples will 
result in increased noise in the reconstruction. This result is 
confirmed below by experiments and mathematical analysis.

Distortion arises in the reconstructed signal when the delay 
estimates are inaccurate. Such errors are likely when delay is 
estimated from the noisy and undersampled signals. Inaccurate 

delay estimates have the same effect as moving the samples to new 
positions. The sample values are obtained at positions given by 
the signal delay, but reconstructed as if they had come from 
locations given by the delay estimates.

Here also the current application differs from other examples of 
reconstruction from undersampled signals. In the PCM application 
of Messerschmitt (1975), the sample positions are fixed by the 
PCM transmitter. These samples arrive at the input of the PCM 
receiver at the times fixed by the frame format. An error in the 

'delay value' results in an inappropriate filter for the given 
pulse train, but the samples are not moved. The distortion in 

the reconstructed signal is therefore different to that arising 
in BL reconstruction.

The BL reconstruction technique is compared with an alternative 
interpolation method' under the conditions that inputs are noisy 
and delay estimates inaccurate. There are a large number of 

techniques which could be used for the comparison. Generally a 

compromise has to be found between the goodness of an approxi­
mation and computational complexity. Here piecewise cubic
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Lagrangian (Prenter, 1975, p.44) and cubic spline interpolation 
(Prenter, 1975, p.78) were considered. In the piecewise cubic 
interpolator a cubic function is fitted through 4 consecutive 
samples, with another cubic fitted through the next 4, beginning 
at the last sample in the previous group. In cubic spline inter­
polation, a cubic function is fitted through only two consecutive 
samples, with the additional constraint that the spline fitted to 
the function must be continuous in the second derivative. The 
cubic spline was fitted, using the algorithm of Sedgewick (1983, 
p.70 ff.). (A correction is required in the function eval given 
there : eval := t * y[i+l] + ( 1 - t) * y[i] + u[i] * u[i] *
( f(t) * p[i+1 ] + f(l-t) * p[i] ) ).

The maximum error bounds given by Prenter (1975, p.55, p.83)
suggest that cubic splines are a better interpolator than the 
piecewise cubic Lagrangian polynomials. This was confirmed in 
the present application through a series of simulations and using 
a least mean square error criterion. In the remainder of this 
section therefore only the results of cubic splines are given 
which are compared with those of the BL reconstruction technique.

The reconstruction from only two one dimensional signals is 
evaluated. The results could easily be extended to a larger 
number of undersampled input signals and two dimensions, though 
the expressions become larger as the number of variables involved 
increases. Adequate average sampling rate and circular delays 
are assumed throughout.

In 2.4.2. experimental work is carried out on noisy signals with 
correct delay estimates, in 2.4.3. on noise free signals with
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errors in the delay estimate and finally in 2.4.4. with both 
sources of error. An expression is then derived in 2.4.5. for 
the noise power in the reconstructed signal for a given input 
noise power spectrum and delay value. In 2.4.6. an estimator is 
given for the distortion in the reconstruction of a noise free 
signal in terms of signal power spectrum and true and estimated 
delay values. The noise and distortion calculated from these two 
expressions are found to conform very closely to the experimental 

results.

Signals were simulated by Markov 1 chains which have been used 
extensively to model one dimensional signals and the lines (hori­
zontal sections) of images (eg. Jain, 1981). They were described 
in Chapter 1 as x(i) = p.x(i-l) + e(i), where p denotes the 
sample correlation and £(i) are independent Gaussian values. 
These signals were generated using the algorithm given in 
Appendix 1.2. The signals were 256 samples long and delayed with 
wraparound using the frequency domain: G(h) = F(h).e-^(2;e/N)hD. 

The undersampled signals were found by discarding all odd samples 
of the original and the delayed signals. Noisy data was 
simulated by adding uncorrelated random values to the samples. 
The noise added was such that both input signals had the same 
signal to noise ratio.

Delay values between 0.1 and 1.9 samples in increments of 0.1 
samples were processed. Delays are given in units of samples: a 
delay of one sample corresponds to the distance between the 
samples of the reconstructed signal. Since all delays are 
circular, very similar results are expected between any two even
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delay values. This is confirmed by the analysis in 2.4.5 and 
2.4.6. Hence the notation for the delay D = k + 8 is used, where 
k is an even integer such that -1 < 8 <_ 1. It was shown in
2.3.2, that it is impossible to reconstruct signals when the 
delay is exactly an even number (5=0), as the samples then 
coincide. These delays are therefore excluded from the plots.

The Signal to Noise Ratio (SNR) is used as a measure of noise 
(and/or distortion) in the reconstruction. This is defined as

ms {original samples)
SNR = 10 log ------ -------------------------------------

ms{reconstructed samples - original samples)
where ms{.) denotes the mean square value.

It should be pointed out that under the ideal conditions given 
above (no noise, known delay, adequate average sampling rate, 
circular delay), simulations gave a SNR of approximately HOdB. 
This is determined by the numerical limitations of the computer 
used (32 bit reals), and is similar to that achieved by a forward 
and an inverse FFT on these signals.

2.4.2 Simulations with Noisy Signals

In order to assess the effect of additive noise in the input 

data, uncorrelated noise was added to the undersampled signals 
and the SNR of the reconstructed data calculated - using correct 
delay values. The average SNR (average of the SNR as defined 
above, before taking the log) from 1 0 such signals is plotted in 
Fig. 2.3.and 2.4.
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Fig. 2.3 Output signal-to-noise ratio for BL reconstruction 

(solid line) and cubic spline interpolation (dashed 
lines) with noisy input signals (40dB). Harkov 1 
signals with a) p = 0.9; b) p = 0.5; c) p = 0.0.

As expected the SNR of the reconstruction is the same as that 
of the undersampled input data when the delay D = 1 (5 = 1) . 
Here the first signal gQ(i) provides the even samples of the 

reconstruction, and g-̂ (i) the odd ones, without any further 
interpolation being necessary.

As the delay moves away from 5 = 1 ,  the SNR of the reconstruction 
decreases. . It is noted further that the SNR of the BL recon­

structed signal is the same for all three signals processed (p = 
0, 0.5, 0.9). In 2.4.5. it is shown that the noise in the recon­
structed signal is independent of the signal.
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Fig. 2.4 Output signal-to-noise ratio for BL reconstruction 

(solid line) and cubic spline interpolation (dashed 
lines) with noisy input signals (20dB). Markov 1 
signals with a) p = 0.9; b) p = 0.5; c) p = 0.0.

Spline interpolation gives much lower SNR in the reconstruction. 
Here the SNR's are signal dependent, worsening as aliasing 
increases with flatter signal spectra ( p decreasing). This 
suggests that the cubic splines are unable to follow the sharp 

spikes of the signals with stronger high frequency spectrum.

Generally, for the signals investigated, spline interpolation 
gives much lower SNR's in the reconstruction than does the BL 
technique. The difference is more marked at high input SNR's 
when the approximations involved in the spline interpolation are 
the major source of error.
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2.4.3. Simulations with Errors in the Delay Estimates

Noise free and undersampled signals of fixed delay were generated 
and reconstructed using a range of delay estimates. The average 
SNR was calculated from 10 different Markov 1 signals with the 
same sample correlation. The results are shown in Fig. 2.5, 2.6, 
2.7 and 2.8.

Fig. 2.5 Output signal-to-noise ratios for BL reconstruction 
(solid line) and cubic spline interpolation (dashed 
line) with inaccurate delay estimates and true delay of 
a) D = 0.1; b) D = 0 . 5 ; c ) D = 1 . 0 .  Markov 1 data,
p = 0.0.

The SNR of the reconstruction shows a sharp peak when the delay 
estimate is correct, which decreases rapidly on either side, but 
more rapidly towards D = 0 ( 5 = 0 )  than D = 1 (5 = 1). It 
should be noted here that in plotting the graphs, increments in
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delay estimates of 0.1 samples were used.

Fig. 2.6 Output signal-to-noise ratios for BL reconstruction 
(solid line) and cubic spline interpolation (dashed 
line) with inaccurate delay estimates and true delay of 
a ) D = 0 . 1 ; b ) D = 0 . 5 ; c )  D = 1.0. Markov 1 data,
p = 0.9.

In Fig. 2.5 and 2.6 it is seen that for the Markov 1 signals 

analysed and for the small errors in delay estimate which are of 
interest, BL reconstruction generally gives better SNR's than 
spline interpolation. This is especially so when aliasing 
is severe (p = 0, Fig. 2.5). However, when the true delay is 1 
(5=1), spline interpolation is less sensitive to errors in the 
delay estimate than BL reconstruction (Fig. 2.5 and 2.6).

When comparing the SNR of the reconstruction for a range of p 

values, it is seen (Fig. 2.7 and 2.8) that distortion increases
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with the severity of aliasing, for a given error in delay 

estimate. This holds for both reconstruction techniques.

Fig. 2.7 Output signal-to-noise ratios for BL reconstruction 
with inaccurate delay estimates and true delay of 
a) D = 0.1; b) D = 0.5; c) D = 1.0. Markov 1 signals:
------- p = 0.9
------  p = 0.5
---- p = 0.0
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Fig. 2.8 Output signal-to-noise ratios for cubic spline inter­
polation with inaccurate delay estimates and true delay 
of a) D = 0.1; b) D = 0.5; c) D = 1.0.
Markov 1 signals:

------  p = 0.9
------  p = 0.5
---------------  p = o.O

2.4.4 Simulations with both Noisy Signals and Errors in Delay

Estimates

The SNR of the reconstructed signal with noisy input data and
with errors in the delay estimate was investigated next. The
SNR was again found as the average value from 10 noisy Markov 1 
signals.

It is seen in Fig. 2.9 that the sharp peaks observed for noise
free signals and BL reconstruction (Fig. 2.7) have become much

93



broader and lower in the presence of noise, i.e. the recon­

struction is now much less sensitive to any errors in the delay 
estimates. The resultant SNR is however generally lower than 
that for the noise free case. It is noted particularly that the 
maximum SNR does not necessarily occur when the delay estimate is 
correct, but may be shifted towards a delay value of D = 1 (5 = 

1) -

Fig. 2.9 Output signal-to-noise ratio for BL reconstruction
with inaccurate delay estimate and noisy input data 
(20dB) and true delay of a) D = 0.1; b) D = 0.5; 
c) D = 1.0.
Markov 1 signals:
------- p = 0.9
------  p = o.O

This effect is especially strong for p = 0.9, D 0.1 (Fig.



2.9.a), when this shift is approximately 0.4 samples! This shift 

appears to increase with a lower input signal to noise ratio, 
less severe aliasing (large p) and the true delay approaching an 
even number (|8 | small). An explanation of this effect may be 
made as follows: At small delay values (l8 | near zero) noise in 
the reconstruction is amplified (see 2.4.2). An incorrect delay 
estimate (|8 | moved towards 1 .0) reduces this noise but causes 
some distortion (see 2.4.3) in the output signal. Minimum noise 
and distortion in the reconstructed signal is then obtained at 
some value of delay nearer |5| = 1.0. This may be considered the 

optimal delay estimate for this reconstruction.

2.4.5. Prediction of Noise in the Reconstruction due to Noisy

Input Signals

An expression is now derived for the noise power in the BL recon­
struction due to additive, stationary, uncorrelated noise in the 
undersampled input signals. First the expected noise power at an 
arbitrary point f(t) in the reconstruction is derived and then 

the average noise power of the reconstructed samples found. 
These closely match the results obtained in 2.4.2.

Again, only the reconstruction from two, one dimensional signals 
is considered.

The input signals contains additive noise Xj(i) = gj (i) + nj (i)

where nj(i) are the noise values. It was noted above that recon­
struction is a linear process. The reconstructed output signal 
y(i) is therefore given by the sum of the correctly reconstructed
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signal f(i) and a noise component nr(i) such that y(i) = f (i) + 
nr (i). The noise component of the reconstructed signal nr(i) can 
therefore be calculated by applying the reconstruction algorithm 
to the input noise nj(i). For stationary, zero-mean additive 

noise, uncorrelated with the signal, the output noise power is
. pgiven by E{nr (i)} where E{.} again denotes the expected 
(average) value. This is found by calculating the power of a 
reconstructed signal for a given input power spectrum. Further­
more, the output noise power spectrum is not signal dependent 
(for uncorrelated input signals and noise) an observation made in 

the simulations in 2.4.2. In the derivation below, random 
signals g(i) are considered, which may represent either an 
undersampled signal or the sample values of additive noise.

Let the input noise be wide sense stationary with power spectra

|Go (h) | 2 and | G-̂ p(h)\ respectively. Let N be the length of
the reconstructed signals in samples and D the delay used in
the reconstruction algorithm, which may be a correct or an
estimated value. Then at any time t (units of samples) the
power of the reconstructed signal is given approximately by 
(see Appendix 2.4)

N/4 -1 l e - ^  1 |2
E{ |f (t) |2} = 8/N2 X [ |G0 (h) | 2 |-- 7 ---+ ---- 7 —  I +

h=0 ll-e^710 l-e- ^7 10 1

ll-e'^l2
IG, (h) |2 |------ 1 ] Eq.2.11

|l-e^D |
It can easily be shown that the above expression gives the 
correct results for the simplest cases:

96



are given by the input signal gQ(i). When the delay is odd (5=1; 
D=l,3, ...) the odd samples in the reconstructed signal are given
by the delayed input signal g-̂ (i). Hence E {f (0) } = E{gQ(0)} 
E{f (1)} = E{g^(0)} provided D=l,3 ... and stationary signals 
g0 (i) and gx(i).

By Parseval's formula (Papoulis, 1984 a, p.85)
Z |g.(i) |2 = 2/N Z |G.; (h) | 2 

N/2 N/2

and for wide sense stationary noise g(i)
N/4 -1

E{Igj(i)|2} = 8/N2 Z IGj(h) | 2
h=0

From this and Eq. 2.11 it is found that
N/4 -1

E {f (0) | 2 } « 8/N2 Z | G0 (h) | 2 = E { ! gQ (i) | 2 }
h=0

and for odd delay (5=1)
N/4 -1

E {f (1) | 2 } ~ 8/N2 Z |G1 (h) | 2 = E{ | g-L (i) |2}
h=0

Thus under these simple conditions Eq. 2.11 gives the correct 
results.

From Eq. 2.11 it is also evident that the noise in a recon-
• • -kstructed signal is non-stationary even if the input noise is

stationary and equal in the input signals. This may have been
expected as a result of the composing functions given by Yen
(1956). These show large peaks resulting in high signal (noise) 
power at certain points.

* or strictly, cyclostationary (Papoulis, 1984 b, p.226)

In the reconstructed signal f(t), the even samples (t=0,2, ...)
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In Eq. 2.11 the noise in the reconstruction is seen to depend on 

the time t relative to the sample positions of gQ(i) rather than 
the actual value of t. Let t = T + 2i, where i is an integer, 
such that -1 < X < 1 (similar to 5  for the delay D) then
E{|f(t)|2} = E{|f(X)| 2} since t appears in Eq. 2.11 only in the 
form e ^ k .

In a similar manner the noise in the reconstruction depends on 8 

rather than on D. Here lies the justification for the statement 
made in 2.4.1., that the results obtained with noisy input 

signals and delay values between 0 and 2 would be repeated 
between any two even delay values.

Since the noise power in the reconstruction depends on x rather 
than on t, an average noise power P in the reconstructed 
discrete signal is defined as

P = 1/2 (E{|f (0) | 2 + E{|f(1) |2})

From Eq. 2.11 it follows that

N/4 -1 
E 
h=0

P = 4/N2 E [|G0 (h) | 2 (1 + |
- 1  1 r

+ --- - I ) +
|l-e^D l-e- ^ D |

|G1 (h) lz l— ~-- | ]
ll-e^ 0 |

N/4 -1 2
4/N2 E [|G0 (h)|2 + |G1 (h)|2] ------

h=0 1-COS7CD
Eq.2.12

In Fig. 2.10. the results of this equation are compared with 
those of the experiments of 2.4.2. Close agreement can be 
observed.
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Fig. 2.10 Predicted output signal-to-noise ratios (solid line) 
and experimental results (dashed line) with noisy- 
input signals (20dB).

It follows from Eq. 2.12 that the minimum average noise level in 
the reconstruction will occur when cosmD = -1, i.e. D=2i+1 (i any 
integer) or 5=1. This is the case where the effective sampling 
is uniform, rather than in bunches. Here the samples of g-̂ (i) 
are exactly in the middle between the samples of gg (i) .

It is further evident that the average noise power of the recon­

structed signal is at least as great as the average input noise 

power. It should be emphasized that BL reconstruction cannot 

lead to a reduction in noise power, even if there is no aliasing 

in the input signals. In this case signal averaging can be used
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to improve the SNR of the reconstruction, without any loss in 
resolution. If both noise and aliasing are present, it may be 
possible to find an optimal compromise between averaging and BL 
reconstruction which is superior to either technique. Fig. 2.9 
suggested such a result.

2.4.6. Prediction of Distortion in the Reconstruction due to 
Errors in the Delay Estimates

In 2.4.3 it was shown that the reconstruction technique can be 
very sensitive to incorrect values of delay. Even small errors 
can lead to serious distortion in the reconstructed signal. 
This distortion was seen to depend on the signal power spectrum, 
as well as true and estimated delay.

Here an expression is given for the expected distortion in the
reconstruction from two signals. For this the original signal
f(t), from which the undersampled signals gg(i) and g-̂ (i) are
derived, is modelled as a stationary stochastic signal with power 

ospectrum |F(h)| .

It would be very convenient if the distortion could be expressed
, pin terms of the spectra of the undersampled signals |Gg(h)| and 

2|G^(h)| only. This, however is impossible, because the spectra 
are correlated, both g^(i) and g2 (i) being derived from the same 
signal f(t). The distortion in the reconstructed signal can

ptherefore only be found in terms of the power spectrum |F(h)| .

Using the stationary stochastic model for f(t) and the delay
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estimate T, the expected power of the error is found as (see
Appendix 2.5)

4 (1—COS7Tt) N/2 -1
E{e2 (t) } 8 3----------  £ |F (h) | 2 (1-cos khA) Eq.2.13

N2 (1—costcT) h=0
where e(t) = f(t) - y(t), y(t) being the reconstructed signal, D
the correct delay value and T the estimate, A = D - T, N the

length of the reconstructed signal and k = 2 k /N. The delays D
and T and the time t are in units of samples, as before.

As in 2.4.5. let t=2n+x, such that -1 < T < 1, then again
2E{e (t)} depends on T rather than just t. An average error is

P = 1/2 (E{Ie (0) |2} + E{|e(l) I2})
4 N/2 -1

------------- £ | f (h) |2 (1-cos khA). Eq. 2.14
N2 (1—costcT) h=0

The even samples (t=0,2, ...) have zero error (they are
the samples gQ(i)) and the odd samples (t=l,3, ...) give an error
of

8 N/2 -1
E { | e (1) | 2 } » ----------  £ | F (h) | 2 (1-cos khA).

N2 (1—costcT) h=0

This result was applied to the same Markov 1 data as used in Fig. 

2.5, 2.6, and 2.7. Some of these plots are compared in Fig. 
2 .1 1 , where good agreement is seen between the errors estimated 
here and those calculated from reconstructed signals there. The 
results differ significantly only where the error in the delay 
estimate is zero (A=0). The equations predict zero distortion 
(SNR = °°) in the reconstructed signal and the signal-to-noise
values calculated are given entirely by numerical inaccuracies in
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the computation.

Fig. 2.11 Predicted output signal-to-noise ratios (solid line) 
and experimental results (dashed line) with inaccurate 
delay estimates and true delay D = 0.5. Noise free
Markov 1 signals with a) p = 0.9; b) p = 0.5; c) p = 0.
The results are almost identical for most of the 
range.

Eq. 2.13 also shows that the distortion depends on the relative 
sample position ( | 5 |  < 1) rather than the absolute true (D) and 
estimated (T) values. Here lies the justification for the
statement made in 2.4.3 that the distortion observed will be the 
same between any two even values of delay.

From Eq. 2.14 it is further seen that for a given error in delay 

estimate A, and a given signal f(t), the distortion in the recon­
structed signal will be minimum, if the delay estimate T is an
odd number. As for noisy input signals, errors in the recon-
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struction are at a minimum when the samples are spaced regularly

rather than in repeated bunches.

The results obtained here differ from those of Messerschmitt 
(1975). He derived an expression for the signal to distortion 
ratio when an incorrect value of sample spacing is used in the 
reconstruction. His results show the ratio to be independent of 
the signal spectrum which contradicts the results obtained here. 
The reason for this difference lies in the way in which the 

bunched samples are processed by Messerschmitt. As was pointed 
out in 2.4.1, in his application, the sample positions are fixed 
by the PCM frame format and this pulse train is filtered in order 
to reconstruct the signal. An error in the delay value used, 
causes an incorrect filter for the given sample spacing to be 
computed, but the samples themselves are not moved. In the BL 
reconstruction considered in Eq. 2.14 however, an error in delay 
estimate causes the samples themselves to be moved. The 
resulting distortion might be expected to be different to that 
found by Messerschmitt.

2.4.7. Summary

The experimental work showed that the reconstruction algorithm 
works very well under the ideal conditions of no noise, error 
free delay estimates, circular delay and adequate average 
sampling rate.

When uncorrelated noise is added to the undersampled signals, the 
SNR of the reconstruction reaches at best the average SNR of the
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input signals. As the delay estimate approaches an even number 

(|8|-> 0), the signal-to-noise ratio of the reconstruction 

decreases rapidly. For a given noise power in the input signals, 

the maximum SNR in the reconstruction is achieved for odd delay 

values (5=1).

When the signals are noise free but the delay estimates are 

incorrect, the SNR (or more precisely signal-to-distortion ratio) 

increases dramatically as the delay estimate approaches the 

correct value. Here too, the error in the reconstruction is 

least when the delay is an odd number.

In the presence of noise in the input signals, the reconstruction 
is much less sensitive to errors in the delay estimate, though 
the SNR's achieved are of course generally lower than those for 
the noise free case. The maximum output SNR may be achieved when 
the delay estimates are slightly incorrect, with a |5| value 
larger than the correct one. The location of this optimum 
depends on the signal spectrum, input SNR and true delay 
estimate.

BL reconstruction was seen to generally give larger SNR's than 
the alternative techniques of cubic spline interpolation - for 
the Markov 1 signals processed, and input SNR's of between 20 and 
40 dB. As the input noise decreases and delay estimates approach 
the correct value, the advantages of BL reconstruction become 
more pronounced. Under these ideal conditions BL reconstruction 

gives perfect results, whereas spline interpolation gives only an 
approximation.
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2.5. BL RECONSTRUCTION OF TWO DIMENSIONAL SIGNALS

The reconstruction technique developed above for one dimensional 
signals is now extended to images.

Av

a) The two dimensional spectrum F(u,v) 
signal bandlimited at |W|

of a continuous

b) The two dimensional spectrum G(u,v) of the under­
sampled signal, sampled at frequency w = W showing 
overlapping spectra and first order aliasing

Fig. 2.12 Aliasing in two dimensional spectra

Let the two dimensional continuous and periodic signal 
<--> F(u,v) (x,y and u,v are integers) be bandlimited at

f <x,y)
W and
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sampled at a frequency w such that first order aliasing occurs (W
< w < 2W). Fig. 2.12 (Hall, 1979, p.492) illustrates this in the 
frequency domain. The original spectrum, F(u,v) is repeated 
periodically on a square grid with a period of w. The comb
function with which the one dimensional spectrum was convolved, 
is now turned into a two dimensional 'brush'. Adjacent copies of 
F(u,v) overlap, leading to the aliasing in the two dimensional 
spectrum. The order of aliasing is defined similar to that for 
one dimensional signals by considering the spectrum along only 

one axis (eg. u or v). For first order aliasing each harmonic 
G(u,v) has a contribution from up to 4 harmonics of F(u,v).

It is readily seen that for first order aliasing 
G(u,v) = 1/4 (F(u,v) + F(u,v-w) + F(u-w,v) + F(u-w,v-w)) 
with 0 < (u,v) _< w/2 .

For n-th order aliasing, harmonics F(u,v) in the range of
-W < (u,v) < W contribute to the aliased signal G (u, v)
G(u,v) = 1/(n+1) 2 .

[ F(u,v) + F(u,v-w) + F(u,v+w) +
+ F(u,v-2w) + F(u,v+2w) + . . + F(u,v-<n/2>w)

+ F(u-w,v) + F(u-w,v-w) + . . + . . + F(u-w,v-<n/2 >w)
+ F(u+w,v) + F(u+w,v-w) + . . + . . + F(u+w,v-<n/2 >w)
+ F(u-2w,v)+ F(u-2w,v-w)+ ..
+ F(u+2w,v)+ F(u+2w,v-w]1 + . .

+ F(u-<n/2>w,v) + .. .. + F(u-<n/2>w,v-<n/2>w)]

Eq.2.15
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for 0 < (u,v) < w / 2 and where |<n/2 >| is the largest integer such
that |u+<n/2 >w| and |v+<n/2 >w| do not exceed the bandlimit
W=(n+1)w/2 of F(u,v). Hence for n-th order aliasing there are 

2(n+1 ) terms in the sum on the right hand side of the equation
Oabove. The scaling factor 1/(n+1) may be derived by an argument 

similar to that in 2.3.1 for one dimensional signals.

When the signal f(x,y) <— > F(u,v) is shifted such that f^(x,y)= 

f(x-X,y-Y) the transforms become F-̂  (u, v) =F (u, v) e"^ ̂uX+vY) (eg. 
Hall, 1979, p .126) .

The transform of the undersampled and shifted signal g^(x,y) is 
therefore

G-ĵ (u, v) = 1 / (n+1 ) ̂  .

[ F(u,v)e-3<uX+vY> + F(u/v-w)e-3<uX+(v'w)Y) + .. ]
= e“j(uX+vY)j (n+i)2 .

[ F(u,v) + F(u,v-w)e^wY + F (u, v+w) e-jwY + .. +
F(u-w,v)e3wX + ... . . +

F(u-<n/2>w,v-<n/2>w)ej(<n/2>wX + <n/2>wY> ]

Eq.2.16
From a series of undersampled signals Gg(u,v), G^(u,v) ...

Gn (u,v) with shifts of (X^Y-^, (X2,Y2), ... (Xn,Yn) respectively

relative to crg(x,y), F(u,v) may be found by the solution of a set
2of (n+1) linear simultaneous equations.

If only every (n+l)-th sample along the rows and columns of an
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oadequately sampled signal of size N is used, n-th order aliasing 
may arise. The number of samples in this undersampled signal is 
1/(n+l) .N . (n+l) of these signals are required to solve the
set of equations and so perform the reconstruction. The total
number of samples in all the (undersampled) input signals
together is therefore the same as in that in the adequately
sampled signal. This is in agreement with the sampling theorem,
which states that the average sampling rate must equal the 
Nyquist rate.

By taking the e~3(uX+vY) terms in Eq. 2.16 to the left hand side,
2the system of (n+l) equations can be expressed as a simple 

matrix equation

G (u, v) = s F (u, v) Eq. 2.17

where, for first order aliasing

G (u,v)

Gq (u ,v )
G 1 (u,v)suv(X1, Yx) 

g 2 (u 'v >su v (X2 'Y2 )

G3<u ,v )sUv (x3'Y3>

suv(X,Y) = e3<uX+vY>
a a a a
a a.sww(0 ,Yi) a -sww(Xl'°> a-sww(xl'Yl>
a a * sww(0,Y2 ^ a.sw (X2,°> a -sww<X2 'Y2 >
a a * sww ̂ 'y3 ̂ a -s»w<x3'°> a -sww<x3'Y3>

a = 1/4
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F(u,v)

F(uf v)
F(u, v-w)

F(u-w,v)

F(u-w,v-w)

For the sake of clarity the matrices for first order aliasing 

only are given here, those for higher order aliasing follow by a 

simple extension.

There are many possible methods of finding F(u,v) from the above 
matrix equation. As for the one dimensional applications, LU- 
factorization (Kronsjo, 1979, p.90 ff.; Monro, 1982, p.240 ff.;
see also 2.3.2) was implemented. Since here too s is independent 
of frequency u,v, the factorization need only be carried out 
once, but the substitution is required at each frequency 0 <
(u, v) < w/ 2 .

As in the one dimensional case, harmonics involving half the 
sampling rate of the signal must be considered separately.

Let the continuous signal f(x,y) be bandlimited at W, such that 
F(u,v) = 0, (Iu|,1v|) > W. The spectrum here is confined to a

square, not a circle as used for the sake of clarity in Fig. 
2.12. If this signal is sampled adequately according to the 
sampling theorem (Jerri,1977) at w = 2W, the spectrum becomes
periodic, overlapping only at |u|,|v| = W.

Hence the spectrum of the sampled signal F' (u,v) is given by 

F'(w/2,v) = F(w/2,v) + F(-w/2,v)

F'(u,w/2) = F(u,w/2) + F(u,-w/2)

F r (-w/2,v) = F(w/2,v) + F(-w/2,v)
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F'(u,-w/2) = F(u,w/2) + F(u,-w/2)
where F(u,v) is the spectrum of the continuous signal and without 
any loss of generality, a scaling factor of 1  is assumed.

It follows further that F'(u,w/2) = F'(u,-w/2) and Ff (w/2,v) =
F' (-w/2 ,v) .

For one dimensional signals, the equivalent phenomenon was the 
loss of the sine component at W = w/2 due to the signal's Hermite 
property: F'(W) = F(W) + F*(W) = 2 re { F(W) }. The Hermite 
property of two dimensional real signals gives F(u,v) = 
F (-u,-v). It should be noted that for two dimensional signals 
F'(u,+w/2) and F'(+w/2,v) are complex. The Hermite property 
results in F'(+w/2,+w/2) being real only.

Signals in general do not have zero-valued components at 
(u,v) = w/ 2 , hence some convention is required to deal with 
these harmonics consistently. Here it will be assumed that 
F(u,w/2) = F(u,-w/2) = 1/2 F'(u,w/2)
F(w/2,v) = F(-w/2,v) = 1/2 F'(u,w/2).

This convention was used in all simulations. In other images this 
may well not be true, in which case some other a priori infor­
mation is required to correctly reconstruct these harmonics. 
However, in most cases where the above assumption is violated, 
only small errors result in the reconstruction.

For the signal f-^(x,y) = f (x-X,y-Y) let F' (u,v) be the transform

of the adequately sampled signal, sampled at w = 2W, then
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F'-^v^W) = F (u, W) e"^ (uX+WY) + F (u, -W) e-  ̂̂ uX-WY)
= 2F(u,W)e“^uX cosWY 
= Ff (u, W)e~^uX cosWY 

and similarly
F'^W^) = F' (W,v)e_I>vY cosWX.

In the BL reconstruction algorithm for undersampled signals 
with first order aliasing (w = W)

G (0, v) = s (w, 0) .F' (0, v)
where G( Df v) is as before,

"a a a a

s (w, 0 ) =
a a•sww(0fYx) a.coswX1 a*sww(0 'Yl)coswXl
a a.sww(0,Y2) a.coswX2 a.sww(0,Y2 )coswX2

a = 1/4
a a.sww(0fY3) a.coswX3 a.sww(0 ,Y3 )coswX3

and
F' (0, v) = [ F(0,v) F(0,v-w) F' (w,v) Fr (w,v-w) ]T .

F' denotes the harmonics of the adequately sampled rather

than the continuous signal. F' (., .) is calculated by the BL 

reconstruction algorithm.

G(u,0) is given in a similar way.

For n-th order aliasing and a sampling rate of w, any harmonic 
involving the components of F(u,v) at (|u|,|v|) = (n+l)w/2 
must be treated in a similar manner to that shown above.

Finally F' (+w,j+w)r which has zero imaginary component must be 

dealt with:
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F' (w, w) = F (w, w) e-jw(X+Y) + F(w,-w) e-jw(X-Y) +

+ F(-w,-w)e-jw(-X-Y)

Assuming again that F(u,w) = F(u,-w) and F(w,v) = F(-w,v)f it 

follows that F(w,w) = F(wr-w) = F(-w,-w) = F(-w,w). Because of

F'(w,w) = 4 coswX coswY re { F(w,w) }

= F' (w,w) coswX coswY.

From this G(0,0) = s(w,w) F(0r0) may be solved to find F(0,0).

The BL reconstruction algorithm as described here was implemented 

for the reconstruction from 4 signals and found to operate 
perfectly (within the numerical accuracy available) under the 
ideal conditions of an adequate average sampling rate; no noise; 
circular shift (periodic signals) and known correct values of 
shift (X^,Y^), (X2 /Y2 ), (X-̂ Y-̂ ). A Pascal listing of the
algorithm is given in Appendix 2.3.

the Hermite property F(w,w) = F*(-w,-w), im (F(w,w)} = 0. Hence
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2.6. SUMMARY AND CONCLUSION

A bandlimited signal may be reconstructed accurately from a 
series of undersampled signals, provided:
1 . the average sampling rate is adequate, i.e. the total number 

of samples in the undersampled input signals is equal to the 
number of samples required in the reconstruction.

2 . there is no noise present,
3. the signals processed are of infinite length or with periodic 

signals the full period is used,
4. the relative sample positions are known.

A series of undersampled versions of a signal may therefore be 
combined to increase their temporal or spatial resolution. The 
technique has been described and its performance under a range of 
error conditions investigated.

The algorithm to perform this reconstruction was derived in 2.3. 
for one- and in 2.5. for two-dimensional signals and is restated 
here:

Let the periodic and continuous signal f(t) <— > F(h), band-
limited at W=N/2, be sampled at frequency w=M to give G(h) which 
shows n-th order aliasing (n = 2W/w - 1, rounded up). Let Gq (h), 
G-j_ (h) , .. Gn (h) be the DFTs of a series of such signals, with 
delays relative to gQ(i) of D^, D2 , ..• Dn respectively. The
delay is given in units of samples: the sample spacing of the
reconstucted signal.

Let
s(h,D) = e <2,t/N>hD
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G(h)

F(h) = [ F(h) F(h-M) F(h+M) F(h-2M) . . F(h-<n/2>M) ]T

1 1  . . 1  

1 s(MfD1) s C-M̂ D-l) .. s(<n/2>M,D1)

= [ Gq (h) G1(h)s(h,D1) . . Gm (h)s(h,Dm) ]T

s = l/(n+ 1 )

1 S(MrDm) s«n/2>M,Dm)

then G(h) = sF(h) from which F(h) can easily be found by eg. 
LU- factorization. If the reconstruction involves the harmonic 
F(w/2 ) it should be considered separately, as described in detail 
in 2.3.2.

It was found that the algorithm gives accurate results under the 
ideal conditions stated above. By experimental investigation and 
theoretical derivation the performance of the algorithm in the 

presence of noise and with errors in the delay estimates was 
investigated. In this study, only the reconstruction from two 

signals was analysed.

This showed that the method is least sensitive to noise and 
errors in delay value when the samples of g-̂ (i) are exactly in 
the middle between those of gg(i) , i.e D-̂ is an odd number and 
the overall sampling is regular. For given input noise, noise 
in the reconstruction increases as the samples move closer 

together. Here it is the delay estimate, rather than the true 
delay value that is of significance. For noise free signals, the
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distortion in the reconstruction increases rapidly with incorrect
delay estimates. Again estimates placing the samples nearer a 
regular pattern are preferred to those increasing the irregu­
larity of the sampling. When there is noise in the input data an 
incorrect delay estimates can in fact improve the resultant 
signal-to-noise ratio, provided this places the estimate closer 
to the nearest odd value of delay.

It was concluded that for the range of Markov 1 signals and the 

range of noise and errors in delay value investigated, the BL 
reconstruction technique gave a more accurate reconstruction than 
the alternative approximation method of cubic spline inter­
polation. The benefits of BL reconstruction increase when
aliasing is severe and the input signals are relatively noise 
free.

For two dimensional signals the reconstruction method is as 
follows: Let the continuous and periodic signal f(x,y) <— >
F(u,v) be bandlimited at W and let g(x,y) <— > G(u,v) be the 
undersampled signal, sampled at frequency w. For first order 
aliasing W < w < 2W, let there be 4 of these undersampled

signals Gq (u ,v ), ... G0 (u,v) with a shift relative to gg(x,y) of 
(Xi,Yf), (X2 ,Y2 >, (X^,Y3 ) respectively, then

G(u,v) = s F(u,v)

where
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Gq (u ,v )

G(u,v)
G 1 (ufv)suv(X1 ,Y1)

g 2 (u 'v )s u v <X2'Y2)

g3 (u 'v )su v (X3'Y3)

SUV(X,Y) = e3 (27C/N) (uX+vY)

a a a a
a a -sww<°'Yl> a-sww(xl'°> a-sww<Xl'Yl>
a a-sww(0 ,Y2 * a-sww(x2 '°) a*sww<X2 'Y2 >
a a-sww<°'y3> a-sww(x3'°> a-sww<X3'Y3>.

a = 1/4

F (u, v)

F(u,v)
F(u, v-w)
F(u-w,v)
F(u-w,v-w)

and F(u,v) can be easily be found by, for example, LU- 
factorization. The LU- decomposition need only be carried out 
once but the substitution stage is required at every frequency of 
G(u,v). Again, the harmonics along half the sampling rate of the 
reconstructed signal F(u,v), (|u|,|v|) = w (and for n-th order

aliasing (Iu,|,Iv|) = (n+l)w/ 2 ) must be considered separately.

This algorithm was found to produce accurate reconstructions on 
simulated signals.
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3. SIGNAL ALIGNMENT

3.1 INTRODUCTION

It was shown in Chapter 2 that it is necessary to obtain an 
accurate estimate of the relative shift between the undersampled 
signals (D in Fig. 3.1) in order to reconstruct a signal from 
delayed, sampled versions. In this chapter a novel technique of 
signal alignment is described, which is based on the relative 
phase of two signals and is called the 'phase of consecutive 
frequencies' (PCF) estimator. This method, even though developed 
for the signal reconstruction technique of Chapter 2, could find 
use in many other areas of digital signal processing.

In recent years, considerable attention has been paid to delay 
estimation in one dimensional signals, for applications such as 
sonar, geophysical and biomedical signals. A wide range of 
techniques have been developed and published. For two dimen­
sional signals, applications of alignment range from military 
target tracking, industrial control and inspection to medical 
X-ray image processing. The novel alignment technique described 
in this chapter presents a further algorithm for one and two 
dimensional signals, whose principal advantage lies in the 
sub-sample resolution, which is found accurately and efficiently.

First some current signal alignment techniques are described and 

some of the published work is reviewed. Then the PCF delay 
estimation technique is described for one dimensional signals and 
its performance in the presence of noise is investigated using 
simulated signals. The comparison is made between the PCF
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estimator and delay estimation from 

of cross-correlation. It is shown 

used, the PCF estimator is the better

the well established 
that for the Markov 1 
technique.

method

signals

Fig. 3.1. Sampled, delayed signals and the superimposed samples
a) The signal f (t) and the samples g^d)
b) The delayed signal f(t-D) and the samples g2 <i)
c) The superimposed samples f-̂ (i) and f2 (i), showing 

delay D and 5.

The effect of undersampling (aliasing) on the relative phase of 

the sampled signals is then investigated. The PCF estimator is 

modified accordingly to reduce errors in the delay estimate. 

Again the performance is evaluated on simulated signals.

The PCF technique is then extended to two dimensional signals for 

the estimation of the relative shift between images, in both x 

and y directions.
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Delay, D will be expressed in units of samples, the distance 
between the samples in each signal (Fig. 3.1). In some 

instances, the fractional part of the delay, 5 ,  is important. 
The form D = k + 5  will be used, where k  is the integer closest to D 
(Fig. 3.1).

In chapter 2 it was shown that an accurate estimate of delay is 
required for the reconstruction, particularly when the samples in 
the two undersampled signals f^(i) and f2 (i) are close together 
(small | 5 | ) .  The sampling theorem states that no information is 
lost when the signals are adequately sampled. In these cases 
therefore the sampling interval does not impose any restriction 
on the accuracy of the delay estimate and sub-sample resolution 
can theoretically be achieved.

Delay estimation techniques that are based on the discrete time 
domain (eg. maximum of the cross-correlation function, reviewed 
below), give integer delay values and interpolation is necessary 
for sub-sample resolution. This may require approximations and 
can be computationally expensive.

The Fourier domain provides an alternative approach which has not 
been thoroughly investigated. Signal delay in the time domain is 
equivalent to a phase shift in the frequency domain and estima­
tors based on this give a continuous result without the need for 
interpolation. Furthermore, the effect of undersampling on the 
signal spectrum can readily be analysed, and the estimator 
modified for such applications. The techniques based on the 
phase can also be made computationally efficient.
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It should be pointed out that for two dimensional signals only
translational motion in the x and y direction is considered. 
Rotation, distortion and scale changes are assumed negligible and 
if present are regarded as noise. In some instances this 
assumption may not be justified over the whole image, but only 
locally, which may require separate processing of segments.

The signals of interest in this chapter are those with power 
concentrated at low frequencies. The length of these signals is 
relatively short, a few hundred samples in any direction and the 
delay values are small compared to the length of the signals ( up 
to about 10%). The delay is assumed to be independent of 
frequency, i.e. each harmonic is delayed by the same distance D. 
This is commonly referred to as non-dispersive delay (Hammon and 
Hannan, 1974) .

Markov 1 signals were used as test data. These have been 
described in greater detail in Chapter 1. Stationary white noise 
was added to the signals to simulate noisy data. Signal-to-noise 
ratios (SNR) of 20 to 40dB are used as video signals have typical 
values in this range.

The Discrete Fourier Transform and the Fast Fourier Transform 
algorithm were used throughout this chapter. Implicit in their 
use is the assumption that signals are periodic (see Chapter 1). 
For the remainder of this chapter all signals processed are 
periodic and consequently all delays and shifts in the signals 
circular, i.e. the signals 'wrap around'. All derivations are 
based on this assumption. Errors arising in the delay estimates
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when the signals are not periodic may be minimized by appropriate 
data windows, as described in Chapter 4.
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3.2 REVIEW OF SIGNAL ALIGNMENT TECHNIQUES

3.2.1 Introduction

For one dimensional time varying signals, shift estimation is 
generally referred to as delay estimation. Considerable work has 
been carried out in this area (e.g. Special Issue on Delay 
Estimation IEEE ASSP 29 (3), 1981) for such application as
bearing and range estimation in radar and sonar (Quarzi,1981), 
for signal alignment prior to coherent (or ensemble) averaging 
(Rodriguez et al.,1981), measurement of propagation velocity 
(Simaan,1984) and many others.

Image alignment, motion estimation and scene matching for two 
dimensional signals has also attracted much attention: Anuta
(1970) developed a system for the alignment of satellite images 
taken at different times or in different spectral bands. Motion 
estimation is used in target localization and tracking (Haas and 
Lindquist,1981), scene matching for navigational updates (Brown, 
1984), image alignment prior to subtraction and averaging for 
X-ray images (Venot and Leclerc,1984), processing of stereo 
vision images, image coding and many other applications.

3.2.2. Techniques in the Discrete Space or Time Domain

A range of different approaches has been taken to the problem of 
motion estimation and generally a compromise has to be made with 
these techniques between speed, resolution and stability.

Most shift estimation techniques rely on maximizing a measure of 
similarity or minimizing the difference between the original and
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displaced image (Hall, 1979, p.480 ff.).

Let S be an image of size M x M and T be a template, a smaller
image of size N x N. Then subimages S„,r are defined which arexy
segments of S (windows on S) with a reference point, say the top 
left hand corner, at the coordinates x,y of S. The coordinates 
are required at which the template T best matches the subimage 
Sxy  The simplest techniques for this are called template 
matching.

The most direct approach is to minimize an error measure, say the 
mean absolute error

N-l N-l£ .2 I S (i, j)-T (i, j) |i=0 j=0 xy

by varying x and y (moving a window over S) over the full range
of possible values, which is at most from 0 to M-N. Thus up to 

2( M - N  + 1 ) window positions need to be evaluated, resulting in 
up to N2( M ' N + ^  subtractions which can be computationally
very expensive. Hence this technique is not commonly used. In 
addition, any change in amplitude scaling of the signals (eg. a 

change in lighting) can lead to very poor results.

Instead of finding the mean absolute error, the mean square error 

can be minimized. This is closely related to the commonly used 
technique of maximizing cross-correlation (Barnea and Silverman, 
1972) a far more efficient method, independent of amplitude 
scaling, which is discussed in greater detail in the next 
section.

A number of techniques aim to increase the efficiency of algo­
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rithms that minimize errors. The very direct method described 
above is inefficient in that the error is calculated to the same 
precision regardless of whether the window is close to or far 
from the point of best match. Barnea and Silverman (1972) used 
the rate at which the error accumulated as a measure of fit. 
Rosenfeld and VanderBrug (1977) proposed calculating the error 
between template and subimage first at a coarse resolution and 
then at full resolution only in the regions where good fit is 
indicated. A similar idea is the basis of another method propo­
sed by VanderBrug and Rosenfeld (1977): here the initial search 
is made using only sections of the template and the whole image 
included only where a small error was found on the first pass.

A review of displacement estimation techniques used in image 
coding is given by Musmann et al. (1985). They describe tech­
niques where the difference between images and image gradients 
are used to find the displacement. Recursive techniques may then 
be used to give sub-pixel resolution. Search schemes are 
described, which increase the efficiency of the methods. They 
give the interesting result that the matching criterion (mean 
square error or mean absolute error) has no significant influence 
on the search.

Hall (1979, Chapter 8) describes a series of different approaches 
to motion estimation. Apart from the ones mentioned above, 
techniques based on invariant moments and others based on edge 
features of the images are discussed. These techniques can be 
invariant to rotation of the image and to variations in the 
sensor (camera)(Hall, 1979, p.488). This advantage is however
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offset by yielding estimates of only one pixel resolution;
interpolation is required for higher resolution.

3.2.3. Cross-correlation methods

Finding the maximum of the cross-correlation function has become 
the most established technique of delay and motion estimation.

For an image the least mean square (LMS) criterion is defined as 
follows

N—1 N-l 9Z £ sxv(i,j) - T (i,j) =1=0 j=0 y

N-l N-l 9 N-l N-l 9= z i s z a ,  j) + z z T̂ â j)1=0 1=0 Y i=0 3=0
N-l N-l
iSo j50 Sxy<i,j)T(i,j)

Eq.3.1

The first two terms on the right hand side of Eq. 3.1 are 
positive and if the first term is constant over x and y then the 
minimum of Eq. 3.1 coincides with the maximum of the last term. 
This last term is called the cross-correlation surface (function) 
(Barnea and Silverman, 1972).

N-l N-l
Rxy - j^Q ^xy 3) T (i'9)

This function is calculated at all possible values of x and y and 
the coordinates of the maximum give the shift estimate.

A major advantage of Rx .̂ in signal alignment is that the location 
of its maximum is independent of amplitude scaling in S or T. 

Thus shift estimates using cross-correlation are independent of
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signal amplification. The cross-correlation surface can also be 

found efficiently using the frequency domain and the Fast Fourier 

Transform (FFT) algorithm.

In one dimension, the cross-correlation function of f-̂ (i) and 

f2 (i) is given by:

N—1R(x) = Z f 1 (i) . f2 (i+x) = fx(i) ® f2 (-i)
(Oppenheim and Schafer,1975, p.554 ff.),
where ® denotes convolution. In the frequency domain this gives 

the product

DFT { Rx } = DFT { f± (i) } . DFT*{ f2 (i) }.
★ .  «Here denotes the complex conjugate and DFT{ . } the Discrete

Fourier Transform.

The size of the transforms used for f^ and f2 has to be the same. 
So the template (f̂  say) has to be padded with zeros to increase 
its size to that of the signal to be searched (f2)/ prior to 
performing the FFT. There are however problems associated with 
this: The discrete Fourier transform assumes a periodic signal
and hence R(x) will be the cyclic cross-correlation function. 
When searching for the maximum, those points which include signal 
wraparound have to be excluded (Anuta,1970). Alternatively, f2 
also can be padded with zeros to set the cross-correlation 

function to zero where there is signal wraparound. Now the 
results obtained where the template covers the padding should be 
disregarded. This will in general pose little difficulty, since 

low values of cross-correlation are anticipated over this range.

A different approach to this problem of signal wraparound is
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taken in Chapter 4, where tapered windows are discussed, which 
reduce the weighting given to the regions near the ends of f-̂ and 
f2 . This approach is suitable only for delays that are short 
compared to the length of the signals. Furthermore, it is 
designed for applications where two signals of equal length are 
to be aligned that are finite segments of the same infinite 
length signal, but neither of these can be considered the 
'template'. These segments correspond to each other only over 
part of their length.

When the first term in Eq. 3.1, the energy of the sub-image Sxy,
is not constant over x and Y' the maximum of the cross-
correlation surface can give a poor estimate, even under
otherwise ideal conditions (Barnea and Silverman, 1972) For
example, R„,, increases with SVTr even if the latter does not match xy xy
the template T.

To avoid this, the cross-correlation surface may be normalized 
(Barnea and Silverman, 1972; Anuta, 1970).

R
•xy

xy
N-l N-l 0 N-l N-lE X  Sx_/(i,j) £ Xi=0 j=0 xy i=0 j=0 Txy j>

It should be pointed out however, that the maximum of this
function does not necessarily lead to the same estimate as the
LMS criterion. This can readily be seen as r„,. is not affectedxy
by amplitude scaling of the image S, unlike the mean square 
error in Eq. 3.1.
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Anuta (1970) also removed, the average signal value prior to
evaluating the normalized cross correlation surface. Thus his 
estimator was also independent of 'DC' offset, again unlike the 

LMS criterion.

Most work on cross-correlation has concentrated on the numerator 

of the normalized cross-correlation surface. Normalization 

has often been neglected. The reason for this probably lies in 

the extra computational effort required to calculate rXy and in 

many cases only small errors arise when normalization is omitted.

The performance of these estimators can be improved by filtering 
prior to correlation. The resolution of the estimator is 
improved by sharpening the peak of the function, but this has to 
be balanced against a loss in stability due to finite observation 
time (Knapp and Carter, 1976). For white noise signals, cross­
correlation produces a single infinitely narrow spike (Dirac 
Delta). Any other signal spectrum causes a spreading of the 
peak. In order to sharpen the correlation peak the signal may be 
'whitened' and a range of prefilters have been proposed for this 
purpose.

Pratt (1974) calculated prefilters from the covariance matrix of 
the images and found that for images with high spatial corre­

lation the prefilters were gradient operators which enhance the 
edges of the images. Svedlov et al. (1978) showed in an experi­
mental study that gradient operators improve the performance of 
shift estimators.

Knapp and Carter (1976) listed a series of prefilters with a
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range of compromises between whitening the signals and noise 
suppression. He then developed a prefilter which results in 
maximum cross-correlation giving the maximum likelihood delay 

estimate. Haas and Lindquist (1981) gave a series of prefilters 
to shape the cross-correlation function for a range of a priori 
knowledge of the signal and noise power spectra.

Finding the maximum of the discrete correlation function gives 
the shift estimate to within an integer multiple of the sampling 
interval. To get sub-sample resolution, interpolation is 
required. If the signals are not aliased then perfect inter­
polation for bandlimited signals is possible using the sine 
function, but this is computationally very expensive.

Probably the most common method is parabolic interpolation 
(Voles, 1980 ; Haas and Lindquist, 1981). Boucher and Hassab 
(1981) gave an expression for the expected value and the variance 
in these interpolated delay estimates, for noisy signals. They 
showed that these depend on the actual delay value and the power 
spectrum of the signal (and prefilter). The results of some 
experimental work on this are described in 3.3.4.

3.2,4 Techniques Based on the Phase of the Fourier Transform

As was stated in Chapter 1, in the frequency domain shift enters 
as a phase change. This has been used in a number of one 
dimensional delay estimation techniques. Much less work has been 
published on this approach however, than on cross-correlation.

Let f2 t̂) = fj_ (t-D) where t is time and D the delay.
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Then in the frequency domain

F2 (w) = F-̂ (go) .e j® 0 Eq.3.2

where GO is the angular frequency.

Delay is then found by estimating the parameter D in the above 
equation. The estimate is a continuous variable and no inter­
polation is required for sub-sample resolution.

McGill and Dorfman (1984) and Simaan (1984) used Eq. 3.2 to find 
the local maximum of the cross-correlation function. A more 
direct approach is to.find the gradient of the phase difference 
between F-̂  (go) and F2 (GO) over frequency:
GOD = arg (F1 (G0)} - arg {F2 (GO) }

= arg {Fx (GO) .F2* (CO) }
where GO is the angular frequency. For the Discrete Fourier 
Transform of length N, GO = (2m/N)h where h is the frequency of 
the harmonic, an integer. h, rather than GO is used in the
following.

Some of the early work on this approach was carried out by 
Cleveland and Parzen (1975). They were mainly concerned with 
the estimation of the coherence function defined as 

S1 2 (h)
s12(h) — ~ ~

[S1 ]L(h) • S2 2 (h) ] 1 / 2

where S^2 (h) is the cross- and S-^ (h) and S2 2 (h) the auto-spectral 
density of the functions f^(t) and f2 (t) (Carter et al., 1973).

Cleveland and Parzen found a weighted moving average over a band
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of frequencies, in order to estimate spectral densities. An 
estimate of delay was then obtained by finding the gradient of

9p' (CÔ.) = arg where indicates the estimate and 0)̂  the
centre frequency of the frequency band. They were only inter­
ested in the local gradient and did not assume constant delay 
over all frequencies (Dispersive System, Hamon and Hannan, 
1974) .

Fig. 3.2 Unwrapped phase difference

They further considered the problem of phase unwrapping 
(Tribolet, 1977). When finding the argument of a complex number 
(tan-1) , the result always lies between + k . This is called the 

wrapped phase. Thus phase difference over frequency will gives a 
sawtooth function instead of a straight line graph (see Fig.
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3.2). Phase unwrapping is required to recover the straight line.

In order to unwrap the phase, Cleveland and Parzen (1975) suggest 
p* (03k) = p' (00k) + 2 k . nk where nk is the integer closest to
(p (©k-i) - pr (®k))/2tc and p*(Wk) is the unwrapped phase
difference.

Hamon and Hannan (1974) in a more rigourous approach to delay 
estimation also average over frequency. The delay estimate is 
then found by maximizing the function

M- 1  Ẑ j [W(k)cos (p' (CDk) - p«ok))]

where M is the number of frequency bands and is the sum over 
these M bands. W(k) is a weighting function defined as 

I S ' 1 2 2 ( t O k ) I

w (k) = ---------------
1 - 'S'l22 <®k) I

where an estimate of si2 ̂ ®k̂  obtained by averaging
over a number of harmonics nearest to (0 .̂ This weights the 
estimate at a frequency C0k inversely with the variance in phase 
difference at that frequency.

Chan et al. (1978) based their technique on the estimate of 
magnitude squared coherence as given by Carter et al. (1973). 
The signals are split into segments (which may overlap) by the 
use of some window function. These segments are then Fourier 
transformed and the estimate of the auto- and cross-spectral 
densities are found by averaging over these segments at each 
frequency.
Let p(h) = arg (S1 2 (h)}
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IS1 2 (h) | 2
and q-, 2 (h) ---------------

1 - |S1 2 (h) | 2

then the estimate of delay
E q1 2  (h) .p (h) .h

D = N/27C---------------
E q1 2  (h) .h2

where the sums are over all values of h between 1  and half the 
sampling frequency.

For large numbers of segments and no segment overlap the variance 
of the estimate is given by

1
var {D} = (N/27t)2 -------------

2n.E q -̂ 2 (h) .h2

where n is the number of segments processed in estimating the 
coherence. This value is the same as the asymptotic variance 
given by Hamon and Hannan (1974). Chan et al. assume the signals 
are zero mean Gaussian processes.

For phase unwrapping Chan et al. suggest either a physical 
arrangement of sonar receivers to avoid the problem or using the 
algorithm given by Tribolet (1977). This relies on the 
continuity of the phase curve over frequency and uses numerical 
integration to perform the unwrapping.

Piersol (1981) followed a similar approach to that of Chan et al. 

(1978) by segmenting the signal, averaging the spectra and 
finding the least squares fit to the phase difference curve. He 
showed that the variance in the delay estimate is equivalent to 
the Cramfer-Rao Lower Bound (CRLB) as given by Knapp and Carter 
(1976) for the maximum likelihood estimator (HT-prefilter). The
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CRLB gives a lower bound on the variance of any unbiassed
estimator and is based on the probability density function of the 
variable (Van Trees,1968 p . 6 6 ff.).

Phase difference has been used to tackle a number of specialist 
delay estimation problems. Piersol (1981) dealt with correlated 
receiver noise and scattering at the receiver. As mentioned 
above, Hamon and Hannan (1974) considered dispersive systems 

where the delay varies over frequency. Azenkot and Gertner 
(1985) and others estimated delay from phase when there is an 
additional phase shift, constant over frequency as may occur in 
sonar systems.

The use of signal phase for motion estimation in images was 
mentioned briefly by Huang and Tsai (1981). They suggested 
estimates based on the x and y projection of the images. The 
difference in phase of the projections gives the relative motion. 
The projection onto the x-axis, gives motion in the x-direction 
and that on the y-axis, in the y-direction. They further 
suggested the use of the frequency domain for the estimation of 
image scaling (zoom) and rotation.

3.2.5. Discussion of Delay Estimation from Phase

Some of the work described in 3.2.4 will now be considered in the 
context of the present application. It is shown that those 
techniques are not very well suited to the application of interest 
here.

The techniques described in 3.2.4. were developed mainly for
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sonar signals and so certain assumptions about the signals were
made. The type of signals considered in this chapter have a 

different range of properties, ones that may also be found in 
many other applications in digital signal processing. These 
signals are relatively short, only a few hundred samples long. 
They are periodic and consequently all delays are circular, and 
these delays are short, compared to the length of the signals 
(less than 10%). Signal to noise ratios are greater than 
about 20dB.

The techniques of Hamon and Hannan (1974) and Cleveland and 
Parzen (1975) use a weighted moving average in the frequency 
domain to obtain an estimate of the cross-correlation function 
from which the phase difference is found. Cleveland and Parzen 
assume constant signal amplitudes in the band over which this 
average is taken, an assumption not justified in the signals 
considered in this chapter. Hamon and Hannan's method is based 
on the assumption of long signals ( > 2000 samples, Hannan, 1970, 
p.273) and linear, as opposed to circular cross-correlation. 
This last assumption is probably of lesser importance for the 
short delay values assumed here. Papoulis (1984 b, p. 494 - 495) 
showed that for stochastic signals, averaging in the frequency 

domain improved the variance in the spectral estimate at the 
expense of resolution. For deterministic data, averaging is 
undesirable as it distorts the spectrum.

This is shown in Fig. 3.3, 3.4 and 3.5, where the results of some 
experimental work on moving averages in the frequency domain and 
resultant phase difference are given. The Markov 1 signal f-̂ (i)
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of 256 samples length was generated and delayed (circular delay) 
to form f£ (i)=f^(i-D) where D=10 samples. The DFTs were found to 
give F-̂ (h) and F2 (h) , where h is the frequency (integer) . The 
moving average of the cross spectrum ZjcF-^(h)F2 (h) over the k 
points nearest each harmonic was calculated. Without averaging 
(k=l) or noise the phase of this gives the correct result, a 
straight line through the origin, with a gradient of D. With 
averaging however, errors are introduced, which are seen as a 
scatter of points around this line (Fig. 3.3). These errors are 
plotted in Fig. 3.4 for a Markov 1 signal with sample correlation 
(p) of 0.9 and values of k of 9 and 5. It is seen that at low 
frequencies these errors tend to be negative, a bias which tends 
to decrease with an increase in frequency. This result could be 
expected: The spectrum of the Markov 1 signals decreases with 
frequency, but not monotonically. The low frequency components 
in the average therefore tend to dominate and lead to the low 
values m  phase difference observed because arg {F^(h)F2 (h)} = 
(2k / T )hD is smaller at low frequencies. The distortion in the 
coherence (cross-spectral) function as a result of averaging is 
referred to as 'spiralling' by Brillinger and Tukey (1984, p. 
1043). They suggest that some technique to control this effect 
should be used routinely in averaging cross-spectra.
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Fig. 3.3. Phase of the cross-correlation function for a delayed 
signal, (D = 10 samples, signal 256 samples long) with 
moving averages in the frequency domain over 5 (solid 
line) and 9 (dashed line) samples. Phase errors are 
shown in Fig. 3.4. Noise free Markov 1 data, p = 0.9.

When white noise is added to the signal (Fig. 3.5, SNR=20dB, 
p=0.9) averaging in the frequency domain reduces the error at 
high frequency where the signal power is small, but at low 
frequencies still increases the error and bias mentioned. It was 
further found that for p=0 (flat signal spectrum) and SNR=20dB 

averaging does not appear to improve the error significantly. 
These results confirm that for high SNR and the Markov 1 signals, 
the disadvantages of averaging (distortion of the signal spectra, 
bias in phase difference) probably outweigh the benefits (reduc­
tion in errors due to noise).
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Fig. 3.4. Errors in phase difference due to frequency domain 
averaging. Moving average over 5 points (solid line) 
and 9 points (dashed line). Noise free Markov 1 data, 
p = 0.9.

Chan et al. (1978) and Piersol (1981) applied a series of short
windows to the signals and found the transforms of these seg-
ments. For the reconstruction described in Chapter 2, a 
transform of the whole signal is required and those delay 

estimation techniques would therefore require additional 
transformations on the signal. Windowing in the time domain 
implies convolution in the frequency domain, i.e. a weighted 
moving average in the frequency domain with problems similar to 
those described above.
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Fig. 3.5. Error in phase difference with noisy input data (20dB) 
and no averaging (solid line) and averaging over 9 
points (dashed line). Markov 1 data, p = 0.9.

Some finite length data window must be applied to a signal in 
order to calculate the DFT. Such windows are discussed in
Chapter 4. These windows however extend over the full length of 
the signal available rather than the short ones applied in the 
techniques of Chan and Piersol. The kernel for the frequency 
domain convolution is narrower with the longer windows.

In the application of interest here, non-dispersive delay is 
assumed. This assumption is not generally valid for sonar data 
for which much of the previous work has been carried out. The 
phase unwrapping techniques of Cleveland and Parzen( 1975) or 

the algorithm of Tribolet (1977) recommended by Chan et al. 

(1978) therefore do not use the knowledge that the phase
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difference forms a straight line passing through the origin.

Thus the above techniques of delay estimation 
suitable for the present application. A 
for the delay estimation from phase was 
described in the following section

were not considered 
simple algorithm 
developed and is
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3.3. THE PCF ESTIMATOR FOR ONE DIMENSIONAL SIGNALS WITHOUT

ALIASING

3.3.1. Introduction

In 3.2.3 it was shown that the maximum of the cross-correlation 
function gives delay estimates only to a resolution of one 
sample. Some form of interpolation (eg. parabolic) which may 
only give an approximation is required to give sub-sample 
resolution.

The phase difference of consecutive frequency (PCF) estimator is 
based on the phase of the signals and so gives sub-sample 
resolution directly. It can be computationally cheaper and no 
approximation is involved; under the ideal conditions of
1 . no noise,
2 . no aliasing and
3. periodic signals,
its performance is only limited by the numerical accuracy of the 
computer. Furthermore, as will be shown in 3.3.4. for Markov 1 
signals without noise or with signal-to-noise ratios of 20 and 

40dB, the PCF performs better than the comparable method of 
parabolic interpolation of the crosscorrelation function.

Let f (t) be a continuous, periodic signal and f-̂ (i) an adequately 
sampled version of it with N samples per period. Let f(t) be 
delayed by the time D to give f'(t)=f(t-D) and f2 (i) be a sampled 
version of this (Fig. 3.1). Further let F^ (h) and F2 (h) be the 
discrete Fourier transform of length N of f1 (i) and f2 (i) respec­
tively and h the frequency of the harmonics h=C0.N/27C (integer) .

141



Provided there is no noise and the sampling rate was adequate:
(h) = F1 (h) e j (2k / N )hD^ |h| < N/2 .

When the phase difference
A0 = arg { F-̂ (h) } - arg { F2 (h) } = (27c/N)hD
is plotted over angular frequency a straight line graph through 
the origin is obtained, whose gradient is D (Fig. 3.2).

Instead of finding arg { F^(h) } and arg { F2 (h) } separately, A0
may be found as 
A0 = arg { R(h) }
■where R(h) = F^(h).F2 (h) , the cross spectrum, which is the
transform of the cross-correlation function (Oppenheim and 
Schafer, 1975, p. 555). The SY1^ 0 1  * a9ain denotes the complex

conjugate.

When noise is added to the signals f^(i) and f2 (i) , the phase 
difference A0 becomes 'noisy' and delay can only be estimated 
from the gradient of some best fit line.

The phase of a complex number F is calculated as 
im { F }

<$> = tan- 1 ---------- -- arg { F } + 2Tin
re { F }

where n is an integer such that - K  < § < k .

For certain signals (Tribolet, 1977) and for the cross­
correlation function above, the phase of the Fourier transform of 

a signal gives a continuous curve, if the correct value of n 
above is found. This process is called phase unwrapping. The 
unwrapped phase is denoted by arg { . }.
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The phase difference A0 calculated without unwrapping gives a
sawtooth rather than the straight line graph as shown in Fig.
3.2. Unwrapping is necessary to eliminate these discontinuities.

Hence the two main problems that need to be considered in the 
delay estimate from phase are
1 . phase unwrapping
2 . estimating the gradient of the phase difference for noisy data.

For the PCF estimator, first the novel technique of phase
unwrapping based on the delay estimate from lower frequencies 
will be described. Then the new gradient estimator is given,
which is based on an estimate of the variance of the phase
difference A0. Finally the PCF estimate is compared with the 
delay estimate from parabolic interpolation of the 
cross-correlation function on Markov 1 signals and shown to give 
more accurate results.

3.3.2. Phase Unwrapping 

Using the notation of 3.3.1,
hD = (N/2;t) . (arg {F^ (h) } - arg {F2 (h)}) = - <j>2 + 27tn,
where <j)̂ and <}>2 are the phase angles of F-̂ (h) and F2 (h)
respectively calculated from tan-  ̂(.) , such that | <j> | < it.

Direct calculation of the phase-difference <J)-̂ - <j>2, may lead to 
phase unwrapping errors at any frequency since the phase of both 
F-̂ (h) and F2 (h) should be unwrapped prior to subtraction. This 
approach also requires that two tan-  ̂operations be performed at 
every frequency.
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It is more efficient to find the phase of the cross-spectrum, 
R(h) = F1 (h)F2 *(h). Then arg {R(h)} = arg {F1 (h)} - arg {F2 <h)}.

When the phase difference is calculated by
im { R(h) }

0 (h) = tan-'*'----------
re { R(h) }

and the three ideal conditions given in 3.3.1 hold (no noise, no 
aliasing, circular delay), unwrapping is only necessary when 
|(27r/N)hD| > 7C. 0 (©) is discontinuous when (27t/N)hD = (2m + 1 )7C
(as seen in Fig. 3.2). The first unwrapping error occurs at 
(27c/N)hD = k , i.e at h > N/2D, where D is again in units of
samples.

The signals of interest are noisy, though with high SNR, the 
delays are short and the signal power is concentrated at low
frequencies. Hence fairly reliable delay estimates without 
unwrapping errors may be expected up to frequencies h of about 
N/2D.

This is made use of in the PCF estimator. From the low 

frequencies a rough delay estimate is obtained which is used to 
unwrap the phase at the next higher frequency. The delay
estimate is refined and the result is used to unwrap the 
following harmonic. This procedure of unwrapping the phases 
based on the delay estimate from all lower frequencies (called 
the 'running delay estimate') is followed to cover the full 
frequency range of the signal. This technique gave rise to the 
name 'phase of consecutive frequencies' (PCF) delay estimator.
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At frequency h, let be the wrapped phase, 9^ the unwrapped

phase, Dh- 1  the running estimate and d^ the delay estimate from 

harmonic h, d^ = 0^ .N/(27th) . Then ®h = ^h + ^ K n h = 27thd̂  / N 
and n^ is chosen as the integer closest to (27rhDj1_^/N - 0 )̂ / 2 k . 

For this values of nh, dh is most consistent with D^-i*

Hence in a weighted averaging process is found:
h h

Dh = ( Z w^. d^ )/( Z wi ) 
i=l i=l

where w^ is the weight at frequency i. The calculation of is 
described in greater detail in.3.3.3.

The drawback of this technique is that low frequency harmonics 
are very heavily relied upon. This is acceptable when the
signals have small phase errors at these frequencies. If not, 
errors at low harmonics may lead to incorrect unwrapping at 
subsequent frequencies and large errors in the final delay
estimate. In Chapter 4 it is shown that for noise free signals
which are not periodic the phase difference at low frequencies is 
more prone to error than higher harmonics (see also Fig. 3.4). 
In addition, and as will be discussed in greater detail in 
3.3.3., a given error in phase difference results in a greater 
error in delay estimate at low frequencies than at higher ones.

The procedure described above does not make full use of upper 
bounds on delay estimates which may be available. This can be 
employed to prevent serious errors at low frequencies since no 
unwrapping is necessary at the first few harmonics, up to about

N/2D. The running estimate is then used for unwrapping only
above this frequency, or alternatively once a reasonable value,
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i.e. one within the predefined limits has been established.
Furthermore, dh values which are significantly above the delay
bound may be rejected when calculating the running estimate.
This must be done with caution though, as rejecting the larger
values when forming the weighted average may introduce a bias 
towards low delay estimates.

A further possible method to reduce dependence on a few of the 
lowest frequency harmonics is to compare the - values at
consecutive frequencies without building on an average delay 
estimate from all lower harmonics.

At each frequency h the fractional delay d^/N = <J>h/2TCh + nh/h. 
There is a range of possible delay values corresponding to the 
value of the integer n^. The possible delay estimates are 
therefore spaced 1 /h apart, as shown below.

frequency possible estimates d^/N
<- 1 / (h-1 ) ->

h - l -|-------------- |--------------- |-
<- 1 /h ->

h ---- |---------------------- |---------------------- |-----
< 1 /(h+1 ) >

h + l ---- |----------- |----------- |-----

For noise free signals with -0.5 < D/N <0.5 it can easily be

shown that there is only one pair of nh and nh_x which gives dh =
dh-1* Unwrapping may be performed by finding the values of n^ and
nh-l such that d^ = d^_^, or for noisy data such that d^ is
closest to d^_^. This technique avoids excessive reliance on the
delay estimate from the fundamental harmonic. For noisy signals 
however, the running estimate (an average) is probably a more 

reliable basis for unwrapping at higher frequencies where the SNR
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tends to be low. In addition, the use of consecutive frequencies
is inherently less reliable at higher frequencies as can readily 
be seen:

Let be the error in phase-difference at frequency h and <l>h-l 
be error free. In order to avoid an unwrapping error | A<J>j1/27Ch | < 
l/2h(h-l) and lA^I < 7t/(h-1) . Hence the higher the frequency, 
the smaller the permissible error in phase difference.

A feasible strategy for delay estimation therefore is to begin at 
low frequencies with the consecutive frequency technique just 

described in order to establish a reliable initial running delay 
estimate. This forms the basis of the running delay estimation
technique used on subsequent higher harmonics. A reasonable
criterion for the change-over may be when the two unwrapping
methods produce identical results (n̂ ) at two consecutive
frequencies.

In the experimental work later in this chapter however, the 

running estimate is stabilized by using the known maximum delay: 
10% of the signal length. If d^ values are above this they are 
rejected in the running estimate and given zero weighting in the 
calculation of the running estimate. The delay bound (10%) is 
much larger than the actual delays used in the simulations, thus 
reducing the danger of bias in the delay estimate, mentioned 
above.

147



3.3.3. Estimation of the gradient

In order to find the delay, the gradient of the line 9(h) =
arg { R(h) } = (27t/N)hd needs to be found, where d is the 
best estimate of delay D (in some sense).

A linear estimator of the form
x wh.eh/h

d = N/27E----------
Z wh

was chosen, where 0^ is the unwrapped phase, w^ a weight at the 
frequency h and the sums are over all frequencies of interest. 
Since the noise added to the signals f^(t) and ±2 (t) are 
independent with uniform phase distribution (Taub and Schilling, 
1986, p.323) the above estimator is unbiased ( E{d} = D, as seen 
from Appendix 3.1).

It is intuitively obvious that frequencies at which there is a 
large error in the delay estimate should be given a smaller 
weighting. Furthermore, a given error in phase difference 
causes a smaller error in delay estimate d^ at high frequen­
cies than at low ones. The low harmonics give a rough, global 

estimate, while the high frequencies provide a more precise local 
value, but require phase unwrapping. The equivalent may be 
observed for cross-correlation: The low frequencies produce a
broad peak; the higher frequencies sharpen this, but give many 

peaks. It is the high frequencies that produce the sharp edges 
in the signals which allow for precise alignment of signals 
(Musmann et al. 1985; Hall et al., 1980).

The error in is expected to be related to the SNR at frequency
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h. Since white noise is added to the signals, the amplitudes of 
F-̂ (h) and F2 (h) give some indication of this and determine the 
weights w^, as described below.

The Gauss-Markov theorem (Beck and Arnold, 1977, p. 232) gives 
the linear unbiassed estimator with minimum variance (D) to 

estimate d in the matrix equation 
e = hd 
as
D = (hT (T1 h)"1 hT Q"1 0 Eq.3.3
where 0 = 0 + e
and the covariance matrix of e is given as f = Q a (a is a 
scalar constant).

The matrix form of this equation is given here for the sake of 
two dimensional shift estimation described later, where delay- 
values in two directions (x, y) are required.

The conditions for this minimum variance estimator are
1. Errors e are additive and zero-mean
2 . 'P is positive definite
3. There is no error in the independent variable h
4. No further a priori information is used in the estimation.

All these condition are satisfied by the signals considered here.

For the one dimensional delay estimation D,d,0,0 and e are 
scalars. The assumption of stationary noise results in a

diagonal covariance matrix. Fourier components of stationary 
signals (or noise) are uncorrelated (Brillinger and Tukey, 1984,
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p.1089, Piersol, 1981). Chan et al. (1978) quoted the result 
that Gaussian noise, bandlimited at W (Hz) and an observation 
time of T (s) gives uncorrelated Fourier components if WT > 8 .
This condition is also easily met in practice: for white noise
and N samples, WT = N/2.

It follows from Eq. 3.3 above that the optimum (linear, unbiased, 
minimum variance) estimator for delay is given by

X (h/oh2 )0 (h)
d = N/2;t--------------  Eq. 3.4

r h2 /ch 2

2  .  .where is the variance m  phase difference at h. This
estimator is equivalent to that given by Chan et al. (1978), but 
they used the estimate of coherence to calculate (Ĵ . In their 

work a number of assumptions concerning the size of data and the
coherence estimate were made which simplify the calculations of 

2ah . They estimated the coherence by the technique of Carter et 
al. (1973) using a series of windows on the signal, from which 
the variance in phase difference is found.

In Appendix 3.1 a value is derived for the variance in the sine 
of the phase angle of a single harmonic with additive noise:

1
var { sin 0 } ---------- Eq. 3.5

2 SNR2

where the SNR is the ratio of root-mean-square values of signal 
and noise at the given frequency. This equation applies to both 
the case of noise with constant amplitude and uniform phase 
density and to Gaussian noise added to the harmonics.

150



For small values of 9, var { sin 9 } = var { 9 }. An attempt was
made to derive var { 9 } directly, but this proved impossible, as 
it led to an integral which could not be solved analytically.

The derivation assumes that the noise amplitude is less than the 
signal amplitude. This does not hold perfectly in many appli­
cations but in most cases of interest will be closely 
approximated.

Eq. 3.5 was verified by simulating noisy harmonics. First a 
noise component n of constant amplitude and different phase 
angles 9 was added to one signal f of constant amplitude and 
phase to form the noisy signal g = f + n. The phase <j) of the 
signal g was calculated. The phase angle of the noise component, 
9, was incremented in equal steps over the full circle (simu­
lating uniform phase density) and the mean square value of <j) 
found. This result is seen in Table 3.1. to agree closely with 
those predicted by Eq. 3.5, when SNR > 0.

Then the case of Gaussian noise components in the frequency 
domain was simulated. To a signal of constant amplitude and 
phase, uncorrelated Gaussian noise values were added in the 
direction of the real and imaginary axis. The mean square phase 
value of the resultant noisy signal was calculated and again good 
agreement with the results from Eq. 3.5 is observed in Table 3.1, 
when the SNR is high. At low SNRs the assumptions made in the 
derivation of Eq. 3.5. are violated and experimental results and 
those predicted disagree.
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Table 3.1 Variance in the phase of a signal with additive noise

SNR
1

var {0 } = ------- constant Gaussian
[dB] 2 SNR2 noise-amplitude noise

- 2 0 50.0 2.98 3.09
0 0.5 0.787 0.822

20 5.OxlO- 3 5.04xl0*~3 5.OlxlO- 3

40 5.OxlO- 3 5.OlxlO- 3 5.0 0xl0 - 5

60 5. OxlO""7 5.OlxlO- 7 5.0 0xl0 - 7

It is emphasized again, that the SNR here is that of a particular

harmonic , not that of the signal as a whole. The former can vary

greatly over frequency and will generally decrease with frequency
for the signals considered in this work.

The variance in the phase difference, 0^f is determined by the 
variance in the phase of the two noisy signals F-̂  (h) and F2 (h) . 
For uncorrelated noise in these two signals, the variance in 
phase difference is the sum of the variance in the phase of the 
two signals respectively:
var { 0h } = ah 2 = 1/2 ( l/SNR1 2 (h) + 1/SNR2 2 (h) ).

For signals with white noise, the SNR is proportional to signal
amplitude, the factor of proportionality is constant over

2frequency. In order to estimate d m  Eq. 3.4. itself need
not be known, a value proportional to it, is sufficient.

For high SNR then, approximately,
Gh 2 °c l/|F1 (h) | 2 + l/|F2 (h) |2

and Eq. 3.4 is approximated to give the useful estimator
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d = N/27C
Zwh 0h/h

Iwh
where

\F1 (h) | 2 |F2 (h) |2

l F - ^ h )  |2 +  1F2 ( h )  |2
Eq. 3.6

For the running estimate the sums are found over all harmonics up 
to the current frequency. In the final delay estimate for a 
signal of length N samples, the sums are calculated over h = 1 
to h = N/2-1. The 'DC-component' at h = 0 and the harmonic at 
half the sampling rate, h = N/2 have a real value only (zero 
phase) and hence make no contribution to the delay estimate.

3.3.4. Evaluation of the PCF Estimator

The performance of the PCF estimator is now evaluated on a series 
of synthetic signals with and without noise added. The perfor­
mance at sub-sample resolution is investigated. Using a series 
of noisy signals and constant delay, a mean delay value is calcu­
lated, from which it is concluded that the estimates are 
unbiased: the mean estimate is the correct value. From the
standard deviation it is concluded that the estimates are 
accurate and stable, for the given combination of signal and 
noise.

The performance of the PCF estimator is compared with that of 
parabolic interpolation of the cross-correlation function 
(referred to here as the PX estimator), a fast and commonly used 
technique to obtain sub-sample resolution (see 3.2.3).

Markov 1 signals are again used in the simulations. These are
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256 samples long and delays used are between 10 and 11 samples. 

Since the signals are periodic the results obtained would be 
similar between any other two integer delay values. As in 
Section 3.1, the form D=k+8 is used, where k is an integer such 
that |8|<0.5. The mean and variance of delay estimates are 
calculated from 50 such signals. Noisy signals are simulated by 
adding uncorrelated fandom values to the samples, to give signal- 
to-noise ratios of 20 and 40 dB.

Fig. 3.6. Mean PCF (solid lines) and PX (dashed lines) delay 
estimates, for noisy (20 dB) Markov 1 data and a) p = 
0; b) p = 0.5; c) p = 0.9.

In Fig. 3.6. the mean delay estimates from the PCF and PX techni­

ques are plotted for a range of delay values and a range of 
Markov 1 signals. It is seen that the mean PX estimate is
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correct only at 5 = 0 and 5 = 0.5, and biased in between: the 
mean delay estimate is too low when 0 < 8 < 0.5 and too large 
when - 0 . 5< 8 < 0, i.e there is a bias towards integer delay 
estimates. It was further found that the mean delay estimates at 
SNR=20dB and 40dB are virtually identical to those in the absence 
of noise. The strongest bias in PX estimates occurs when |S| =
0.25, which agrees with the results of Boucher and Hassab (1981) . 
Furthermore, the bias is greatest for white noise signals and 
reaches a value of approximately 0.1 samples. Fig. 3.6 also 
shows that the PCF estimator is unbiased, as was expected.

Fig. 3.7. Standard deviation of PCF (solid line) and PX (dashed 
line) delay estimates, for noisy (20 dB) Markov 1 data 
with a) p = 0 ; b) p = 0.5; c) p = 0 .9 .

The estimates of standard deviation for the PCF estimator in Fig.
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3-7. and 3.8. show fairly constant values over the range of 

delays used. In the same figure those for the PX estimator give 
a maximum at |5| = 0.5. Only at low values of |5| is the 
standard deviation of the PCF estimate greater than that of the 
PX. One reason for this lies in the low gradient seen in the 
plot (Fig. 3.6) of mean estimated delay vs. true delay for the PX 
estimate at low values of |5|. This introduces stability into 
the estimate. Talcing this effect to its extreme, the variance of 
the PX delay estimate could be decreased even further for small 
| 5 |  by not interpolating at all, thus obtaining only integer 
delay estimates.

Fig. 3.8. Standard deviation of PCF (solid line) and PX (dashed 
line) delay estimates, for noisy (40 dB) Markov 1 data 
with a) p = 0 ; b) p = 0.5; c) p = 0 .9 .
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There are two main sources of error that contribute to the
standard deviation of estimates, plotted in Fig.3.7. and Fig.3.8 :

1. Noise added to the signals causes errors in both PCF and PX 
estimates.

2. The PX estimate is signal dependent and gives a range of 
results even under the ideal conditions of no noise, no 
aliasing and circular delay, whereas the PCF estimates are 
(almost) constant and correct under these conditions.

Fig. 3.9. Standard deviation of PX delay estimates for noise 
free (solid, line) and noisy (20 dB, dashed line) 
Markov 1 signals with a) p = 0; b) p = 0.5; c) p =
0.9.

Fig. 3.9. shows the standard deviation of PX estimates in the
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absence of noise, calculated from 50 Markov 1 signals of constant
sample correlation p. This shows constant estimates (standard 
deviation = 0) for |5| = 0  and 0.5, the values at which the mean 
delay estimates are correct, and large variation near | 5 |  = 0.25. 
The comparison of these results with those for noisy data (dashed 
line) shows that the signal dependence of the PX estimate is a 
major source to error in the delay estimates, particularly at low 
values of p.

Boucher and Hassab (1981) investigated PX delay estimates in the 
presence of noise. They derived an expression for the mean and 
standard deviation of the estimates, but they considered only the 
power spectra of signals and noise. They did not consider the 
effect of finite length signals, which results in variations in 
power spectrum, even if the signals are generated with the same 
statistics. Hence the results of Boucher and Hassab (1981) do 
not explain the variance in PX estimates observed in noise free 
signals above.

In order to investigate the effect of noise only on the PX- 
estimate, the 50 signals were generated by adding different noise 
to the same Markov 1 signal (Fig. 3.10). The shape of the 
standard deviation vs. delay curve now is that predicted by 
Boucher and Hassab (1981), in particular the sharp peak at | 5 |  =  

0.5. The results of the PCF and PX estimates are much more 
similar now, than before, but those of the PCF are still more 
accurate near |5| = 0.5.

The addition of noise to a series of different (Fig. 3.7 and Fig. 

3.8) signals rather than just one (Fig. 3.10) probably gives a

158



more realistic comparison of the PX and PCF estimators because
the influence of the signals themselves are also taken into 
account.

Fig. 3.10. Standard deviation of PCF (solid line) and PX (dashed 
line) delay estimates for one Markov 1 signal with a) 
p = 0; b) p = 0.5; c) p = 0.9 and added noise (20 dB).

The effect of sample correlation and hence power spectrum on the 
errors in the estimates can be seen clearly in Fig. 3.7 and 3.8. 
Since the high frequency components hold most information for 
fine registration, signals with strong high frequency spectra are 
expected to give more accurate delay estimates (eg. Knapp and 

Carter, 1976; Haas and Lindquist, 1981). This is confirmed by 

the plots where the standard deviation of the estimates obtained 
by both PCF and PX techniques are seen to decrease as the sample
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The standard deviation of the PCF estimate decreases by a factor 
of approximately 10 as the SNR increases from 20dB to 40dB. In
Appendix 3.1 it is shown that the variance in phase difference at
a given harmonic h varies as var { 0^ } « 1/SNR , where SNR is 
the signal-to-noise ratio of harmonic h. It is clear then (using

the results of Beck and Arnold (1977, p.233)) that provided the 
spectral distribution of the signal and noise is maintained, the

ovariance in delay estimate is proportional to 1/SNR of the
signals. This agrees with the observed decrease in standard
deviation of delay estimates with the increase in SNR.

The weighting of the PCF estimator, derived in 3.2.3. was
|F1(h)|2 |F2 (h)|2

w = h2 -------------------- .
|F1 (h) | 2 + |F2 (h)I2

oIn a further experiment an alternative weighting w^ = h .|F^(h). 
F2 (h)| = h2 |F1 (h)F2*(h)| was tried.

Since F^(h)F2 (h) is calculated in order to find the phase diffe­
rence, this new weighting requires less computation than the 
original one. It was found that the mean and standard deviation 
of the PCF estimates remained virtually unchanged. Hence this 
modified weighting was employed in all the experimental work to 
follow.

A listing of Pascal routines for the one dimensional PCF 
estimator is given in Appendix 3.4.

correlation p decreases and high frequency content increases.
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3.3.5. Summary

tIt is concluded that the PCF estimator provides an efficient and 
accurate delay estimation technique which gives sub-sample reso­
lution. Under the conditions of no aliasing and circular delay, 
the estimator is unbiassed. In experiments it was found that 
generally the PCF estimates are more accurate than those from 
parabolic interpolation of the cross-correlation function (PX 
estimator), both in the presence and absence of noise. The PX 
estimates are biassed and the standard deviation generally higher 
than that of the equivalent PCF estimates.
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3-4 THE EFFECT OF ALIASING ON THE DELAY ESTIMATE

In the signal reconstruction described in Chapter 2, the sampled 

versions of the signals are both noisy and aliased. In the 
previous section, signals with additive noise but without 
aliasing were considered. Now the effect of undersampling on the 
delay estimate is investigated.

As was pointed out in Chapter 2, signal reconstruction and calcu­
lation of the shift is, in general impossible, as there is one 
unknown too many in the set of equations that give the aliased 
spectra at each frequency (Eq. 2.8). But since noisy signals are 
to be considered, and the reconstruction is only an estimate, it 
may be valid, for the purpose of delay estimation, to take 
aliasing just as a further source of random noise. Furthermore, 
a priori knowledge about the type of signals to be processed can 
be used. For the signals of interest, the signal power is 
concentrated at low frequencies, hence aliasing has little effect 
in this region and the low frequencies should give reliable 
estimates.

Little work appears to have been done on delay and motion 

estimation for undersampled signals. One reference (Barry et 
al., 1983) does not consider the frequency domain, instead uses 
an interpolation technique on the space domain data.

Hall (1979, p.489-494) considers aliasing in the context of 
image alignment. His interest is prompted by the coarse-fine 
search techniques, in which for the sake of efficiency, lower 
resolution images are initially compared. His discussion centres
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on anti-alias filters that should be applied prior to sub­
sampling.

Following the work of Marks (1982), the order of aliasing will be 
defined as the number of spectra that overlap (Fig. 1.5). 
Initially only first order aliasing is considered here, where the 
sampling rate is at least half that required by the Nyquist 
criterion.

Let F-̂  (h) and F2 (h) be the original (unaliased) spectra of the 
noise free signals, where F2 (0)) = F^ ((D) e- ^ ® 0 and D is the 
delay.

The aliased spectra G-̂  (h) and G2 (h) of length N are given by

G 1 (h) = 1/2 (Fx(h) + Fx(h - N))
G2 (h) = 1/2 (F2 (h) + F2 (h - N) )

= 1/2 e ~ i (27C/N)hD ( Fx(h) + Fx(h - N)e^2jcD ) Eq. 3.7

as given in Eq. 2.3 and 2.8.

Since here only the undersampled signals are of interest, both N 
and D are given with respect to the undersampled signals g-̂ (i) 

and g2 (i) and not the adequately sampled versions f-̂ (i) and f2 (i) 
as in the previous Chapter. The numerical value of delay (in 
units of samples) is therefore 1/2 of those in Chapter 2.

It follows from Eq. 3.7. that in general G2 (h) ^
e 3 (2;t/N)hD (h) . Only if the delay D is an integer value is
G2 (h) = e j(27c/N)hD.gi (h) because then e-̂ 2lcD = 1. In this case

the samples of g2 (i) are delayed versions of the samples of g-̂ (i) 
and the phase difference is not affected by aliasing.
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In order to investigate the effect of aliasing on the phase
difference, an amplitude spectrum decreasing with frequency is 
assumed, |F^(h) | > |F-̂  (N - h) | = |F̂  (h - N) | for the frequencies 
which are of interest, |h| < N/2. The 'folded harmonic' F-̂  (h-N) 
is modelled by a random process with a flat phase probability 
density function and may be considered as noise added to the 
signals at F^ (h) . It is noted, that the random values F-̂  (h - N)
and e-j<2ic/N) (h-N)D Fi<h _ N) added to G1 (03) and g 2 «0)
respectively are now correlated. In this respect errors
introduced by aliasing differ 
as considered in 3.3.

from those due to additive noise,

Fig.3.11 shows the effect of aliasing on the PX and PCF delay
estimates. Markov 1 signals were generated, delayed (with 
circular delay), undersampled by taking only the even samples and 
the delay was estimated using both PCF and PX. Mean and standard 
deviation of estimates were again calculated from 50 such 
signals. A bias in delay estimates towards integer values ( | 5 |  

small) is observed with both techniques.

The diagram in Fig. 3 . 1 2 *  shows the effect of aliasing in the 
complex plane and the error in the phase difference generated. 
It is noted that the errors due to aliasing arise in a manner 
very similar to those due to windowing which will be investigated 
in greater detail in Chapter 4.

* The phasor diagram shows the folded components iF-̂ (h-N) | added 
to IF-ĵ h) | to form the aliased versions | G-̂ (h) | and |G2 (h) | . 
For the diagram the original F^(h) and delayed F2 (h) have been 
rotated to lie in phase. The phase difference 2 n D remaining 
between the folded components leads to the phase error 0e .
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Fig. 3.11. Mean and standard deviation of PCF (solid line) and PX
(dashed line) delay estimates 
aliased Markov 1 data with a,b) 
0.9.

for noise p = 0.5; free
c,d)

and
P =

Fig. 3.12 Phasor diagram for an aliased signal delayed by D 
Fx (h) = \F1 (h) | .e^l
F ± (h-N) = \F1 (h-N) | .e^2

For signals in which the harmonics F-̂ (h) and F^ (h-N) can be
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modelled by uncorrelated random values of constant amplitude
(IF^h) I > |F1 (h-N)|) and uniform phase distribution, the average 
phase error 0e is zero. This follows from the phasor diagram 
shown in Fig. 3.12: As the angle (<$>2 ~ $ 1 ) varies over 27t, G-̂  (h)
and G2 (h) cover the same values. This, together with the uniform 
distribution of $ 2  ~ <j>̂ results in the zero mean error in phase 
difference. When |F^(h)| < |F^(h-N)| however, the average value 
of 0e is - 2 k D . This can again readily be seen from Fig. 3.12. if 
the angles are measured relative to F^(h-N) rather than F(h). In 
realistic signals there will be some harmonics at which |F-̂ (h) | < 
iF^fh-N)| even if the amplitude spectrum tends to decrease with 
frequency - as is the case with the Markov 1 data processed.
This is the probable cause of the bias in delay estimates
observed in Fig. 3.11. Symmetry in the diagram (Fig. 3.12) may 
be used to explain the symmetry in the bias observed, always
towards the nearest integer value of delay.

The discontinuity shown in Fig. 3.11 for the mean of the PCF 
estimate for Markov 1 signals with p =0.5 was caused by two 
signals that gave grossly incorrect results. This demonstrates 
an instability in the estimates. As expected the bias for p = 
0.5 is more severe than for p = 0.9, as the aliasing is more
severe in the former which has a flatter spectrum.

In analysing the effect of errors in the delay estimate on the 
signal reconstruction (Chapter 2) it was shown that a bias in 
delay estimate towards | 5 |  = 0.5 (D odd as used there) could 
reduce errors in the reconstruction. The bias found here is 
towards |5| = 0  (D even by the conventions of Chapter 2) and
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hence is in an undesirable direction.

The standard deviation in estimates increases near the delay of 
5.5 ( 5  = 0.5). This may be explained in the time domain by the 
sample correlation decreasing with distance between samples. For 
delays with |5| = 0.5, the even and odd samples of the original 
signals are used: g-̂ (t) is formed by the even samples, g2 <t) by 
the odd ones. In the extreme case, when p = 0, these samples are 
uncorrelated and delay estimation is impossible. A decrease in 
the correlation between the samples of the signals g^(i) and 
g£(i) is expected to lead to poorer delay estimates.

When the order of aliasing increases the number of harmonics 
contributing to the phase difference also increases. The overall 
effect of this is less clear as some harmonics may increase, 
while others decrease the phase shift.

In summary, aliasing affects the phase difference in a manner 
quite different to that of additive white noise. For one dimen­
sional signals, first order aliasing results in a bias towards 
integer delay estimates. The bias is delay dependent, as is the 
standard deviation of the delay estimates. For a series of noise 
free Markov 1 signals, the standard deviation of estimates was 
largest at | 5 |  =  0.5.

In the following section the PCF estimator is improved for use on 
aliased signals.
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3.5. MODIFIED PCF ESTIMATOR FOR ONE DIMENSIONAL ALIASED DATA

In 3.3. the PCF estimator was derived for noisy signals with high 
SNR and a signal power spectrum decreasing with frequency. It 
was then shown (3.4) that the effect of aliasing on the phase 
difference is quite, different to that of noise. Here a 
modification of the PCF estimator is suggested for noisy and 
aliased signals.

For the estimator derived in 3.3, the variance in phase 
difference determined the weighting. This estimator was based on 
the assumption of additive, white noise in the signals. This 
assumption is not justified for the errors introduced by aliasing 
and hence a different approach is taken to correct for these. A 
number of schemes were tested with only moderate success. One of 
the simplest and most effective will now be described.

For the signals considered here, which have a spectrum decreasing 
with frequency, aliasing is worst at high frequencies. Hence the 
weighting for high frequencies should be reduced. In section 
3.3. a weighing proportional to the square of the frequency (w^ _
p *h .|F^(h)F2 (h)| ) was suggested. In Fig. 3.13 this weighting is

compared with a PCF estimator with a weighting proportional to
<*>the frequency (w^ = h.|F^(h)F2 (h)|) and without frequency

<Arweighting (wh = |F1 (h)F2 (h)|). A reduction in frequency
weighting is expected to make the estimate less susceptible to 
errors from aliasing and reduce the bias, whereas errors due to 
noise are likely to increase, increasing the standard deviation 
of the estimate. This is clearly observed in Fig*. 3.13 and Fig. 
3.14 for p=0.9. The bias is generally smallest for no h
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weighting and largest for h - weighting. The standard deviation
. owith h and h - weighting is similar and smaller than for the 

estimator without frequency weighting. For p = 0.5 the mean and
standard deviation of the estimates are similar for h and h^ - 
weighting and better with respect to both these parameters than 
with no frequency dependent weighing.

Fig. 3.13. Mean PCF delay estimates with a range of frequency 
dependent weightings for aliased Markov 1 data.
a) p = 0.5 SNR = 20 dB
b) p = 0.9 SNR = 20 dB
c) p = 0.5 SNR = 40 dB
d) p = 0.9 SNR = 40 dB

2h weighting 
h weighting 
no frequency weighting

It may be concluded that h- weighting is preferable to h^- or
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no frequency weighting, for aliased, noisy, Markov-1 type signals.

This improvement in the estimate is based on assumptions about 
the signal spectrum and therefore signal dependent.

Fig. 3.14. Standard deviation of PCF delay estimates with a range 
of frequency dependent weightings for aliased Markov 1 
data.
a) p = 0.5 SNR =20 dB
b) p = 0.9 SNR = 20 dB
c) p = 0.5 SNR =40 dB
d) p = 0.9 SNR = 40 dB

2h weighting 
h weighting 
no frequency weighting

It may be possible to improve the 
the severity of aliasing is known 

power spectrum of F-̂ ((D) and F2 (0))

estimator if some knowledge of 
a priori. Knowledge of the 

(the original signals before
aliasing) would be very useful. From the results in the previous



section, an estimate of the amount of bias in the phase 
difference at a given frequency could be obtained and corrections 
included in the estimator. Power spectra are however generally 

not available and those techniques are therefore not investigated 
further.

Some measure of aliasing (and noise) is given by the difference 
in amplitudes of (h) and G£(h). A number of different 
weighting schemes which take this difference into account were 
tried, but no advantage was found.

The basic problem with delay estimates from aliased and noisy 
signals is that there is insufficient data to give good 
estimates. The phase difference between G^(h) and G2 (h) is 
determined not only by (h) and the delay, but also by noise and 
F^ (h-N) and it is impossible to separate their effects, when only 
the aliased signals are available. Averaging the delay estimates 
from each harmonic, used with noisy signals without aliasing, is 
no longer adequate to give the results desired, especially when 
aliasing is severe.

In the previous chapter it was pointed out that in the recon­
struction N + 1 values are to be derived from N equations. The N 
equations are given by the Fourier coefficients G-̂ (h) and G2 (h) . 
There are N unknown coefficients (F-̂ (h) and F^ (h - N) ) and the 
extra unknown is the delay D. Further assumptions are required 
to find the solutions, and the difficulties arising as a result 
have been seen here.
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Fig. 3.15. Mean PCF (h weighting, solid line) and PX (dashed 
line) delay estimates for aliased Markov 1 data.
a) p = 0.5 SNR = 20 dB
b) p = 0.9 SNR = 20 dB
c) p = 0.5 SNR = 40 dB
d) p = 0.9 SNR = 40 dB

It is concluded that probably the best PCF estimator of delay for 

aliased signals has the weighting h | G-j_ (h) G2* (h) | . Compared to 
the estimate from parabolic interpolation of the cross­
correlation function (PX), the bias is slightly less (Fig. 3.15), 
the standard deviation slightly greater (Fig. 3.16). The PCF 
estimator is appears to be a better choice, especially when the 
aliasing is not severe. In addition it is computationally 
cheaper, since the operations required are approximately 
proportional to N (after the FFT has been performed), whereas 
cross-correlation requires an inverse transform and even using
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the efficient FFT-algorithm, this is an N.logN process (Papoulis
1984 a, p.83).

Fig. 3.16. Standard deviation of PCF (h weighting, solid line) 
and PX (dashed line) delay estimates for aliased
Markov 1  data.
a) P = 0.5 SNR = 20 dB
b) P = 0.9 SNR = 20 dB
c) P =

ino SNR = 40 dB
d) P = 0.9 SNR = 40 dB
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3.6 THE PCF ESTIMATE IN TWO DIMENSIONS

The PCF estimator for two dimensional signals is now described. 
First only adequately sampled signals are considered followed by 
aliased ones.

Let the image f^(x,y) be shifted by X and Y (in units of samples) 
to form
f2 (x,y) = f ̂ (x - X,y - Y) , then in the Fourier domain 
F 2 ( u , v )  = F^ (u, v) e~^ (2JC/N) ( u X  + vY) ̂

and the phase-difference
arg(F^(u,v) F2 *(u,v) } = (27C/N) (uX + vY)
and X and Y may be found as a two parameter estimation problem.

As for the one dimensional case, the minimum variance estimator 
described by Beck and Arnold (1977, p.232 ff.) is employed.
Phase unwrapping is again performed by the method described 
above, for which the running estimate is required. In order to 
find the shift estimate efficiently and with similar assumptions 
concerning the signals as those adopted for one dimension, the 
sequential method using the matrix inversion lemma (Beck and 

Arnold,1977, p.276 ff.; see Appendix 3.2) is used.

For the two dimensional transform, a choice has to be made about 
the sequence in which the harmonics are processed. The simplest 
sequence (eg. row major order) is not the best for aligning the 
images accurately.

Without the need for phase unwrapping, the sequence used would be 
of no great significance (other than perhaps with regard to 

numerical errors). With noise, two factors contribute to
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unwrapping errors at a given harmonic: the error in phase 

difference at this frequency and the error in predicted value of 
phase difference which depends on the running estimate and the 
current values of u and v. Any unwrapping error at a given 
frequency increases the error in the running estimate and may 
lead to subsequent unwrapping errors.

In order to derive an optimal sequence, it may be assumed that 
the signals have a roughly circular symmetric power spectrum 
decreasing with frequency in all directions, and added white 
noise. The variance in phase is then proportional to the signal 
power (as used in one dimension).

The initial running estimate is derived from the harmonics 
closest to the origin (u,v = 0). The harmonics surrounding these 
in roughly a circle, centred at the origin, have the next lowest 
variance and should be processed next. It can readily be shown 
(Appendix 3.3), that the variance in predicted phase difference 
is constant for all harmonics at a given radial distance from the 
origin of the two dimensional transform. These are also inde­
pendent of the shift values X and Y. Harmonics should therefore 
ideally be processed in a sequence of concentric circles 
surrounding the origin. The point at which processing of one of 
these circles begins does not affect the results.

Since the spectrum is given on a square grid, the circles can only 
be approximated. Squares are the easiest outlines to follow and 
may be expected to give results very similar to those from 
circles.
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The Hermite nature (F(u,v) = F (-u,-v)) and periodicity of the 

two dimensional transform of real signals causes a slight 
complication of the algorithm. The spectrum resulting from the 
two dimensional FFT algorithm covers the range 0 < u,v < N. Due 
to the periodicity of the spectrum F(u,v) = F(u-N,v) = F(u,v-N) = 
F(u-N,v-N). Furthermore, only half of the spectrum holds new 
information, the remaining harmonics can be derived from the 
spectrum's hermite property. The harmonics which involve half 
the sampling frequency (N/2) along either the u or v direction 
must be neglected in alignment because of their aliasing - as was 
described in Chapter 2. For 'adequately' sampled signals, these 
are the only harmonics which are affected in this way.

fv

3 3 3 3 3 3 3
2 2 2 3 3 2 2

1 1 2 3 3 2 1

1 2 3
0 N

Fig. 3.17. PCF motion estimation for two dimensional signals. 
Proposed sequence for processing harmonics.

For the alignment algorithm the proposed sequence in which the 

harmonics should be processed is given in Fig. 3.17. First, all 
the harmonics next to the origin (1 ) are processed, followed by
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those surrounding these (2), then the next 'square' (3) etc. up
to N/2-1. The order in which the harmonics in each 'square' are 
processed is probably not very important.

The variance in phase difference for two dimensional signals is 
found similarly to that of one dimensional signals, hence the 
corresponding weighting of |F^(u,v)F2 (u,v)| is suggested. The 
frequency weighting (corresponding to h m  one dimensional 

signals) is already included in the sequential algorithm used 
(Beck and Arnold, 1977, p.276).

The algorithm described in Appendix 3.2. needs to be initialized.
The first estimate of X is derived from u = 1 , v = 0 and for Y
from u = 0 , v = 1 , to form the first estimate of the coefficient
vector d. The initial value of P can be found by considering
cov {d} = P (Beck and Arnold, 1977, p.232) which for the
first estimates of X and Y is given approximately by

1/|F1 (1,0)F2 *(1,0)I 0
0 1/IF-, (0,1) Fo* (0,1) |

J

and hence
1/|F1 (1,0)F2 *(1,0) I 0

0 1/|F1 (0,1)F2 *(0,1) I .
The complete two dimensional shift estimation algorithm is given 
in Appendix 3.5.

As for one dimensional signals the algorithm should be modified
when the data is aliased. In the 3.5. it was recommended that

the weighting used in averaging the delay estimates from each

harmonic should be reduced by a factor proportional to the
frequency. It is suggested now that a similar modification is

cov {d^} = G*
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applied to aliased two dimensional data and that the weighting is 
reduced by a factor of l/(|u| + |v|). This is incorporated into 
the algorithm by the weighting of 1 /((Iu|+ |v|)|(u'v)F 2 *(u,v)|).

This modification is again based on the assumption, that the 

power spectrum decreases with frequency and furthermore, that it 
has roughly circular symmetry. The severity of aliasing then 
increases with the magnitude of the spatial frequency. A 
reduction in the weighting given to the higher harmonics can 
therefore be expected to improve the shift estimate. Experience 
with the one dimensional estimator suggested that small 
variations in the estimator have little effect on the final delay 
estimates. It is underlined however, that this modification is 
based on assumptions about the signal characteristics and any 
improvement achieved in the alignment of aliased images is 
strongly signal dependent.

The algorithm was found to give the correct results with noise- 
free and periodic signals that are adequately sampled. Further 
experiments were not conducted at this stage to test the two 
dimensional PCF algorithm under non-ideal conditions. Results 
are described in Chapter 5, where the alignment algorithm is 
tested on noisy, non-periodic signals with aliasing and tapered 
data windows as discussed in Chapter 4.
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3.7. SUMMARY AND CONCLUSIONS

A novel signal alignment technique, the Phase-difference-of- 
Consecutive-Frequencies (PCF) estimator, based on the phase of 
the Discrete Fourier Transform has been presented. This was 
designed specifically for the reconstruction algorithm described 
in Chapter 2, but can be of use in many other applications, 
particularly when sub-sample resolution is required.

For one dimensional signals the delay is found from the 
gradient of the phase difference over frequency using a minimum 
variance estimator. For the signals f^(i) and ±2 (i) with 
transforms F^(h) and F2 (h) respectively, the delay estimate is 
given by

E h  « he h /h
Dh = N/27T---------

^h Wh
where h is the frequency of the harmonics, w^ a weighting at each 
frequency and N the length of the Discrete Fourier Transform. 
The sums are taken over all harmonics up to h and the
unwrapped phase difference 0h = arg { F1 (h) F2 (h) }.

The weighting recommended is

w^ = h | F^(h) F2 (h) | for signals without aliasing and
w^ = h | F-̂ (h) F2 (h) | for aliased signals of Markov 1 type.

The phase difference is found as 
im { F 1 (h)*F2 (h) }

0h = tan 1 ------------------- + 2 n n .
re { F 1 (h)*F2 (h) }

The tan  ̂function gives values in the range of + k  and phase 
unwrapping is required to find the integer n above. This is
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performed using the delay estimate from the lower harmonics: n is
found as the integer such that |0^ - (2tc/N) D̂ 1_^. h I is minimum.

The final delay estimate is DN/2 - l*

Phase unwrapping and hence the delay estimate can be made more 
reliable by imposing on the algorithm a known maximum delay 
bound.

This new technique gave accurate results in experimental work 
with noise free data and signals with high signal-to-noise 
ratios. It was found to be more reliable than the alternative 

technique of parabolic interpolation of the cross-correlation 
function (PX estimates). It is also computationally more 
efficient. With aliased data, the PCF estimates gave generally 
better mean values and poorer standard deviation than the PX 
estimates. All signals tested were periodic.

The PCF alignment algorithm was then given for two dimensional 
signals.

In the transforms F2 (u,v) = F-̂ (u, v) e--̂ ̂ 7C/N) (uX+vY) the shift

along the x and y axis (X and Y) - in units of samples - are 
estimated from the phase difference between F-̂ Cû v) and F2 <u,v), 
arg{F^(u,v)F2 (u,v)}. Phase unwrapping is performed in a manner 
similar to that for the one dimensional case by applying the 
estimates of X and Y obtained from lower frequencies to subse­
quent higher harmonics. It is recommended that harmonics are

processed in a sequence following the perimeter of squares 
surrounding the origin, which increase in size form the first
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harmonic to the (N/2-l)th. The values of X and Y are then
estimated based on the Gauss Markov minimum variance technique.
The variance in the phase difference is approximated by 

★ •k/|F^(u/v)F2 (u,v)| (where k is a constant factor of proportio- 
nality which cancels in the estimator).

For aliased data it is again recommended that the weighting 
given to the high frequency components is reduced. It is 
suggested that the estimate of variance in phase difference is 
modified to k/((|u|+|v|)|F^(u,v)F2 *(u, v)|).

This technique was found to work perfectly under ideal 
conditions. Further experiments will be described in Chapter 5.
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4. WINDOWING

4.1 INTRODUCTION

4.1.1 Windowing in Delay Estimation

In the work carried out in the previous chapters only periodic 
signals were considered and therefore all delays were circular 
with signal wraparound. However, in most applications involving 

delayed versions of signals, finite segments of infinite length 
signals are processed. This is the result of windowing, as shown 
in Fig. 1.7 and Fig. 4.1.a: the original infinite length signal
f(t) is multiplied by a windowing function w(t) which is zero for 
ItI > T/2, to form g(t) = f(t)w(t). The window w(t) may be
rectangular, when equal weighting is given to the full length of 
the available signal segment or it may have some taper at the 
ends.

The delayed signals, f2 (t) = f(t-D) after windowing give g-̂ (t)
= f1 (t).w(t) and g2 (t) = f2 (t).w(t) (Fig. 4.1.b). If the signals 
are periodic and the windows rectangular, g2 (t) = g-̂ (t-D) , but in 
general this is not the case. Furthermore, the application of 

techniques developed for periodic signals will lead to inaccurate 
results on aperiodic and windowed data.

The approach taken in this work has been to develop the signal 
reconstruction (Chapter 2) and alignment (Chapter 3) techniques 

with the assumption that the signals are periodic. Windows which 
reduce errors when this assumption is not valid, are studied in 
this chapter. Recommendations are made for the choice of good 
windows for delayed signals. In addition, some analysis is done
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of the effects of windowing on the estimation of signal phase and 
the estimation of phase difference between two delayed versions 
of a signal.

Fig. 4.1 Data windows in delayed signals
a) Windows of length T = 1
b) Windowing delayed signals
c) The realigned, windowed signals do not overlap in 

the shaded region.
wr(t) .. rectangular window 
wt (t) .. tapered window

Some other signal reconstruction techniques described in the 

literature (eg. Chen and Allebach, 1987; spline function in
Prenter, 1975, p.77) do not start with the assumption of
periodicity but aim to give the (in some way) best interpolation 

from a finite set of samples. These techniques are not based on
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the Discrete Fourier Transform and therefore do not share some of
the advantages this brings in computational efficiency.

In signal alignment, the simple search techniques to find the 
location where the template best matches an image (described in 
3.2.2.) do not assume periodicity. These techniques require a 
large amount of computation. Cross-correlation techniques which 
use the Fast Fourier Transform (FFT) are more efficient but 
periodicity is assumed. Problems arising as a consequence are 
avoided, to some extent, by padding the template signal with 
zeros. In the application in this thesis, however, there is no 

well defined template signal. The two finite length signal 
segments which are to be aligned, are identical (in the noise 
free case) over only part of their length. Before alignment this 

region is unknown. Padding with zeros is therefore 
inappropriate; instead tapered windows can be applied which 
reduce the effects of signal wraparound. This approach may be 
used, because in all cases of interest here, delay values are 
small compared to signal length.

In the present application, where finite and delayed sections of 
the same signal are processed, windowing must aim to minimize the 
effect of the regions where these sections do not overlap, the 
shaded regions in Fig. 4.1.c. This is achieved by reducing the 
'weighting' given to these regions with a window that is 
tapered at the ends.

In the remainder of this chapter, first some of the previously 
published work on data windows will be reviewed. Then a study is 
carried out into the effect of windowing on the estimate of phase
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difference. Windowing in the estimation of phase of a single
signal is investigated briefly and the results of this study form 
the basis of the work on delay estimation. A least mean square 
criterion is then developed for the choice of windows in signal 
processing applications where delayed versions of the same, wide 
sense stationary signal are processed.

It is shown that tapered windows, as expected, have more 
desirable properties than rectangular ones. Contrary to the 
results from spectral estimation however, a window in the shape 
of a trapezium (Fig. 4.2.b) is seen to be a better choice than 

the Tukey window (Fig. 4.2.a). This somewhat surprising 
conclusion results from the difference in requirements for 
windows in delay estimation to those in spectral estimation on 
which most of the previously published work was carried out.

4.1.2. Literature Review

There appears to be very little reference in the literature to 
windowing in the context of delay estimation. Simaan (1984, 

1985) only states that to minimize gate edge effects a Tukey 
window which has cosine taper (Fig. 4.2.a, see below), 80% flat 
was used in his technique. No further reason was given why this 
window with that particular rise time was applied. Hall et al. 
(1980) studied in some detail the choice of data windows for 
signal alignment. The main thrust of this work was shaping the 

cross-correlation function in order to sharpen its peak. This 

lead further to the description of image sub-regions that are 
best chosen for image alignment. As may be expected, these were
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found to be areas of strong edge content. In alignment 

techniques discussed in the literature, problems due to 
periodicity are frequently ignored.

Fig. 4.2 Tapered data windows with a range of rise times r = 
R/T, T = 1
a) Tukey window
b) Trapezium window
-----  r = 0.5
----- r = 0.4
..... r = 0 . 2

A considerable amount of work has however been published on 

windowing in the context of spectral estimation (eg. Harris, 
1978; Geckinli and Yavuz, 1978; Papoulis, 1984 a, p. 234 ff.).

Hannan (1970, p.280) commented that the choice of spectral window 
has probably been greatly exaggerated in importance. Even so an 
investigation into the choice of window for the application of 
interest here was considered worthwhile in order to improve the 
delay estimation and signal reconstruction. The results obtained 
have justified this study, since it is shown that a good choice 
of window can decrease the distortion in the transform of the 

windowed, delayed signals. Furthermore it was found that 
different windows should be chosen here than in spectral
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estimation.

Fig. 4.3 Amplitude spectra of trapezium windows with a range of 
rise times, a) r = 0 (rectangular window); b) r = 0 .2 ;
c) r = 0.4; d) r = 0.5 (Bartlett window).

The multiplication performed in the time domain g(t) = f(t).w(t) 
corresponds to convolution in the frequency domain G((D) = 
F (co)®W(CO) (Papoulis, 1984 a, p.63), where G((D), F (CO) and W((0) are 
the Fourier Transforms of the respective functions. This is
effectively a weighted moving average process on the spectrum 
which results in the blurring of the spectrum, referred to as 

spectral leakage (Harris, 1978). The aim of window design in 
spectral estimation is to reduce this effect. This is achieved 
by ensuring that W (CO) is as sharp a spike as possible, ideally 
the Dirac 5 function. This ideal cannot be achieved however, as
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it requires a window of infinite length. Windows used in

practice can only approximate this function. From the transforms 
W (0)) of typical window functions w(t) used in spectral estimation 
(Fig. 4.3. and 4.4) it is evident that a compromise must be found 
between the width of the main lobe and the height of the side 
lobes.

Fig. 4.4 Amplitude spectra of Tukey windows with a range of 
rise times, a) r = 0 (rectangular window); b) r = 0 .2 ; 
c) r = 0.4; d) r = 0.5 (Hanning window).

There is no window which can be considered generally optimal 
(Geckinli and Yavuz, 1978). A number of criteria have been used 

to find a good compromise for the estimation of signal spectra 
and some are now described:
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The amplitude (second) moment m2 = 1 / 2 k  J" CO^W(0)) d(D = -w' ' (0),
— OO

where '' denotes the second derivative. This value is only 
meaningful when W((D) 0. Papoulis (1984 a, p.240) showed that
under certain constraints, minimum m2 leads to minimum error 
IG (03) - F ((D) | .

OOJ 2 2co | w (co) | dco.
— OO

OO

To normalize these values, the energy E = 1/271: J |W(co) l̂ dco
— OO

may be used.

The asymptotic decay of the side lobes of W(G0) is often used as a 
measure of spectral leakage (Harris, 1978; Papoulis, 1984 a, 
p.237). This is expressed in dB/Octave, the decrease in the 
power spectrum as the frequency doubles. This value depends on 
the order of tangency (continuity) at the endpoints w(+T/2). The 
rectangular window, where w(t) is discontinuous at +T/2 gives 
-6dB/Octave, the triangular window with only a discontinuous 
first derivative w'(+T/2), -12 dB/Octave and the raised cosine
with a discontinuous second derivative (Hanning window - see 
below) -18dB/Octave (Harris, 1978).

The equivalent noise bandwidth (ENBW) is defined as the width of 
a rectangular filter with the same peak power as W(oo) that would 

accumulate the same noise power as a filter W(co), under white 
noise conditions (Harris, 1978) .

The large number of other parameters which have been used to 

quantify the usefulness of windows reflects the difficulty in 
finding a single criterion by which to determine an optimal
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window for spectral estimation.

Among the commonly used windows the rectangular one w(t)=l, |t| 
< T/2 is the simplest and is often applied without regard to some 
of its undesirable properties. Its transform (Fig. 4.3.a) is the 
well known sine function W  (C D )  = 2 sin (T/2) © / © (Papoulis, 1984 
a, p.62) which has large side lobes resulting in strong spectral 
leakage. This window is however optimal with respect to the 
equivalent noise bandwidth.

Fig. 4.5 The transform of a Hanning window (solid line)is the 
sum of three scaled and shifted sine functions (dashed 
lines) (Harris, 1978) .

The Bartlet window (Fig. 4.2.b) is a triangle w(t) = 1 - 
|t|/(T/2), |t| < T/2 with a faster side lobe fall off and a
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broader central lobe, |G)|<4;i/T, than the rectangular window where
the central lobe extends over |cd|<27c/T (Fig. 4.3.d) .

Even smaller side lobes are achieved by the Hanning window which 
is a raised cosine curve w(t) =0.5 (1 + cos ( (2te/T) t) ) , |t|^T/2
(Fig. 4.2.a). The transform consists of three shifted and scaled 
sine functions (Fig. 4.5, Harris, 1978) and the central lobe 
again extends to +47C/T.

A variation on the Hanning window is the Tukey window (Fig. 
4.2.a) which consists of a rectangular window with a cosine 
taper. Let r be the rise-time expressed as a fraction of T, 
r=R/T then
w (t) = 1  111 < T (0.5 - r)

1 TC ( 11 | - T/2)
= - (1 - c o s ----------- ) T (0.5 - r) < 111 < T

2 Tr

= 0 otherwise.

The transform of this window is rather complex (Harris, 1978) . 
The spectral decay rate (not the asymptotic rate) lies between 
that of the rectangular and the Hanning window (Bloomfield, 1976, 

p.87). Rise times r of 5% to 10% (80% to 90% flat windows) have 
been suggested for common applications (Bloomfield, 1976, p.84). 
The DFT for a series of Tukey windows is shown in Fig. 4.3.

T/2
These plots are normalized to J*w(t)dt = W(0 ) = 1 . The figure

-T/2
shows that the width of central lobe.increases as the height of 
the side lobes decreases.

The trapezium window (Fig. 4.2.b) is defined as
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w(t) = 1 111 < T (0.5 - r)

T/2 I t  |
T (0.5 - r) < |t I < T

rT
0 otherwise.

Their transforms are shown in Fig. 4.4. It is seen that the 
first side lobes are smaller than those of the equivalent Tukey 
window, particularly for large rise times, but their magnitude 
decreases more slowly over frequency.

A number of optimal windows are given by Papoulis (1984 a, p.239 
ff.) :

The cosine tip window w(t) = cos (rct/T), |t| < T/2 gives minimum
energy moment for given E (minimum M2 /E).

The window which minimizes (and under certain conditions the

difference in transforms | F (00) -G(CO) |) is given as w(t) = 1 / k  

Isin (2rct/T) | + (1 - 2|t|/T).cos (27it/T) , |t| < T/2. This is
known as the minimum bias window.

The Kaiser window family (Geckinli and Yavuz, 1978) is an 
approximation, maximizing the energy over a selected bandwidth.

The Gaussian pulse (Harris, 1978) gives the minimum time- 
bandwidth product BT = 1/47C where B and T are the mean square 
value of the time duration and bandwidth of the window (Papoulis, 
1984 a, p.273). In any application this window must be
truncated, which will lead to only small errors if the cut off 

lies beyond three times the standard deviation of the Gaussian 
function (Harris, 1978) .
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Harris (1978) in his review of windows for spectral estimation
gives some 20 different windows and their respective figures of 
merit.

The window function determines the amount of spectral leakage. 
When noise is added to the signal, the spectrum will contain a 
noise component which is also affected by the window shape. It 
can readily be shown that of all data windows, the rectangular 
one is optimal with respect to noise performance.

Consider the signal f(t) with added wide sense stationary noise
? ph(t) where the expected value E{h (t) } = a . The resultant

signal fn (t) = f(t) + h(t).

OO

Let this signal be windowed by w(t) where J(w(t)dt = W(0) = 1
— OO

such that for a signal consisting of a single harmonic f(t) = 
2a. cos (CQ-̂t.) and g(t) = f(t).w(t) the transforms G(CÔ ) = a.

OO

For a window of unit energy, _f w^(t) dt = 1 , the noise energy of
—  OO

OO OO

the windowed signal E{ _fĥ  (t) w^ (t) dt } = J*w^(t)dt is minimum
— O O  — OO

for the rectangular window, w(t) = 1/T, |t| < T/2. This follows
from the Schwarz inequality (Spiegel, 1974, p.94). The list of 
windows given by Harris (1978) confirms this result: The
rectangular window has the minimum 'Equivalent Noise Bandwidth' 

and therefore gives minimum output signal-to-noise ratio.

In the remainder of this chapter spectral leakage and the effect 
of windows on the phase and phase difference of signals are the 
primary concern. Noise will not be considered further.
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Only symmetrical windows are investigated here; hence all trans­
forms W(to) have zero imaginary components. For all continuous 

signals, the windows are assumed to extend between +T/2. For all 
simulations carried out on discrete signals the windows run 
between samples 0 and N-l. For these digital windows of length N 
samples, symmetry requires w(N/2 + i) = w(N/2 - i) (Harris, 1978) 
and therefore generally w(0) £ w(N-l): instead w(l) = w(N-l).

Results obtained here for one dimensional windows can probably be 
applied directly in two dimensions. It was shown by Huang (1972) 

that good one dimensional windows give good circular symmetric 
two dimensional windows. The functions w(t) chosen here may be 
applied to images as W2D (x,y) = w(V(x^ + y^)).
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4.2 WINDOWING AND THE ESTIMATION OF SIGNAL PHASE AND PHASE
DIFFERENCE

4.2.1. Introduction

The delay between two signals can be found from the difference in 
their phase, as used directly in the PCF estimator described in 
Chapter 3. In the cross-correlation technique, the phase 
difference determines the peak of the cross-correlation function 
and so again determines the delay estimate. A study of the 
effect of windows on the phase difference between two delayed 
signals will therefore give valuable insight into the influence 
of data windows on delay estimates. This may be used to predict 
the errors and devise schemes to reduce them.

As an introduction, the effect of a data window on the phase of 
a single signal is investigated. These results are of interest 
for the estimation of signal phase spectra and form the basis for 
later work on windowing and the estimation of phase difference. 
Particular attention is paid to the low frequency components 
which are relied upon heavily in PCF delay estimation. It is 

shown that these frequencies are more prone to errors in phase 
difference. Removal of the DC component before windowing with a 
tapered window is shown to be important in reducing these errors.

The convolution in the frequency domain as a result of windowing 
in the time domain, is effectively a weighted moving average of 
the complex spectrum

00

G (0)) = F(G))®W(CD) = J*F(Q)W(G)-Q)dQ.
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The function W(©) tends to decrease with frequency (see Fig. 4.3.
and 4.4) and for practical purposes the integral extends only 
over a finite band B, hence

B
G (CO) = F (00) ®W (©) = JF (Q)W(ffl-Q)dfl.

-B
There are three distinct cases of this averaging process which 
may be considered separately:

1. The average includes the complex conjugate component at
negative frequency F (©) = F (-©) .

2. The average includes the zero phase, zero frequency (DC)
component, F(0).

3. The average includes only uncorrelated adjacent frequencies 
of random phase.

In practice these three cases occur together but their relative 
importance varies over frequency.

4.2.2. Windowing and the Estimation of Phase

Let the signal f(t) <— > F (©) be windowed by the symmetric window

w (t) <— > W(©), then g(t) = f(t).w(t) <— > G(©) = F(©)0W(ffl). Let
this signal take on real values only so that the spectrum shows

 ̂ *Hermite symmetry F (©) = F (-©), where denotes the complex
conjugate. Further, let the window be real and symmetric w(t) = 
w(-t) such that in the frequency domain, W(©) is purely real and 
W(©) = W(-©).

First low frequencies are investigated, where in the frequency 
domain convolution the negative frequency component F(-©) = F (©)
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is included in the moving average. This is illustrated in the
spectrum of Fig. 4.6.a and the phasor diagram of Fig. 4.6.c

Fig. 4.6 The phase of a windowed cosine function
g(t) = w(t).f(t) = w (t) . [A.cos (G)̂ t + <$)) ] .

a)Frequency domain convolution.
i) The signal F (®)
ii) The window W (03)
iii) The spectrum of the windowed signal G(«) (solid 

line) is the sum of shifted versions of W(co) 
(dashed lines).

197



F I G Q4 a 6 a B

b) Estimated phase as a function of true phase where 
tô = 27t/T, A = 1 and T is the window length. Tukey
windows of rise time
A) r = 0.0 (rectangular window)
B) r = 0.1
C) r = 0.3
D) r = 0.4
E) r = 0.5 (Hanning window).
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Let f(t) = A .cos (0)-̂. t + <|)) where the period of the signal, (0-^/2k  

may or may not be equal to the length of the data window. Then 
F(0)1) = 1/2 A.e^ and

G1(Q)1) = |G1((D1)|e^ = F (©)®W(CO)
= Ffa^.WfO) + F (-©1) . W (2001)
= F(0)1).W(0) + F* (CO-l) . W (20-l)
= re { FfC^) . [ W(0) + W(2©1) ] } +

+ j.(im { F(©1).[W(0) - W(2©x)]})
Eq. 4.1

where re {.} and im {.} denote the real and imaginary components.

Fig. 4.6.b shows the phase of the windowed signal, 0 = arg 
{G-Ĵ CÔ ) } as a function of true phase (J) for a signal consisting of 
a single cosine whose period equals that of the window: f(t) = 
cos ( (27C/T) t +({>), where T is the length of the window. The 
rectangular window gives the correct result, since the signal 
consists only of the 'fundamental' and W(2©-̂ ) = 0. With the
Hanning window correct phase estimates are also obtained and for 
the same reason. The Tukey windows result in incorrect phase 

estimates, as the complex conjugate component F* (oô ) w (2G)i) is 
added to F(©1)W(0) to form GfG^) .

For all the Tukey windows shown, the estimated phase 0  is closer 
to tc/2 than the true value <j) (for 0 < <}) < k ) . The reason for
this can be seen from the phasor diagram in Fig. 4.6.C. Here it 
was assumed that W(2©-̂ ) is negative (Fig. 4.4), so the negative 

frequency component F(-©j,) increases the estimated phase 0 when 0 
< (j) < 7T/2 and decreases it for tc/2 < § < k . In a similar manner
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for -7i < <j) < 0, 0 is biased towards -7t/2. Furthermore, the bias 
observed in Fig. 4.6.b first increases and then decreases as the 
rise time of the Tukey window is increased. This effect reflects 
the change in the second harmonic of the window, W(2(01), as shown 
in Fig. 4.4.

In Fig. 4.6. errors in phase-estimate as a result of windowing 
were demonstrated in an example. The choice of a different 
frequency 0)-̂ or a different window function w(t) will affect the 
observed bias. Rectangular and Hanning windows give biased phase 
estimates if is not an integer multiple of 2 k /T and hence 
W(2G)̂ ) ^ 0. Furthermore, if W(2<B̂ ) were positive, the observed 
bias would reverse its direction, i.e. 0 would be closer to 0 or 
7U than is <j), whereas above it was closer to k /2 . It is clear 
that a larger amplitude W(2©1) (for given W(0)) results in
stronger bias. This, together with the transforms of windows
shown in Fig. 4.3 and 4.4 suggests that for phase spectral
estimation (as for the power spectra) a compromise has to be
found between a small error in 0 over a large frequency range G)̂
and a large error over a small range.

Further errors in the estimated phase are introduced when a zero 
frequency component is added to the signal.

Let f(t) = A.cos(©1.t + <}))+ B then
G1(©1) = |G1(©1)|e^® = F(©1).W(0) +F(0).W(-©1) + F(-©1).W (2©̂ )

= re { F(©1) [ W(0) + W(2©1) ]} + F(0)W((O1 )
+ j.im { F (CO-l ) . [ W(0) - W(2©1) ]}

Eq. 4.2.
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This is illustrated in the phasor diagram in Fig. 4.7.a for

positive F(0) and negative W(©1) and W(20)̂ ). Fig. 4.7.b shows 
again the estimated phase as a function of the true phase, where 
it is seen that the zero frequency component increases the bias 
compared to the case considered above. The bias in phase
estimate 0 caused by the DC component F(0) is towards 0 or k , not 
+ k /2 as above. Again the error in phase estimate observed 
depends on the window function (W(0), W(cô ), W(20)-̂ )) and the 
signal (F(0), F (cô ) ) .

It should be pointed out here that curve E at 4>=0 is an artefact: 

|G(0^)I = 0 for this combination of signal and window and the 
phase angle is not defined. The value calculated is purely the 
result of numerical inaccuracies in computation.

Fig. 4.7 The phase of a windowed cosine function with DC offset 
g(t) = w(t) .f (t) = w(t) . [A.cos(G)^t + <j>) + B] .

F (0) W (CD-, )
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b) Estimated phase arg {g(t)} as a function of true 
phase <J).for A = B = 1, CÔ = 27C/T, T = 1. Tukey
windows of rise time
A) r = 0 (rectangular window)
B) r = 0.1
C) r = 0.3
D) r = 0.4
E) r = 0.5 (Hanning window).

For digital signals and the use of the Discrete Fourier Transform 

(DFT), the zero frequency component does not distort the phase 
spectrum of the signal, if a rectangular window is used. At each 
harmonic caluclated in the DFT, (0 = h.(2;c/T) (h an integer), W(0)) 
= 0 and so F(0) is given zero weighting in Eq. 4.2. For all 
other windows of length T, W(2jth/T) is not zero in which case the 
zero frequency component F(0) distorts the phase spectrum. It is 
therefore strongly recommended that the 'DC' component, of the 

signal is removed prior to applying the tapered window. For the
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purposes of signal alignment, F(0) does not make any useful

contribution, since it is always zero-phase.

At high frequencies, frequency domain convolution G(©) =
F(©)®W(w) involves only negligible contributions from co=0 and the 
negative frequencies.

Here
°o B

G-ĵ ©) = J F(©-Q)W<Q)dfl = J F (®-Q)W(Q)d£ , where B<®. Eq.4.3
—OO — B

and for a discrete spectrum F (ffl) , G(©^) = F(ffl-̂ )W(0) + Ê (©-̂ ) 

where E^(©i) is an error term. The error in the estimate of 
phase 0e = arg {F(a^)} - arg {G(Q^)}. For discrete, periodic 
wide sense stationary random signals f(i), the discrete Fourier 
components F(h) are uncorrelated with uniform phase distribution 
in [0,2 k ] (Taub and Schilling, 1986, p.323). The error term
El(®i> above is then uncorrelated with F(a^) as is the error in 
the estimated phase 0e . This leads to a distribution of 0e 
symmetric around zero and hence the average error is zero.

In summary, windowing causes distortion in the phase as well as
the power spectrum of a signal. Window shape can profoundly

affect the results. These are however also strongly signal
dependent. There are three main mechanisms by which the window

causes errors in the estimated phase, their relative importance
varies over frequency. At low frequencies the DC component F(0)
and the complex conjugate component at negative frequency F(-©) = 
★ . ,F (0)) cause a bias m  the phase estimate. At higher harmonics a 

band of frequencies centred at the frequency of interest, contri­

butes to the errors. In random, stationary signals, these are 

uncorrelated leading to uniformly distributed random errors which
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have a mean value of zero. Errors at low frequencies may be 
reduced by removing the DC value of the signal prior to applying 
a tapered window.

4.2.3. Windowing and the Phase Difference of Delayed Signals

The previous section showed the way in which windowing may 

distort the phase spectrum of a signal. Now a similar analysis 

is conducted on the phase difference between two delayed, 

windowed versions of a signal.

Let f2 (t) = f1 (t-D) <— > F2 (w) F x  < o ) be the signals which

are both windowed by w(t) to give
g-ĵ t) = f-L(t).w(t) <— > (0) = F^(0)®W(0) and

g2 (t) = f2 (t).w(t) <— > G2 (go) = F2 (co)®W(co) = F 1 (coje-^ 0 ® W(co)
Further let

R(CO) = G-̂  ((0) .G2* (CO) , then the phase difference 

9(0) = arg { G-̂  (0) } - arg { G2 (0) } = arg { R(w) } 

= arg { (Fx (0) ®W (0) ) . (Fx (0) e“^®D 0 W (0) ) } .

It should be noted that here the two signals were windowed before 
finding the cross-spectrum. If the window is applied after the 
cross-correlation function is found, the analysis of 4.2.2 may be 

applied. In this case, the experimental work of 3.2.5 on 
averaging the cross-spectrum gives useful results.

The PCF delay estimates are found from the phase of the cross­

spectrum: 9(0) = arg { R(0) }. It is this quantity also which 
determines the location of the peak of the cross-correlation
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function. Hence the results obtained here are of relevance to

both techniques.

Following the work of 4.2.2., first errors due to leakage of the 
complex conjugate components at negative frequencies, F(-o) = 
F (0), are investigated, then those due to zero frequency and 

finally those at higher frequencies.

Let f(t) consist of a single frequency component 
f(t) = A . cos (0-̂ . t + <j>)
where 0-̂  is not necessarily an integer multiple of 27C/T, then 

R (0̂ ) = G1 (01) .G2*(©1)

= [W(O)F1 (01) + W(201)F1*(01)].

[W(0)F1*(O1)e^®D + W(201)F1 (01)e"^colD]

= iRf©-^|e^6 Eq.4.4.

Fig. 4.8.a shows the error in phase difference, 0, as a function 
of <J). In Fig. 4.8.b the components contributing to R(o^) are
shown in a phasor diagram. For Fig. 4.8.C, Eq. 4.4. was modified 
to

R(0X) = e^®lD [W(O)F1(01) + W(2o1)F1* (o-̂  ] .
[W(O)F1*(01) + W(201)F1 (©jLJe"̂ 2®!0] 

so that the error in phase difference 0e = 0 - 0^D equals the sum 
of the phase of the last two factors in this equation. This
error is shown in the diagram in Fig. 4.8.c, where all phase
angles are drawn relative to F(0X) . Here the value of 0e can
easily be followed, as <j) varies over 2 k .

From this diagram it is clear that the peak positive value of 0e
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is larger than the peak negative one as shown in Fig. 4.8.a.

The error also depends on the delay and the window used with the 
maximum error 9e occurring when <J) = (O-̂ D/2 (for given (D-̂D) .

Fig. 4.8 Phase difference for delayed, windowed signals 
consisting of a single harmonic g(t) = w(t) .f (t) = 
w(t) . [A.cos (03-̂t + <J>) ] .

FIGD 4 a 8 a a

a) Phase difference at 03-̂ with 03̂  =
T/10 . Tukey windows of length T
A) r = 0.0 (rectangular window)
B) r = 0.1
C) r = 0.3
D) r = 0.4
E) r = 0.5 (Hanning window)

2tc/T and delay D = 
and rise time
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G2 (0)1^2 (C01)W(2C01)
F2 (W1)W(0)

Fx ((01)W(2C01)
F1«O1)W(0)

(Ô D G-̂ CO-l)

b) Phasor diagram

c) The above phasor diagram redrawn to show error in 
phase difference 0e .

In terms of the window function W(co) the maximum phase error 

occurs when § = (d^D/2 and

|f 1((d]L) 1 W(2(B1) W(20)1)
2<f) = sin ^------- = sin-1 ------

|F1(ffl1)| W(0) W(0)
The similarity is noted between Fig. 4.8.c and Fig. 3.12, which 
showed errors in the phase difference arising in aliased signals. 
Errors in phase difference due to aliasing and those due to 
windowing arise in a closely related manner.

When a zero frequency term F1(0) = B is added to the signal
above, the peak error increases as is shown in Fig. 4.9. Now
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R(0)1) = Gx (Ĝ ) .G2* (CO-l) =
= [F1 (C01 )W(0) + F1 (0)W((i)1) + F1 *(G)1 )W(2(01) ] .

[Fjl* (CO-l) W(O)e^0 lD + F^OJWffl^) + F 1 (©1 )W(2co1 )e-3(0lD] .
It is noted again that on curve F the point <J) = 0 is unreliable 
as the first harmonic is zero and the phase values found
are an artefact of the computation. Similarly, G2 (0)̂ ) = 0 at <j> =
27C/10.

Fig. 4.9 The phase difference for delayed windowed signals 
consisting of a single harmonic and added 'DC' offset: 
g(t) = f(t)w(t) = w(t) . [cos ( (27C/T) .t + 4>) +1]. Delay
D = T/10.
Tukey windows with rise time of
A) r = 0.0 (rectangular window)
B) r = 0.1
C) r = 0.3
D) r = 0.4
E) r = 0.5 (Hanning window).

By considering the phasor diagram of Fig. 4.7.a or the plot of
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phase estimates of Fig. 4.6.b and Fig. 4.7.b it can readily be 
seen that the additon of a DC component increases the peak error 
0e . If the sign of F(0) or W(G)̂ ) is changed, the second positive 
peak of Fig. 4.8 .a is increased rather than the first (as shown 
in Fig. 4.9).

R(GC>2 ) = (00^)62 (0)-̂) as given above may be rewritten as
R(©1) = e ^ l 0 . [ IF-̂ W-l) 1W (0) + E 1 «B1)] . [|F1 *(0)1) IW(0) + E2 (%) ] , 
where (0)̂ ) and E2 (G)̂ ) are error terms due to windowing. The 
sum of the phase angles of the last two terms in this equation 
determines the error in phase angle 0e. It can readily be shown, 
that the mean error in phase difference 0e is zero, as the angle 
<{) varies over 2 k . The average of errors shown in Fig. 4.9 
confirms this.

However, if | Fx <<D1) | W(0) < |E1((D1)| or I (Cî ) | W (0) < E2 (tD1)|
this may no longer be true. The equation above may now be
rewritten to give all angles relative to Fx (0), (rather than
F-ĵCO-l) as above) from which it can be shown that the average
phase difference ( 0  ) is 0 and the average error, 0 e  = -0)-̂ D. In 
many practical applications, this condition will hold with the 
consequent bias in average phase difference and delay estimate.

Fig. 4.9 shows that the peak positive error in phase difference 
is greater than the negative maximum, though the average error 

remains zero, as was stated above. However, large errors 10Q | 
can also lead to incorrect phase unwrapping since large positive 
values of 0 may be interpreted as negative ones.

There are therefore two cases in which the DC term can introduce
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a bias in the phase difference of the windowed signal: If the

phase is unwrapped incorrectly and if the DC term F(0) is signi-
ficantly larger than the harmonic FfCO^). For the types of

signals considered in the current investigation, the latter is

probably the more significant cause of bias in the delay

estimate.

These errors in phase difference 0 occur at low frequency where 
the PCF estimator of Chapter 3 is particularly sensitive. If the 
'running estimate' is incorrect at these low harmonics, subse­
quent harmonics may be incorrectly unwrapped which can result in 
very large errors in the final delay estimate. Similar errors 
can arise in cross-correlation: Inaccurate values of phase
difference at low frequencies will shift the peaks of the large 
low frequency components and can lead to serious errors in delay 
estimate (see also Ianniello, 1982).

The zero frequency component F^(0) does not make any useful 
contribution to the delay estimate but does lead to the errors 
described above. The 'DC' component should therefore be removed, 
if possible, before windowing and delay estimation.

At higher frequencies contributions from zero and the negative 

frequencies may be neglected.
oo oo

R (co) = J F ± (co-0)W(Q)d0 . J Fx* (co-0)ê  (03-a) W(£2) d0
—  OO —  OO

B B
J Fx (co-0) w (£2) d0 . J Fx* (®-0)e^ W(0) dH for B < | CO |
-B -B

where B gives the bandwidth beyond which the amplitude W (CO)
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becomes negligible.

Here the error in the phase difference 0e depends on this small
band. For signals which may be modelled by a wide sense 
stationary random periodic process, the average error is zero.
It is also clear that large errors may occur if harmonics in the
range 0) + B  are much larger than | F (C O ) | .

A phasor diagram may be used to show that for wide sense
stationary signals the mean phase difference E{0} = 0)-j.D anc* the 
mean error in phase difference E{0e) =* 0, as arg {F-ĵ (C O ) } varies
over 2 k . For a discrete spectrum
RCco-l ) = [Eb  f 1 ((O-L-QjWfQ) ] . [Zg F x * (©-L-QjWfQje^ (£0i “ a ) D ]

R(©1) = e^0)lD [ F1 (G)1 )W(0) + E1 (a1)].[ F1 *(0 1 )W(O) + E2 (0)-̂) ] 
where E-̂ (CÔ ) and E2 (00̂ ) are again error terms. The error in 
phase difference 0e is shown in Fig. 4.10 where all angles are 
drawn relative to F-̂ (â ) . From this it can easily be seen that, 
as arg {F̂ (G)-̂ ) } varies over 2 k , the mean error in phase angle 
E{0e } = 0.

Fig. 4.10 Phasor diagram showing error in phase difference as a 
result of windowing (uncorrelated harmonics).
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However, the mean error may not be zero, if |F1 (©1 )W(0) | is less

than | (CD-̂) | or |E2 (®1)|. In this case, all angles in the

phasor diagram should be drawn relative to the largest component 
in W (Q) . Let this be at frequency CÔ -D-̂  then
R(01) = ej(©1 -^1 )D[ F]L (01 -£21 )w (Q1) - Ex (001 -Q1) ] .

[ F1 *(0 1 -ft1 )w(Q1) - E2 (a1 -fl1)]
and the mean phase difference, arg {RfG)̂ ) ) is (©]_ ~ Q-̂ )D with a 
mean error in phase difference E{0e) = -Q-̂ D. For signals with an 
amplitude spectrum that tends to decrease with frequency, the 
largest term, F-̂ W (Q-̂) is more likely to be at a frequency

below is therefore positive and the error in difference,
0e negative. This will lead to delay estimates that are too 
small in absolute value.

At low frequencies the error in phase difference has contribu­
tions from all sources discussed above: the uncorrelated
adjacent harmonics, the complex conjugate negative frequency 
terms and the zero frequency component. The contribution from 
the latter two terms generally decreases with frequency.

The results of the study above were tested on simulated signals. 
Markov 1 chains of 256 samples length were generated (g^(i)) and 
delayed by 20 samples (no signal wraparound) to form g2 (i). 
Sample correlations p of 0 ('white' spectrum) and 0.9 (power
concentrated at low frequencies) were used and in one experiment 
a constant ('DC') term was added. As before, the signals were 
generated by a Gaussian random number generator with unit

variance, the 'DC' term added was also of unit magnitude. The 
spectra G-̂ (h) and G2 (h) were found using the FFT algorithm after
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applying a series of different windows. The mean and standard

deviation of the error in phase difference at each harmonic was 
calculated from 50 such signal pairs.

In Fig. 4.11.a,b,c the mean error in phase difference 0e as a 
function of frequency are shown. For Fig. 4.11 a and b this 
shows fairly constant values over most of the frequency range, 
with consistently negative values only for p=0 .9 and low frequen­
cies (Fig. 4.11.b). For p=0 (Fig. 4.11.a) this is hardly 
noticeable but when the zero frequency ('DC') term is added (Fig.

4.11. c) this effect becomes very prominent, especially with the 
Tukey windows and to a lesser extent with the Hanning window. 
The rectangular window does not show these negative peaks. This 
was explained above by the fact that for the rectangular window 
(and only this window) W(27C/T.h) is zero for all harmonics h 
(integer). F(0) therefore does not contribute to the distortion 
of the spectrum in this case.

The corresponding standard deviations of the estimated phase 
differences are shown in Fig. 4.12. These are again fairly 

constant over frequency. For the case of strong F(0) (Fig.
4.12. c) there is the expected large standard deviation at low 
frequencies for the Tukey windows (Fig. 4.12.c.ii and
4.12. c.iii). It is further interesting to note that the average 
of the standard deviation for the rectangular window is consis­
tently larger than that for Tukey or Hanning. Lowest average 
standard deviations are found for Tukey windows with rise times r 
= 0.4. The next section shows that this is near the optimal rise 

time in terms of the least mean square criterion defined below.
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Fig. 4.11 Mean error in phase difference due to windowing, as a 
function of frequency. Markov 1 signals, 256 samples 
long with delays of 20 samples and
A) p = 0.0
B) p = 0.9
C) p = 0.9 with DC offset.
Tukey windows with a rise time of
i) r = 0 (rectangular window)
ii) r = 0.2
iii) r = 0.4
iv) r = 0.5 (Hanning window).
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Fig. 4.12 Standard deviation in phase difference due to 
windowing, as a function of frequency. Markov 1 
signals, 256 samples long with delays of 20 samples and
A) p = 0.0
B) p = 0.9
C) p = 0.9 with DC offset.

Tukey windows with a rise time of
i) ooIIu (rectangular window)
ii) r = 0.2
iii) r = 0.4
iv) r = 0.5 (Hanning window).
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4.3. OPTIMAL WINDOWS FOR DELAYED SIGNALS

4.3.1 Introduction

In the previous section, the phase estimate from windowed signals 
was studied as well as the estimate of phase difference in 
delayed, windowed signals. It was shown that the window function 
can have a large influence on the estimate of phase and phase 
difference. The mechanism by which distortion is introduced in 
the estimates was analysed. Here further attention is paid to 
the choice of window for digital signal processing applications 
involving delayed versions of a signal, concentrating on the 
time rather than the frequency domain.

Let the signals be f2 (t) = f^(t-D) and the windowed versions 
g2 <t) = f1(t).w1 (t) and g2 (t) = f2 <t).W2 (t). For the windowed 
signals to be simply delayed versions of each other, g2 (t) = 
g^(t-D), the windows must in general also be delayed, W2 (t) = 
w-̂ (t-D) . For practical applications involving finite length data 
and the Discrete Fourier Transform, this requires asymmetric 
windows. These 'ideal windows' for processing delayed versions 

of a signal, require delay to be known prior to windowing, a 
priori knowledge that is generally not available.

For the purposes of this work it is assumed that only an upper 

bound on the delay is known, but not a precise value, nor the 
sign of the delay. The choice of windows therefore is restricted 
here to symmetric ones which are applied to both f-^t) and f2 (t). 

The aim of these windows is to make the two windowed signals 
g-̂ (t) and g2 (t) as close as possible to delayed versions of each
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other and ideally g2 (t) = (t-D) .

In order to choose a 'best' window it is first necessary to 
select a suitable criterion by which windows may be compared. A 
least mean square criterion is investigated here which minimizes 
the differenced (m) between the two windowed signals, after they 
have been realigned:

OO

m = J(g1(t) - g2 (t+D))2 dt.
—OO

This criterion is different to those in spectral estimation, 
where generally only one signal is processed. There the aim of 
windowing was to let the spectrum of the windowed signal be
the closest possible approximation to the spectrum of the
original (infinite length) signal. In the present application 
this is no longer the primary concern. It is therefore not 
surprising that the windows optimal for processing delayed
versions of a signal are not the same as those considered optimal
for conventional spectral estimation (Harris, 1978).

Using this criterion the Tukey and trapezium windows are studied. 
It is seen that for a given delay value an optimal rise time 

exists for both these windows. This is near 40%, for delay 
values of up to 10% of the window length. Furthermore, the
trapezium window clearly performs better in terms of the least 

mean square criterion described, than the rectangular, Hanning or 
Tukey windows.

4.3.2. The Least Mean Square Error Criterion

Let again f2 (t) = f(t-D) be windowed by w(t) of length T and
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without loss of generality let T=l. Then
g-L (t) = f 1 (t) .w (t)
g2 (t) = f2 (t).w(t) = f-LCt-DJ.wCt)
Let these signals be realigned and the mean square error m be 
defined as

OO

m = S ( g 1 (t) - g2 (t+D))2 dt 
—00 

OO

= S  [f1(t)w(t) - f2 (t+D) w(t+D) ]2 dt
—  OO

OO

= J [f1 (t)w(t) - f-Ĵ (t) w (t+D) ] 2 dt 
—00

OO

= J" f-̂ 2 (t) [w(t) - w(t+D)]2 dt. Eq. 4.5
— OO

Let now f-̂ (t) be a wide sense stationary random process then the 

expected value

OO

E {m} = E (f12 (t)} J [w (t) - w(t+D)]2 dt. Eq. 4.6
—  OO

Further let the normalized error
OO

J [w (t) - w (t+D) ] 2 dt
— OO

M = --------------------------. Eq. 4.7
OO

J  w2 (t) dt

A signal to distortion ratio may now be defined as

E { f x2 (t) } . J w2 (t) dt 
—00

SDR --------------------------- -- 1/M.
E{m}

The optimal window is now defined to be the one which maximizes
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the signal to distortion ratio SDR. This is given by the 
minimum of M.

The equivalent condition in the frequency domain, with unit 
window energy
oo oo
J w2 (t) dt = (1/270 J|W{0) |2 dO) = 1

— OO — 00

is given by Parseval's formula (Papoulis, 1984 a, p.65)
00

M = _f [w(t) - w(t+D)]2 dt
—  OO

OO

= 1/7C ( 1 - J | "W (CO) |2 cosG)D d(D ) . Eq. 4.8
— OO

The least mean square error criterion min {M} for the error due 
to windowing in delayed signals is then equivalent to:

OO OO

max{ J"| W(go) | 2.cosCOD do)} subject to the constraint J|W(0)) 12d0) = 1.
— 00 — OO

This is clearly a very different criterion to those used for 
windows in spectral estimation and described in Section 4.1.2. 
There for example the minimum energy moment (Harris, 1978) was

OO

min { S 0)2 | W (0)) |2 dO) } .
— OO

The least mean square error criterion (min{M}), like the minimum 
energy moment requires a strong central lobe in the spectrum of 
the window, but the weighting then fluctuates over frequency as 

(1-cos(COD)), whereas for the minimum bias window it monotonically
. 2 .increased as co . As might be expected, the optimal window for 
delayed signals also depends on the delay D.

Knowledge of the delay value |D| is required in order to find the
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optimal window but in general only an estimate (or an upper 
bound) is available. For a window function to be useful it is 
therefore further necessary that an approximate value of D is 
sufficient to achieve close to minimum M.

The least mean square error criterion is appropriate for delay 
estimation but does not concern itself directly with the bias in 
phase difference discussed in 4.2.3. The removal of the DC term, 
recommended there as a result of the analysis, does not arise 
from the work on the least mean square error criterion here. The 
results of these two approaches should therefore be applied 

together. Furthermore, windows chosen on the basis of the above 
criterion alone may perform poorly in the presence of noise as 
discussed in 4.1. Delay estimates found using windows which 
emphasise a few samples in the centre of the window, rely very 
heavily on these few samples with inaccurate results, if these 
samples are noisy. However, in the current application errors 
due to noise are expected to be of little importance compared to 
those resulting from the finite length of data processed (see 

Chapter 5). The choice of window shape should therefore be 
based primarily on the least mean square error criterion and 

distortion of phase difference as discussed above, rather than on 
considerations of noise.

In applications where the discrete Fourier transform (DFT) is 
used, the realignment of the signals is performed with signal 
wraparound (see Fig. 4.13). It is shown now that the mean 
square error criterion developed above remains valid.

222



From Fig. 4.13 it follows:
T/2 - D

m = J* [f-^tjwft) - f^(t)w(t+D)]2 dt +
-T/2

T/2
+ J [f1(t)w(t) - f-L (t-T) w (t+D-T) ] 2 dt. 
T/2 - D

and for random and wide sense stationary f(t)

E {m}
T/2 - D

E{f12 (t)} J  [w (t) - w(t+D)]2 dt +
-T/2

T/2
+ E{f12 (t)} J [w2 (t) - w2 (t +D-T) ] dt + 

T/2 - D
T/2

+ 2 E{f1 (t) f1 (t-T) } J" [w (t) w (t+D-T) ] dt.
T/2 - D

For T sufficiently long and zero-mean signals it may be assumed
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0 andthat E{f1(t)f1(t-T)} =

E {m}
T/2 - D

Effect)} J [w (t)
-T/2

T/2
+ E { f 12 (t)} J [w2

T/2 - D
T/2

E{f12 (t)} J* [w(t)
-T/2 - D

- w(t+D)]2 dt +

(t) + w2 (t+D-T)] dt

- w(t+D)]2 dt, Eq. 4.9

which is equal to the value derived in Eq. 4.6 for signals 
without wraparound. Hence max { M } as given above is still a 
valid criterion, even if there is wraparound in realigning the 
windowed signals.

4.3.3. The Least Mean Square Error Criterion Applied to Tukey and
Trapezium Windows

The mean square error value M for windowing delayed signals 
developed above is now applied to Tukey and trapezium

windows. It is shown that an optimal rise time exists for both 
these windows, which minimizes the value of M for given delay D. 
It is also shown that the trapezium window achieves lower values 
of M than does the Tukey window and is therefore a better choice 
for the current application.

Tukey windows are investigated since they are commonly used in 
signal processing. Trapezium windows are even easier to 

construct and intuitively seem suitable for delayed signals, 
since they linearly reduce the weighting given to the signals in 
the region where signals may not overlap. As is shown now,
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trapezium windows are probably near optimal for small values of
delay

For windows of given height w(0) and rise time R and with delay D 
(Fig. 4.14) different windows only differ in the function 
connecting AB (and CD). For these symmetric windows the mean 

square error Mq is given by 
-T/2 + R

Mq = 2./ [w(t) - w(t+D)]^ dt.
-T/2 - D

By the Schwarz Inequality (Spiegel, 1974, p.94)
-T/2 + R -T/2 + R

S [w(t) - w(t+D)]̂  dt > C [ J (w(t) - w (t +D)) dt 
-T/2 - D -T/2 - D

Eq. 4.10
where C is a constant. Equality holds for constant [w(t) -
w(t+D)]. The integral on the right hand side of Eq. 4.10 
is independent of the window function and of R (for a given 
value of D and w(0)). Hence the minimum value of Mq is achieved 
for constant [w(t) - w(t+D)] over the region ABCD in Fig. 4.14.
The trapezium window satisfies this condition, approximately.

The above neglects the area directly above AD and below BC which, 
however, is small when D is short compared to R. Furthermore, 
the original derivation of the least-mean-square criterion 
assumed constant window energy. Now constant window amplitude 
w(0) has been assumed. Even so, trapezium windows are expected 
to be near optimal.
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Fig. 4.14 The mean square error in trapezium windows.

The value of M (normalized for constant energy) for both Tukey 
and trapezium windows is shown in Fig. 4.15 as a function of 
rise time. The graphs shows that M decreases with increasing 
rise time r = R/T and reaches a minimum between r = 0.3 and 0.4,
for both trapezium and Tukey windows. This decrease in M is 
particularly noticeable for small values of delay. (Fig. 4.15.a 
and b). The minimum of these functions is quite shallow hence a 
rise time somewhat removed from the optimum will only give a 
small increase in M. It is also seen that the trapezium window 
consistently gives a smaller value of M than does the Tukey 
window of the same rise time, which was expected following the 
discussion above.
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Fig. 4.15 The normalized mean square error (M) for trapezium 
(solid line) and Tukey (dashed line) windows of length 
256 samples with delays of a) D = 10; b) D = 20; c) D = 
30; d) D = 40 samples.

It may appear surprising that the trapezium window is chosen in 
preference to Tukey windows which are more commonly used in 
spectral estimation. The reason for this lies in the differing 
requirements: In the current application the aim is not to give 
the best spectral estimate, but rather to minimize the difference 
between two finite length and overlapping segments of a signal. 
For this, the trapezium window is a better choice than the Tukey 
window.

The minimum values of M which can be obtained by the Tukey and 
trapezium windows is shown in Fig. 4.16. Delays are again given 

in units of samples for signals of 256 samples length. The value
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of M for the rectangular window is also shown for comparison. In 
the delay values of interest, |D/T| < 0.1, minimum M for the 
trapezium is less than 1/2 that for the rectangular window. It 
follows that the signal-to-distortion ratio (SDR) defined in 
4.3.2 may be more than doubled by choosing a suitable trapezium, 
rather than rectangular window.

Fig. 4.16 Minimum error values (minimum M) at the optimal rise 
time for Tukey, trapezium and rectangular windows. 
The windows are 256 samples long.
a) trapezium windows
b) Tukey windows
c) rectangular windows

In the introduction it was shown that a rectangular window is 

best as far as noise performance is concerned. Since the minima 
of the functions in Fig. 4.15 are quite shallow for the current
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delay values (below 10%), smaller values of risetime R may be 
used without much increase in M, but an improvement in the noise 
performance- Signals reconstructed from windowed versions will 
show less taper at the edges when smaller rise times are chosen. 
Trapezium windows with a rise time of approximately 0.2 are 
therefore recommended for the alignment and BL-reconstruction 
techniques.
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4.4. SUMMARY AND CONCLUSIONS

It has been shown that window shape is important when processing 
delayed versions of signals. The mechanism by which windowing 
distorts the phase spectrum of a signal and the phase difference 
between delayed signals was described.

A least mean square error criterion was then developed which may 
be used to select a good window or design an optimal one. This 
criterion was shown to be clearly different to those used in the 
choice of window for spectral estimation. The reason for this 
difference lies in the differing requirements: In spectral esti­
mation, the spectra of the original and windowed signals should 
be as similar to each other as possible; in delay estimation, 
the windowed signals (g-ĵ t) and g2 (t)) should be the closest 
possible approximation to a pair of delayed signals (g2 (t) = 
gx (t-D)) .

Using this criterion Tukey and trapezium windows were compared 
for applications with a range of delay values. It was shown that 
trapezium windows perform better than Tukey windows and much 

better than rectangular ones. It was further demonstrated that 
Tukey and trapezium windows have a optimum rise time (according 
to the least mean square criterion) which for the delay values of 
interest here (up to 10% of the window length) lies at around 40% 
of the window length. But in the interest of noise performance 
and signal fidelity, window rise times of about 20% are 
suggested. These are recommended for both the delay estimation 
and the reconstruction algorithm.
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5. EVALUATION OF ALIGNMENT AND RECONSTRUCTION TECHNIQUES

5.1.INTRODUCTION

Over the last three chapters, the three major components of the 
technique for the reconstruction from undersampled signals were 
developed. These are the 'band limited' (BL) reconstruction and 
the 'phase of consecutive frequency' (PCF) alignment algorithms 
together with the appropriate windowing methods. These were 
evaluated independently and in this chapter they are combined for 
evaluation jointly.

The starting point for the reconstruction technique is a series 
of undersampled (and therefore aliased) versions of the same 
signal. The aim is to reconstruct at a higher sampling rate, 
removing aliasing.

The first operation is to find the relative shift between the 
input signals in order to align them. The PCF algorithm 
developed in Chapter 3 estimates the delay between two sampled 

signals. From the Fourier coefficients of the undersampled 
versions of the signals and the known or estimated shift, the 
original signal is then estimated by the BL reconstruction 
technique described in Chapter 2.

The BL reconstruction and PCF alignment techniques make use of 
the Discrete Fourier Transform in which signal periodicity is 
assumed. As a result delays (or shifts for two dimensional 
signals) are circular, with signal wraparound. In most appli­

cations however, the signals are not periodic and delayed 
versions do not wrap around. Signals with circular delay are
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identical to those with non-circular only in the central region
of the data, but different near the beginning and the end. 
Non-circular delay leads to errors in the PCF and BL techniques. 
This can be reduced by the use of appropriately tapered data 
windows, as was described in Chapter 4.

The BL reconstruction technique can be expected to give perfect 
results under the ideal conditions of:

1. no noise,
2. periodic signals,
3. correct signal alignment and
4. adequate average sampling rate (adequate total number of samples). 
Furthermore, PCF alignment gives the correct delay estimates when 
signals are noise free, periodic and adequately sampled.

When the above conditions are not satisfied, the methods produce 
estimates which are subject to error. These were investigated in 
the previous chapters where each of the techniques was applied in 
isolation. Here these methods are used together: the signals are 
windowed prior to finding the DFT, delay is estimated by the PCF 

technique and the results used in BL reconstruction. In the 
previous chapters the major sources of error arising in each of 
these methods were described. These were investigated both by 
experiment and mathematical analysis. The results obtained guide 
the investigations below and prove useful in explaining the 
effects observed.

It will be demonstrated that the effectiveness of the techniques 
depends strongly on the type of signal used. Signal charac-
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teristics likely to lead to poor results will be described, based
on the results from a few experiments here, and on the systematic 
analysis of the previous chapters. The conclusions are of 
theoretical interest and will guide application and future deve­
lopment of the techniques.

Markov 1 signals are again used as examples of one dimensional 
signals. Particular attention is then paid to two dimensional 
applications for which no experimental work was described in the 
previous chapters, other than verification that the methods work 
under ideal conditions. The examples of images used are a set of 

satellite photographs, some medical X-ray pictures and a photo­
graph of an ostrich. These only serve as examples and are not 
intended as a complete analysis. The experiments give some 
qualitative evaluation of the techiques presented.
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5.2. ONE DIMENSIONAL SIGNALS

5.2.1. Introduction

The one dimensional BL reconstruction technique together with 
PCF alignment and trapezium windows are demonstrated and 
tested here on a series of Markov 1 signals.

First the PCF alignment technique is applied to non-periodic and 
first order aliased signals, with and without added white noise. 
Then BL reconstruction is carried out, first with known, correct 
values of delay and then using the PCF delay estimate from the 
undersampled data.

The experiments show the techniques to be strongly signal 
dependent. Although the results obtained here give some 

indication of the effectiveness of the methods and likely sources 
of problems, they are valid only for these signals. For other 
applications, the methods should be tested again.

The Markov 1 signals for the experimental work were again 
generated as described in Chapter 1. The DFT was found for 
signals 512 samples long, and the delayed signals generated by 
shifting the phase according to (h) = <j)g (h) - (27C/512) .hD, 
where D is the delay, h the frequency (integer) and <J>g (h) and 
(J)-̂ (h) the phase of the original signal f q (i) and the delayed 

signal f-̂ (i), respectively. The resultant delay is circular, 
with the end of fg (i) reappearing at the beginning of f-̂ (i) . The 
test signals with non-circular delay are produced by taking 256 

sample segments from the centre of the longer signals. The even 
numbered samples of these segments form the undersampled signals

234



used in the experiments. The results of signal reconstruction 
were compared with the original data. To obtain noisy signals 
with a particular signal-to-noise ratio, uncorrelated Gaussian 
values were added to the samples.

All delays are again given in units of samples - the interval 
between samples of the original (and reconstructed) signals.

5.2.2. PCF delay estimates

In chapter 3, the PCF delay estimator was developed. The 
algorithm for adequately sampled signals was given first and then 
modified for undersampled data. The original technique, with a 
weightxng proportional to the square of the frequency (h ) will 
be now referred to as PCF2, that for the aliased signals, with h- 
weighting, as PCF1.

The estimates from PCFl and PCF2 are compared on Markov 1 data 
with sample correlations of p = 0.5 and p = 0.9. First the 
signals are delayed by integer values between 0 and 20 samples 
and then by delays between 4.0 and 6.0 samples, in increments of 

0.1. The mean and standard deviation of delay estimates are 
calculated from 30 signals. The effect of windowing with rectan­
gular (boxcar) and trapezium windows is investigated and it is 

shown that trapezium windows give slightly better results than 
boxcar windows. PCFl estimates are found to give no significant 
improvement over PCF2 with the undersampled signals tested.

Fig. 5.1 shows the mean and standard deviation of a PCF2 estimate 
for a noise free signals and integer values of delay. The
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estimates are reliable up to a delay of 17 samples for p = 0.5 
and 20 samples for p = 0.9. Phase unwrapping errors (see Chapter 
3) are the likely cause of the poor estimates seen at large delay 
values.

Fig. 5.1 Mean and standard deviation of PCF2 delay estimates for 
noise free, undersampled Markov 1 signals with non­
circular delay (integer values only) and rectangular 
(solid line) and trapezium (dashed line) windows.
a, c) p = 0.5
b, d) p = 0.9

The standard deviation of the estimates has a zig-zag shape: 
large errors at odd values of delay and small ones when the delay 
is an even number. This is a result of undersampling, as only 
the even numbered samples of the original signals were used. The 
effect can readily be explained in terms of the phase of aliased
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spectra as described in Chapter 3. For integer delay values 
however, an explanation in the time domain is easier. When 
delays are even, the two signals contain the same samples, 
shifted relative to each other. If the signals are periodic and 
noise free, perfect delay estimates are obtained. These under­
sampled signals are Markov 1 data with a sample correlation of 
2 .p as they were derived from data with sample correlation of p. 
The delay estimates are therefore the same as might be found for 
'adequately sampled' Markov 1 data with a sample correlation of

p2.

When the delay is an odd number, one of the undersampled signals 
contains the even, the other the odd samples of the original data 
(neglecting any differences at the ends due to non-circular 
delay). These samples are correlated, with a correlation 
coefficient of p. The delayed signal can therefore be considered 
as having added noise, with the noise increasing, as p decreases. 
So delay estimates become progressively less reliable and in the 
limiting case, when p = 0, the two signals are uncorrelated and 
delay estimation would be impossible.

In order to study the effect of windowing on the delay estimate 
and the difference between the results from PCF1 and PCF2, the 
results for delays up to 10 samples are looked at in detail. 
These are shown in Fig. 5.2. and 5.3.
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Fig. 5.2 PCF delay estimates for undersampled Markov 1 signals 
with non-circular delay (integer values), using 
rectangular (solid line) and trapezium (dashed line) 
windows.
a) PCF2, noise free
b) PCF2, SNR = 20dB
c) PCF1, noise free
d) PCF1, SNR = 2 OdB

ifiii) p = 0.5
ii/ iv) p II o

signals
signals
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The effect of windows on the PCF2 delay estimates are shown in 
Fig. 5.2. It is noted first that the mean estimates with the two 
windows are similar and near the correct value, giving only a 
small error which, however, tends to be larger at odd than at 
even values of delay. For even delay values, the signal with the 
'whiter' spectrum (p = 0.5) gives consistently lower standard 
deviation in the delay estimate than the signal with stronger low 
frequency components (p = 0.9). Aliasing is not a problem at 
even delay values so the signal with the stronger high frequency 
components (more 'spiky' signal, p lower) gives better estimates. 
This has already been discussed in Chapter 3. When the delay is 
an odd number, aliasing is the main source of error in delay 
estimates. Aliasing is more severe at p = 0.5 than 0.9 which 
results in the larger standard deviation of delay estimates
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observed.

The trapezium window generally reduces the bias in mean and the 
standard deviation of the PCF2 estimates at even delay values and 
increases those at odd numbers when compared to the rectangular 
window. The trapezium window reduces the errors arising from 
non-circular delay, but it also reduces the effective signal 
length (increases the equivalent noise bandwidth, Harris, 1977). 
At the even values, noncircular delay is the major source of 
error in the delay estimate, so the trapezium window is of 
benefit. At the odd values, undersampling is the main problem, 
which is related to noise effects and so the rectangular window 
is generally the better choice.

For PCF1, p = 0.9 and large delay values, trapezium windows 
consistently improve the estimates. Fig. 5.3 also clearly shows 
that the delay estimates become progressively less reliable as 
the delay increases.

Comparison of the plots in Fig. 5.2. shows that additive noise to 
give input signal-to-noise ratio of 20 dB, causes some deterio­

ration in the delay estimates. The increase in errors is, 
however, small compared to those arising from aliasing.

Fig. 5.3. shows that PCF1 and PCF2 estimates are very similar 
with p = 0.5 and no noise, but PCF2 estimates generally have 
lower standard deviation with p = 0.9. PCF1 estimates tend to 
give greater bias and standard deviation than those from PCF2 
under noisy conditions and for large even delays, but are better 
at odd delay values when aliasing is the major source of error.
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This might be expected from theoretical considerations, since 

PCF2 was designed for noisy conditions and PCF1 is a modification 
for aOLiased data.

Fig. 5.3 PCF1 (dashed line) and PCF2 (solid line) delay estimates 
for undersampled Markov 1 signals with non-circular 
delay (integer values).
a) rectangular window, noise free signals
b) trapezium window, noise free signals
c) rectangular window, SNR = 20dB
d) trapezium window, SNR = 20dB
i, iii) p = 0.5
ii, iv) p = 0.9
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So far the signals have been delayed by integer values only. In 
Chapter 3 it was noted, that biased delay estimates result at 
non-integer delay values with aliased data. The plot of mean 
estimates showed an S-shape with estimates biased towards the 
nearest even value (Fig. 3.15). Now undersampled signals with 

non-circular, non-integer delay between 4.0 and 6.0 are studied, 
using delays in increments of 0.1 samples. These estimates will 
be used in the BL reconstruction in 5.2.3.
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Fig. 5.4 PCF delay estimates for undersampled Markov 1 signals 
with non-circular delay using rectangular (solid line) 
and trapezium (dashed line) windows.
a) PCF2, noise free signals
b) PCF2, SNR = 20dB
c) PCF1, noise free signals
d) PCF1, SNR = 20dB

ifiii) p = 0.5
iif iv) p = 0.9
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In Fig. 5.4 the PCF delay estimates with rectangular and trape­
zium windows are compared. The expected S-shaped curves for the 
error in mean estimates are observed, with a bias in delay 
estimates which is more pronounced when aliasing is severe (p 
small). The standard deviation of the estimates again shows a 
peak when the delay is an odd number (5.0). Trapezium windows 

are seen to have very little effect on the mean of the delay 

estimates. The standard deviation is also hardly affected by 
windowing with PCF2 estimates, but for PCF1 and p = 0.9, 
trapezium windows produce more consistent results (lower standard 
deviation). This may seem surprising, since the delay is only 
about 2% of the signal length and the window has a rise time of 
20% (60% flat) .
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In Fig. 5.5 PCF1 and PCF2 estimates are compared. For p = 0.5, 
the results of PCF1 and PCF2 are again similar. With p = 0.9, 
PCF1 reduces the bias in the mean delay estimates, but 
consistently increases its standard deviation.

Fig. 5.5 PCF1 (dashed line) and PCF2 (solid line) delay estimates 
for undersampled Markov 1 signals with non-circular 
delay.
a) rectangular window, noise free signals
b) trapezium window, noise free signals
c) rectangular window, SNR = 20dB
d) trapezium window, SNR = 20dB
i, iii) p = 0.5
ii, iv) p = 0.9
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It is concluded that the PCF estimator gives reliable results in 
the above example when delays are even values. Aliasing proved 
to be the most significant source of error which resulted in bias 
of the mean estimates at non-integer delay values and large 
standard deviation at odd delays. PCF1 did not in general 
improve the estimates and hence PCF2, the originally developed 
version, will be used in the BL reconstruction to follow. 
Trapezium windows did not result in greatly improved delay 
estimates compared to rectangular windows. The choice of window 

will however be left until after they have been tested in BL 
reconstruction because the window shape affects BL reconstruction 
directly as well as through PCF estimates.
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5.2.3. BL Reconstruction

The signal reconstruction technique is now tested on Markov 1 
signals with non-circular delays between 4.0 and 6.0 samples. 
First the correct value of delay is used followed by PCF2 
estimates. In this way distortion in the reconstruction due to 
inaccurate delay estimates can be distinguished from those due to 
other sources. It is concluded that unreliable delay estimates 
are the most significant cause of poor reconstruction - in the 
cases investigated here.

From the work carried out in Chapter 2, the major sources of 
error in the reconstructed signal are well established. It was 
shown that distortion and noise in the output signals increases 
as the delay approaches an even value. When the delay reaches an 
even number, reconstruction becomes impossible and the algorithm 
fails in an attempt to invert a singular matrix.

Non-circular delay causes inaccurate delay estimates. It also 
causes errors in BL reconstruction, because the technique was 

derived with the assumption of periodic data. Tapered windows 

should reduce these errors, but they also reduce the effective 
length of the signals so that errors from other sources, such 
as noise, may increase. The signal-to-noise (or signal-to- 
distortion) ratio is again used to quantify the goodness of 
reconstruction. This is calculated by comparing the recon­
structed with the original Markov 1 data. For trapezium windowed 
signals, the reconstructed data is compared with a windowed 

version of the original data; this is denoted by SNRl
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N-l N-l
SNR1 = [ X [f(i)w(i)]2 ]/[ X [f(i)w(i) - r (i) ]2

i=0 i=0
where f(i) and r(i) are the original and the reconstructed 
signals respectively and w(i) is the window function. The 
length N = 256 samples in all examples below.

Large errors in the reconstruction must be expected at the begin­
ning and end of the signals where the input data is tapered by 
the window function. In order to give a 'fairer' evaluation of 

the reconstruction, SNR2 is defined, which compares the signals 
only over the central 60% of the signal length where the 
trapezium windows are flat:

0.8*N 0.8*N
SNR2 = [ X [f(i)w(i)]2 ]/[ X [f(i)w(i) - r(i)]2 

i=0.2*N i=0.2*N

SNR1 and SNR2 were compared for BL reconstructions carried out 
with the correct values of delay (not estimates) and the results 
are shown in Fig. 5.6. As expected the SNR of the central
region (SNR2) is much higher than that calculated over the full 
signal length. For noise free data and a delay of 5.0 samples, 
reconstruction is perfect over the central region (SNR2) except 
for errors arising from the limited precision of the computer 
used. Here one input signal contains all the even samples of the 
reconstructed signal, the other all the odd ones. At the ends 

however, problems arise due to non-circular delay: samples
numbered 251, 253 and 255 in the reconstructed signal are the 
samples -5, -3 and -1 in the original data. As a result SNR1 
gives a much lower value than SNR2.
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Fig. 5.6 SNR1 (solid line) and SNR2 (dashed line) for BL recon­
structed noise-free Markov 1 signals, with non-circular 
delay, using correct delay values.
a) p = 0.5, rectangular window
b) p = 0.9, rectangular window
c) p = 0.5, trapezium window
d) p = 0.9, trapezium window

In Fig. 5.6 a and b the only source of error in the recon­
struction is non-circular delay. Both SNR1 and SNR2 are seen to 
decrease as the delay approaches an even value. The plots of 
SNR1 are very similar in shape to those in Fig. 2.4, where noisy 

data caused noisy reconstructions. It is noted however, that now 
the graphs are not symmetric but show lower signal-to-noise 

ratios at larger delay, whereas for signals with circular delay, 
symmetry was observed.

The peak value of SNR2 obtained in Fig. 5.6 a and b is limited
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only by the numerical accuracy of the computer. From the theory, 
no noise is expected in the reconstruction and SNR2 = °°. With 
trapezium windows (Fig. 5.6.c and d), SNR2 never reaches the same 
peak achieved with the rectangular window. Over the region used 
by SNR2, the even samples in the reconstructed signal are again 
identical to those of the original data but the odd samples are 
still affected by the taper of the window.

Fig. 5.7 SNR1 of BL reconstructed Markov 1 signals using rect­
angular (solid line) and trapezium (dashed line) windows 
and correct values of delay.
a) p = 0.5, noise free signals
b) P = 0.9, noise free signals
c) p = 0.5, SNR = 20dB
d) P = 0.9, SNR = 20dB

Reconstructions using rectangular and trapezium windows are
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compared in Fig. 5.7 and 5.8. The data for the noise-free case
is the same as that in Fig. 5.6. SNR1 (Fig. 5.7) shows that the 
trapezium window gives much better results than the rectangular 
one. This applies both for noise free and noisy signals, but the 
advantage is reduced by additive noise, as might be expected. 
Fig. 5.8 still shows advantages of the trapezium window for 
delays near even values, but not at an odd value (5.0). The 
results for the two windows are almost identical when noise is 
added to the input data (20dB).

Fig. 5.8 SNR2 of BL reconstructed Markov 1 signals using rect­
angular (solid line) and trapezium (dashed line) windows 
and correct values of delay.
a) P = 0.5, noise free signals
b) P = 0.9, noise free signals
c) P = 0.5, SNR = 2 0dB
d) P = 0.9, SNR = 2 0dB
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In the experiments above, the known, correct value of delay was
employed in the reconstruction. When delay estimates are used 

instead, the results degrade as would be expected. In Fig. 5.9, 
for which PCF2 estimates were used, reconstructions were good for 
p = 0.9 and delays near an odd value. They deteriorate however, 
as delays approach even values. Delays of 4.0 and 6.0 have been 
included in these plots, even though it is known that recon­
struction here is impossible. The algorithm does not fail only 
because delay estimates are inaccurate.

Fig. 5.9 SNR2 of BL reconstructed Markov 1 signals using 
rectangular (solid line) and trapezium (dashed line)
windows and PCF2 delay estimates
a) p = 0.5, noise free signals
b) p = 0.9, noise free signals
c) p = 0.5, SNR = 20dB
d) p = 0.9, SNR = 20dB
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Trapezium windows gave some improvement at p = 0.9, but none for

p = 0.5. Additive noise on the input data had no great effect on 
the output signal-to-noise ratio.

These results can be compared with those from linear inter­
polation of odd signal samples from the even ones, which gave an 
SNR2 value of 4.8dB at p = 0.5 and 12.4 dB at p = 0.9.

The rather erratic lines seen in Fig. 5.9 suggest large 
variations in SNR for individual reconstructions which are not 
smoothed out by averaging 30 results. This was confirmed when, 
for example at p = 0.5 and a delay D = 4.5 SNR2 values for 
individual reconstructions ranged from -4dB to -65dB. This only 
confirms that the reconstructions are very strongly signal 
dependent, with large variations in the results even for 
different realizations of the same Markov 1 process.

Comparison of these results (Fig. 5.9) with those obtained using 
the correct delay value (Fig. 5.8) show that unreliable delay 
estimates can render the reconstruction technique useless. With 

aliased data, the delay estimates for p = 0.5 were generally much 
worse than for p = 0.9 (Fig. 5.5), both in mean and in standard 
deviation. The signal-to-noise ratios of the reconstructed 
signals were very similar for p=0.5 and p=0.9 when the correct 
delay value was used, but with delay estimates, p =0.9 gives 
much better results.
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Fig. 5.10 Two examples of original (solid line) and BL recon­
structed (dashed line) Markov 1 signals (p = 0.5, 256
samples long) using PCF2 delay estimates. True delay, 
D = 4.5 samples.
a,b) First signal (SNR1 = -12.2 dB) 
c,d) Second signal (SNRl = 1.36 dB)

Individual reconstruced signals are shown in Fig. 5.10 and 5.11. 
Two realizations of the Markov 1 data are shown for both p = 0.5

(Fig. 5.10) and p = 0.9 (Fig. 5.11), one for which the recon­
struction worked well, the other where it failed. The even 

samples are of course always correct, since they are the samples 
of one input signal. The odd samples are interpolated by the 
reconstruction technique and may be unreliable. The errors 

observed in Fig. 5.10.a. and 5.10.b are very characteristic for 

BL reconstruction: a pronounced zig-zag shape. It is very
convenient that the failure of the reconstruction technique gives
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such distinctive errors. By inspection of the results, poor 

reconstructions can be identified.

Fig. 5.11 Two examples of original (solid line) and BL recon­
structed (dashed line) Markov 1 signals (p = 0.9, 256
samples long) using PCF2 delay estimates. True delay, 
D = 4.5 samples.
a,b) First signal 
c,d) Second signal

It should be noted that in the examples shown, with a delay of 
4.5 samples, sampling is strongly non-uniform. Better results 
can be found with a more uniform sample distribution.

In summary, BL reconstruction is successful when using correct 

delay estimates. With estimated values of delay, good results 

are obtained when delays are odd numbers, i.e sampling is
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uniform. When aliasing is not severe (p = 0.9), results become
poor only for strongly non-uniform sampling. The experimental 
results further lead, to the interesting conclusion that poor 
delay estimates from aliased data are the major cause of 

distortion in reconstructed signals. This is most severe, when 
sampling in a strongly non-uniform pattern. Poor reconstructions 
can frequently be identified by a characteristic zig-zag pattern 
of the signal. This appears especially near the beginning and 
the end of the data.
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5.3. TWO DIMENSIONAL SIGNALS

5.3.1. Introduction

So far the two dimensional BL reconstruction and PCF alignment 
algorithms have been tested only under ideal conditions. The one 
dimensional techniques have been evaluated in some detail and the 
major difficulties in their application have been discussed. Now 
the two dimensional techniques are tested on a few images in

order to get some indication of their effectiveness. The
conclusions are consistent with the results obtained on one

dimensional signals, both in the present and in previous
chapters.

Four undersampled versions of an image, each with small shift 
relative to the others are combined in order to eliminate 
aliasing. In order to test the techniques, a region of a digital 
image of size 64 x 64 pixels was selected and undersampled by 
discarding all 'odd' samples which results in a 32 undersampled 
image. The severity of aliasing in these images depends on the 

spectra of the original data. Four such signals, all slightly 
shifted relative to the others, are combined in the BL recon­
struction technique and the results may be compared with the
original data. In a few later examples, a region of 128 pixels
. 2is reconstructed from 4 undersampled versions of 64 pixel size.

The reconstruction algorithm requires knowledge of the relative 
shift along the x and y axis between the undersampled versions of 

the data. This may be known a priori but generally is estimated 
from the data. The two dimensional PCF algorithm is available
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for this purpose and will also be evaluated on images.

As in the one dimensional case, non-circular delay causes errors 
in signal reconstruction and alignment. These can be reduced by 
the application of tapered windows. Square symmetric windows 
with a trapezium shape along both x and y axis are tested and 
results compared with those of the boxcar (rectangular) windows. 

The images used have grey level values between 0 and 255 and 
their mean is generally a large positive value. It is therefore 
essential that the signal average is subtracted from each pixel 
prior to windowing, else errors may arise in signal alignment and 
reconstruction.

Systematic evaluation of two dimensional techniques is more 
difficult than of their one dimensional equivalents because of 
the larger number of parameters involved. Signals must be 
aligned along both the x and y axis and there are four rather 
than just two signals, which have two dimensional spectra. The 
approach taken here is therefore to select just a few more inter­
esting and instructive examples, apply the techniques and discuss 
the results. In order to demonstrate the results of the tech­
niques under a range of signal characteristics, small regions of 
larger images were selected which show the properties of 
interest. The properties selected for investigation are based on 
the theoretical analysis in previous chapters and one dimensional 
experiments.

The results of one dimensional experiments prove to predict well 
the behaviour of the two dimensional techniques. There are 
however additional sources of errors in images; the pictures may

262



be distorted by motion within the images, changes in angles of 
view, rotation and scale changes, variations in lighting etc.

In order to quantify the goodness of a reconstruction, a least 
mean square error criterion has been used by many investigators. 
It has however been noted that this is of only limited value in 
assessing the visual quality of images (Gonzales and Wintz, 1987, 
p.257). The least mean square error is not sufficiently 
sensitive to edge preservation nor does it take into account the 
skill of a human observer to detect regions in an image with 
obvious distortion, eg. the grid pattern found in some BL recon­
structed images shown below. It is anticipated that the recon­
structed signals will.be visually inspected by humans and it is 
therefore left to the observer to judge the goodness of the 
reconstruction.

In order to display the images, the grey levels were linearly 
rescaled to fill the full eight bit range (0 to 255) available. 
The minimum and maximum values of the signal were found and 
mapped onto 0 and 255 respectively, with a linear scale in 
between. This avoids saturation when the reconstructed signal 
exceeds the 0 to 255 range, and guarantees maximum grey level 
resolution when the range of grey levels in the image is small. 
Furthermore, since the mean grey level is usually subtracted from 
the signal before applying a tapered window, the mean value of 
the reconstructed data is of little significance. The accurate 
display of image details is therefore the most important conside­
ration when comparing original and reconstructed images.
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The unit of shift used is again the sample spacing. A shift of 1 
sample corresponds to the distance between two samples of the 
reconstructed (or original) signal, in either the x or y 
direction.

Three types of images were processed. A series of satellite 
(Meteosat) images of West Africa (Fig. 5.12 and 13), some medical 
X-ray images (Angiograms, Fig.5.14) and some pictures of an 
ostrich from a photograph (Fig. 5.15).

The satellite images (SAT1 to SAT19), two of which are shown in 
Fig. 5.12 and 5.13, are from a series of frames captured on 
successive days by a geostationary satellite. The images were 
acquired at the same time of day so the lighting would remain 
fairly constant. The pictures are almost, but not perfectly 
aligned and could be suitable for the application of the recon­
struction technique. Cloud in the images presents a serious 
problem however, in spite of the attempt to choose a region of 
the world known to be relatively free of cloud.

In addition to the thick (white) cloud seen in Fig. 5.12 and 
5.13, haze presents a further problem which alters image grey 
levels. Large areas of the images show few clear features and 
are thus unsuitable for testing the reconstruction technique. 
The lack of clear edges also does not allow accurate alignment 

which is required for BL reconstruction. The satellite images 
cover only a small range of grey levels; this decreases the 
effective signal-to-noise ratio of the data further.
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Fig. 5.12 Satellite image SAT1 showing regions 1 and 2.

Region 3

Fig. 5.13 Satellite image SAT2 showing region 3.

In spite of these problems, two regions (region 1 and 2) of 64^ 

pixels were found in the 19 images, for which there were four 

reasonably cloud-free versions. BL reconstruction was applied to 

these.

The X-ray images (angiograms, ANG1 to ANG4, ANG1 is shown in Fig. 

5.14) were generated on a commercial digital X-ray machine at the
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Middlesex Hospital, London. During the angiographic procedure, a 

dye which is opaque to X-rays is injected into the bloodstream of 

the patient and its progress is followed during a series of X-ray 

exposures taken in quick succession. The reconstruction 

technique can be applied to the regions of the image clear of 

dye, or where the image does not change, as the dye flows through 

the blood vessels. The images are shifted by small amounts 

relative to each other due to the patient moving or breathing. 

The success of the technique in these applications must be 

expected to vary considerably from case to case, depending on the 

region of the body and patient behaviour.

Region 2

Region 1

Fig. 5.14 Angiogram ANG1 showing regions 1 and 2

As with the satellite images, the range of grey levels covered by 

these images proved to be rather narrow with the resultant 

increase in relative noise levels. These images also have few 

clear features. There are sharp edges such as the ribs, but 

these run only in one direction and allow for accurate alignment 

only at right angles to them. Two regions of the images were
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selected to demonstrate PCF alignment and BL reconstruction and 

the results are instructive in understanding the behaviour of the 

techniques.

Finally the images of the ostrich (0S1 to 0S4, 0S1 shown in Fig. 

5.15) . Here a video camera (of not very high quality) was 

pointed at a photograph. The picture was chosen because of the 

fine detail seen in the feathers of the head which should allow 

accurate alignment of the signals and effective reconstruction 

from undersampled versions. A series of four images were taken 

with small movement of the camera between shots.

Region 2 

Region 1

Region 3

Fig. 5.15 Image of Ostrich 0S1 (zoomed by factor of 2) showing 
regions 1, 2 and 3.

The grey level range in the images is much improved compared to 

the previous two examples. Any noise in the images is only due 

to the video system and quantization. These images prove to be 

more suitable for the application of the alignment and recon­

struction techniques and good results were obtained.
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5.3.2. Evaluation of Two Dimensional PCF alignment

For the accurate reconstruction of images, a reliable estimate of 
the relative shift between undersampled versions is required. 
Inaccurate estimates were seen to cause severe distortion in one 
dimensional reconstructions and a similar result may be expected 
with two dimensional data.

In Chapter 3 the PCF delay estimator was developed for one dimen­
sional signals and its performance was investigated on Markov 1 
data. The algorithm was first designed for adequately sampled 
signals (PCF2 - with h frequency weighting) and then modified 
for undersampled signals (PCF1 - with weighting proportional to 
the frequency). The two dimensional extensions to the techniques 
were also described in Chapter 3 and these will again be denoted 
by PCFl and PCF2 respectively.

In order to align two dimensional signals, estimates of shift 
along both the x and y axis are required. The accuracy in these 
two directions may be different and depends on image character­
istics. In general accuracy is improved with increased high 
frequency content in the signal. Sharp edges in images allow for 
precise alignment at right angles to the direction of the edge.

The accuracy and reliability of the PCF estimator is now tested 
on a few examples of images with a range of characteristics. It 

is shown that the estimator is signal dependent as are the 
benefits of tapered windows. The examples given here serve only 
as an indication of the accuracy and reliability of the methods
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and to demonstrate some of the problems involved.

The PCF alignment techniques are tested by shifting regions of
images by known amounts and then estimating the shift from this

2data. Square regions of the images of size 128 pixels are 
moved, using the frequency domain, by distances which are not
integer multiples of the sample spacing. Non-circular delay is

. 2 .simulated by selecting smaller (64 ) regions of the original and
delayed (128 ) images in an area outside the region affected by
wrap around. By taking only every other sample of these 
pictures, undersampled signals are generated. In these tests of 
the PCF techniques the results can be compared with known correct 
values of shift, but the examples are 'ideal' because the shifted 
versions do not suffer from noise or distortion. The techniques 
prove to be generally accurate to within a few hundredths of a 
pixel.

The techniques are then evaluated on a series of 'real' images, 
with unknown shifts between them. Here the PCF estimates are 
compared with results from a template matching technique and an 
attempt to follow the shift of a particular feature in the

images. Comparing the estimates from the adequately and under­
sampled versions of the data gives further indication of the 

accuracy of PCF estimates from aliased data. PCF2 is tested on 
adequately sampled data and both PCF1 and PCF2 are evaluated on 
undersampled signals.

In a first example, region 1 of the satellite images (Fig. 5.12) 

was shifted by a range of values between 0.2 and 0.8 samples. 
The PCF estimates are shown in Table 5.1. for rectangular and
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trapezium windows, adequately sampled and aliased signals.

Table 5.1 Shift estimates for the Satellite images SAT1, region 
1 for adequately and undersampled signals with non­
circular shift.

a. Adequately sampled data
Shift Estimates
x y PCF2

RW TW

0..2 0,.0 0..21 0..01 0..19 -0..01
0,. 4 0,.0 0,.41 0..01 0..38 -0..01
0..6 0..0 0..62 0..02 0..57 -0..01
0 ..8 0,.0 0..83 0..03 0..76 -0..02
0 ..0 0..2 -0..01 0..16 -0..01 0..18
0..0 0..4 -0..01 0..32 -0..02 0..35
0 ,.0 0..6 -0..02 0..47 -0..02 0..53
0 ..0 0 ,.8 -0..02 0..63 -0..03 0..71
0 ,.2 0,.2 0,.20 0..17 0,.18 0..17
0 ..4 0.4 0..40 0..33 0 ..36 0 ..34
0 ,.6 0.6 0,.60 0..49 0,.54 0..52
0..8 0.8 0..80 0..66 0 ,.73 0..69

b. Undersampled data
Shift 
x y

Estimates
PCF2 PCF1

RW TW RW TW
0..2 0..0 0..19 -0 ..02 0.. 18 -0 ..01 0 ..19 -0 ..02 0..18 -0..02
0.. 4 0..0 0..37 -0..04 0..36 -0..02 0..37 -0..05 0..36 -0..04
0 .. 6 0..0 0..56 -0..05 0..53 -0..04 0..56 -0..06 0..53 -0..05
0 ..8 0..0 0,.76 -0..04 0..71 -0..06 0..76 -0..06 0..70 -0..07
0 ..0 0..2 -0..01 0..18 -0..03 0..18 -0 ..02 0 ..17 -0..03 0..18
0 ..0 0..4 -0..03 0..35 -0..04 0..37 -0..03 0 ,.33 -0..04 0..36
0..0 0 ..6 -0,.03 0 ,.51 -0..04 0 ..55 -0..03 0 ,.49 -0..04 0..55
0..0 0..8 -0..03 0 .. 66 -0..03 0 ..73 -0..03 0 ..63 -0,.02 0..73
0 ..2 0..2 0,.17 0..16 0,.16 0..17 0..17 0,.15 0,.16 0..16
0 ..4 0..4 0..36 0 ..33 0..33 0 ..35 0..36 0 ..30 0..33 0..33
0,. 6 0,.6 0,.56 0..50 0,.52 0,.52 0..56 0 ,.46 0.52 0..51
0 ..8 0..8 0..77 0..66 0,.72 0..69 0..78 0 ,.62 0,.72 0.. 67

This image has as its major feature a mountain range with clearly

defined edges, allowing for accurate alignment. The background 

around these mountains is fairly constant so that circular and
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non-circular shifts lead to similar results. Trapezium windows
are therefore not expected to improve the estimates. Table 5.1. 
shows that accurate estimates of shift are obtained, especially 
for the adequately sampled data. The undersampled signals give 
only slightly worse estimates suggesting that aliasing is not 
severe. It is therefore not surprising that PCF1 which was 
designed specifically for aliased data, shows no improvement over 
PCF2. The amount of motion is generally underestimated, a bias 
resulting from non-circular delay which is consistent with the 
results of chapter 4.

The estimates from another example, (region 2 , Fig. 5.12) are 
shown in Table 5.2. Here the image again shows a clear feature, 
the coast, which should make accurate alignment possible. The 
signal is very different at opposite edges however so that the 
PCF estimate with its assumption of periodic data, gives 
inaccurate results. The trapezium window improves the estimates 
somewhat, as might be expected. It is noted that the delay is 
less than 1% of the image size and the window has a rise time 
(and fall time) of 20% of the image size.

Table 5.2. Shift estimates for the Satellite images, region
2, with undersampled signals and non-circular delay.

Shift Estimates
x y PCF2 PCFl

RW TW RW TW
0.4 0.0 0.16 -0.02 0.21 CMooi 0.14 COOOi 0.16 0.00
0.0 0.4 ■0.01 0.25 0.01 0.29 -0.01 0.25 0.01 0.28
0.4 0.4 0.15 0.23 0.21 0.27 0.14 0.23 0.17 0.29

In region 3 (Fig. 5.13) there is a cloud which fairly distinct
edges, and the background grey-level increases in brightness from
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top to bottom. It should be noted that only one image is being 
processed such that cloud movement does not present a problem. 
Some results are given in Table 5.3. For shifts only in the 
y-direction the estimates are poor but are greatly improved by 
trapezium windows. For shifts only along the x-axis, the 
estimates are good with and without the trapezium window. For 
shifts in both the x- and the y-direction the estimates are much 
better along the x- than the y-axis, and both are much improved 

by a trapezium window; This result may have been expected, since 
circular shift here causes larger errors in the y- than in the 
x-direction.

Table 5.3. Shift estimates for the Satellite images , region
3, for undersampled signals with non-circular delay.

Shift Estimates
x y PCF2 PCF1

RW TW RW TW
0.4 0.0 0.40 0.00 0.36 0.04 0.38 0.00 0.34 0.03
0.0 0.4 0.16 0.14 0.03 0.32 0.19 0.10 0.07 0.26
0.4 0.4 0.57 0.14 0.39 0.37 0.59 0.09 0.42 0.30
Shift Estimates
x y PCF2 PCF1

RWr  TW RW TW
0.8 0.0 0.80 0.04 0.70 0.11 0.79 0.04 0.68 0.11
0.0 0.8 0.29 0.36 0.03 0.73 0.30 0.30 0.08 0.63
0.8 0.8 1.07 0.37 0.72 0.82 1.10 0.30 0.78 0.70

Results for undersampled data are again ve ry similar to t
for adequately sampled versions. This is again probably due to 
the weak high frequency spectrum of the image manifested by the
lack of sharp edges in the data.

It is concluded from these and other examples that accurate 

alignment can be obtained by the PCF technique. Poor estimates, 

when opposite edges of the image are very different, can be
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improved by two dimensional trapezium windows. In the examples 
tried, undersampling by a factor of two did not change the shift 
estimates significantly. In these aliased signals PCFl did not 
improve the estimates compared to PCF2.

The PCF estimator was then tested on a sequence of satellite 
images, acquired on different days from the same location. Here, 
the actual shift is not known for comparison. First the set of
19 images was searched for regions of which four cloud free

. . . 2versions were available. Two regions of 64 pixels were found
which had some clearly defined edges for alignment and no cloud 
(region 1 and 2). The alignment technique was applied to these 
and the results are used later in BL reconstruction.

It was known that the sequence of satellite images were already 
roughly, but not perfectly, aligned. The PCF estimates were 
compared with two simple alternatives. First a particular small 
feature was identified by visual inspection in two frames and the 
relative location of these used as a shift estimate. This is 
called the 'Feature Location' (FL) estimator. Of course only a 

very rough motion estimate is thus found, at best accurate to 
+0.5 pixels. The technique proved difficult to apply because of 
the lack of well defined small features in the images.

Another estimate of signal alignment is given by the location of 
the least mean square error between the images. The minimum 
error gives in addition a measure of the similarity of the 

signals. For this estimate, a region (template) of one image of 

size 64 pixels was compared with a similar region from another
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frame and the root mean square difference found. The template 
was moved over a range of _+ 5 pixels and the location of the 
minimum root mean square difference used as the shift estimate. 
This estimator was called the 'Least Mean Square' (LMS) estimate. 
It also gives an accuracy of no more than + 0.5 pixels. Some 
form of interpolation of the least mean square error surface 
could be used to obtain finer resolution (eg. Haas and Lindquist, 
1981) but this was not implemented.

It is noted that the two techiques just described frequently gave 
different estimates in the satellite images, in spite of their 
low resolution.

First the alignment techniques were applied to region 1 (Fig. 
5.12) on the adequately sampled versions. All shifts were 
calculated relative to the frame SAT1, the first in the sequence 
and the results are given below in the form x,y. Rectangular and 
Trapezium windows are denoted by RW and TW respectively.

Table 5.4 Motion estimates for region 1 of the satellite images.
Estimator: FL LMS PCF2
Window: RW RW RW TW
Image: 
SAT1 0, 0 0, 0 0 , 0 0 , 0
SAT2 -1,-3 -2,-3 -0.63,-2.43 -0.50,-2.45
SAT 3 0,-4 -1,-4 -0.10,-3.41 0.24,-3.60
SAT 4 o,-i -1,-1 0.18, 2.17 0.08,-1.36
The results from the four techniques agree roughly. One reason 

for the difference in estimates arises from the noise in the data 

indicated by the large minimum mean square error value found by 

the LMS technique. This 'noise' may well have a large contri­

bution from haze over the scene, in addition to the electronic 

noise. Below the minimum root mean square errors (relative to
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SAT1) are shown together with the mean, minimum and maximum 
grey-level values of that region.

Table 5.5 Image statistics for region 1 of the satellite images.
image minimum maximum mean minimum rms
SAT1 110.0 146.0 122.03 oo
SAT 2 114.0 152.0 126.18 4.9
SAT 3 114.0 153.0 125.73 4.5
SAT 4 114.0 152.0 125.46 4.2
The minimum rms error is large, considering the narrow range of 
grey levels in the images. Good estimates can therefore not be 
expected.

On the undersampled versions of these signals, PCF2 estimates
were as follows:

Table 5.6 PCF2 estimates for undersampled versions of region 1 of
the satellite images.

RW TW
SAT1 0 , 0 0 , 0
SAT2 -0.66,-2.39 -0.44,-2.52
SAT3 -0.12,-3.34 -0.22,-3.50
SAT 4 18.51, 1.82 -0.13,-1.34
PCF2 was used rather than PCFl because the previous experiments
had shown PCFl to have no advantage over PCF2 with noise free 
data. Even less advantage might be expected from PCFl with noisy 
signals since the theory and one dimensional experiments show 
that PCF2 is less sensitive to noise than PCFl. The very poor 
result with SAT4 and rectangular windows should be noted, 
together with improvements through trapezium windows. Fig. 5.16 
shows the PCF estimates for the original and the undersampled 
signals with both rectangular and trapezium windows.
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X-AXIS —>
Fig. 5.16 PCF2 estimates for region 1 on four satellite images.

-f. original image, rectangular window 
X original image, trapezium window 
O undersampled image, rectangular window 
• undersampled image, trapezium window

Similar tests were carried out on a second region and four 
satellite images (region 2, Fig. 5.12). Here the images SAT1, 
SAT5, SAT8 and SAT9 were processed. In these images only the 
coastline is a clear feature from which alignment can be 
estimated. This however is unsuitable for the FL technique 

applied in the previous example.

The grey-levels at the top of these regions differ strongly from 
those near the bottom edge. Non-circular shift therefore causes 
errors in the motion estimates. Some improvement in results can 
however be expected through trapezium windows. In this example
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all shifts were estimated relative to SAT5.

Table 5.7 Motion 
images.

SATl 
SAT 5 
SAT 8 
SAT 9

estimates for region 2 of the satellite
LMSE

RW
1,3 1.18,2.79
0,0 0 ,0

-2,0 0.50,1.52
-1,1 0.27,0.82

PCF2
TW

1.62,4.53 
0 ,0 
0.81,2.58 
0.87,2.20

Here large differences in the three estimates are noted. Again

the minimum rms error shows the large difference between these 
images.

Table 5.8 Image statistics for region 2 of the satellite images.
min. max. mean min. rms

SATl 108 154 115.94 3.56
SAT5 109 141 117.24 0.00
SAT 8 113 145 121.54 5.01
SAT 9 113 140 121.17 4.49
The estimates for the undersampled signals are as follows:

Table 5.9 PCF2 estimates for undersampled versions of region 2 of 
the satellite images.

SATl 
SAT5 
SAT 8 
SAT 9

RW
1.02,2.83 
0 ,0

TW
1.41,4.49 
0 ,0

0.48,1.39 0.28,2.51
0.20,0.90 0.73,2.17

Fig. 5.17 shows the motion estimates of Table 5.8 and 5.9. These 

plots suggest that the image has moved in roughly a linear 
manner. The estimates for the original and undersampled signals 
are very similar, which suggests that aliasing is not severe and 
the signals have a weak high frequency spectrum. The estimates 
for the trapezium and rectangular windows differ however, which 
might have been expected from the large difference in grey-level 
between the top and the bottom of the images.
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X-AXIS — >
Fig. 5.17 PCF2 estimates for region 2 on four satellite images.

+ original image, rectangular window 
x original image, trapezium window 
O undersampled image, rectangular window 
• undersampled image, trapezium window

Much better results are obtained from images of the ostrich (Fig. 
5.15). Here the major sources of error in alignment are due to 
non-circular delay and noise which arises mainly in the camera. 

It may be assumed that the sampling rate of the original digital 
signals is adequate because the camera has fairly low spatial 
resolution (bandwidth). Undersampled signals are later produced 
by discarding all odd samples.
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Table 5.10 Motion estimates for images of the ostrich (region 1)
LMSE PCF2

RW TW
OS1 o o oo oo

OS2 1,-1 0.65,-0.44 rHO1KDmo

OS3 1,-1 0.65,-1.04 0.44,-1.03
OS 4 o,-i -0.13,-0.49 -0.27,-0.52

Table 5.11 PCF2 estimates for 
ostrich (region 1).

051
052
053
054

RW
0 f 0 
0.65,-0.44 
0.56,-1.01 
•0.15,-0.48

undersampled versions of the

TW
0 , 0 
0.53,-0.41 
0.35,-0.98 

-0.29,-0.51
Here undersampling again does not change the shift estimates 
greatly.

The minimum least mean square error values show that noise levels 
are much lower, when compared with the signal's dynamic range, 
than in the previous examples.

Table 5.12 Image statistics for images of the ostrich.
min. max. mean min. rms error

OS1 25.0 138.0 108.48 0.00
OS2 25.0 136.0 108.77 3.50
OS3 26.0 137.0 109.01 3.44
OS 4 26.0 136.0 108.82 3.03
Further estimates of image alignment were conducted
regions of the image and some of the results are given in 5.3.4 
where they are used in BL reconstruction.

5.3.3. BL Reconstruction of Correctly Aligned Signals

The reconstruction algorithm is now applied to a series of 
signals using known, correct values of shift. For these experi­
ments selected regions of an image are shifted (non-circular 
delay) using the Fourier domain, as described in the previous
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section. Four of these misaligned versions are undersampled and
the reconstruction algorithm is applied to them. The results can 
then be compared with the original data.

The BL technique gives perfect results under the ideal conditions 
of: adequate average sampling rate; no noise; correctly aligned
data and circular delay. The only source of error under these 
conditions is the numerical limitation of the computer used.

In this section, errors arising from non-circular delay (non-
periodic signals) are investigated. It was shown in Chapter 2
that as samples in the 'bunches' move closer together and
sampling therefore becomes more irregular, errors in the recon-
structed data increase. This was demonstrated on one dimensional 
data in the present chapter and Chapter 2 and similar effects are 
now observed for images.

Fig. 5.18.a and b show reconstructions of region 1 of the 
satellite images (Fig. 5.12) with the rectangular window. For 
Fig. 5.18.a the input signal was shifted by (0,0), (1.1,1.2), 
(0.9, 1.3) and (1.2, 1.9) along the x, y axis, for Fig. 5.18.b by 
(0,0), (2.3,3.1), (3.2,2.1), (2.1, 2.4). These images were then

undersampled to form the four input signals for the recon­
struction process. Here, as in all subsequent examples, the 
shifts are given with respect to the first input signal. The 

samples of the first, undersampled input signal therefore form 
the even samples (x and y even) of the reconstructed data. The 
values of the remaining samples are calculated by the BL 
algorithm. It is errors in these values which form the grid 
pattern observed particularly around the edges of the results
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shown in Fig. 5.18.b. The errors appear especially near the 

edges because this is the region affected by non-circular delay. 

This distortion is worse for Fig. 5.18.b than for Fig. 5.18.a, 

because the former is shifted by a larger amount. The raster 

pattern observed here corresponds to the zig-zag errors seen in 

one dimensional reconstructions in Fig. 5.10 and 5.11. Such a 

characteristic pattern is very useful because regions in which 

the technique has failed are very obvious.

Fig. 5.18 Reconstruction of region 1 of the satellite images, 
(zoomed by factor of 4) using known, correct shift 
values of:

a) (0,0), (1.1,0.1), (0.3,1.4), (1.2,1.3)
b) (0,0), (2.3,3.1), (3.2,2.1), (2.1,2.4)
c) (0,0), (0.2,0.2), (0.4,0.2), (0.6,0.2)
d) (0,0), (0.2,0.2), (0.2,0.4), (0.2,0.6)

In more experiments, greater misalignment lead to worse results, 

as expected. When opposite edges of the signals were clearly

different to each other, trapezium windows improved the recon­

structions .
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The grid pattern observed suggests that the spatial frequencies 
u =0, v = N/2; u =  N/2, v = 0 and u = v = N/2 (where N is the 
size of the reconstructed image) are the major contributors to 
the artefact. Setting them to zero does not, unfortunately, 
eliminate the pattern, instead it spreads across the whole image. 
This shows that the errors in BL reconstruction involve more 
than just the harmonics at half the sampling rate - as might 
have been expected.

It has been shown on one dimensional data that as the delay 
approaches an even value, the reconstructions become worse. In 
two dimensional applications similar results are obtained, but 
now there are three values of shift to consider. With, for 
example, three samples closely clustered, the location of the 
fourth can make a significant difference to the results.

Experiments show that, as expected, two dimensional recon­
structions are rather unstable if the samples are closely 
'bunched' but also if they lie almost on a straight line. The 
latter can easily be explained through an example: let the four 

undersampled versions of the image have zero shift along the 
y-axis and varying delays in the x-direction. In this case, all 
samples in a bunch lie on a straight horizontal line. This gives 
high spatial resolution along the x-axis but no additional infor­
mation along the y-axis. The BL reconstruction algorithm fails. 
Similarly, reconstruction is impossible when the samples lie 
along any straight line. Experiments prove that reconstructions 
from samples forming almost a straight line are unstable. Fig. 
5.18.C and d show reconstructions from samples with delays of
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(0,0), (0.2,0.2) (0.4,0.2) (0.6,0.2) and (0,0) (0.2,0.2)

(0.2, 0.4), (0.2,0.6) respectively. In the first example the
samples lie close to a horizontal line and the reconstruction 
gives horizontal bands; in the second case the samples lie close 
to a vertical line with vertical bands appearing in the 
reconstruction.

In this section images have been reconstructed from correctly 
aligned versions. The experiments have confirmed the results 
from one dimensional data: as the samples are moved closer
together, BL reconstruction becomes unstable. It has given the 

new result, that in two dimensional signals, samples lying close 
to a straight line also lead to unstable reconstructions. Good 
reconstructions were obtained on satellite images shifted 
(without wraparound) using the Fourier domain, provided the 
delays were not large and the overall sampling near uniform. 
Errors in the reconstruction due to non-circular delay could be 
reduced by trapezium windows when opposite edges of the images 
were clearly different.

5.3.4. BL Reconstruction with PCF Shift Estimates

In the previous section the signals were reconstructed using 
known, correct values of the relative shift between the under­
sampled versions. In 5.3.2. the PCF algorithm was tested. Now 
the results of PCF2 alignment are applied in BL interpolation to 
test the complete reconstruction technique for signals with 
unknown relative shift.

As before, the algorithm is demonstrated on a few examples. The
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results are again seen to be strongly signal dependent. The aim 
here is to point out some signal characteristics which might lead 
to failure of the technique. Particular attention is paid to the 
benefits of applying tapered (trapezium) windows.

2As m  5.3.2., first images of size 64 are processed which have 
been shifted (without wrap around) using the Fourier domain and 
then undersampled by taking only the even samples. From four of 
these signals, shift is estimated using the PCF2 algorithm and 
the results applied in BL reconstruction. The images thus 
derived can then be compared with the adequately sampled
original. Rectangular or trapezium windows are applied before 
the DFT is calculated and are therefore present in both the PCF 
alignment and BL reconstruction.

First, the four input signals are shifted by (0.0,0.0), (0.0,
0.4), (0.4,0.0) and (0.4,0.4) respectively in the x,y direction.
In these cases the samples were quite closely clustered such that 
sampling is clearly non-uniform. Some distortion in the

resultant image is therefore expected, due to the non-circular 
delay.

The first image processed was region 1 (Fig. 5.12), which was 
shifted as described above and the PCF2 estimates for the four 
shifted versions (SATA to SATD) found from the undersampled data 
as (see also Tab. 5.1):
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Table 5.13 PCF estimates for the shifted undersampled versions of
region 1 of the satellite images.

FRAME TRUE SHIFT PCF2
RW TW

SATA oooo

o o o o o o

oooCNoo

SATB ooo -0.03, 0.35 r~ooooo1

SATC ooo 0.37,-0.04 0.36,-0.02
SATD «3<oo 0.36, 0.33 0.33, 0.35

The shift estimates are seen to be accurate. The reconstruction 

was then based on the estimates and the results are seen in Fig. 

5.19.a using a rectangular window and in Fig. 5.19.b with a 

trapezium window. The reconstruction is excellent.

b

d

Fig. 19 Reconstructions of satellite images 
(0,0), (0.0,0.4), (0.4,0.0), (0.4,0.4).
of 4 .
a) region 1, rectangular window
b) region 1, trapezium window
c) region 3, rectangular window
d) region 3, trapezium window

(SATl) shifted by 
Zoomed by factor

As discussed above, the mountain range seen in the image allows 

for accurate alignment. Aliasing is not so severe as to cause 

large errors in delay estimates. The images are fairly similar 

on opposite edges so errors due to non-periodic data are small 

and trapezium windows achieve little improvement. Along the
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edges the taper caused by the trapezium window can be seen 
clearly, but in the centre of the image, the two reconstructed 
signals are very similar.

In a second example (region 3, Fig. 5.13), the background 
grey-level increases from the top of the image to the bottom. 
This leads to poor alignment with the rectangular window, but 
the results are greatly improved by trapezium windows, as is the 
reconstruction (Fig. 5.19.C and d)

The PCF2 estimates from the undersampled signals in this example 
were (see also Tab. 5.3):

Table 5.14 PCF estimates for the shifted undersampled versions of 
region 3 of the satellite images.

FRAME
SATA
SATB
SATC
SATD

TRUE SHIFT

0 .0,0 . 0  
0.0,0.4 
0.4,0.0 
0.4,0.4

PCF2
RW

0 .0 0,0 . 0 0
0.16,0.14
0.40,0.00
0.57,0.14

TW
0.00,0.00
0.03,0.32
0.36,0.04
0.39,0.37

In a third example (region 2, Fig. 5.12), the grey levels along 
the top edge of the image are very different to those along the 
bottom; poor results in the reconstruction might be expected. 
The trapezium window improves the result but not as dramatically 
as in the previous example. Here the shift estimates are (see 
also Tab. 5.2):

Table 5.15 PCF estimates for the shifted undersampled versions of 
region 2 of the satellite images.

FRAME TRUE SHIFT PCF2
RW TW

SATA oooo oooooo o o o o o o

SATB ooo -0.01, 0.25 0.01, 0.29
SATC ooo 0.16,-0.02 0.21,-0.02
SATD oO 0.15, 0.23 0.21, 0.27
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The reconstruction technique is finally tested on 'real signals', 
by applying it to images of the same scene acquired on different 
days. The same region from four different images are 
undersampled, PCF estimates found from this data and applied in 
BL reconstruction.

As has been noted already, it proved difficult to find regions of 
the satellite images which are suitable for reconstruction. The 
images have generally few distinct features and are distorted by 
large amounts of cloud. The best regions found were not very 
good as was seen by the large residual mean square errors given 
in 5.3.2.

The technique was first applied to region 1 (Fig. 5.12) and the 
reconstructed image is shown in Fig. 5.20.a and b, using 
rectangular and trapezium windows respectively. The results are 
poor. The signals are quite noisy as noted from the large value 
of minimum rms error. The estimates of shift given in Table 5.6 
and displayed in Fig. 5.16 are fairly unreliable. The motion 
along the y-axis is quite large and that along the x-axis close 
to an even number. As a result, good reconstructions cannot be 
expected.

In region 2 (Fig. 5.20.C and d) the image appears to be even 
noisier, opposite edges are very different to each other and the 
nature of the image does not allow accurate alignment - as 
discussed in 5.3.2. The delays are given in Table 5.9 and 
displayed in Fig. 5.17. The estimates here show the samples to 
lie almost on a straight line. Good results are therefore again
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not expected. The technique in fact fails completely.

a

c

b

d

Fig. 5.20 Reconstructions of satellite images taken on successive 
days. Zoomed by factor of 4.

a) region 1, rectangular window
b) region 1, trapezium window
c) region 2, rectangular window
d) region 2, trapezium window

In the last two examples the reconstructions are clearly 

distorted. The 'grid' pattern is an artefact. This is a very 

useful property of the reconstruction technique: its success or

otherwise is generally obvious by looking at the results.

The X-ray images were then processed (Fig. 5.14). Regions of the 

angiograms were chosen, where the flow of radiopaque dye was not 

expected to cause serious problems. The reconstructions of 

region 1 are shown in Fig. 5.21.a and b. The PCF2 estimates of 

shift from undersampled data with rectangular (RW) and trapezium 

windows (TW) respectively are :
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Table 5.16 PCF2 estimates from undersample versions of region 1
of the angiograms.

RW TW
ANG1 oooooo oooooo

ANG2 -0.21,-0.22 -0.15,-0.24
ANG3 -0.06,-0.51 o o 0 1 o cn H1

ANG4 0.36,-0.67 0.27,-0.66

a b

c d

Fig. 5.21 Reconstructions from a sequence of angiograms, 
by a factor of 4.

Zoomed

a)
b)
c)
d)

region 1, 
region 1, 
region 2, 
region 2,

rectangular window 
trapezium window 
rectangular window 
trapezium window

Using the LMSE technique described in 5.3.2., the images were 

aligned (with respect to ANG1) and the shift and minimum root 

mean square error noted. This is compared with the minimum, 

maximum and mean signal value.

Table 5.17 Image statistics of region 1 of the angiograms.

min. max, mean min. rms error at shift
ANG1 181 240 217.10 0.00 0, 0
ANG2 185 244 220.14 3.80 o,-i
ANG3 192 245 223.50 6.50 o,-i
ANG4 195 245 224.14 7.40 1,-1

The images are seen to be quite dissimilar, with large minimum
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rms errors which increase over time (ANG2 to ANG4). It is also
noted that the least mean square error shift estimates are in 
poor agreement with the PCF estimates. In addition, opposite 
edges of the images are quite different, adding to the reasons 
why good results cannot be expected.

In a second region (Fig. 5.21.C and d) the reconstruction 
technique failed completely. PCF2 shift estimates from 
undersampled data for rectangular and trapezium windows are:

Table 5.18 PCF2 estimates for region 2 of the angiograms.

The shift estimates here give small values which also show the 
samples in the 'bunches' to lie close to a straight line. It was 
demonstrated in 5.3.3. that this is likely to lead to poor 

reconstructions. The close agreement between the PCF2 estimates 
for rectangular and trapezium windows suggest that non-circular 

shift is not a serious problem in this example.

It is noted that the PCF2 estimates for this region are quite 
different to those for the first region. This suggests that the 
motion observed is not due to the whole patient or the camera 
moving, but rather local changes due to perhaps breathing.

In order to gain some indication of the accuracy of the shift 

estimates in this example, the same region was shifted using the 
frequency domain as described in 5.3.2. and PCF estimates found. 

The values of shift used were similar to those found above and

RW TW
ANG1
ANG2
ANG3
ANG4

0 . 00 , 0.00  
0.06,-0.14 
0.13,-0.31 
0.17,-0.42

0 . 0 0 , 0 . 00  
0.06,-0.14 
0.12,-0.27 
0.14,-0.36
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the estimates were not good. This suggests that the signal 

characteristics do not allow accurate alignment and that the 

estimates above are probably also unreliable. This will have 

contributed to the poor reconstructions observed.

Finally a series of images of an ostrich (Fig. 5.15) were pro­

cessed. These images show much finer detail than the previous 

examples and therefore allow more accurate alignment and better 

reconstruction. The benefits of reconstruction are also more 

obvious since small details unclear in any of the undersampled 

versions become clear in the reconstructed signals.

Fig. 5.22 Reconstruction of Ostrich, region 1.

a) an undersampled version (zoomed by 8)
b) original image (zoomed by 4)
c) reconstruction, rectangular window
d) reconstruction, trapezium window

2First a 64 regxon of the image was reconstructed (region 1), 

with the undersampled version, original and results shown in Fig. 

5.22. The PCF2 estimates of image alignment were given in Table
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5.11.

The reconstruction was then performed using larger regions of 
o128 pixels (regions 2 and 3), with much better results.

The results for two such images are shown in Fig. 5.23 and 5.24 

respectively.

The PCF2 estimates for these are:

Table 5.19 PCF estimates for region 2 of
RW TW

0S1 oooooo oooooo

0S2 0.71,-0.43 0.46,-0.57
0S3 0.99,-1.02 0.68,-1.32
0S4 0.07,-0.52 COo1ino01

Table 5.20 PCF estimates for region 3 of
RW TW

0S1 oooooo oooooo

0S2 0.83,-0.49 0.82,-0.50
0S3 0.85,-0.92 0.85,-0.80
0S4 COo1CMoo1 0.12,-0.34

the ostrich.

the ostrich.

The reconstructions worked well (Fig. 5.23.c,d and Fig. 5.24.c,d) 
and reveal detail unclear in the undersampled versions (Fig. 
5.23.a and Fig. 5.24.a).
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Fig. 5.23 Reconstruction of ostrich, region 2.

a) an undersampled version (zoomed by 4)
b) original image (zoomed by 2)
c) reconstruction, rectangular window (zoomed by 2)
d) reconstruction, trapezium window (zoomed by 2)

Fig. 5.24 Reconstruction of ostrich, region 3.

a) an undersampled version (zoomed by 4)
b) original image (zoomed by 2)
c) reconstruction, rectangular window (zoomed by 2)
d) reconstruction, trapezium window (zoomed by 2)
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5.4. Summary

The PCF signal alignment techniques were tested on one dimen­
sional, aliased signals with non-circular delay and rectangular 
and trapezium windows. The signals chosen were Markov 1 with 
sample correlations of p = 0.5 and p = 0.9, 256 samples in 
length. The undersampled signals were generated by discarding 
all odd samples. The original PCF alignment technique which uses 
weighting proportional to the square of the frequency was denoted 
by PCF2, the modified version for aliased data with weighting 
proportional to the frequency, by PCF1.

In the Markov 1 signals, the delay estimates were found to be 
stable up to delays of approximately 17 samples. Much larger 

errors in estimates were noted at odd values of delay than at 
even ones, which was explained by undersampling. The delay 
estimates were found to be biased towards the nearest even value 
of delay.

The signals with the stronger high frequency spectrum (lower p) 
were found to give smaller standard deviation in delay estimates 

at even delay values, but worse results at odd values. Trapezium 
windows were found to improve the estimates, compared to 
rectangular (boxcar) windows, when delays were even numbers, the 
reverse was true at odd delay values.

For Markov 1 signals with p = 0.5, PCF1 and PCF2 estimates were 
found to give similar results. For p = 0.9, PCF2 estimates were 
in general superior, especially for larger delays and in the 
presence of noise.
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The BL reconstruction technique, applied to these signals with
correct values of delay (not estimates), gave errors near the 

beginning and end of the signals due to signal wrap around. 

Trapezium windows improved the results, compared to rectangular 

windows. Reconstructions were much better with delays near odd 

numbers, than near even ones.

With estimated delay, the reconstructions for p = 0.9 were good 
near odd values of delay, but poor near even ones. For p = 0.5, 

the reconstructions were found to be generally poor. Trapezium 
windows gave some improvement for p = 0.9, but none for p = 0.5.

It was found that for the signals tested, inaccurate estimates of 
delay were the most significant source of error in the recon­
struction. The next most significant cause of errors was 
non-circular delay (for delays between 4 and 6 samples, signals 
256 samples long) with this technique which assumes periodic 
signals. Additive noise in the input signal (20dB) was of much 
lesser importance.

The reconstructions are very strongly signal dependent. This was 

concluded from the difference in results for p = 0.5 and p = 0.9. 
But even with different signals of the same statistics, the 
quality of the reconstructions showed a very wide range. 
Fortunately, however, errors in the reconstruction show a very 
characteristic zig-zag shape, which is useful in detecting 
poor reconstuctions.
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The two dimensional windowing, alignment and reconstruction
techniques were then tested on a few images to make some 
qualitative assessment of their effectiveness.

Shift estimates on a few examples of satellite images were also 
found to be strongly signal dependent. With noise free signals, 
estimates were good in regions where the grey level values were 
similar along opposite edges, poorer if this was not the case. 
This may again be explained by non-circular delay in a technique 

that assumes periodic signals. These results could however be 
improved by trapezium windows, as might be expected. It is 

important to remove the average signal value before the tapered 
window is applied, else very serious errors can arise. Under­
sampling caused little change in the results, in the images 
investigated. Estimates accurate to within a few hundredths of 
a pixel were achieved.

When estimating the relative shift between satellite images 
acquired on different days, results were rather poor. The images 
proved to be fairly dissimilar, probably due to haze.

In the reconstructions, non-circular shifts caused errors near 
the edges of the image. This was observed in the cases where 
reconstructions were performed with known correct values of shift 
and no noise. When the signals were clearly different along 
opposite edges, trapezium windows could improve the results.

When the samples in the 'bunches' were close together (small 
values of shift, or values near even numbers), reconstructions 
deteriorated. Similarly, if the samples lay almost on a straight
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line.

Reconstructions of regions of the satellite images, taken on 
successive days, were very poor, displaying the characteristic 
grid pattern. These signals were known to be quite 'noisy'. In 
other example (pictures of an ostrich), reconstructions from a 
series of images with unknown relative shift were successful and 
revealed image detail, unclear on any of the undersampled 
versions.
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6. Summary, Conclusions and Suggestions for Future Work

A technique for the reconstruction of undersampled signals has 

been presented. This combines undersampled shifted versions of 
the same data in order to obtain one sampled signal with aliasing 
removed. The algorithm is based on the Fourier Domain and 
assumes bandlimited signals, so the technique has been called 
band-limited (BL) reconstruction. Multiple versions of the same 
signal have been used in the past to increase the signal-to-noise 
ratio of the signals by averaging. BL reconstruction shows how 
such data may be used to increase the spatial (temporal) 
resolution of the signals. Aliased signals, which according to 
conventional wisdom cannot be recovered, are thus restored.

The algorithm for one and two dimensional reconstruction was 
presented and its performance evaluated under a range of adverse 
conditions. The results were compared with a possible 
alternative method.

BL reconstruction gives perfect results under the ideal 

conditions of no noise, adequate average sampling rate (adequate 
total number of samples), known relative shift between under­

sampled versions and circular delay (periodic signals). In the 
presence of additive noise in the undersampled input signals, the 
reconstructed versions are also noisy. If the samples are 
closely bunched (see Fig. 1.1.) the input noise is amplified. In 

the experiments conducted, BL reconstruction was however found to 
produce better output signal-to-noise ratios than an alternative 
technique, cubic spline interpolation.
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In the technique, if delay estimates are inaccurate, the output
signals are also distorted. This distortion was found to depend 

on signal power spectrum, estimated delay and the error in delay 

estimate. In experiments it was again found that BL recon­

struction generally gave higher signal-to-noise ratios than cubic 

splines - for the range of conditions of interest.

Theoretical predictions were derived for the mean square error in 

the reconstructions as a result of noisy input signals and 

inaccurate signal alignment. Good agreement was found between 

these and experimental results.

In order to perform BL reconstruction, accurate estimates of the 

relative shift between the signals are required. A novel 

alignment technique was presented for delay and motion estimation 

to sub-sample resolution. This technique also operates in the 

Fourier Domain, the delay being estimated from the gradient of 

phase difference over frequency. Phase unwrapping, which is 

required to obtain phase values outside the range +te, is carried 

out using delay estimates from lower harmonics. This lead to the 

name 'Phase of Consecutive Frequency' (PCF) estimator. A minimum 

variance estimator for the gradient of phase difference is 

employed, for which the variance in the phase of noisy signals 

was derived. Both one and two dimensional versions of the PCF 

alignment algorithm were given. The technique is computationally 

efficient in requiring only a forward and not an inverse 

transform to give sub-sample resolution without the need for 

further interpolation.
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The estimator proved accurate and reliable both in one and two
dimensional applications. The estimates are unbiassed and 

generally show lower standard deviation than a well known alter­

native method, parabolic interpolation of the cross-correlation 

function. The technique presents a useful addition to the signal 

alignment techniques already available. Its principal advantage 

lies in accurate and efficient calculation of estimates to 

sub-sample resolution.

The effect of undersampling on phase difference and delay 

estimation was then investigated. It was found that in aliased 

signals, delay estimates are biased towards integer values - for 

estimates calculated in units of sample-spacing. Maximum 

standard deviation was found at delays half way between samples. 

These results apply to both cross-correlation and PCF estimates. 

The bias is in a direction undesirable for signal reconstruction, 

as it tends to increase noise and distortion in the output 

signals.

A modification of the PCF technique was then suggested to reduce 

errors in delay estimates from undersampled signals. This modi­

fication is based on assumptions about the signal power spectrum 

and is therefore signal dependent. Some improvement in results 

was achieved.

In most applications of signal reconstruction and alignment, the 

signals do not have circular delay. This leads to errors in BL 

reconstruction and PCF alignment as these techniques are based on 

the Discrete Fourier Transform and therefore assume periodic
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signals.

In order to reduce these errors, tapered data windows can be 

employed. These may be regarded as reducing the weighting given 

to the beginning and end (edges) of the signals. The effect of 

data windows on the phase spectrum was investigated, as well as 

that on the phase difference between delayed signals. It was 

found that low frequencies are especially sensitive to errors in 

phase difference.

A least mean square error criterion was derived for comparing 

windows used in processing delayed versions of signals. This 

gives a measure of the distortion introduced in realigning 

signals which have been delayed without wraparound and then 

windowed.

A number of common windows were then compared on the basis of 

this criterion. The trapezium window was found to give the best 

results. For the alignment and reconstruction, trapezium windows 

with a rise (and fall) time of 20% of the signal length were 

suggested.

The alignment and reconstruction techniques were tested, together 

with windowing, on a range of non-periodic one and two dimen­

sional signals, both with and without added noise. The results 

were found to vary strongly from signal to signal. The alignment 

technique performed generally well, but signal reconstruction was 

found to be somewhat unstable. The latter results were particu­

larly sensitive to the accuracy of shift (delay) estimates. 

However, the technique did recover detail unclear in the
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undersampled versions. Tapered windows were frequently found to
improve reconstructions and alignment, especially when opposite 
edges of the image were clearly very different.

It is concluded that the techniques described are effective. 
Signal reconstruction is sound in principle but can give poor 
results, especially when delay estimates are inaccurate. This is 
probably the major weakness of this technique. Signal alignment 
by the PCF technique was found to be reliable but undersampling 
could cause severe errors. This however is not a problem 
confined to the PCF technique, but an inherent difficulty of 
processing aliased data. The use of tapered windows is strongly 
recommended in processing delayed signals, especially if there is 
little or no noise or aliasing.

Future work on BL reconstruction should attempt to improve its 

stability. Some regularization technique could be applied to the 
reconstruction matrix when this is ill-conditioned. Alterna­
tively, biased delay (motion) estimates could be employed, such 
that the samples are moved closer to a uniform pattern.

Instability in BL reconstruction could also be reduced by 
combining it with coherent averaging. For noisy signals without 
aliasing, the data should be averaged. In aliased signals with 
accurate delay estimates and no noise, BL reconstruction should 
be chosen. In practical applications with noise, aliasing and 

inaccurate delay estimates, some compromise should be made 
between the two, based on a priori knowledge of signal and noise 
power spectrum.
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Perhaps the most effective and useful improvement in recon­
struction could be gained by combining a larger number of 
signals, such that the average sampling rate is larger than 
strictly required by the sampling theorem. BL reconstruction and 
averaging could then both be achieved in this overspecified case. 
A PCF estimator, modified to deal with the additional information 
could be derived. Additional signals would allow for a more 
robust algorithm. The estimates could then also be compensated 
for aliasing. The experience gained suggests that, for example, 
two accurate delay estimates could be found from three first 
order aliased signals. With a larger number of input signals, 
more accurate delay estimates could be obtained or signals with 
higher order aliasing, aligned.

Inaccurate phase unwrapping was suggested as a cause of the 
largest errors in PCF alignment. Improvements could be made here 
by an iterative technique. A rough delay estimate could first be 
found from the whole signal (not just a few harmonics) which then 
forms the basis of phase unwrapping for all (or most) harmonics. 
The process would be repeated, in the hope that it converges. 
Such an improvement in delay estimate must however be balanced 
against the increased computational effort required.

A more detailed look at the statistics of the delay estimate 
could help to improve the estimator. Bounds on the variance in 

delay estimates and the effect of non-optimal weighting 
(inaccurate estimate of the variance in phase difference) are two 
areas that should be investigated further.

Improved delay estimates from aperiodic signals may be gained by
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some iterative technique in which data windows are modified 
(shortened and made asymmetric) based on previous estimates of 
delay. Further investigation of windows in phase estimation may 
also prove fruitful, pursuing the approach taken in Chapter 4. 
The design of an optimal window based on the least mean square 
criterion for delayed signals and its evaluation in a range of 

applications is also suggested as an area for further research.

In summary, it is suggested that future work on BL reconstruction 
should concentrate on improving the stability of the algorithm. 
This may be achieved by the use of more a priori information or 
by reconstruction from a larger number of input signals. Delay 
estimation could be improved by iteratively adjusting window 
shape and phase unwrapping.

The work presented here has developed useful new methods for the 
reconstruction of undersampled signals, signal alignment and 
window design. Some of the theoretical aspects have been 
investigated in detail. It is anticipated that these results 
will lead to further improvement in digital signal and image 
processing techniques.
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APPENDIX 1.1

Markov 1 Signals

For a for a wide sense stationary Markov 1 chain 
x(i) = p.x(i-l) + e(i) i > 0

= p1.x(0) + p1_1.£(l) + ... + £(i) i > 0
where p is a constant and £(i) are independent random Gaussian 
values.

Let E{E(i)} = 0 and E{E(i)2} = a2, then

E{x(i)} = E{ pi.x(0) + pi-1.£(l) + ... + £ (i)}
= l/d-p1) E { pi—1. £ (1) + ... + £ (i) } = 0 

since E{x(i)} = E{x(0)}, and
var{x(i) } = p2^.var {x(0)} + G2. ( p2 ^ -^  + ... + 1 )

= G2/(l - p2)
(Chatfield, 1984, p.45).

The sample covariance for this signal ( i > 0 , i > j ) is 
cov {x(i),x(i-j)} = E{(p^.x(i-j) + p^-1.£(i-j+1) + ... + £(i)).

x(i-j)}
= p3.var{x(i-j)}
= p^.a2/(1 - p2)

(Chatfield, 1984, p.46),

and the correlation coefficient
cov {x(i),x(i-j) }

r (x (i) , x (i-j) )  ----------------------- -- p^ *
V (va r {x (i)}.var{x(i-j)})

The autocorrelation function decays exponentially (Bendat and 
Piersol, 1966, p.90) .
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The powerspectrum of the stochastic signal is given by the
Fourier Transform of its autocorrelation function (Papoulis, 1984

O  Ob, p.365). For the Markov 1 signal with var {x(i)} = a /(1 - p ) 
and r (x(i) ,x(i-j) ) = the spectrum S (CO) = p2 /11 - p-^®!2
(Jain, 1981) where 0 is the angular frequency and P is a scaling 
factor.

This can be derived most easily using the z-transform
OO

F(z) = Z x(i) z-1 (Papoulis, 1984 a, p.31),
i = - o o

which relates to the Fourier Transform via z = e^6̂ , where T is 
the distance between samples, which, without any loss of 
generality is assumed to be T = 1.

The Markov 1 signal x(i) = p.x(i-l) + e(i) is the result of the 
following system:

Fig. A.l Circuit for the Generation of Markov 1 Data.
£ (i) .. uncorrelated Gaussian values
p .. sample correlation for x(i)
x(i) .. Output signal

It follows that S(i) = x(i) - p.x(i -1), and the z-transform 
E(z) = X (z).(1 - p.z-1). Hence, X(z) = E(z)/(1 - p.z-1). The

input signal £(i) is filtered by a digital filter with a transfer
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r\ OFor a white input signal with E{|E(z) | ̂ } = |3 ' the power
spectrum of the Markov 1 signal is therefore given by S (CO) = 
P2/|l - p.e"^0!2 (|co| < n) .

These results are plotted in Fig. 1.9 for a range of values of p.

It should be noted that these spectra are similar, but not 
identical, to those given for continuous signals with an
exponentially decaying autocorrelation function R(T) =

<— > S (CO) = 4a/(a2 + co2) (Bendat and Piersol, 1966, p.87).

function of H(z) = 1/(1 - p.z )̂ .
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APPENDIX 1.2

Listing of the Markov 1 Signal Generator

The following functions were used on an LSI-11 computer, running 
the RT-ll(v.5) operating system with the Pascal-2 (Oregon 
Software, OMSI, 1983) compiler.

type data : array [ 0 .. 255 ] of real ;
procedure RANDU ( var il , i2 : integer ; var x : real ); 
{FORTRAN library random number generator. Uniform ouput 
distribution in [0,1]} 
nonpascal ;
function gnoise(stdev:real):real;
{
Generate zero-mean Gaussian noise of standard deviation 
'stdev'. Uses the random number generator RANDU(il,i2,x) which 
must be initialised by setting il,i2 to zero at the beginning 
of the sequence 
}
var x,y:real;

i:integer; 
begin 

y:=0;
for i:=l to 12 do 
begin

randu(il,i2,x); 
y :=y+x; 

end;
gnoise:=stdev*(y-6); 

end;

procedure marklgen(a,stdev:real; len : integer ; var sigrdata);
{
Generate the Markov 1 signal, a..feedback, stdev..standard 
deviation of Gaussian noise.
}
var i:integer; 
begin

sig[0]:=gnoise(stdev); 
for i:=l to len-1 do

sig[i]:=a*sig[i—1]tgnoise(stdev);
end;
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APPENDIX 2.1

Listing of LU-factorization for the Solution of Simultaneous 

Equations

These routines were written for an LSI-11 computer, running the 
RT-11 operating system and the Pascal-2 (Oregon Software, 1983) 
compiler.

These functions solve a set of complex linear simultaneous 
equations. In the first two routines ('lufactorize' and 
'solvelu') basic LU-factorization is implemented. In the last 
two (’pplufactorize' and fsolvepplu'), partial pivoting is 
included. The latter is necessary in two dimensional BL 
reconstruction to avoid division by zero.

type complex = record
re , im : real ; 

end ;
matrix = array [ 1 . .  8 , 1 . . 8 ]  of complex ;
vector = array [1 .. 8 ] of complex ;
augmatrix = array [ 1 . .  4 , 1 . . 5 ]  of complex ;

{
Library routines to perform arithmetic operations on 
complex numbers 
}
function cadd(cl,c2:complex):complex; 
external;
function csub(cl,c2:complex):complex; 
external;
function cmul(cl,c2:complex):complex; 
external;
function cdiv ( cl , c2 : complex):complex; 
external;
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{***************************************************************} 
{********** routines to solve simultaneous equations ***********}
j * * * * * * * * * * * * * * * * * * * * * * * * * ** * * ** * * ** * * ** * * ** * * ** * * ** * ** * * ** * * ** * j

function lufactorize ( var a : matrix ; n : integer ) : matrix ;

{
Perform LU-factorization on the complex matrix a of size n*n.
The LU-matrix is modified to hold reciprocals along the principal 
diagonal, so as to replace division by multiplication in the 
solution (function solvelu), which improves efficient for 
repeated use of the same coefficient matrix.
Based on SUBROUTINE FACTLU in Monro, 1982, p.243
}
var piv , sum , one : complex ; 

i , j , k : integer ; 
dummy : matrix ; 

begin
for j := 1 to n do 

for i := 1 to n do
dummy [ i , j ] := a [ i , j ] ;

piv := dummy [ 1 , 1 ]; 
for j := 2 to n do
dummy [ 1 , j ] := cdiv ( dummy [ 1 , j ] , piv );

for k := 2 to n do 
begin

for j := k to n do 
begin

sum := dummy [ j , k ] ;
for i := 1 to k - 1 do
sum := csub ( sum , cmul ( dummy [ j , i ] ,

dummy [ i , k ] ) ) ;
dummy [ j , k ] := sum ;

end;
piv := dummy [ k , k ] ; 
for j := k + 1 to n do 
begin

sum := dummy [ k , j ] ; 
for i := 1 to k - 1 do
sum := csub ( sum , cmul ( dummy [ k , i ] ,

dummy [ i , j ] ));
dummy [ k , j ] := cdiv ( sum , piv ) ;

end;
end;
{find reciprocals along principal diagonal to convert 
division to multiplication on solution } 
one .re := 1; 
one .im := 0; 
for i := 1 to n do
dummy [ i , i ] := cdiv ( one , dummy [ i , i ] );

lufactorize := dummy ; 
end;

320



function solvelu ( var lu : matrix ;
var y : vector ; 
n : integer ) : vector ;

{
Completes the solution of linear, complex simulataneous 
equations, already LU-factorized ( by function lufactorize ). 
Assumes my modified LU-matrix with reciprocals along the 
principal diagonal which replaces division by multiplication in 
the solution and increases efficiency for repated use of the same 
coefficient matrix.
Based on Monro, 1982, p.245
1
var sum : complex ;

j , i : integer ; 
dummy : vector ; 

begin
for j := 1 to n do
dummy [ j ] := y [ j ] ;

for j := 1 to n do 
begin

sum := dummy [ j ] ; 
for i := 1 to j - 1 do
sum := csub ( sum , cmul ( lu [ j , i ] , dummy [ i ] )); 

dummy [ j ] := cmul ( sum , lu [ j , j ] );
end;

for j := n downto 1 do 
begin

sum := dummy [ j ] ; 
for i := j + 1 to n do
sum := csub ( sum , cmul ( lu [ j , i ] , dummy [ i ] )); 

dummy [ j ] := sum ;
end;

solvelu := dummy ; 
end ;
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function pplufactorize ( var a : matrix ; n : integer )
: augmatrix ;

{
Perform LU-factorization with partial pivoting on the complex 
matrix a of size n*n. The final column (n+1) .re of the 
augmented matrix starts with values from 1 to n and gets swapped 
with the rest of the rows and so holds the information required 
for 'unswapping' when solving the equation in solvepplu. The 
LU-matrix is modified to hold reciprocals along the principal 
diagonal, so as to replace division by multiplication in the 
solution function solvelu, which improves efficient for repeated 
use of the same coefficient matrix. Based on SUBROUTINE FACTLU 
in Monro, 1982, p.243 
}
var piv , sum , one : complex ; 

i , j , k : integer ; 
dummy : augmatrix ;
procedure swaprows ( i , j : integer ); 
var count : integer ;

temp : complex ; 
begin

for count := 1 to n + 1 do 
begin

temp := dummy [ i , count ]; 
dummy [ i , count ] := dummy [ j , count ]; 
dummy [ j , count ] := temp ; 

end;
end;

procedure pivot ( i : integer ); 
var maxrow , j : integer ;

maxval , mag : real ; 
begin
maxrow := i ;
maxval := cmag2 ( dummy [ i , i ] ) ;
for j := i + 1 to n do 
begin
mag := cmag2 ( dummy [ j, i ] ) ; 
if mag > maxval then 
begin
maxval := mag ; 
maxrow := j ; 

end;
end;

if maxrow <> i then
swaprows ( i , maxrow );

end;
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begin {lufactorize} 
for j := 1 to n do 
begin

for i := 1 to n do
dummy [ i , j  ] := a [ i , j ] ; 

dummy [ j , n + 1 ] . re := j ; 
end;

pivot ( 1 );
piv := dummy [ 1 , 1 ];
for j := 2 to n do
dummy [ 1 , j ] := cdiv ( dummy [ 1 , j ] , piv );

for k := 2 to n do 
begin

for j := k to n do 
begin

sum := dummy [ j , k ] ; 
for i := 1 to k - 1 do

Siam := csub ( sum , omul ( dummy [ j , i ] , 
dummy [ i , k ] ));

dummy [ j , k ] := sum ;
end;

pivot ( k ); 
piv := dummy [ k , k ]; 
for j := k + 1 to n do 
begin

sum := dummy [ k , j ]; 
for i := 1 to k - 1 do
sum := csub ( sum , cmul ( dummy [ k , i ] , 

dummy [ i , j ] ));
dummy [ k , j ] := cdiv ( sum , piv ) ;

end;
end;
{find reciprocals along principal diagonal to convert 
division to multiplication on solution } 
one .re := 1; 
one .im := 0; 
for i := 1 to n do
dummy [ i , i ] := cdiv ( one , dummy [ i , i ] );

pplufactorize := dummy ; 
end;
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function solvepplu ( var lu : augmatrix ; var y : vector ;
n : integer ) : vector ;

{
Completes the solution of linear, complex simulataneous 
equations, already LU-factorized ( by function pplufactorize ). 
LU-factorization included partial pivoting, the final column in 
the augmented LU matrix gives the way in which the rows were 
swapped. Assumes the modified LU-matrix with reciprocals along 
the principal diagonal which replaces division by multiplication 
in the solution and increases efficiency for repated use of the 
same coefficient matrix. Based on Monro, 1982, p.245.
}
var sum : complex ;

j , i : integer ; 
dummy : vector ;

begin
for j := 1 to n do
dummy [ j ] := y [ round ( lu [ j , n + 1 ] . re )] ;

for j := 1 to n do 
begin

sum := dummy [ j ] ;
for i := 1 to j - 1 do
sum := csub ( sum , cmul ( lu [ j , i ] , dummy [ i ] )) 

dummy [ j ] := cmul ( sum , lu [ j , j ] ) ;
end;

for j := n downto 1 do 
begin

sum := dummy [ j ] ;
for i := j + 1 to n do

sum := csub ( sum , cmul ( lu [ j , i ] , dummy [ i ] )) 
dummy [ j ] := sum ;

end;
solvepplu := dummy ; 

end;
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APPENDIX 2.2

Listing of the BL Reconstruction Algorithm for n-th Order 

Aliasing

The routines are written for an LSI-11 computer running the RT-11 
operating system and Pascal-2 (Oregon Software, 1983) compiler.

The routine UNALIAS takes as input the aliased input spectra 
('spectra'), delays ('delay'), the number of samples in the 
undersamples signals ('fO') and the number of aliased signals 

('signalcount'), which must be a power of 2. The ouput of this 
routine is the spectrum of the reconstructed signal. The maximum 

permissible signallength is the constant 'maxfreq' and the 
maximum number of signals to be processed is given by 'maxsig'. 
Delays are given in units of signallength (rather than the 
samples of Chapter 2), and a negative value indicates signal 
delay.

type
complex = record

re , im : real; 
end;

cblock = array [ 0 .. maxfreq ] of complex ; 
twodcblock = array [ 1 .. maxsig ] of cblock ; 
rblock = array [ 1 .. maxsig ] of real ; 
vector = array [ 1.. 8 ] of complex ; 
matrix = array [ 1 .. 8 , 1 .. 8 ] of complex ;

{******************** complex library routines *****************}

function cadd(cl, c2:complex) :complex; 
external;
function csub(cl, c2:complex) :complex; 
external;

function cmul(cl,c2:complex):complex; 
external;
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function cdiv ( cl , c2 : complex):complex; 
external;

function cconj(cl:complex):complex;
{find the complex conjugate) 
external;
function cequate ( y : real ) : complex ;
{equate a complex number to the real value y) 
external;
function cexp ( exp : real ) : complex ;
{find e**j.exp) 
external;

{*****************★**********■*****★***********■****■*■*****★*******} 
{****************** BL—reconstruction **************************}
^***************************************************************j

function sdc ( var spectra : twodcblock ;
var delay : rblock ;
fO , signalcount : integer ;
pi : real ) : vector ;

{to solve at zero frequency: called by ' solveDC'}
var m : matrix ;

fs : vector ; 
i , j : integer ; 
wt : real ;

begin
for i := 1 to signalcount do 
begin

fs [ i ] := cequate ( spectra [ i , 0 ] .re );
wt : = 2 * p i * f 0 *  delay [ i ] ; 
m [ i , 1 ] := cequate ( 1 ); 
m [ i , signalcount ] := cequate (

cos ( wt * signalcount / 2 ));
j := 1 ;
while 2 * j < signalcount do 
begin
m [ i , 2 * j ] := cequate ( cos ( j * wt ) );
m [ i , 2 * j + l ]  := cequate ( - sin ( j * wt ));
j := j + 1 ; 

end;
end;

m := lufactorize ( m , signalcount ); 
sdc := solvelu ( m , fs , signalcount ); 

end;
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procedure solveDC (var spectra : twodcblock ;
v a r  d e l a y  : r b l o c k  ;
fO , s i g n a l c o u n t  : i n t e g e r  ;
pi : real ;
var reconstruction : cblock );

{
Perform the reconstruction at DC of the IP signals.
Here only the real part of the spectra can be used.
}
var fs : vector ;

f  , i  : i n t e g e r  ; 
f a c t  : r e a l  ;

begin {solveDC}
f s  : =  s d c  ( s p e c t r a  , d e l a y  , fO , s i g n a l c o u n t  , p i  ) ;  
r e c o n s t r u c t i o n  [ 0 ] : =  c e q u a t e  (

s i g n a l c o u n t  *  f s  [ 1  ]
r e c o n s t r u c t i o n  [ { s i g n a l c o u n t  d i v  2 ) *  fO ] : =

c e q u a t e  ( s i g n a l c o u n t  * f s  [ s i g n a l c o u n t  ]
i  : =  1  ;
f a c t  : =  s i g n a l c o u n t  d i v  2 ; 
w h i l e  ( i  * 2 ) < s i g n a l c o u n t  do 

b e g i n
f  : =  i  * fO ;
r e c o n s t r u c t i o n  [ f  ] . r e  : =  f a c t  * f s  [ 2 * i  ] . r e  
r e c o n s t r u c t i o n  [ f  ] . i m  : =  f a c t  * f s  [ 2 * i  + 1  ] 
r e c o n s t r u c t i o n  [ fO * s i g n a l c o u n t  -  f  ] : =

c c o n j  ( r e c o n s t r u c t i o n  [ f  ] ) ;
i  : =  i  + 1  ; 

e n d ;
end;

- r e  ) ; 

. r e  ) ;

. re ;
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procedure solveforotherfs ( var spectra : twodcblock ;
var delay : rblock ;
fO , signalcount : integer ;
pi : real ;
var reconstruction : cblock );

{
Perform BL reconstruction at remainder of harmonics
}
var lu : matrix ;

fs , g : vector ;
i , j , f , fmax , fcurrent : integer ; 
wOt : real ;

begin
for i := 1 to signalcount do 
begin

wOt := 2 * pi * fO * delay [ i ] ; 
for j := 1 to signalcount div 2 do 
begin

l u [ i ,  ( 2 * j - 1 ) ] := cexp (( j - 1 ) * wOt ); 
l u [ i , 2 * j ]  := cexp { - j * wOt );

end;
end;

lu := lufactorize ( lu , signalcount ) ;

{
Use the modified lu-matrix to solve at every harmonic from 1 
to fO/2 and assign the solutions to the correnct place in the 
spectrum of the reconstruction.
Complete the spectrum using its Hermite property.
}
fmax := signalcount * fO ; 
for f := 1 to fO div 2 do 
begin

for i := 1 to signalcount do 
g [ i ] := spectra [ i , f ] ;

fs := solvelu ( lu , g , signalcount ); 
for i := 1 to signalcount div 2 do 
begin

fcurrent := f + ( i - 1 ) * f 0 ;  
reconstruction [ fcurrent ] := fs [ 2 * i - 1];
reconstruction [ fmax - fcurrent ] :=

cconj ( reconstruction [ fcurrent ] ); 
fcurrent := fmax + f - i * f O ;  
reconstruction [ fcurrent ] := fs [ 2 * i ];
reconstruction [ fmax - fcurrent ] :=

cconj ( reconstruction [ fcurrent ] ) ;
end;

end;
end;
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procedure modifylhs ( var spectra : twodcblock ;
var delay : rblock ; 
fO , signalcount : integer ; 
.pi : real );

{
Multiply the harmonics of the input signal by 
signalcount * exp ( - j * 2 * w * delay )
}
var i , f : integer ; 

d : real ; 
dummy : complex ; 

begin
for i := 1 to signalcount do 
begin

d := 2 * pi * delay [ i ] ; 
for f := 1 to fO div 2 do 
begin

spectra [ i , f ] := cmul ( spectra [ i , f ]
cequate ( signalcount )); 

spectra [ i , f ] := cmul ( spectra [ i , f]
cexp (- d * f ));

end;
end;

end;

procedure unalias ( var spectra : twodcblock ;
var delay : rblock ;
fO , signalcount : integer ;
pi : real ;
var reconstruction : cblock );

{
Perform BL-reconstruction on n signals where n is a power of 2.
}
begin

solveDC ( spectra , delay , fO , signalcount , pi , 
reconstruction );

modifylhs ( spectra , delay , fO , signalcount , pi ); 
solveforotherfs ( spectra , delay , fO , signalcount , pi ,

reconstruction );
end;
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APPENDIX 2.3

Listing of the Two Dimensional BL Reconstruction Algorithm

These routines were written for the LSI-11 computer, running the 
RT-11 operating system and Pascal-2 (Oregon Software, 1983) .

The rountine UNALIAS performs the BL reconstuction from 4 input 
images, by taking the input spectra from the input files 
'infiles' and saving the reconstructed spectrum in 'outfile'. 
Because of the small memory available on the LSI-11 computer (64 
kbytes), the reconstruction is strongly file-based. Only half 
the spectra are recorded, since the other is given by Hermite 
symmetry. Shifts are all given in units of samples, the distance 
between samples of the reconstructed signal. Positive values 
indicate f(x+X,y+Y) - different to the convention in Chapter 2. 
External routines to perform complex arithmetic and 
LU-factorization with partial pivoting are required. The latter 
are given in Appendix 2.1.

330



type
shifttype=array[1..4] of record

x,y:real; 
end;

complex=record
re,im:real; 

end;
sizes=(s32,s64,sl28,s256,s512); 
cray32=array[0..31] of complex; 
cray64=array[0..63] of complex; 
crayl28=array[0..127] of complex; 
cray256=array[0..255] of complex; 
cray512=array[0..512] of complex; 
outfiletype=record

case sizeisizes of
s32: (f32:file of cray32); 
s64:(f64:file of cray64); 
sl28: (f128;file of crayl28); 
s256: (f256:file of cray256); 
s512:(f512:file of cray512); 

end;
filetype=file of real;
infiletype=array[1..4] of filetype;
vector = array [1 .. 4 ] of complex ;
matrix = array [ 1 . . 4 , 1 . . 5 ]  of complex ;
augmatrix = array [ 1 . . 4 , 1 . . 5 ]  of complex ;

{ * * * * * * * *  L i b r a r y  R o u t i n e s  f o r  c o m p le x  a r i t h m e t i c  * * * * * * * * * * * * }

function cadd(a,b:complex):complex; 
external ;
function csub(a,b:complex):complex; 
external ;
function cmul(a,b:complex):complex; 
external ;
function cdiv(a,b:complex);complex; 
external ;
function cconvert(a,phi:real):complex;
{convert a complex number in polar form to one of type 'complex'} 
external ;
{***************************************************************} 
tLU factorization with partial pivoting)
function pplufactorize 
external;

var a : matrix ; n : integer ) 
augmatrix ;

function solvepplu 
external;

var lu : augmatrix ; var y 
n : integer ) : vector

vector ;
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J *************************************************************** J
I************* 2d BL reconstruction ****************************} 
{***************************************************************}

procedure unalias(var infile:infiletype;
var outfile:outfiletype; 
var shift:shifttype; 
size:integer);

{
Performs 2D BL reconstruction from 4 images in the frequency 
domain. The 4 aliased spectra in 'infile', each with its own 
shift (relative to the first image) as given in 'shift', are 
combined to give one unaliased spectrum saved in 'outfile'. Each 
spectrum is only recorded half, the other half being given by the 
Hermite symmetry . 'size' gives the image size. Due to the 
small memory of the LSI-11 computer, the results are stored 
immediately in the direct access output file.
}
type

cray3=array[1..3] of complex; 
craylO=array[1..10] of complex;

var u,v,nyquist,twosize:integer; 
pi:real; 
g,h,f:vector; 
m : matrix ; 
lu , luuO: augmatrix ; 
jc rcraylO; 
be:cray3;
tempbuf1,tempbuf2:cray512;

{ * * * * * * * * * * * * *  i / o  r o u t i n e s  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * }

f u n c t i o n  g r e a d ( v a r  i n f i l e : i n f i l e t y p e ) : v e c t o r ;
{ r e a d  t h e  4 s p e c t r a  f r o m  t h e  i n p u t f i l e s }

v a r  i : i n t e g e r ;
g : v e c t o r ;  

b e g i n
f o r  i : = l  t o  4 do

r e a d ( i n f i l e [ i ] , g [ i ]  . r e , g [ i ]  . im ) ; 
g r e a d : = g ;  

e n d ;
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procedure storeresult(var f:vector;
var tempbuf1,tempbuf2:cray512; 
u :integer);

{store the harmonmics f in the appropriate place in the spectrum 
of the reconstructed signal} 
var two,zero:complex; 
begin

tempbuf1[u]:=f[1]; 
tempbuf1[u+size]:=f[3]; 
tempbuf2 [twosize-u].re:=f[4].re; 
tempbuf2 [twosize-u].im:=-f[4] .im; 
tempbuf2 [size-u].re:=f[2].re; 
tempbuf2 [size-u].im;=-f[2].int­

end;
procedure savebuf(var outfile:outfiletype;

var buf:cray512; 
i:integer);

{save the buffer in the appropriate place in the direct access 
'outfile'} 
var j:integer; 
begin

case outfile.size of 
s32:begin

seek ( outfile.f32, i+1 );
for j:=0 to 31 do
outfile.f32~[j]:=buf[j]; 

put(outfile.f32); 
end;

s64:begin
seek(outfile.f64, i+1) ;

for j:=0 to 63 do
outfile.f64~[j]:=buf[j]; 

put(outfile.f64); 
end;

sl28:begin
seek(outfile.f128, i+1) ; 
for j:=0 to 127 do
outf ile. fl28yv [ j ] :=buf [j] 

put(outfile.f128); 
end;

s256 rbegin
seek(outfile.f256,i+1); 
for j:=0 to 255 do
outf ile. f256/v [ j ] :=buf [j] 

put(outfile.f256) ; 
end;

s512:begin
seek(outfile.f512,i+1); 
for j:=0 to 511 do
outfile.f512A[j]:=buf[j] 

put(outfile.f512);
end;

end;
end;
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procedure saveresult(var outfile:outfiletype;
var tempbuf1,tempbuf2:cray512; 
v:integer) ;

var two:complex;
u :integer; 

begin
savebuf(outfile,tempbuf1,v); 
tempbuf2[0]:=tempbuf2[twosize]; 
savebuf(outfile,tempbuf2 ,size-v); 

end;

I *****************************************************************

procedure makem ( var shift : shifttype ; pi : real ;
var m : matrix );

{
Set up the matrix for LU-decomposition
}
var row , column : integer ; 
begin

for row := 1 to 4 do 
begin
m [ row , 1 ] : = cconvert ( 1 f 0 ) ;
m [ row , 2 ] := cconvert ( 1 f - pi *

(shift [ row ] . x + shift [ row ] . y ))
m [ row , 3 ] := cconvert ( 1 f - pi * shift [ row ] . x )
m [ row , 4 ] := cconvert ( 1 f - pi * shift [ row ] • y )

end;
end;

procedure makemuO ( var shift : shifttype ; pi : real ;
var m : matrix );

{
Set up the matrix for LU-decomposition at u = 0
}
var row , column : integer ; 
begin

for row := 1 to 4 do
begin
m [ row , 1 ] := cconvert ( 1 , 0 ) ;
m [ row , 2 ] := cconvert ( cos ( pi * shift [ row ] . X )

(- pi * shift [ row ] • y )
m [ row , 3 ] := cconvert ( cos

( Pi * shift [ row ] • x ) , 0 )
m [ row , 4 ] := cconvert ( 1 , - pi * shift [ row ] . y )

end;
end;
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procedure makemvO ( var shift : shifttype ; pi : real ;
var m : matrix );

{
Set up the matrix for LU-decomposition at v = 0
)
var row , column : integer ; 
begin

for row := 1 to 4 do 
begin
m [ row , 1 ] := cconvert ( 1 , 0 ) ;
m [ row , 2 ] := cconvert ( cos ( pi * shift [ row ] . y )

(- pi * shift [ row ] . X )
m [ row , 3 ] := cconvert ( 1 , - pi * shift [ row ] . X )
m [ row r 4 ] := cconvert ( cos

( Pi * shift [ row ] • y ) r 0 )
end;

end;

procedure makemuOvO ( var shift : shifttype ; pi : real ;
var m : matrix );

{
Set up the matrix for LU-decomposition at u = 0 v = 0
}
var row , column : integer ; 
begin

for row := 1 to 4 do
begin
m [ row , 1 ] : = cconvert ( 1 , 0 );
m [ row , 2 ] : = cconvert ( to0o ( pi * shift [ row ] . x )

cos ( Pi * shift [ row ] • y ))
0 ) ;

m [ row , 3 ] : = cconvert ( cos ( Pi * shift [ row ] - x )
0 >;

m [ row , 4 ] : = cconvert ( cos ( Pi * shift [ row ] • y )
0 ) ;

end;
end;

procedure gcalc(var g:vector; var shift:shifttype; u,v:integer)
{
Scale and phase shift the aliased spectra.
}
var i:integer;

fact;real; 
begin

fact:=-pi/size; 
for i:=l to 4 do
g[i]:=cmul(g[i],cconvert(4, fact*

(u*shift [i] .x+v*shift[i] .y)));
end;
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begin {unalias}
pi:=4*arctan(1); {global} 
twosize:=2*size;

{set up the matrix for u-0} 
makemuO ( shift , pi , m ) ; 
luuO := pplufactorize ( m , 4 ) ;

{now solve u = 0 , v = 0 } 
makemuOvO ( shift , pi , m ) ; 
lu := pplufactorize ( m , 4 ) ;
g:=gread(infile); 
gcalc(g,shift,0,0); 
f := solvepplu ( lu , g , 4 ); 
storeresult(f,tempbuf1,tempbuf2,0);

{now for v=0}
makemvO ( shift , pi , m ); 
lu := pplufactorize { m , 4 ) ; 
for u:=l to size-1 do 

begin
g:=gread(infile); 
gcalc(g,shift,u,0); 
f := solvepplu ( lu , g , 4 ); 
storeresult(f,tempbuf1,tempbuf2,u); 

end;
saveresult(outfile,tempbuf1,tempbuf2,0);

makem ( shift , pi , m ); 
lu := pplufactorize ( m , 4 ); 
for v := 1 to (size div 2) do 

begin
{first u = 0 }
g:=gread(infile);
gcalc(g,shift,0,v);
f := solvepplu ( luuO , g , 4 );
storeresult(f,tempbuf1,tempbuf2,0);

{now remainder of harmonics at v} 
for u:=l to size-1 do 
begin

g:=gread(infile); 
gcalc(g,shift,u,v); 
f := solvepplu ( lu , g , 4 ) ; 
storeresult(f,tempbuf1,tempbuf2,u); 

end;
saveresult(outfile,tempbuf1,tempbuf2,v) 

end;

end; {unalias}
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APPENDIX 2.4

Power in BL Reconstructed Signals

Let f(t) be a signal and gQ(i) and g-̂ (i) undersampled versions 
of it, delayed by D. Let the reconstructed signal f(i) be of 
length N samples and k = 2je/N.

Further let the transforms 

f (i) <--> F(h)
gQ (i) <— > Gq (i)

gi(i) <— > G1 (i) .

Then, from Eq. 2.4,

F(h) = 2.(G0 (h) - G1(h)e^D(kh-7C) ) ) / ( 1 - e-^ 0) and

F (h - N/2) = 2.(G0 (h) - Gx (h)e^khD) / ( 1 - e ^ D) .

Since

N/2 - 1
f(t) = 1/N E F(h) e^kht 

h=-N/2

and neglecting the special case at h=0,
N/4 - 1

f(t) « 2/N E re{ (F(h) + F(h - N/2).e"TCt)e~^kht } 
h=0

N/4 - 1 1 e ~ i K t
- 2/N re{ E e^kht (G0 (h) [ -------- + ---------] -

h=0 1 - e " ^ D l - e^ D
e-jTCE> e“jrct

Gi (h) e^khD [ -------- + ---------] ) .
1 _ e" ^ D l - e^ D

337



By Parseval's formula and assuming uncorrelated Gq (h) and <h)
N/4 - 1 e-jnt 1

E{f2 (t)} - 8/N2 L (E {||G0(h)|2} 1 “ . + -------- | 2 -f
h=0 1 - e3ICD 

1 -
1 -

+ E {IGx(h)|2} | ---- ----
1 -

I2 ) •
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APPENDIX 2.5

Distortion in BL Reconstructed Signals due to Inaccurate Delay 
Estimates

Let f(t) be a periodic statinary stochastic process. Let gQ(i) 
and g^(i) be the undersampled verisons of length N/2, with a 
delay of D. Let the estimate of delay be T, with an error of A 

D - T. Further let the signal reconstructed with this delay 
estimate be y(t).

With the usual convention, the transforms are 
f(i) <— > F(h) 

g0 (i) <— > G0 (h) 
gx (i) <— > G1(h) 

y (i) <— > Y(h) .

From Eq. 2.4 it follows that

Y(h) = 2(G0(h) - G1(h).e"(khT ~ K T ) / (1 - e_ 7̂cT)
Y(h - N/2) = 2(G0(h) - G 1 (h) .e^khT) / (1 - ej7CT) ,

where k = 27E/N.

Now, from Eq. 2.3

G0(h) = 0.5 ' (F (h) + F(h - N/2)
G1(h) = 0.5 .e_:jkhD (F (h) - F (h - N/2)e^D)

hence
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F (h) [ 1 - e j (khA + 7CT) ] + F (h - N/2) [ 1 - e  ̂{khA 7rA) ] 
Y(h) = --------------------------------------------------------

1 - e'^T

and
F (h) [ 1 - e“3khA] + F(h - N/2) [ 1 - e"^(khA “ 7cD) ]

Y (h - N/2) = --------------------------------------------------.
1 - e ^ T

The distortion in the reconstructed signal is then
N/2 - 1

e (t) = f(t) - y (t) = 1/N Z (F (h) - Y (h) ) e^kht
h=-N/2

and for stationary stochastic, real signals,

E{e2 (t)} « 2/N2 E{

« 2/N2 E{

N/2 - 1
I E (F(h) - Y(h))e"^kht |2} 

h=0
N/4 - 1
I E [ (F(h) - Y(h))ejkht + 

h=0
+ (F(h - N/2) - Y(h - N/2)e^(kht “ rct)]|2}

N/4 - 1 e"3,cT(e“3khA - 1)
= 2/N2 E [ E {|F(h)|2} |------------------

h=0 1 - e " ^ T

e“3wt(i - e"^khA) ------------------  ,2 +
1 - e ^ T

e-j7Ct(_ejrtT + e- j (khA-rcD) )
+ E {|F(h - n /2)I2} |-------------------------

1 - ejrcT 
1 _ e-j(khA-^A)

1 - e " ^ T
N/2 - 1 (1 - e-jkhAj (1 _ e-j7Ctj

“ 2/N2 E E { |F (h) |2} |-------- T-------------|2
h=0 (1 - ej7cT)
1 - cos (7Ct) N/2 - 1

= 4/N2 ----------  E E { | F (h) | 2 } . (1 - cos (khA) ) } .
1 - COS (7CT) h=0
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APPENDIX 3.1

Variance in the Phase of a Noisy Signal

Let s be a signal and x uncorrelated additive noise. Then in 
the frequency domain, at some frequency h, the noisy harmonic Y 
is the sum of a signal and the noise component Y = S + X.

Let the noise have uniform phase distribution in + K (Taub and 
Schilling, 1986, p.323), then the probability of an angle (j) < A 

B C
F (A) = Jf (b) db + _Tf (c) dc for A < A^^^ = sin-1 |X|/|S|,

0 0

where f(b) = f(c) = 1 / 2 k  , the density function of B and C.
F (A) = 1/27T (B+C)
and the density function
f (A) = d F (A) / dA.
From the geometry above 
7t - 2D = k  - (B + C)
2D = B + C 
A + C = D 

2 (A + C) = B + C 
2A = B - C
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df (A) = 1/2JC —  (A + C) dA
dC= 1 / k  (—  + 1 ) . dA

By applying the sine-rule it follows that: 

sin(A + C) sin A

I S | I X |
cos (A + C) dC cos A

IS | dA |X|
I S | .cos A

f (A) = ---------------
TC . | X | . COS (A + C)

| S| .COS A
K . |X|. V (1 - (|S/X|.sin A)2 )

This is the sine-wave density function given by Bendat and 
Piersol (1966, p.69).

The integral required to calculate the variance 

^max pvar { <j> } = 2 J <{> f(<j>) d<{>, where Amax = sin -- ,
0 I S |

could not be solved (Abramowitz and Stegun, 1965 ; Gradstyn and
Ryzhik, 1965).

The signals of interest are mainly those of high SNR, so the 

angle (j) is small and <{) = sin §

I S |
f (sin <}>) -------------------------------

K. | X | .V(l - ( | S/X | .sin <}))2 )

2 |S | \ X / S \ sin2(J)
var { sin <J) } = -------- J  ----------------------- d(sin <J>)

JC|X| 0 V(1 - ( |S/N| .sin ({)) 2 )
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From Gradstyn and Ryzhik (1965) p.86 
var { sin <j) } = (1/2) |X/S|2.
In the above, constant noise amplitude (|X|) was assumed. In 
practice however, real and imaginary components are frequently 

uncorrelated Gaussian variables (Rice, 1954, p.158 and p.182;
Taub and Schilling, 1986, p.323; Brillinger and Tukey, 1984,
p .1089).

Let X = Xr + jX^, where Xr and X^ are the real and imaginary 
components respectively. It can readily be shown (Taub and

Schilling, 1886, p.323) that Xr and X^ are uncorrelated normal 
variables for ergodic, gaussian, random processes (and also under 
less stringent conditions, Brillinger and Tukey, 1984, p.1089).
Amplitude and phase of X is are then also independent (Taub and
Schilling, 1986, p.323).

The variance in phase of signals with such noise added is
therefore given as follows:

Let E{|X|2} = ct2 = E {|Xr |2 + |X± |2} then
var {sin <(>} = 1/2 E { | X/S | } = (1/2) .O2/| S I 2 = 1/(2.SNR2),

where SNR is the signal to noise ratio of this harmonic.
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APPENDIX 3.2

Sequential Minimum Variance Estimator

The following is based on Beck and Arnold (1977) p.276 ff.

The minimum variance estimator was derived under some general
conditions as (Beck and Arnold, 1977, p.232) 
b = ( XT £2_1 X )_1 XT (T1 Y,

where X is the independent and Y the dependent variable with 
added zero-mean noise and a covariance matrix given by
¥ = (20, where G  is some scalar constant.

Since it is assumed that the values in Y are uncorrelated, 12 is 
a diagonal matrix.

Let P = (XT X ) X ^  be the i-th values of x and g ^L2̂  the
variance of the i-th y value, then

Pi+1 = t X1+1T £li+1_1 xi+1 + P ^ 1 r 1
and

pi+i “ pi - pi xi+iT <xi+i pi xi+iT + xi+i pi
p i + i  x i + i T “ i + r 1 = p i  x i + i T (x i + i  p i  x i + i T  + “ i + i ) ' 1'

by the matrix inversion lemma.

Let
= X (2 1 Y over the first i values 

then
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-i+1 = Qi + Xi+1 fl• _1 Yi+1 xi+l

Hence:

bi+l = Pi+1 Qi+1
pi+l ( Qi + Xi+1T Qii + r 1 Y±+i >

- pi+i Qi + pi+i xi+i Qi+i Yi+i
= ( Pi - pi+1 Xi+1T Q.+i"1 xi+1 Pi ) Qi +

+ pi+i xi+iT “i + r 1 xi+i 
- bi + pi+i xi+iT “i + r 1 < y i+i - xi+i bi >

The algorithm for one y-value per observation and p x-values (p 

independent variables and 1 dependent variable) is:

Y • = v

x± = [ xi,i •• xi,P ]
Q i = CTi2

" 2 xi+l,k puk,ik=l

li+l " CTi+l + Z xi+l,k Ak,i k=l

ku,i+1 Au,i+1 
P

/ Ai+i

ei+l = Yi+1 - £ xi+i,k bk,k==i

bu,i+1 ~ bu,i + ku,i+l ei+l
Puv,i+1 ~ Puv,i - ku, i+1 Av
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APPENDIX 3.3

Variance in Predicted Phase Difference

Let <(> = uX' + vY' and X and Y be unbiassed estimates of the
coefficients X' and Y' respectively, corresonding to the shift in 
chapter 3.

Then
var { <j) } = E { (uX + vY)2 } - E{ <J> }2

= u2 var { X } + v2 var { Y } + 2uv cov { XY }.

From Beck and Arnold (1977 p.232) the covariance matrix of the
minimum variance estimator b = [ X Y ] is given by 
cov { b } = (W Q_1 WT)-1

U1 V1

where W =

and ¥ = o  Q  , the covariance matrix of the observations from
which the estimates are found.

Since uncorrelated observations are assumed, is diagonal
Y = diag [ o^2 ] and

cov { b } var { X } 
cov { XY }

cov { XY } 
var { Y }

L u2/ai2

X uv/aii

X uv/a 2 i
X V2/<J12

-1

where the sums are over all observations (so far processed)
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When for a give value of v both u and -u are processed and for

these <7̂  are the same, then

cov { b }
L u2/ ^ 2 0
0 Z v2/oi2
1/Z u 2 / a L 2 0
0 l/ Z v2/oi 2

i.e . cov { XY } = 0.
2 2Furthermore, if is constant over any circle (u + v = const)

and all such points on the circle are processed in pairs (u,v and 
v,u) then 1/Z u2/a^2 = 1/Z v2/a^2 = var { X } = var { Y }.

O OHence var { <J) } = u var { X } + v var { Y }
= (u2 + v2) var { X },

i.e the variance in ({) depends only on the radius of the circle 
2 2u + v and is constant for all harmonics of this spatial 
frequency, independent of orientation.
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APPENDIX 3.4

Listing of the One Dimensional PCF Alignment Algorithm

These routines were written for an LSI-11 computer, running the 
RT-11 operating system and the Pascal-2 (Oregon Software, 1983) 
compiler.

The delay (in units of samples), is calculated in the function 
'delayestimate'. The input signals have the spectra 'ya' and 
'yb' of length 'slength'. The maximum frequency processed by the 
estimator is 'maxf', usually set to 'slength/2 - 1'.

type
complex=record

re,im:real; 
end;

rblock=array[0..signalend] of real; 
cblock=array[0..signalend] of complex;

I *************************************************************** j
{***************** Library routines for complex arithmetic *****}
{*************************************************************** j

function cmul(a,b:complex):complex;
(multyply two compelx numbers} 
external;
function cconj ( x : complex ) : complex ;
(find the complex conjugate} 
external ;
^***************************************************************j
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function amplitudes(var yrcblock; n: integer):rblock;
{
calculate the amplitudes of the array y
}
var x:integer;

dummy;rblock; 
begin

for x:=0 to n do 
begin

dummy[x]:=sqrt(y[x].re*y[x].re+y[x].im*y[x].im) 
end;

amplitudes:=dummy; 
end;

function phases(var yrcblock; n:integer):rblock;
{
calculate the phases of the array y
}
var

x; integer; 
dummy:rblock;

begin
for x:=0 to n do 
begin

if y[x].re=0 then 
if y[x].im<0 then 
dummy[x]:=-pi/2 

else dummy[x]:=pi/2 
else
dummy[x]:=arctan(y[x].im/y[x].re);

{sort out the four quadrants} 
if y[x].re<0 then
dummy [x]:=dummy[x]+pi

end;
phases:=dummy; 

end;
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{***************************************************************}
{**************** PCF delay estimation ************************}
{***************************************************************}

procedure delayestsetup(var ya , yb , y : cblock ;
slength , maxf : integer ;
var phdiff , weights : rblock );

{
Find the wrapped phase differences between the signals ya and yb 
and calculate the weights used in averaging the delay estimates.
}
var f : integer ;

temp , f r  : real ; 
begin

for f := 0 to slength - 1 do 
begin

y [ f ] := cconj ( yb [ f ] ) ; 
y [ f ] := cmul ( y [ f ] , ya [ f ] ); 

end;
phdiff := phases ( y , maxf ) ; 
weights := amplitudes ( y , maxf ); 
for f := 1 to maxf do 
begin

fr := f ;
weights [ f ] := fr * fr * weights [ f ] ;

end;
end;
{★★★★★★★A*******************************************************}

function delayestimate ( var ya : yb : cblock ;
maxf , slength : integer ):real ;

{
Calculate the PCF delay estimate from the input spectra ya and 
yb. 'slength' gives the length of the signal and 'maxf' the 
maximum frequency processed by the algorithm. The constant 
'maxdelayfract' gives an upper bound on the delay, (10% of signal 
length below)
}
const maxdelayfract = 0.1 ; 
var pi,fact:real; 

s , kl : real ; 
f : integer ;
d, runningest,currentest,sumest,weight:real; 
y : cblock ;

function k(dest,d:real; f:integer):real;
{
Find the phase shift required (k*2*pi for the phase) to 
perform the unwrapping 
}
begin

k:=round((dest-d)*f); 
end;
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begin {delayestimate}
delayestsetup( ya , yb , y , slength , maxf , 

phdiff , weights ); 
pi:=4*arctan(1.0); 
fact:=slength;
d:=phdiff [ 1 ] / ( 2 * pi ) ;
if abs ( d ) < maxdelayfract then 
begin

runningest:=d; {initial delay-estimate} 
currentest:=d;
sumest := d * weights [ 1 ] ; 
weight := weights [ 1 ] /{initial weight} 

end 
else 
begin

runningest := 0; 
currentest := 0; 
sumest := 0 ; 
weight := 0 ; 

end;

for f:=2 to maxf do 
begin

d := phdiff [ f ] / ( 2 * pi * f ); 
kl := k ( runningest , d , f ) ; 
currentest:=kl/ f + d;
if abs (currentest) < maxdelayfract then 
begin

sumest:= sumest + currentest * weights { f ] 
weight:= weight + weights [ f ] ;
runningest := sumest / weight ; 

end;
end;

delayestimate := runningest * slength ; 
end;
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APPENDIX 3.5

Listing of the Two Dimensional PCF Alignment Algorithm

The routines given here were written for an LSI-11 computer 
running the RT-11 operating system and the Pascal-2 (Oregon 

Software) compiler.

The sequential estimator is based on that given by Beck and
Arnold (1977, pp.276-278). The alignment algorithm takes as 
input lines of the cross-spectrum in the form of phase 
differences ('phases') and variances in phase difference 
('variances') which are given by the power spectrum. The image 
size is given by 'imagesize', half of this by 'nyquist'. The 
spectra have their origin at 0,0 and then give harmonics up to 
('imagesize' - 1) along the u-axis and 'nyquist' along the
v-axis. Initially all shifts are calculated in units of radians 
and these are converted, at the end, into units of samples by
multiplication with (N / 2K ).

The harmonics are processed in sequence along rows of the 
spectra. This simplifies the algorithm and makes it easier in
file-based operations.

const pi = 3.1415926 ; 
type

shifttype = record
x , y : real ; 

end ;
data = array [0 .. size - 1 , 0 .. nyquist ] of real ; 
parray = array [ 0 .. 1 , 0 .. 1 ] of real ;
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procedure initialize ( var shift : shifttype
var p : parray
var phases , variances : data );

begin
shift.x : = phases [ 1 , 0 ]  ; 
shift.y := phases [ 0 , 1 ]  ;

p [ 0 , 0 ] := variances [ 1 , 0 ]  ;
p [ 0 , 1 ] : = 0 ;
p [ 1 , 0 ] := 0 ;
p [ 1 , 1 ] := variances [ 0 , 1 ]  ;

end ;

function unwrap ( phase : real ;
var shift : shifttype ; 
u , v : integer ) : real ;

begin
unwrap := phase + 2 * pi * round (

( u * shift.x + v * shift.y - phase ) / ( 2 * pi )
end ;

procedure sequentialestimate ( var shift : shifttype ;
var p : parray ;
phase , variance : real ;
u , v : integer );

var a , k : shifttype ;
d : real ; 

begin
a . x : = u * p  [ 0 ,  0] + v * p  [ 0 ,  1] ; 
a.y := u * p [ 1, 0 ] + v * p  [ 1, 1] ;
d := variance + u * a . x + v * a . y ;  
k.x := a.x / d ; 
k.y := a.y / d ;
d := phase - ( u * shift.x + v * shift.y );
shift . X : = shift X + k X * d /
shift y : = shift y + k y * d 9

P [ o f 0 ] := p [ 0 / 0 ] - k.x ■k a.x ;
P [ o r 1 ] := p [ 0 t l ] - k.x * a.y ;
P [ 1 r 0 ] := p [ 1 r 0 ] - k.y ★ a.x ;
P [ 1 r 1 ] := p [ 1 9 i ] - k.y ★ a.y ;

end ;
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procedure shiftestimate ( var phases , variances : data ;
var shift : shifttype );

var u , uf , v : integer ; 
begin

initialize ( shift , p , phases , variances ) ; 
for v := 0 to nyquist - 1 do 

for u := 0 to size - 1 do 
begin

if not ((u=0 and v=0) or 
(u=0 and v=l) or 
(u=l and v=0) or 
(u=nyquist) )

then
begin

if u < nyquist then 
uf := u 

else
uf := u - imagesize ; 

sequentialestimate ( shift , p ,
unwrap ( phases [ u , v ] 

shift , u , v ) 
variances [ u , v ] , uf

end ;
end ;

v )

shift.x := shift.x * imagesize / ( 2 * pi ) ; 
shift.y := shift.y * imagesize / ( 2 * pi );
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