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ABSTRACT

PATH PLANNING FOR PERSISTENT SURVEILLANCE APPLICATIONS USING

FIXED-WING UNMANNED AERIAL VEHICLES

James F. Keller

Vijay Kumar, Ph.D.

This thesis addresses coordinated path planning for fixed-wing Unmanned Aerial Vehicles

(UAVs) engaged in persistent surveillance missions. While uniquely suited to this mission,

fixed wing vehicles have maneuver constraints that can limit their performance in this role.

Current technology vehicles are capable of long duration flight with a minimal acoustic

footprint while carrying an array of cameras and sensors. Both military tactical and civilian

safety applications can benefit from this technology. We make three main contributions:

C1 A sequential path planner that generates a C2 flight plan to persistently acquire a

covering set of data over a user designated area of interest. The planner features the

following innovations:

• A path length abstraction that embeds kino-dynamic motion constraints to es-

timate feasible path length

• A Traveling Salesman-type planner to generate a covering set route based on the

path length abstraction

• A smooth path generator that provides C2 routes that satisfy user specified

curvature constraints

C2 A set of algorithms to coordinate multiple UAVs, including mission commencement

from arbitrary locations to the start of a coordinated mission and de-confliction of

paths to avoid collisions with other vehicles and fixed obstacles
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C3 A numerically robust toolbox of spline-based algorithms tailored for vehicle routing

validated through flight test experiments on multiple platforms. A variety of tests

and platforms are discussed.

The algorithms presented are based on a technical approach with approximately equal

emphasis on analysis, computation, dynamic simulation, and flight test experimentation.

Our planner (C1) directly takes into account vehicle maneuverability and agility constraints

that could otherwise render simple solutions infeasible. This is especially important when

surveillance objectives elevate the importance of optimized paths. Researchers have devel-

oped a diverse range of solutions for persistent surveillance applications but few directly

address dynamic maneuver constraints.

The key feature of C1 is a two stage sequential solution that discretizes the problem so that

graph search techniques can be combined with parametric polynomial curve generation.

A method to abstract the kino-dynamics of the aerial platforms is then presented so that

a graph search solution can be adapted for this application. An A* Traveling Salesman

Problem (TSP) algorithm is developed to search the discretized space using the abstract

distance metric to acquire more data or avoid obstacles. Results of the graph search are

then transcribed into smooth paths based on vehicle maneuver constraints. A complete

solution for a single vehicle periodic tour of the area is developed using the results of the

graph search algorithm. To execute the mission, we present a simultaneous arrival algorithm

(C2) to coordinate execution by multiple vehicles to satisfy data refresh requirements and

to ensure there are no collisions at any of the path intersections.

We present a toolbox of spline-based algorithms (C3) to streamline the development of C2

continuous paths with numerical stability. These tools are applied to an aerial persistent

surveillance application to illustrate their utility. Comparisons with other parametric poly-

nomial approaches are highlighted to underscore the benefits of the B-spline framework.

Performance limits with respect to feasibility constraints are documented.
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Chapter 1

Introduction

The Department of Defense defines persistent surveillance as “a collection strategy that

emphasizes the ability of some collection systems to linger on demand in an area to detect,

locate, characterize, identify, track, target, and possibly provide battle damage assessment

and re-targeting in near or real-time” [1]. The concept is easily generalized to civilian

applications, where safety or security are the objectives in place of tactical considerations.

The central idea is to continually acquire sufficient information over an area of interest such

that any activity in the area that occurs at any time can be documented when the solution

is deployed.

Persistent surveillance is a critical technology for military and civilian applications alike.

Military planners can confidently make tactical decisions when they have the confidence of

knowing what has and is happening over a complete area of interest within a specified

temporal and spatial resolution. Similarly, public event or disaster response planners can

make informed triage-type decisions when they know the up to the moment history of a

complete area.

Fixed-wing UAVs are excellent platforms for aerial persistent surveillance applications.

Their superiority with respect to range, payload, and endurance1 relative to rotary-wing

1Range is defined as the maximum distance that can be traversed before fuel/energy must be replenished.
Payload in this context is defined as the mass of mission equipment (cameras, sensors, etc.) that can be
carried aloft. Endurance is the maximum period of sustained flight attainable before fuel/energy must be
replenished.
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configurations make them the clear preference for this type of mission. However, the se-

lection is not without its drawbacks. Fixed-wing configurations have narrower ranges of

operating speeds and, typically, feature less maneuverability and agility relative to their

rotary-wing counterparts. These characteristics add complexity to path planning for feasi-

ble, time-critical paths. In addition, the acquisition of imagery or sensor data, that satisfies

resolution requirements from a moving platform, directly affects how paths may be devel-

oped. For instance, imaging field-of-view and resolution for a specific sensor or camera can

dictate differing UAV altitudes as the mission requirement ranges from detection of a person

or vehicle, to positive identification of a specific person or vehicle, to positive identification

of what an individual or vehicle may be carrying. The higher the resolution requirement,

the closer a given imaging device will have to be positioned to acquire data. As altitude

is reduced, the area captured in the image frame becomes smaller, so a longer, more com-

plex, path may be required, especially as the ratio of turn radius divided by imaging radius

exceeds unity. A successful planner must integrate a variety of requirements with the ca-

pabilities of the UAV conducting the mission and be executable on the embedded systems

used in current UAVs.

It may be rightly argued that path planning to a goal state from an arbitrary initial con-

dition has been exhaustively studied, as evidenced by the comprehensive survey by LaValle

[2]. However, the complete coverage requirement of the persistent surveillance application

renders the problem NP-hard in complexity, by reduction to the closely related Traveling

Salesman Problem [3] and [4]. Moreover, path planners for fixed-wing UAVs must adhere

to nonholonomic equations of motion so that routes are feasible and readily integrated with

the guidance and navigation subsystems of the UAVs. Curvature constrained paths through

obstacles have also been shown to be NP-Hard [5].The consequence is that the designer must

be willing to tolerate approximate or heuristic solutions to the general coverage problem,

even in R2 space [2].

To address the complexity of this problem, researchers have tailored their underlying

assumptions to permit viable solutions to particular problem structures. While there are
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many diverse practical applications, the following three examples present distinct mission

types which capture the critical elements common to all that strive for time-optimality:

1. Aerial team orienteering-type scenarios

2. Coordinated observation of a common object/location/path

3. Persistent surveillance of a specific location

The first archetypal example is a coordinated observational mission, illustrated for two ve-

hicles on Figure 1.1 below. In this case, the user identifies the number of vehicles to be

deployed and their starting locations, a set of points of interest to be observed directly, the

final locations of each vehicle (i.e. where they must be at the end of the planned mission)

and the mission duration. A planner must then use vehicle performance characteristics

to assign vehicles to locations and find detailed routes that maximize the number of sites

that can be observed within the designated duration given the fleet. To be viable, planned

routes must not exceed maneuver performance constraints. The complexity of this type

of mission and a practical solution to it are presented by Thakur et al in [6]. Figure 1.1

presents planned routes and the tracks of actual flight paths acquired from field experi-

ments to demonstrate the level of success for this approach in the presence of unknown

but moderate wind disturbances. The second example is a coordinated road search where

two vehicles are tasked to simultaneously observe a particular road segment to notionally

search for a specified object of interest. In this case, the core objective is to simultaneously

observe an object or points of interest from opposing perspectives to compensate for po-

tential occlusions of critical image detail, generate 3D image reconstructions, or enhance

image resolution through synthetic aperture techniques. The scenario, illustrated in Fig-

ure 1.2, requires a planner which can generate offset curves which adhere to curvature and

comparable path length constraints. Offset curves present an additional set of challenges to

planning as the offset distance is increased and the curvature variation of the sensor path

is increased. Lastly, the third example, persistent surveillance is an ideal application for

this technology and is the focus of this thesis proposal. In this application, a variety of

technologies are integrated with aerial vehicle systems to provide near continuous imaging

3



Figure 1.1: Coordinated Observation Mission Overview for 2 vehicles with specified goal
points and 4 points of interest: time-optimal routing to observe maximum number of points
of interest in allotted duration

Figure 1.2: Example of a coordinated road search using two vehicles
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of a designated area to permit users to confirm security of the people and property in the

area. Many public and private spaces now employ fixed surveillance infrastructure to con-

tinuously monitor an area of interest for security purposes. Deployment of aerial vehicles

to open areas can provide comparable levels of blanket coverage if the vehicles are properly

routed, so the aerial vehicle approach can be considered a portable capability. There are

many technological barriers that must be surmounted to provide this type of service in a

proficient and user friendly fashion. A critical component at the center of the application is

the path planner for a team of uninhabited aerial vehicles (UAV) that acquire the imagery.

All subsystems for content organization and presentation leverage their performance from

the success of the path planner, which ultimately determines their information content.

Aerial surveillance is not meant to replace security personnel on the ground distributed

throughout the area of interest but, rather, provide additional vantage points from which

to observe. In military applications, dismounted troops currently use organic UAVs to pro-

vide real-time aerial imagery of the terrain they patrol to act as a vanguard, as illustrated

in Figure 1.3. The Department of Homeland Security currently uses UAV technology to

patrol some portions of the national border. Large-scale public events, which already lever-

age the use of piloted aerial vehicles, could similarly benefit. Other examples, ripped from

relatively recent headlines include surveillance above the Boston Marathon route and 24−7

observation of the MH17 crash site to prevent, or at least identify, evidence tampering. To

date, solutions to this problem have been dictated by computational simplicity. All three

Figure 1.3: Example of a Military Aerial Reconnaissance Mission using an Organic UAV

of these applications require routes to be planned that leverage the maneuverability and
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agility of supporting aerial vehicles but do not introduce paths that are infeasible for them.

1.1 Problem Statement

The top level requirement with respect to the imagery acquired by a fleet of heterogeneous

air vehicles is that they would be tasked to continuously acquire a covering set of M images,

for a user designated area as follows:

Number of air vehicles ≡ N

Covering set of images ≡ im,where {im|m = 1, 2, . . . ,M}

User designated convex geographic area ≡ Ω ⊂ <2

(1.1)

The critical requirement for this type of mission is that the composite image set, typically

defined as a covering set, must be refreshed with a periodicity denoted as τrefresh seconds.

In this manner, a mosaicing tool could be used to generate and update a composite image of

the entire area of interest with no portion of the mosaic ever more than τrefresh seconds old.

The conceptual rationale for this is that if the longest gap in surveillance is only τrefresh

seconds in duration, then no event of significance could escape the attention of operators

observing the mosaic2. User requirements for the image resolution3 of the mosaic (pixels

per meter), in conjunction with the specifications of the cameras on-board the vehicles

then set the maximum altitude for each vehicle and, consequently, the field of view of its

individual images at the ground level. Variation in terrain introduces further complexity.

The airspeeds of the vehicles and their maneuver turning performance constrain the rate

at which new imagery can be acquired. Another key constraint, given a particular imaging

device specifications, is how the devices are mounted to the airframes and whether or not

their line of sight is fixed or gimbaled with respect to the airframe reference. The trajectory

planner has to account for all of these details in order to determine the flight plans for each

vehicle. With these considerations, the top level planning problem requirements can be

2The 2005− 6 DARPA HURT program used a 10 second refresh period based on this heuristic.
3As noted earlier, some applications may only require image resolution be sufficient to identify if people

are in the image, while others may require identification of individuals. Each case is driven by the intelligence
requirements of the specific mission.
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summarized as:

• Determine how many vehicles are required to provide coverage of a user designated

area

• Determine the paths for each vehicle in 3D (avoid collisions with other vehicles and

objects along the flight paths)

• Designate an imaging sensor line of sight for each vehicle to acquire imagery of suffi-

cient resolution as flight and sensor acquisition plans are executed

Figure 1.4: Surveillance Mission Overview for N = 3 vehicles observing an area Ω with
image FOV for each vehicle as illustrated

1.2 Motivation

To see how this mission fits into the broader spectrum of UAV applications, it is worth

reviewing a taxonomy of UAV missions. In 2008, the MIT Humans and Automation Lab

developed one [7] that is illustrated in the upper frame of Figure 1.5. While their specific

intent was to highlight operator functional requirements, their taxonomy covers the current

range of UAV missions for military and commercial/scientific applications. Their taxon-

omy starts with general mission types and then incorporates more end-use specificity. The
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generic persistent surveillance mission can be mapped to this taxonomy as: Surveillance

mission type ⇒ geospatial surveillance ⇒ static target. While this structure broadly cap-

tures the mission, in order for such a classification to identify requirements for the path

planner, more detail is required. In this regard, the nature of the imaging subsystems is

a governing factor in the determination of feasible paths, as illustrated in lower frame of

Figure 1.5. A further parallel dimension to the surveillance mission taxonomy could be

the level of maneuverability/agility of the vehicles, since slower maneuver response times

increase the importance of accounting for vehicle dynamics within the planner. Given this

type of problem and the current state-of-the-art for small UAVs, kino-dynamic constraints

(turn rate, acceleration and rate of change of turn acceleration) play significant roles in the

optimization of flight paths.

The critical parameters for the persistent surveillance path planner in this application

are:

• the overall area to be observed (set by user) and the presence of any obstacles or

occluding structures

• the field of view and line of sight (fixed or articulated ) of the imaging sensors on each

available UAV

• the area-based rate of acquisition of new imagery (based on speed and maneuverability

of each UAV)

• the level of maneuverability and agility available to avoid collisions and occlusions

• the composite image refresh periodicity required to satisfy the user’s needs

Recalling the importance of a guaranteed composite image refresh rate (i.e. once every 10

seconds), the problem could be posed as either:

1. Given an area of interest and specified number of vehicles, what is the minimum

composite image refresh period attainable? (Can the designated set of vehicles achieve

the target refresh periodicity: τrefresh ≤ τtarget = 10 seconds.)

2. Given an area of interest and a vehicle specification (imaging sensor specifications

and mounting type), what is the minimum number of vehicles required to satisfy the
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target image refresh periodicity to generate a set of images that cover the designated

area, Ω, As depicted in Figure 1.4.

If the candidate vehicles are permitted to be heterogeneous, the first problem statement

involves less complexity than the second because a direct solution may be possible while

the latter description may require iteration through a number of candidate solutions, unless

a simple estimate is sufficient. In a strict sense, both entail non-deterministic solutions.

We address this problem by outlining a solution for the second case. Vehicle homogeneity

is assumed so that plan geometry can be developed for a single vehicle and then executed by

a team in a serial fashion to satisfy data refresh requirements. With the design requirement

of vehicle homogeneity, the preceding problem statements become the same.
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Figure 1.5: UAV Mission Taxonomy - MIT Humans and Automation Lab[7] (top panel) - Extension to Surveillance Mission
(bottom panel)
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1.3 Key Contributions

The main contributions of this thesis are as follows:

1. (Contribution C1) An approach to split the planning problem into two stages is

developed and justified. This work is presented in Ch. 5.

• A method to abstract the kino-dynamics of the aerial platforms is presented

so that a graph search solution to be adapted for this application, see Section

5.1.1.1.

• An A* Traveling Salesman Problem (TSP) algorithm is developed to search the

discretized space using the abstracted distance metric which embeds the angles

the path must turn through so the number of states in the search space is limited

to planar locations.

• A process to refine the results of the graph search by transcribing them to feasible

paths that can be followed by the vehicles is defined. This work is presented in

Ch. 3. B-splines are used to define the paths.

• A solution for a single vehicle tour of the area of interest is developed using the

results of the graph search algorithm. This establishes a mission duration for a

single vehicle. Consequently, execution to satisfy a specified image refresh period

can then be accomplished by using n vehicles, where n is the smallest integer

which satisfies n ≥ Total path duration/refresh period.

• Performance bounds and computational considerations for the graph search and

B-spline smooth path generation methods are presented in Section 5.3.

• The approach is then generalized to include obstacles in 5.4.

2. Since most cases involve close coordination of team of vehicles to satisfy the data

refresh requirements, a simultaneous arrival algorithm to route vehicles to coordinated

starting positions from arbitrary locations is developed (Contribution C2):.

• Equal duration paths are derived for multiple vehicles from arbitrary current

locations to the start of pre-planned missions are developed. These initialization

paths are shown to satisfy curvature-based constraints, see Section 6.2.

11



• The paths are shown to be collision free with other vehicles on the team.

3. Using results of simulation and flight testing (Contribution C3), we developed and

validated an approach that leverages advances in abstract path planning with path

definition tools from computer graphics and animation. The underlying character-

istics of the solution are practicality and feasibility: within a range of configuration

parameters, the approach yields a direct feasible solution, as defined by parameters

used in the solution. When direct feasible solutions cannot be found, the user has the

option of introducing loops to so that path feasibility can be guaranteed, although

optimality cannot. The approach taken to ensure computational tractability is to

abstract the problem into two stages. Other researchers have developed hierarchical

solutions, so the approach itself is not novel. The innovation here is the way existing

partial solutions are tailored and integrated into a complete and robust solution for

this application.

1.4 Organization of Thesis

The primary goal of this work is to develop a robust and efficient path planner that finds

trajectories for persistent aerial surveillance applications as parametrized by the user. This

thesis makes a variety of contributions that make substantive progress towards solving

the research problems outlined in Ch. 1. An approach to discretize the aerial persistent

surveillance path planner problem is outlined for fixed-wing vehicles over open terrain based

on earlier work by Ahmadzadeh et al [8]. Their discretization assumes the area of interest

is free of obstacles. Revisions to the approach to accommodate obstacles are then presented

in a later chapter.

Before documenting thesis contributions, the research path taken is documented. Ch. 2

discusses this current state of the art and also describes the strategies adopted by other

researchers. The pros and cons of each approach is documented with respect to the aerial

persistent surveillance application. Next, the requirements imposed by the use of fixed-

wing vehicles as the platform of choice are documented. Before getting into detail with
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respect to the governing aerodynamic equations of motion and vehicle constraints, a survey

of geometrically-based approaches to path planning between points is presented in Ch. 3.

A useful feature of the dynamics of these vehicles is that they can be shown to be flat, as

defined by van Niewstadt Murray [9]. This characteristic is defined in detail in Section 4.2.

Among other features, this justifies the use of spline-based trajectory definition.

An overview of the preferred spline framework is presented in Section 5.2 before con-

centrating on the main body of work.

The approach is first developed in an obstacle-free scenario to simplify the presentation

when obstacles are included.

We then generalize the problem to include obstacles in Section 5.4. Since a typical

mission will involve many participating vehicles, we outline how the mission should be

initialized to achieve coordinated flight Ch. 6.

Since many of the algorithms presented in this thesis were tested in flight, especially in

their early forms, the platforms used for flight demonstrations are discussed in Ch. 7.

The thesis is concluded by summarizing all contributions in Ch. 8, where some potential

directions for future research are introduced.

In addition to the aforementioned contributions, listed above, many building-block al-

gorithms were developed that can be used when applying spline-based techniques to aerial

vehicle motion planning and flight path execution. These are discussed in Section 7.2. De-

tails regarding how established techniques were tailored to this application are presented.

This chapter is useful to anyone seeking to apply spline-based techniques to vehicle plan-

ning. The nomenclature in this discipline is not universal and texts are generally written

for animation or computer-aided design applications. We detail how these algorithms can

be tailored for path planning applications.
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Chapter 2

Previous Work

2.1 Introduction to Prior Research

Many researchers have published solutions for this and related problems. Before delving

into the specifics of their approaches, it is worth noting the high level issues regarding

this problem that are common to all of them. Persistent surveillance is a constrained

optimization problem whose objective function is the image/sensor content each agent can

acquire with respect to an area of interest. The first consideration is to what extent should

the problem be discretized. Inherently the number of available agents (N) is already a

discrete number but how each can be tasked to acquire imagery is not necessarily a discrete

operation (consider streaming video versus still images). In addition, since the path a

vehicle takes directly affects the images/sensor data it can capture with mission requisite

resolution, the designer must reckon with the issue that optimal feasible paths may be not

continuous or convex functions of the domain of interest. To the extent that the imaging

device can be articulated on the vehicle through a gimbal mount, with multiple degrees

of freedom, the image content and to some extent the rate of acquisition of new imagery

can at least partly be decoupled from the path itself. Imaging systems fixed to the body

frame of a vehicle introduce an impractical level of complexity. Nevertheless, optimization

algorithms must be capable of dealing with a non-convex, nonlinear, and discontinuous

objective function with respect to path optimality, especially as motion constraints become
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significant. As noted in the Introduction, Ch. 1, the general problem is of the complexity

class NP-Hard. Whether posed as a mixed continuous/discrete or fully discrete problem, it

is not sufficiently constrained to yield a deterministic solution.

A feature which may be used to distinguish the variety of prior approaches is the em-

phasis that is placed on the fidelity of path feasibility with respect to the motion con-

straints governing the actual vehicles under study. Some researchers adhere more closely

to kino-dynamic constraints, while others work with highly abstracted path constructions

and emphasize the search dimension of the optimization space or the introduction of novel

heuristics to streamline computation. This problem is rich enough to warrant research on

many fronts with many niche solutions. We select a combination of features from prior

research to tailor a new approach that is suitable for computation with embedded systems.

Table 2.1 illustrates the range and status of existing research on this topic.

2.2 Dubins TSP Approaches

The research team of Savla, Frazzoli, and Bullo have developed a large body of research

findings for the Dubins traveling salesperson problem (DTSP). By abstracting the trajectory

of air vehicles to planar Dubins paths1 [18], the problem for a single vehicle search (without

obstacles) can be formulated as a DTSP. In this case, they pose the problem as finding

a Dubins path to service a set of N points, P ≡ {p1, p2, . . . , pN}, which are uniformly

distributed in a compact region, Ω ⊂ <2. Of particular significance for the persistent

surveillance problem is their constant factor approximation solution [10],[19]. They do

not include any representation of an imaging device so their Dubins tour is designed to

simply intersect all points of interest (a nadir-facing imaging device can be assumed). Their

approach is geometric and is based on a novel motion primitive class they introduce that

is tailored to the Dubins class of paths. See Figure 2.1 below. They designate the area

coverage of this motion primitive as a ‘bead’. The geometric significance of the bead is that

1Dubins paths [18] are the shortest between points in <2 for nonholonomic vehicles whose minimum
turning radius is defined as ρ. They have the form CSC or CCC, where C indicates a turning segment (with
radius ρ) and S a straight segment. Since turns may be either to the left (L) or right (R), this limits the
combinations of path constructions to six words: LSL, RSR, LSR, RSL, RLR, LRL. Moreover, the CCC
paths cease to exist geometrically once points are separated by more than 4ρ.
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Table 2.1: Approaches Developed Through Related Prior Research

Researchers Title Approach Theoretical
Basis for
Optimality

Embedded
Heuristic

Model
Fidelity

Savla, Bullo,
and Frazzoli
[10]

Asymptotic
Constant
Factor Ap-
proximation

direct
calculation
using circular
arcs

constant
factor proof

‘bead-tile’ grid
must be used

kinematic, no
obstacles

Le Ny and
Feron [11]

Approximation
Algorithms for
the TSP with
min turning
radius

direct
calculation
using circular
arcs

constant
factor proof

generic ATSP
tour
approximation

kinematic, no
obstacles

Schouwenaars,
De Moor,
Feron and
How [12]

Mixed Integer
Programming
for
Multi-Vehicle
Path Planning

Mixed Integer
Linear
Programming
(MILP)

constructive
proof

none Satisfactory
for constant
speed, admits
obstacles well

Walsh,
Montgomery,
and Sastry
[13]

Optimal
Planning on
Matrix Lie
Groups

dynamic
optimization
using Lie
Groups

performance
bounds proven
when problem
is convex

none vehicle motion
constraints
captured by
kinematics of
SO(3) Lie
Group

Likhachev,
Ferguson,
Gordon,
Stentz, and
Thrun [14]

Anytime
Search in
Dynamic
Graphs

graph search proven
assuming
graph uses
accurate
motion
primitives

cost to go
estimates
drive graph
search

model not
specified;
dynamics
abstracted
into graph
structure

Király and
Abonyi [15]

Genetic
algorithms for
multiple
traveling
salesman
problem

graph search absolute
performance
not proven

transcription
of physical
problem into
genetic
formulation

vehicle motion
constraints
abstracted
away by graph

Choset and
others [16]

Generic
robotic search
approaches

Voronoi
tessellation,
visibility
graph search,
etc.

proven
assuming
graphs
matched with
actual vehicle
constraints

tessellation
concepts

vehicle motion
constraints
abstracted
away by graph

Christofides
[17]

Approaches to
metric
traveling
salesman
problem

graph search performance
bounds proven

diverse
heuristics
devised to
expedite
search

vehicle motion
constraints
abstracted
away by graph
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is can be used to tessellate or ‘tile’ the area of interest to form a covering set using Dubins

curves. Their recursive ‘Bead and Tile’ algorithm (RBTA) concentrates on the derivation

of a constant factor approximation for a specific type of Dubins tour with respect to the

optimal tour for the ‘heavy load’ case, where the number of uniformly distributed points in

the compact region to be visited approaches infinity. Savla shows [19] with a combination of

an insightful tessellation of the bounding area and innovative proof, which leverages results

from Azuma [20], and Chernoff and Doob [21], that the RBTA is a (32/ 3
√

3)(1 + 7
3π

ρ
W )

factor approximation to the optimal DTSP, where ρ is the turning radius that defines the

Dubins curves and W is the wider dimension of the rectangular area, which is then taken

to be aligned with the primary direction of flight. As an example, for the fairly small area

case where ρ
W = 0.1, the RBTA tour is guaranteed to be within a factor of ≈ 38.45 of

an optimal tour when points are uniformly distributed and their cardinality approaches

infinity. The factor improves as the widest dimension of the area to be observed increases

with respect to the minimum turning radius but its lowest bound is ≈ 22.19. While this

result is illustrative of the structure and complexity of the problem, the coarseness of the

approximation is disappointing to those who would implement it.

Le Ny and Feron [11] have also developed a constant factor approximation algorithm

for the Dubins TSP using a different approach. They build on the work of Jacobs and

McCanny [22] who derive the maximum variation of the length of a Dubins path when

the heading angles of either initial or goal points differ by an arbitrary amount (limited to

±π). They couple this result with the current approximation algorithms for the asymmetric

TSP to derive a constant factor approximation of (1 + max { 8πρ
Dmin

, 14
3 })log2N , where ρ,

again, is turning radius and Dmin is the minimum (Euclidean) distance between points. The

structure of this factor is illustrative of the issues with respect to the Dubins TSP. The term

log2N results from their leverage of an algorithm by Frieze et al to solve an asymmetric

TSP problem [23] which yields a worst-case heuristic of this order. If an exact algorithm

is used or the size of the problem permits a Dijkstra algorithm to be used, then this term

need not be applied. The (1 +max { 8πρ
Dmin

, 14
3 }) component results from the use of Dubins
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Figure 2.1: Savla, Frazzoli, and Bullo, excerpt from: Nonholonomic Vehicle Routing and
the Dubins TSP, RSS Workshop on Robotic Sensor Networks, Atlanta, Georgia, June 2007

curves to build a tour. Since we want to be able to assign a distance to each pair of Dubins

triplets, (x, y, θ), without regard for which Dubins word1 constitutes the shortest path, the

maximum possible length is taken. If a CSC path is taken, it can contribute as much as

8πρ
Dmin

to the factor, while a CCC path can contribute no more than a factor of 14
3 . Note, even

though the term Dmin in the denominator can render the overall factor to be indefinite once

the minimum turning radius is fixed, Le Ny and Feron note that for practical problems (i.e.

ρ
Dmin

≈ O(1)), their constant factor is on the order of ≈ 26.13 of the optimal tour. Since this

result assumed the worst case of heading errors up to ±π, a better approximation can be

derived when this contribution is randomized. The best constant factor is (1 + 13.58ρ
Dmin

) when

heading errors are distributed uniformly over the interval (−π, π] or numerically ≈ 14.58

when ρ
Dmin

is of O(1). This is a significant improvement over the RBTA, especially since

the construction of the resultant paths does not rely on the assumption of densely packed

points. Le Ny and Feron conclude by suggesting a derivation of a tour-based constant factor

using lower heading errors. These results have the significance of being provable but the
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resultant factor with respect to optimality is still very high for a user to accept in a practical

application. In addition, as will be shown later, Dubins paths cannot be considered feasible

since they are only C1 continuous and UAVs in this application typically require a finite

time to change the curvature of their flight paths.

2.3 Mixed Integer Linear Programing Approaches

Since an optimization problem is at the heart of path planning for persistent surveillance,

some researchers [12][24] formulate the solution as a mixed integer linear program (MILP).

This approach permits leverage of powerful advances in computing speed and software

packages such as CPLEX [25], which can solve this type of linear program. Specifically,

they select a mixed integer linear equation format, so that hard constraints such as obstacle

or collision avoidance requirements can be introduced as integer variables. The advantage

is that this approach is algorithmically complete; if a solution exists, the linear program will

find it. In order to pose the problem in this context, they express the vehicle “dynamics”

in terms of a double integrator for 2D inertial velocities (i.e. East and North), where

velocity commands to these fixed axes constitute the control variables. This appears to be a

requirement to apply MILP algorithms [26], which must represent the model and constraints

through linear time-invariant equations. As a consequence, any details of the dynamics,

which are physically linked to vehicle body-fixed coordinates are difficult if not impossible to

capture. The dynamics must be captured as a first-order differential equation with respect

to inertial states (velocity). However, even though maneuverability can be represented

through first order linear equations, it is inherently a body-referenced phenomenon and

cannot be abstracted to an inertial form2. The inability to distinguish velocity changes in

speed from those in direction can be managed by planning for constant speed paths.

The richness of the MILP approach is the compactness with which constraints such

as obstacles and limits on state variables can be represented. When spatial constraints

are not a factor, imposition of state variable limits of constant airspeed and maximum

2Once a model is abstracted to inertial space, it is no longer possible to disambiguate velocity changes
in speed from changes in direction.
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turn rate yield a model which is comparable to Dubins’ in the cases typically described

by researchers. While the MILP formulation implies linear variables for which inequality

constraints impose a feasible optimum, the Dubins’ solution space may make determination

of a global minimum beyond the scope of such an approach, as illustrated in figure 2.2. The

Figure 2.2: Variation in path length of Dubins trajectories when initial and final orientations
are free (left panel: point spacing � ρ, turning radius, right panel: point spacing � ρ)

MILP approach can be considered a best technical approach to this problem if the scenario

is limited to constant speed/no wind conditions and points of interest are ‘widely’ spaced

with respect to the vehicle minimum turning radius, so there is a single global minimum. If

either desired vehicle airspeed variation or wind disturbance introduced, then this approach

becomes less desirable. The main shortcoming is that vehicle dynamics are limited to

a linear, constant coefficient model in inertial space, while the real constraints can only

be represented in body-fixed coordinates. If body-referenced constraints are incorporated,

then they become directly coupled to the trajectory and the MILP solution is no longer

straightforward. Examples are:

• If desired airspeed is defined as a variable within a range, then the physics of the

vehicle are such that, in general, the dynamics of inertial velocities due to simply

changing airspeed will not match the dynamics of inertial velocities due to turning

flight at constant airspeed. However, the model in inertial space conflates changes to

the velocities in Easterly and Northerly directions due to speed changes at a specific

heading with changes due to turning flight at constant speed. These effects are easily

represented in terms of longitudinal and lateral accelerations in the body-axes but

20



cannot be captured in inertial space over all time [12]. To address this, Schouwenaars

et al re-pose the problem as a receding horizon problem. Each successive time horizon

starts with an inertial approximation of the body-aligned acceleration limits correctly

oriented at its start.

• Although not cited, wind also causes a similar complication, as pointed out in the

earlier discussion on the kinematic model: even if the vehicle operates at constant

airspeed, in wind, acceleration limits are a function of inertial parameters which now

vary as a function of heading with respect to the wind azimuth. Again, the receding

horizon solution is required.

The net effect of these effects is that the solution becomes more dependent on heuristics to

tune the receding horizon dimension and convergence may be affected in an indeterminate

fashion. MILP solutions are an excellent choice for a user when constraints are somewhat

loose and a global minimum exists. However, when these conditions cannot be met, its

attractiveness is diminished. These minor deficiencies leave room for alternate ideas.

2.4 Optimal Planning on Matrix Lie Groups

Montgomery, Walsh, and Sastry combine the strength of dynamic optimization principles

developed by Pontryagin with the depth of research dedicated to the kinematics of Ma-

trix Lie Groups to develop path planning techniques for flight segments, such as approach

to landing from an arbitrary state [13]. They specifically formulate their optimization al-

gorithm to minimize control activity but the approach can be broadened to other cost

functionals. The approach leverages the significant body of research into matrix Lie Group

motion but this only captures kinematic and not dynamic constraints. Their approach is

useful for extension of optimization methods to more complex equations of state. It is

computationally intensive and not particularly suited for embedded computing.

2.5 Voronoi Graph and Related Approaches

The problem of routing robotic agents through the use of Voronoi graphs has been well

documented as noted by Choset et al [16] and La Valle [2]. This approach tailors a set of
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feasible paths between points of interest to avoid obstacles that may impede motion. There

are many published techniques for determining the Voronoi graph [27], which is a function

of the set of points of interest and the environment and does not account for any kinematic

constraints on motion, so it must be augmented for applicability to the aerial fixed wing

vehicle whose turn radius is directly constrained by its aerodynamic configuration param-

eters. To address this issue, Beard et al [28] have developed a novel real time trajectory

generation algorithm that will generate feasible paths for aerial vehicles while preserving

the lengths of the paths found using a Voronoi graph search when points of interest are suf-

ficiently spaced apart; i.e. Euclidean distance between points � turning radius. However,

as noted, the persistent surveillance problem frequently results in a parametrization where

these distances are close enough in order of magnitude that such constructions cannot be

guaranteed to be feasible. Chandler et al propose to smooth the paths through Voronoi

vertices by adding fillets of minimum turning radius but then the vehicle does not actu-

ally ‘visit’ the point of interest [29]. To address these problems, especially where multiple

agents are available to cooperatively solve the problem, researchers using this technique

apply satisficing decision theory to balance the objectives of individual agents with those

of the overall task. Satisficing decision theory [30] is a rational decision making approach

that does not incorporate sufficient complexity for solutions to be optimal, but rather uses

a truncated decision algorithm to select a sub-task that suffices. It can be considered a

short-term optimization and in the limit it will yield the so-called ‘greedy solution’. While

this approach has been shown to be effective for target intercept problems [28], it is not at-

tractive for persistent surveillance applications. The Voronoi construction approach is best

suited for problems in which the environment presents complex obstacles around which the

vehicles must navigate. Parametric spline-based representations that satisfy convex hull

constraints on their control points can be integrated with Voronoi techniques. This is one

of the reasons B-splines are selected when details of the structure of the proposed research

are defined.
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2.6 Other Graph Search Algorithms: Anytime and Dynamic

Graphs

Graph search algorithms are powerful for this type of problem because they can be shown

to provide complete [31] solutions. The introduction of ‘Anytime’ algorithms3 permits the

algorithm designer to tailor computational constraints so that feasible solutions can be

generated quickly but eventually converge to the optimum as noted by Likhachev et al in

[32] and [14]. These techniques do not address the generation of the graph itself, which is

a critical portion of the persistent surveillance problem. In many applications, Euclidean

distances may be used to form the graph as it is explored but in the fixed-wing aerial

case, turning constraints can render Euclidean graphs inappropriate. As a consequence,

the approach must be integrated with another so that the graph itself is a high fidelity

abstraction of the original problem. In this regard, graph search algorithms can complement

algorithms that simply enumerate candidate paths. Graph searches can be proven to find

the optimal path within the domain of the set of feasible candidates and this is the strength

of the approach. Thakur [6] et al present a solution to a similar problem of time critical

surveillance by combining Dubins’ approaches with graph-based searching, as illustrated

earlier in Figure 1.1. Rather than develop a fully connected graph, they devise a set of

motion primitives match to the vehicle constraints and move on the graph as dictated by

the motion primitives. In this thesis, we adapt a graph search to accommodate planning

that indirectly embeds turning capability constraints. The rationale for adopting a graph

search for this application is made is Section 5.1.1.1.

2.7 Genetic Algorithms

Genetic algorithms (GA) may be classified as randomized search techniques that are inspired

by biological genetic processes of natural evolution [33] [34]. They have been applied to the

many variations of the TSP, some forms of which capture an abstraction of the cooperative

3Anytime algorithms can be interrupted at any time during execution and still provide a feasible solution.
The quality of the solution improves the longer the algorithm runs but they are configured to be interrupted.
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surveillance problem. While this type of algorithm provides a search method to select a

solution from an extremely large set of feasible solutions, it does not provide any insight with

respect to the generation of feasible trajectories. GA solutions have applicability to this

type of problem because they provide a stochastic global search structure by applying the

mechanisms observed to take place in genetic mutation of living organisms. GA have been

successfully applied to a variety of forms of the traveling salesman problem and have been

explored in the specific context of aerial vehicle path planning [35]. Their strength in this

application is that the search is global, while their principal drawback is that performance

guarantees are not possible [15]. The common structure of GA is a three phase operation

on a finite population of bit strings (likened to a chromosome). The generic iterative steps

are:

1. measure the ‘fitness’ of a candidate bit string (‘chromosome’) with respect to an

objective function to determine its measure of optimality

2. select ‘parents’ for the next generation ‘chromosome’

3. execute mutation and recombination or crossover operators to the ‘parent chromo-

somes’ and form ‘offspring chromosomes’

The process is repeated for fixed number of steps (‘generations’), until a prescribed fitness

criterion is met, or until improvement can no longer be achieved. The crossover process

refers to the portion of the algorithm defining how much of the bit string is exchanged

between generations. The specific definitions these processes determine how efficiently a

global search is enacted. It is not particularly suited to persistent surveillance problems

because the direct bit string definition of a chromosome is not suited to path planning

within a set of points that must be visited since the structure is inefficiently long and the

crossover and mutation processes could easily introduce infeasible and or cyclic tours [33].

Therefore, the method of encoding of points on a tour to a chromosome is an integral part of

how efficient and successful GA can be in the context of path planning. Results reported by

Potvin [33] indicate GA are computationally competitive with most other TSP approaches
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(except Lin-Kernighan heuristic4) but cannot be successfully applied when the number of

points on a tour is large. Most of the literature for GA is directed towards the Euclidean TSP

(ETSP), which is symmetric. Obermeyer [35] developed a GA to solve a Polygon-Visiting

Dubins Traveling Salesman Problem (PVDTSP) in which a polygon can be considered to be

‘on the tour’ if a UAV flies over any point above it. He compares results for which the GA

algorithm is superior to Monte-Carlo methods based on the number of iterations. The lack

of a predictable period for convergence or quality of the search are significant drawbacks.

While each iteration can be shown to be better than its predecessor, its proximity to the real

optimum remains unknown. In addition, progress towards a solution is stochastic. However,

Darrah et al [37] report that parallelized genetic algorithms can outperform MILP in terms

of quality and speed of solution if there are no constraints on communication between the

parallelized components. There is a wide range of related algorithmic approaches to GA,

including Memetic and Tabu search, that abstract the problem to a combinatorial search

through the space of potential enumerated solutions. These are considered somewhat out of

scope for this research because they do relate to formulation of candidate feasible paths and,

instead, focus on combinatorial selection from a set of previously developed candidates. The

main issue when adapting these methods to this application is that they rely on pair-wise

substitution of path segments as they evolve to find shorter paths. The inherent assumption

is that the path cost for the remaining segments remains unchanged. When C2 continuous

paths are considered, this assumption is impractical as a new path in the local vicinity of

the exchanged points/segments must be determined. Details of these issues are illustrated

in the results chapter where GA can be adapted to this application.

2.8 Other Relevant Literature

There is an extensive body of research for various forms of the traveling salesman problem

(TSP) [38], [39], [17], [40]. While some are not at all related to persistent surveillance,

they can be applied once a graph containing path lengths between each pair of points of

4The Lin-Kernighan heuristic is one of the best for solving the Euclidean traveling salesman problem. It
is a combinatorial optimization approach through which pairs of sub-tours are swapped to introduce and
evaluate new tours [36]
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interest has been constructed. These may be leveraged, as done by Le Ny [11], so that

the problem becomes one of expressing surveillance in the the proper context, rather than

actually (re)inventing a solution. Nevertheless, an algorithm that can find a sufficient set of

feasible paths is required before other techniques can be applied to find the optimum within

the set. In addition, techniques that are configured for particular versions of the TSP,

such as requiring undirected graphs or edges that satisfy the triangular inequality are not

applicable because the motion constraints cannot be maintained with these assumptions.

The Lin-Kernighan approximation is one that does not make these assumptions and it can

be made applicable once a graph is constructed. It must be augmented to ensure candidate

paths are C2 continuous as exchanges are made.

2.9 Summary of Survey of Prior Research

Each of the aforementioned solutions runs into problems as motion constraints become more

significant. We dismiss Dubins approaches because they lack C2 continuity and do not offer

a particularly competitive factor with respect to optimality, as discussed in Section 2.2.

MILP techniques, discussed in Section 2.3, are not selected because we believe embedding

motion constraints introduces sufficient complexity which renders the approach unattrac-

tive. Moreover, it may not be appropriate for embedded system computing because it relies

on memory-intensive tools like CPLEX. We also dismiss optimal planning on matrix Lie

Groups, as discussed in Section 2.4, on account of computational complexity.

We select graph search techniques as a component technology of our research because it

represents an informed approach to the selection of candidate paths rather than a stochastic

approach.

2.10 Prior Work in the Context of Persistent Surveillance

The persistent surveillance task is related to the routing problem from Operations Re-

search with a significant additional complexity of ensuring aerial paths are feasible. Most

researchers leverage reductions in complexity from to develop practical solutions. Choset

provides a survey of 2D approaches that provide full area coverage [41]. Cell decomposi-
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tion strategies are discussed in the context of ground vehicles but are applicable to aerial

applications when constraints are not a factor. Ahmadzedah et al applied receding horizon

optimization techniques to minimize the time required to persistently cover a designated

area [8]. Strictly satisfying image refresh requirements over a long period was found to be

uncertain. Gorecki et al [42] apply model predictive control optimal costs to balance explo-

ration, safety, and mission termination specifications. Persistence is not directly considered

but could be accommodated with an iterative execution of their algorithm. Performance

guarantees for coverage would also require additional development. Nigam and Kroo [43]

develop persistent surveillance policies for single and multiple agent applications. Their

results show the merits of basing plans on feasible path lengths rather than Euclidean dis-

tances, especially when turn rate capability is relatively low. Their approach to multiple

UAS persistent surveillance, which is based on an optimum policy for a single-UAS case,

validates the idea of basing team performance on the analysis of a single agent. Acevedo

et al present an area partitioning strategy to solve the problem for irregular areas and het-

erogeneous UAS [44]. Caraballo et al [45] generalize the concept using a strategy defined

as the block-sharing technique to accelerate convergence to an optimal partition. Vehicle

capability in their model is specified by speed and sensor/camera field-of-view; fixed-wing

maneuver constraints are not included. Mixed Integer Linear Programming solutions have

been developed by How et al [46] for maximizing coverage but not for persistent applica-

tions. Wallar et al [47] directly address persistence in the context of a reactive planner

tailored for agile quad-rotor platforms, so further work would be required to accommodate

fixed-wing levels of maneuverability. Finally, in this survey, Cowlagi presents the case for a

hierarchical approach to optimal planning between points [48].

Each of the cited researchers used a dynamic programing approach to optimize paths.

Cowlagi is the only one to decompose the problem into a hierarchy from which model pre-

dictive control techniques are used to find actual trajectories. Computational requirements

for these approaches can become impractical as the area of interest and, or, resolution of

the covering set increases. The persistent surveillance problem has many similarities with
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other routing problems. Consequently, many concepts from the traveling salesman prob-

lem (TSP) are applicable when costs are calculated over feasible tours rather than point to

point measurements. The problem is inherently discontinuous and non-convex when motion

constraints are embedded.

This thesis is based on a two-stage, sequential planner. The rationale to adopt a hier-

archical approach is to selectively include computational complexity. The top level of the

planner is based on a geometric abstraction of the motion planning requirements and con-

straints. In the nomenclature of the TSP, it finds an ordered sequence of sites to be visited

that, while not optimal, is an efficient sequence to acquire a covering set of imagery/data.

The secondary layer then adds additional details of motion constraints to develop feasible

paths that can be followed by any state-of-the-art autopilot. The critical requirement for

sequentially subdividing the planning task is to guarantee that solutions based on the ab-

stractions of the top layer can be transcribed into feasible detailed paths by the lower layers

[49]. Without a credible abstraction, the sequential approach is invalid. In this application,

because a true optimal solution is an El Dorado-esque quest, we develop an abstraction that

values feasibility over optimality when ranking path cost and practicality.
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Chapter 3

Generation of Smooth Curves

In this chapter we first review approaches to planning between points and then generalize

to the persistent surveillance application.

3.1 A Survey of Geometrically-based Approaches to Path

Planning Between Points

While discussion so far has concentrated on algorithms that can find a tour which covers a

set of points, each relies to some extent on a point-to-point path generator. To be suitable

for an practical application, an algorithm should be capable of 3D motion synthesis, but

for purposes of a minimum requisite complexity survey of these technologies, the 2D case

is sufficient to characterize the variety of approaches, their benefits and shortcomings. In

addition to path dimension, it is important to be able to define an entire trajectory rather

than abstract it as a sequence of critically positioned way-points. The ability to define

the desired state of a vehicle at any point in time within a mission permits the on-board

guidance and navigation inner loop controller to manage errors with greater precision than

point-to-point plans. The following discussion captures the primary approaches to point-

to-point trajectory generation and analysis.
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3.1.1 The Frenet-Serret Frame

The Frenet-Serret Frame is a classical moving orthogonal reference frame developed in the

nineteenth century to facilitate motion analysis. The frame consists of an ortho-normal

triad of vectors for every point along a curved path. If the position of a point along a

parametrized curve, r(t), is denoted by the arc length, s(t), to reach it from a starting

point, such that s(t) =
∫ t

0 ‖r
′‖ dτ , then the triad of tangent, normal, and bi-normal vectors

that constitutes the Frenet-Serret frame is denoted as [T,N,B]. The tangent is defined:

T = dr
ds at s(t). The normal vector to the tangent, N, is defined by convention such that

N =
dT
ds

‖ dTds ‖
. The triad is then completed by defining the bi-normal, B, such that B = T×N

to complete a right-handed set. In this convention, the triad is undefined for straight paths

or at points of inflection since a unique normal vector cannot be defined in the absence of

curvature or when r′ is parallel to r′′, which occurs at inflections. In 2D, the bi-normal

vector is always vertical (facing up for curves to the left and down for those to the right

while looking in the direction of the tangent). The Frenet-Serret convention is useful for

analyzing motion but is cumbersome for motion planning itself [50] where straight segments

or inflections may be embedded because it then introduces frame discontinuities. It is also

not particularly suited for obstacle avoidance planning because offset curves from a central

path are not computationally suited for rendering or manipulation [50] [51]. To surpass

these obstacles, recent innovations such as [51] have led to the development of rational

Frenet-Serret frames1. However, rational Frenet-Serret frames can become computationally

problematic because nonlinear constraints must be maintained. There are other approaches,

which address these issues, as noted below.

3.1.2 Parametric Polynomial Spline Curves

Parametric polynomial spline curves provide a linear framework to generate smooth paths

between points but can become computationally unattractive when the complex constraints

1A rational curve is a parametric curve expressed in homogeneous form, i.e. polynomials of the form
p(x, y) = 0. The homogeneous form greatly simplifies operations of the curve because it lends itself to
matrix equations forms which are easily programmed.
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such as maximum curvature or rate of change of curvature are introduced. Basis functions

which require high order polynomials to ensure a spline fit through points of interest are

further problematic even if well-conditioned numerically. The general form of curves using

this framework is:

r(τ) =

M∑
m=0

Fm,d(τ)pm

where τ ∈ [0, 1) or, in some cases, [0, 1]

pm ≡ set of M + 1 geometrically configured control points in Rn

Fm,d(τ) ≡ set of M + 1 basis functions of degree d

(3.1)

Simple power basis representations2 are prone to numerical instability and may be com-

putationally cumbersome even when numerically stable [52]. Consequently, a variety of

bases have been established for expressing polynomials that avoid these issues. Parametric

functions provide a compact framework with which to represent trajectories. Moreover,

derivatives are readily computed. While it may be attractive to consider the parameter, τ ,

as representative of arc length distance along a path or time elapsed from a starting point,

this representation is not mathematically feasible except in simple cases such as straight

lines or circular curves (whose coordinates are linear or quadratic functions respectively).

See [53] for details of this complicating issue. As a consequence, parametrically defined paths

must account for the irregular correspondence between parameter value and arc distance

along a path when tracking progress along a curve in order to be useful. This framework

will be a foundation for the work introduced in this thesis.

3.1.2.1 Hermite Spline Curves

Constraints at points of interest can be directly used to generate a series of basis functions

known as Hermitian Polynomials. Path segment endpoints and a user designated number of

2The power or monomial basis for polynomials that can be expressed as function of an independent
variable t (the parameter) is simply powers of t as follows. A set of n+1 polynomials, φ0(t), φ1(t), . . . , φn(t),
is defined as linearly independent if the identity a0φ0(t) + a1φ1(t) + . . .+ anφn(t) ≡ 0 can only be satisfied
if all ai, i = 0 . . . n = 0. In this representation φk(t) = tk for k = 0, . . . , n constitute a basis for the set of
polynomials.
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derivatives can be used to derive a set of polynomial basis functions as illustrated in Figure

3.1 below. Basis functions are derived entirely from boundary conditions. These can be

used to generate entire segment trajectories based on number of geometrically determined

control points, in which the contribution of each control point is weighted by its assigned

basis function. The process is straightforward but only numerically stable at low order. A

major drawback is that this basis function set does not sum to unity (see Figure 3.2), so

the path cannot be guaranteed to reside within the convex hull of its control point polygon.

Other parametric basis functions have been designed to include this useful feature.

Figure 3.1: Detailed derivation of Hermite polynomials (cubic case)

3.1.2.2 Legendre Polynomial Spline Curves

Legendre Polynomials also comprise a basis set that has useful properties for trajectory

definition. The polynomials are well-conditioned numerically so high order functions may

be used. Legendre polynomials have the special feature that they form an orthogonal

basis set. This is particularly useful when embedding the path planner using them in an

optimization algorithm. The Legendre Basis is defined on the interval [−1, 1]. This interval

can be mapped to the interval [0, 1], which is more natural for path planning (i.e. [initial

point,goal point ]). Orthogonality permits the user to ensure the polynomial coefficients,

that are geometrically related control points for a curve, are uncorrelated. This serves to

minimize error and the sensitivity of calculations to round-off error when control points are

computed by optimization algorithms[54]. These basis functions are illustrated in Figure
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Figure 3.2: Hermite polynomial basis functions (cubic case)

3.3. Mellinger [55] used this type in many of the quadrotor UAV trajectories documented

in his 2012 thesis. He typically optimized on the kinematic Snap3 of the trajectory. The

major drawback of the technique for path development is that there is no straightforward

way to compute the convex hull of the curve. Consequently, obstacle avoidance cannot be

addressed through control point manipulation without additional considerations. Moreover,

the curves are not affine so manipulation (i.e. scaling) can be complicated. There are

well-conditioned basis transformation algorithms between Bernstein and B-spline bases and

Bernstein and Legendre bases, so an algorithm may actually use one or more of these as

may be appropriate to tailor a curve to constraints if the additional computational burden

is warranted.

3.1.2.3 Bernstein - Bézier Spline Curves

In the 1960s, Bézier popularized an an approach to curve design using Bernstein Polynomi-

als4. The structure of Bernstein polynomials is illustrated on Figure 3.4 for the 5th order

3Snap ≡ the 4th derivative of inertial position.
4Bernstein Polynomials were developed in the early 20th Century as part of a constructive proof that

polynomials can be tailored to fit any continuous function. They use barycentric coordinates to achieve
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Figure 3.3: Hermite polynomial basis functions (L0 through L9)

case. Bézier curves have are defined:

r(τ) =
M∑
m=0

Bm,d(τ)pm, where τ ∈ [0, 1)

pm ≡ set of d+ 1 geometrically configured control points in Rn

Bm,d(τ) ≡ set of d+ 1 = M + 1 basis functions of degree d

(3.2)

Note, the number of control points used to define a curve is directly linked to the order of

the polynomial basis functions. At the same time but independent from Bézier, de Casteljau

developed a numerically stable algorithm to construct such curves that have since become

denoted as Bézier curves. Bézier curves have become a foundation in computer graphics5

for representing text, parametric curves, and parametric surfaces [57]. The mathematical

construction of these curves is well suited for rapid computation. They also use specified

excellent numerical stability
5A common usage of Bézier curves is in font design and one of the visually distinguishing features of a

LATEX document is that it uses cubic Bézier curves whereas True Type fonts developed by Apple and used
by Microsoft use only quadratic (Bézier) curves [56].
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control points to determine a smooth curve which can be proven to lie within the convex

hull of the control points (note, only the starting and ending points are actually on the

curve). A drawback of these curves is that the number of control points used to shape

a curve is directly linked to the degree of the polynomials basis functions. To avoid this

shortcoming, curves can be composed on lower order segments with user defined continuity

between segments. To achieve this, the user must develop and solve their own inter-segment

constraint equations.

Figure 3.4: Bernstein polynomial basis functions (quintic case)

3.1.2.4 B-Spline Curves

As noted in the preceding subsection, Bézier curves provide smoothness throughout a curve

between two points but precise blending of multiple curve segments and, hence, the determi-

nation of a trajectory that is feasible for a vehicle between the endpoints of a complex curve

may require further inter-segment constraints to be useful for path planning. Alternatively,

Basis splines, denoted as B-splines in the literature, were developed by Schoenberg [58] and

de Boor [59] and many others to provide a more open framework that could address these
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types of constraints. The general equation for B-splines is:

r(τ) =
M∑
m=0

Nm,d(τ)pm, where τ ∈ [0, τmax)

pm ≡ set of M + 1 geometrically configured control points in Rn

Nm,d(τ) ≡ set of M + 1 basis functions of degree d

(3.3)

Note, unlike Bézier curves, the degree of the B-spline basis functions and the number of

control points is somewhat decoupled6. B-splines are a general framework for parametric

splines. In fact, Bézier curves are a special case of B-spline. See the text by Lyche and

Mørken [60] for a comprehensive description. Like other parametrically based methods, a

set of basis functions is used in conjunction with a set of geometrically configured control

points. The linear combination of control points and basis functions constitutes the curve

over a specified range of an independent parameter. Planar curves can be defined in inertial

space as: r(τ) = [x(τ), y(τ)], where the parameter τ varies over the domain of the curve:

0 ≤ τ ≤ τmax. Unlike other basis function sets, B-spline curves are not necessarily defined

over the entire domain of the parameter. They use a finite sequence of points, within the

parameter space, designated as knots in order to derive and anchor the basis functions. The

basis functions, Nm,d(τ) are actually a set of piecewise of polynomials that are continuous

across each knot.

B-splines can be configured to replicate Bézier curves. B-splines embed curve segment

continuity within their algebraic structure in a way that is easily managed for trajectory

specification. B-splines are formulated so that when basis functions have degree d, a curve

can feature up to Cn−1 continuity between segments. The way the user defines the para-

metric spacing of basis functions controls the degree of continuity. So, rather than use high

order polynomials to generate highly complex curves, it becomes advantageous to make

composites of piecewise continuous segments. Shape control of a curve can be controlled

in a variety of manners through control point configuration or basis function distribution

6There is a minimum number of control points required for a specified polynomial degree but no maximum.
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with respect to the independent parameter. In subsequent subsections, it will be shown

how to constrain parametric curves of a specified order to fit path planning applications

using B-splines. Additional control points7 may be used in the B-spline formulation to more

tightly control the curve shape in comparison to the Bézier curve, which, as noted, requires

an increase in polynomial order to include additional control points. Construction is still

based on a linear combination of selected basis functions over an interval, typically defined

as: [0, 1) [59].

The B-spline basis has the following features that make it particularly suited to our

application. The basis is structured to provide what is denoted as compact support so that

any individual basis function only spans d + 1 knots, Ni,d(τ) > 0 in the open interval of

knots, (τi, τi+d+1) and zero everywhere else. Consequently, moving control points outside of

this range will have no effect on a curve. The basis functions constitute a partition of unity

whereby the sum of all functions for any parameter value in the full basis span of the knot

vector = 1. The main advantage this approach provides is that the curve will reside within

the convex hull of the control points (since each basis function is ≥ 0). The polynomial

degree of these basis functions is not driven by the number of control points, except for a

minimum associated with degree, so a large amount of control points does not imply high

order polynomials. Continuity across curve segments is built into the basis functions and

the degree of continuity across each knot span can be selectively controlled. Lastly, a large

body of B-spline definition algorithms are available as this approach has been embraced by

the computer graphics and animation community. B-splines permit a curve to be tailored

by the manipulation of the positions of the control points in inertial space, the values of

the knot sequence which anchor the basis functions within the parameter space, and the

degree of the polynomials used to construct the basis functions. The only requirements for

a viable knot vector are:

• For M + 1 control points and basis functions of degree d, there must be M + d + 2

knots, since each basis function spans d+ 1 knots.

7Additional points beyond the minimum required to match boundary conditions.
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• The first knot, τ0, must satisfy τ0 ≤ τmin, the minimum parameter over which the

curve is defined.

• The knots form an increasing sequence: τi ≤ τi+1.

• The last knot, τM+d+2, must satisfy τmax ≤ τM+d+2.

When the knot sequence is strictly increasing, the functions do not span the entire space,

so the curve is taken as the portion over which there is a basis for polynomials of degree d,

which in our case is four. In our application, it is important to interpolate initial and final

points. To accomplish this, the initial and final knots are repeated d+ 1 times to constitute

what is denoted as a clamped spline. We also uniformly space the internal knots to provide

approximate uniform support in the determination of the splines and their relation to the

control points. Note, B-spline basis functions are implicitly geometrically configured since

they are related to the parameter range of the curve. By uniformly spacing the knots, the

basis functions tend to be relatively equally spaced with respect to the curve parameter.

While non-uniform knot spacing is feasible, without a priori information for the shape of a

curve, it is not practical to develop spline curves in this manner because it yields a set of

non-uniform basis functions that can result in curve distortions. Non-uniform knot spacing

is best applied to curve refinement once a desired shape has been established. Consequently,

our knot sequence starts at 0 and ends at M + 1 − d. Between the starting knot (0) and

maximum (M + 1− d), knots are either repeated or increase with a unity interval. For ex-

ample, a uniform knot sequence that supports 12 control points, uses quartic basis functions

and interpolates segment endpoints is: [0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8, 8, 8]. The range of

the parameter over which the B-splines form a basis in this case is [0, 8), as illustrated in

Figure 3.5 (for which there are d+ 1 non-zero functions across each knot span).

As mentioned earlier, an important property of B-splines is that they provide compact

support, which means each basis function within a curve has a non-zero domain that is ≤

the domain of the entire curve. This can be observed in the shape of the basis function

illustrated on Figure 3.5. This permits local curve reshaping, while a change in most

other bases (Bernstein, etc.) globally affects a curve. Compact support poses algorithmic
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Figure 3.5: Quartic B-splines defined for clamped uniform knots over the range 0 to 8 (12
control points)

constraints with respect to curve definition but is generally a useful feature, especially if

online re-planning is a consideration.

3.1.2.5 Rational B-Spline Curves

Parametric polynomial splines can be used to approximate any shape but perform poorly

when precision is required for some basic shapes, most notably conic sections. The ex-

pression for a rational B-spline is illustrated in Equation (3.4) below. A weighting term

is introduced so the spline becomes a weighted sum. The use of rational parametric func-

tions permits these shapes to be precisely represented and others, such as offset curves, to

be more easily generated. Since rational functions are the most straightforward form for

numerical computation, the standard for computer graphics and CAD systems is the Non-

uniform rational B-spline (NURBS) model. It permits geometrical shapes to be precisely

represented in a compact form [61]. Hence, rational parametric equations have a valuable
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role in trajectory definition.

r(τ) =

∑M
m=0w(n)Nm,d(τ)pm

sumM
m=0w(n)Nm,d(τ)

where τ ∈ [0, τmax)

pm ≡ set of M + 1 geometrically configured control points in Rn

Nm,d(τ) ≡ set of M + 1 basis functions of degree d

and w(m) is a weight associated with the mth basis function

(3.4)

Since the vehicles inevitably are subjected to some sort of disturbance (wind, variation of

air density, etc.), the value of defining paths to the precision mathematically afforded by

rational B-splines may not be warranted. These types of curves are especially useful when

defining machine tool paths to achieve high precision. Addition of a rational structure is

also useful when it is advantageous to control the path proximity to the control points8.

High magnitude weights will tend to pull the curve closer to its control polygon, while low

magnitude weights will relax a curve’s adherence to its control polygon.

3.1.2.6 Pythagorean Hodographs

As noted in the preceding discussion, parametric curves are excellent tools for evaluating

the properties of curves because they permit complex paths to be represented in a very

compact form (curvature in the case of 2D paths and curvature and torsion in the case

of 3D curves) [62]. However, the general form of the arc-length calculation of parametric

curves typically does not lend itself to rapid or precise computation because in many cases

it is not possible to express the calculation in forms that permit closed-form expressions[52].

Determination of path length, which is a typical constraint in planning problems must be

numerically calculated using a quadrature-type algorithm, which can be computationally

expensive. To overcome this obstacle, Pythagorean Hodographs (PH) were developed as

8For instance when a Voronoi construction is used to map clear paths amidst obstacles, control points
can be positioned a priori at critical vertices and the rational weights of the spline used to control closest
proximity.
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special structure to permit exact computation of arc length9. For a differentiable 2D planar

curve, parametrized by an independent variable τ , the curve itself can be defined by ordered

pairs in fixed Cartesian coordinates: r(τ) = (x(τ), y(τ)). The arc length of such a curve is

typically denoted as s. The ‘parametric’ speed (magnitude) along the curve is then defined

as:

ds

dτ
=
∣∣r′(τ)

∣∣ =
√
x′2(τ) + y′2(τ) (3.5)

The direction (phase) of the parametric speed vector is given by the arctan of component

parametric velocities:

φ|r′(τ)| = tan−1(y′, x′) (3.6)

The arc length can be computed from Equation (3.5).

s(τ) =

∫ τ

0

√
x′2(τ) + y′2(τ)dτ (3.7)

If the integrand is a perfect square of a polynomial, then a closed-form solution for the

integral is straightforward. Since the expression |r′(τ)| is a hodograph of the curve r(τ),

this constraint is the defining characteristic of a Pythagorean Hodograph [52]. By definition,

the parametric speed of a PH is a polynomial. As a consequence, the tangent and normal

vectors of PH are rational functions of the curve parameter τ . Offset curves from a center-

line of PH are also rational functions, so clearance to obstacles can be determined exactly.

To date, most applied work using this construct has been related to machine tool motion

planning or highway construction. The curves can be expressed in the form of Bézier

curves, so they can also be leveraged to yield a compact representation of a complex curve.

Shanmugavel recently published a PhD thesis [62] using PH curves to devise coordinated

time of arrival paths for multiple UAVs. The following attributes make PH curves an

appropriate approach to path planning for persistent surveillance:

• Path length can be determined exactly from a closed-form integration of a polynomial.

9A hodograph is a vector diagram which depicts the magnitude and phase of the velocity vector from
start to finish along a path or curve.
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• PH curves can be developed in planar and spatial curves.

• The curve and its offset are rational functions so they are readily integrated with other

supporting algorithms, like obstacle avoidance.

• A PH can be represented in the form of a Bézier curve, which is defined by its control

points, so a compact mathematical representation is possible.

• Determining or analyzing the precise properties of a PH curve, such as the elastic

bending energy of the curve, is computationally straightforward.

• All points on the path can be readily and precisely determined (an attribute common

to all parametric representations).

A major downside to PH algorithms is that linearity in derivation is lost in order to guaran-

tee the Pythagorean constraint on parametric speed. This adds significant computational

complexity to a planner. Like linear-based parametric curves (Bézier or B-spline curves),

management of significant physical constraints like curvature and rate of change of curva-

ture is also computationally complex. Towards this end, Walton and Meek [63] recently

published an algorithm for defining geometrically smooth10 curves (with G2 continuity)

using 5th order PH models. Their approach includes a constraint equation to force the

curve to closely approximate a clothoid spiral. This approach can be extended to constrain

a PH to match the rate of change of curvature constraint imposed by the roll dynamics

of a typical fixed-wing aerial vehicle. In this manner, feasible curve segments could be

compactly developed and represented. Research to date has focused on quintic PH curves

to determine point-to-point paths but the degree that best suits the determination of a

minimum-duration feasible tour through many points for an aerial vehicle has yet to be

established. The algorithms required to develop tours are iterative and may introduce sig-

nificant computational complexity. Polynomials of at least seventh order are likely required

to permit the PH constraint on parametric speed and vehicle dynamic constraints to be

simultaneously met. An assessment of the PH approach to trajectory generation in the

10Geometrically smooth curves are defined in a nomenclature that is parallel to algebraic continuity. A G0

curve has position continuity between adjoining segments (like C0 continuity between functional segments).
G1 curves match the tangent direction between adjoining segments (like C1 continuity between functional

segments). G2 curves match curvature between segments, while C2 continuity only matches d2r(t)

dt2
.
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context of the persistent surveillance problem will be documented in this thesis.

3.1.2.7 Clothoid Arcs

Clothoid arcs have been studied in the context of path planning because their insertion

adjoining circular arcs is the least complex approach to permit curvature to be a continuous

variable along a curve 11. Clothoid curves are frequently used in highway construction to

join road segments so that curvature is a C0 function [64][65]. A clothoid is defined using

Fresnel integrals so that curvature varies linearly along their length. The result is illustrated

below in Figure 3.6, where it can be seen that curvature steadily increases with arc-length.

In this regard, they are useful as buffers to bridge segments with different steady magnitudes

of curvature. Consequently, only short pieces of clothoid spiraling arcs are actually used. In

terms of their application to aerial vehicles, like the Dubins curves, the vehicle dynamics are

still abstracted away but the kinematic representation is significantly more realistic. While

the Dubins construction applied to fixed-wing aerial vehicles assumes angle of bank (and

hence turn rate or path curvature) can be instantaneously acquired, the clothoid construct

backs off one level of integration and makes the assumption that the roll rate (or rate of

change of curvature) can be instantaneously attained. This is a major step towards realism

but the curves are technically still not feasible for an air vehicle unless it possesses a high

degree of agility (a high magnitude of effective roll damping). While the approximation

they provide is superior to Dubins’ paths, the requirement to compute Fresnel integrals

is computationally intensive. In addition, clothoid paths further require computation of a

control polynomial line to accommodate path local fine-tuning such as obstacle avoidance

considerations [66]. These can be embedded directly into a other types of parametric curve

algorithms which use a different strategy to maintain curvature constraints. A trajectory

definition in the clothoid format would consist of a unique set of straight line segments,

pieces of clothoid spirals, and circular arcs, with each defined parametrically. Clothoid

construction is sufficient if the only requirement is to fair a curve between two existing

11Unlike the construction of Dubins which uses line and circular arcs to provide C1 continuity, clothoid
arcs permit C2 continuity across turning segments. Hence, they are distinguished as curvature-continuous
paths.
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segments. Once a tour through many points is required, it is not an attractive approach

computationally.

Figure 3.6: Clothoid spiral starting with zero curvature

3.1.3 Summary of Geometric Approaches

Parametric polynomials provide a sufficiently rich representation with which to determine

and analyze candidate paths. Furthermore, once a feasible path has been determined, this

framework is advantageous to encode paths in a compact form that facilitates low bandwidth

communication with on-board processors and efficient computation to enable precision nav-

igation with minimal overhead, since only control points need to be transmitted.

Parametric B-spline spline curves are selected for use on-board the vehicles because of

these features. In addition, they lend themselves to rapid reassignment of agents which

may be mandated as their primary surveillance sensors acquire information. The work of

the computer graphics community provides a rich framework with which to define space

curves and surfaces but naive application of graphical techniques in this context can lead to

numerically substandard performance, excessive execution time, unnecessarily dense com-

putational solutions, or all of these. Consequently, we define an approach tailored to robust

real-time definition of feasible aerial trajectories. The approach also affords a high degree of
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flexibility with respect to task reassignment. Before describing spline-based path planning

algorithms, it is important to identify the appropriate polynomial degree for the underlying

basis functions and determine how the basis functions are to be tailored to the geometry of

the problem.

3.2 Rationale for selection of B-spline trajectories

As noted in the preceding section, parametric splines are an ideal framework with which to

develop vehicle paths. Response dynamic constraints can be abstracted to functions of the

parameters through derivatives of the curve and vehicle real-time control commands can

be directly derived from errors with respect to the desired path [67]. Spline-based paths

need only exhibit G2 continuity with respect to their parameters because vehicle speed can

be set at flight time to achieve C2 continuity in the time domain. Direct interpolation of

points within a closed loop circuit path can be readily expressed by repeating (wrapping)

control points of splines based on uniformly spaced knots. A procedure to find control

points for quartic B-splines that directly interpolate a specified set of points is presented in

Section 7.2.2. The full problem requires a constrained optimization solution that preserves

interpolation of the points of interest. To be practical, a solution curve must exhibit the

following features:

1. Interpolate of all points of interest in a sequence

2. Possess at least G2 continuity with respect to its parametrization

3. Constrain peak curvature and the rate of change of curvature throughout the path

4. Yield an arc length that meets data refresh specifications.

Local control of a curve is advantageous if the application warrants subsequent re-routing to

create non-repetitive paths when practical. In the general case, the points to be interpolated

are randomly located. A slight drawback of applying B-splines to this problem is that extra

steps must be taken to pose the problem strictly terms of variable locations control points.

As curve refinement is made to satisfy constraints, interpolation of the target points must be

maintained and B-splines typically do not interpolate their control points. So interpolation
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may have to be built into an optimizing algorithm. An alternate approach is to define

splines which locally span each pair of points with G2 continuity across adjacent pairs to

provide a flexible foundation for the optimization stage. To facilitate optimization of the

closed tour with minimum complexity, the number of control points for each curve segment

is minimized. Each curve segment is determined so that the location, tangent, and curvature

of both endpoints can be readily solved using uniform clamped B-splines using quartic basis

functions. This solution can then be augmented for continuity of tangent and curvature

across segments to ensure a closed G2 path.

An additional drawback of parametric polynomials in general is that the expression

for curvature is not itself a parametric polynomial. It can, however, be approximated as a

polynomial. Since the paths for aerial vehicles are being continually affected by atmospheric

disturbances, precision is not critical, so this type of approximation is suitable for our

application.

B-splines are selected as the foundation for this work for the reasons cited in Section

3.1.3. In addition, they provide the following features that are leveraged for our persistent

surveillance application:

1. A computational framework can be readily set up to interpolate a set of points with

G2 continuity and permit further refinement to satisfy user specified constraints on

the path.

2. Local adjustments to a path can be made without altering the entire path.

3. Linear bounds on the path can be readily computed so that obstacle avoidance cal-

culations do not have to be carried out with precision using the full B-spline defining

equations. Spline bounds can be determined strictly from the knot vector and the

curve control points.

4. Equations readily accommodate 2D or 3D paths.

5. Robust gradient descent algorithms are readily implemented to find local minima

because the underlying basis functions are smooth. In addition, the domain of solvers

can be selected to guarantee convergence because the shape of the basis functions are
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known in advance.

6. Numerical calculation of arc-length can be executed with efficiency and precision using

Gauss Quadrature algorithms.
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Chapter 4

Modeling of Fixed Wing UAVs

In order to derive feasible paths for a fixed-wing UAV, a planner needs to take into account

the flight dynamics response of the vehicle and its controls because these often introduce

significant control authority limits and response lags which cannot be adequately captured

in purely kinematic models. A simple, physically representative, dynamic model of a fixed-

wing UAV suitable for embedding in a path planner is required so that dynamic constraints

are embedded.

4.1 A Vehicle Math Model Suitable for Path Planning

A simple model of fixed-wing dynamics can be derived from the following assumptions:

• The vehicle has automatic turn coordination. In other words, we assume vehicle

longitudinal axis remains aligned with the velocity vector for consistency with most

autopilots.

• Turning flight is accomplished by rolling the vehicle about its longitudinal axis to

a bank angle to generate a centripetal acceleration. Moreover, the magnitude of

bank angle is bounded: φ < φmax, since banked flight is typically constrained by

vehicle aerodynamic performance and autopilot operational limits, especially for small

vehicles.

• The rate of roll response is constrained by an effective roll damping factor, which

48



is typically denoted as ∂L
∂p (where L represents the rolling moment of the vehicle,

normalized by inertia, which is induced by its roll rate, denoted by p). The magnitude

of this parameter is set by the vehicle configuration. A typical time constant for this

response for small surveillance UAVs would be on the order of 1 to 4 seconds.

• The magnitude of roll rate is bounded: p < pmax, since roll rate is constrained by the

control authority of vehicle and its response dynamics. A typical value for a small

UAV would be on the order of 20 deg/sec.

• There are minimum and maximum bounds on airspeed since it is constrained by

flight dynamics and the magnitude of installed power. Airspeed can be modeled as

V = u0 + δu, where u0 is a constant speed and δu is a perturbation about u0.

• When variation in airspeed is limited, a linear model may be used for aerodynamic

drag to minimize model complexity, so that the rate of change of airspeed can be

expressed as an effective airspeed damping factor; typically expressed as ∂X
∂V , where

X represents the longitudinal force on the vehicle induced by changes in airspeed V

the airspeed along that axis, normalized by mass (linearized airspeed damping is a

constant constrained by vehicle configuration).

• The magnitude of installed power is fixed (power is constrained by vehicle configura-

tion; in turn it constrains the rate of climb and to some extent the rate of change of

airspeed).

Model complexity can be greatly reduced by removing the vertical degree of freedom and

working with constant altitude planar paths. The fixed altitude constraint is compatible

with the mission context, as noted in Ch. 1, because the height above ground level is

likely set by on-board sensor field of view or resolution. These assumptions can be used

to define a suitable set of equations of motion, such as those developed by Seckel [68]

or Stengel [69]. The fundamental concept that must be captured by a planner is that

turning is accomplished by rolling the vehicle for which there is an associated response lag.

As a consequence, the response rate to initiate a bank angle is governed by the stability

derivative ∂L
∂p and the magnitude of roll control authority (±max(δaileron)). For constant
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speed applications, minimum turning radius is directly set by the upper bound on bank angle

(rmin = V 2/gtan(φmax)), where g is the gravitational constant and φmax is the maximum

angle of bank that can be achieved. These physical constraints tend to reduce the fidelity

of path planners which abstract rolling dynamics away to work strictly with simplified

kinematic bounds on turning radius based on φmax. At present, most small UAVs exhibit

response dynamics significant enough to affect the shapes of their turning paths. These

assumptions can be used to define the following equations.

˙δV =
∂X

∂V
δV +

∂X

∂δthrottle
δthrottle (4.1)

V = u0 + δu (4.2)

ṗ =
∂L

∂p
p+

∂L

∂δaileron
δaileron (4.3)

φ̇ = p (4.4)

ψ̇ =
g tanφ

V
(4.5)

ẋ = V cosψ (4.6)

ẏ = V sinψ (4.7)

Where the nomenclature of Table 4.1, below, is used:

Even though aerodynamics forces and moments are linear, this system is inherently non-

linear because inertial position states rely on sine and cosine functions of vehicle heading
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Table 4.1: Nomenclature used in Equations (4.1) through (4.7).

Variable Description units

V airspeed along flight path m/s

u0 initial condition airspeed m/s

δu airspeed perturbation from initial condition m/s

∂X
∂V

airspeed damping normalized by mass, abbreviated as XV 1/sec

∂X
∂δthrottle

airspeed control derivative normalized by mass, abbreviated as Xth
m
s2
/%throttle

p roll rate radian/s

∂L
∂p

roll damping normalized by inertia, abbreviated as Lp 1/sec

∂L
∂δaileron

roll control derivative normalized by inertia, abbreviated as Lδa
radian
s2

/%aileron

φ roll attitude (bank angle, positive for a RH rotation about the longitudinal axis) radian

ψ inertial heading (positive clockwise with respect to north) radian

g acceleration due to gravity 9.80665 m/s2

x x inertial position (positive for displacement north from initial condition) m

y y inertial position (positive displacement east from initial condition) m
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(more precisely, the direction of velocity vector). The system has six dynamic states and

two control inputs:

[
~x

]
=



x1

x2

x3

x4

x5

x6


=



V ≡ magnitude of velocity along path

p ≡ roll rate

φ ≡ angle of bank

ψ ≡ heading angle (orientation of velocity vector)

x ≡ inertial displacement North

y ≡ inertial displacement East


(4.8)

[
~u

]
=

u1

u2

 =

 δthrottle ≡ speed reference command

δaileron ≡ roll rate reference command

 (4.9)

These equations can further reduced in complexity by fixing airspeed to be constant. The

introduction of a fixed airspeed constraint is made practical by consideration that surveil-

lance UAVs tend to operate between their maximum endurance speed and their maximum

range speed1. For many configurations the difference between these can be small, especially

at high density altitude. Therefore, plans are generated for constant speed at the middle

of this range, so an autopilot has sufficient control authority to reject disturbances, such

as winds. A consequence of planned fixed airspeed and altitude is that the vehicle pitch

angle, θ, will be small enough to neglect in the equations of motion. These equations can

be posed in terms of constant airspeed by eliminating the δthrottle command. We are left

with five dynamic states. We work with a constant speed command matched to mission

requirements so there is one control input for the planner. The minimal set of equations is:

1Endurance and Range are measured with respect to a what can be accomplished on a single load of fuel.
In this context, endurance refers to time aloft, while range refers to distance traversed.
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[
~x

]
=



x1

x2

x3

x4

x5


=



p

φ

ψ

x

y


(4.10)

u =

[
δaileron

]
(4.11)

This is the model that will be carried into the planner. Rather than work with these

differential equations directly, we will show how they can be abstracted into a parametric

polynomial equation format to facilitate detailed planning.

4.2 Feasible Trajectories that Satisfy Vehicle Dynamics

While minimization of the polynomial degree used to represent a trajectory is a key factor

towards minimization of computational complexity, it is important to ensure there are

sufficient degrees of freedom with which to replicate feasible flight paths with precision.

To ascertain an appropriate degree for the polynomial basis functions used in parametric

curves, the concept of differential flatness, developed by Martin et al [70], is applied to

the underlying dynamics. Starting with the assumptions developed in 4.1, a functional

representation of the position, [x, y], is shown to be sufficient to capture the underlying

equations of motion in 2D.

4.2.1 Overview of Flat Dynamic Systems in Context of UAV Path Plan-

ning

For a system with two control inputs, such as the ones described by Equations (4.8) and

(4.9), if dynamics can be shown to be flat [70], there will exist a flat output vector, z, which

will contain two flat outputs. Then, the entire system can be constituted solely through

these outputs. The position states, x and y are the most obvious choices for flat outputs
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since they are the states that would be tracked by a controller executing a path.

~z =

x
y

 (4.12)

Using these to express the states and controls leads to the following expressions:

V =
√
ẋ2 + ẏ2 (4.13)

Based on this expression for speed, V , the rate of change of speed along the path can be

expressed as:

V̇ =
ẋẍ+ ẏÿ

(ẋ2 + ẏ2)
1
2

(4.14)

From Equations (4.1), (4.2), (4.13) and (4.14), the speed control input can be expressed in

terms of the flat outputs and their derivatives as:

δthrottle =

{
ẋẍ+ ẏÿ

(ẋ2 + ẏ2)
1
2

− ∂X

∂V

[
(ẋ2 + ẏ2)

1
2 − u0

]}
/

∂X

∂δthrottle
(4.15)

The heading of the vehicle, ψ, defines the orientation of the velocity vector, so it may be

directly expressed in terms of the flat outputs as:

ψ = arctan(ẏ/ẋ) (4.16)

Since the curvature of the path, κ, can be expressed in terms of the differential equations

as:

κ =
g tanφ

V 2
=

g tanφ

(ẋ2 + ẏ2)
=

ẋÿ − ẏẍ
(ẋ2 + ẏ2)

3
2

(4.17)

This expression can be used to simplify the derivation of the roll attitude, φ, in terms of

the derivatives of the flat outputs.

φ = arctan

{
ẋÿ − ẏẍ

g(ẋ2 + ẏ2)
1
2

}
(4.18)
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Differentiating this expression with respect to time yields the expression for roll rate in

terms of the flat outputs:

p = φ̇ =


1

1 +

{
ẋÿ−ẏẍ

g(ẋ2+ẏ2)
1
2

}2


[

1

g(ẋ2 + ẏ2)
1
2

{
−(ẋÿ − ẏẍ)(ẋẍ+ ẏÿ)

(ẋ2 + ẏ2)
− ẏ...

x + ẋ
...
y

}]

(4.19)

The equation for roll rate expressed in terms of the flat outputs x and y can be differentiated

to yield Equation (4.3), which can then be solved for the control input, δaileron in terms of

x and y. This expression is quite lengthy but can be made somewhat manageable by using

the nomenclature of V , which itself is solely a function of the derivatives of the flat outputs.

ṗ =
1

g3V 7
[
1 + (ẏẍ−ẋÿ)2

(gV )2

]2

[
2 (ẏẍ− ẋÿ)

(
ẏ2
(
x(3)ẏ − ẍÿ

)
(4.20)

+ ẋ2
(
ẍÿ + ẏx(3)

)
− ẋ3y(3) − ẋẏ

(
ẍ2 − ÿ2 + ẏy(3)

))2

+ g2V 2
[
1 + (ẏẍ−ẋÿ)2

(gV )2

](
3(ẋÿ − ẏẍ)(ẋẍ+ ẏÿ)2 − 2V 2(ẋẍ+ ẏÿ)(ẋy(3) − ẏx(3))

− V 2(ẋÿ − ẏẍ)(ẍ2 + ÿ2 + ẋx(3) + ẏy(3)) + V 4(ẍ
...
y − ÿ...

x − ẏx(4) + ẋy(4))
)]

Equations (4.3), (4.19), and (4.20) can then be used to derive the expression for the aileron

control input in terms of flat outputs. While the resultant equation is unwieldy, it captures

the critical elements of the physical model. A small angle approximation for equation (4.18),

so that the tangent function drops out of the expression, is often used to greatly simplify

the equations but this also compromises the fidelity of the resultant model so that it is not

useful as the basis for further work. The full expression for the lateral control input, in

terms of the flat outputs is:

δaileron = (ṗ− ∂L

∂p
p)/

∂L

∂δaileron
(4.21)
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Populating Equation (4.21) with the contents of Equations (4.20), (4.19) and the configu-

ration constants ∂L
∂p and ∂L

∂δaileron
permits one to express the turn control input required to

generate the trajectory defined completely by the flat outputs and their time derivatives to

fourth order. Together, Equations (4.15) and (4.21) fully define the control inputs required

to generate a trajectory expressed in terms of the planar inertial coordinates x and y. These

expressions ensure the equations of motion defined by Equations (4.1) through (4.7) are sat-

isfied. The lowest order parametric polynomial which can be used with these equations is

quartic. In this regard, paths so defined can be said to be feasible when so constructed.

However, the configuration constants, which constrain the physical system dynamics do not

appear in the basic expression for a feasible trajectory and are only present in expressions

defining the required control inputs. Hence, the feasibility assertion assumes unconstrained

control power magnitudes. Also note, the complexity of these equations is indicative of

the difficulty they present with regards to embedding them in an optimization algorithm.

Consequently, further steps must be taken for the approach to be practical.

4.2.2 Satisfying Boundary Conditions

The first step in a generic path planner is to develop an algorithm for the trajectory that

satisfies the boundary condition problem between initial and final conditions. Niewstadt

and Murray [9] have developed an approach to trajectory generation that capitalizes on

their Flat Dynamics representation. When the position and the first four derivatives with

respect to time are specified at the end points, (tinitial tfinal), then equality constraints can

be determined for a polynomial expression. Following their notation, each flat output can

be expressed as a weighted sum of basis functions, Ψj , where the number of functions, j,

must be selected match the complexity of the problem:

zi =
∑

Ai,jΨj (4.22)
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Since the weights, Ai,j , on the basis functions are constants, the vector of each flat output

and its relevant time derivatives can be constructed:



zi

żi

z̈i

z(3)

i

z(4)

i


=



∑
Ai,jΨj∑

Ai,j
d
dt (Ψj)∑

Ai,j
d2

dt2
(Ψj)∑

Ai,j
d3

dt3
(Ψj)∑

Ai,j
d4

dt4
(Ψj)


(4.23)

It is also useful in this case to specify the polynomial basis functions over the prescribed

range of 0 to 1 with respect to their independent variable, which can be denoted as τ ∈ [0 1].

In this regard, differentiation with respect to time can be represented:

d

dt
(Ai,jΨj(t)) = Ai,j

d

dτ
(Ψj(τ))

dτ

dt
, where

dτ

dt
=

1

∆ t
, and ∆ t = tfinal − tinitial (4.24)

Equations 4.23 and 4.24 can be written in matrix form for the ith flat output as follows:



zi

żi

z̈i

z(3)

i

z(4)

i


=



1 0 0 0 0

0 1
∆ t 0 0 0

0 0 1
∆ t2

0 0

0 0 0 1
∆ t3

0

0 0 0 0 1
∆ t4





Ψ1(τ) Ψ2(τ) · · · Ψj(τ)

d
dτ (Ψ1(τ)) d

dτ (Ψ2(τ)) · · · d
dτ (Ψj(τ))

d2

dτ2
(Ψ1(τ)) d2

dτ2
(Ψ2(τ)) · · · d2

dτ2
(Ψj(τ))

d3

dτ3
(Ψ1(τ)) d3

dτ3
(Ψ2(τ)) · · · d3

dτ3
(Ψj(τ))

d4

dτ4
(Ψ1(τ)) d4

dτ4
(Ψ2(τ)) · · · d4

dτ4
(Ψj(τ))





A1,i

A2,i

...

Aj,i


(4.25)

Equation (4.23) can be used to find the trajectory between two points with defined deriva-

tives by constructing a two-point boundary value matrix equation by defining Λ(t) as a

matrix whose first row is comprised of the basis functions arranged in a column-wise se-

quence and each successive row is a time derivative of the preceding and A is a column

vector for each flat output, i, with 1 +p rows, where p is the highest derivative with respect
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to time in Equation (4.23). This matrix formulation is as follows:

[
z̄i(tinitial)

]
=

[
Λ(tinitial)

] [
Aj,i

]
⇔



zi(tinitial)

żi(tinitial)

z̈i(tinitial)

z(3)

i (tinitial)

z(4)

i (tinitial)


=



∑
Ai,jΨj(t0)∑

Ai,j
d
dt (Ψj(t0))∑

Ai,j
d2

dt2
(Ψj(t0))∑

Ai,j
d3

dt3
(Ψj(t0))∑

Ai,j
d4

dt4
(Ψj(t0))


(4.26)

[
z̄i(tfinal)

]
=

[
Λ(tfinal)

] [
Aj,i

]
⇔



zi(tfinal)

żi(tfinal)

z̈i(tfinal)

z(3)

i (tfinal)

z(4)

i (tfinal)


=



∑
Ai,jΨj(tfinal)∑

Ai,j
d
dt (Ψj(tfinal))∑

Ai,j
d2

dt2
(Ψj(tfinal))∑

Ai,j
d3

dt3
(Ψj(tfinal))∑

Ai,j
d4

dt4
(Ψj(tfinal))


(4.27)

By stacking Equations (4.26) and (4.27) and choosing a sufficient number of basis functions

so that the combined Λ matrix is full rank, the solution can be expressed as follows. note,

the column vector Aj for each flat output, i, in this case has twice as many rows as 1 + p

since there are entries associated with initial and with final conditions.z̄i(tinitial)
z̄i(tfinal)

 =

Λ(tinitial)

Λ(tfinal)

Aj,i, where Aj,i has dimension [2(1 + p) x 1] for each flat output i.

(4.28)

Equation (4.28) is comprised of sufficient equality constraints so that the resultant curve

matches boundary conditions but it does not include any degrees of freedom with which

to further constrain a solution so that it is fully representative of the system dynamic

constraints. For purposes of expressing the solution to Equation (4.28), is useful to reformat

the column vectors Aj for each flat output as row vectors and then stacking them to form
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a matrix. The basis functions, Ψj(τ) can be arranged into a column vector as follows:

z1(t)

z2(t)

 =

x(t)

y(t)

 =

ATx
ATy





Ψ1(t/∆t)

...

Ψjmax(t/∆t)

Ψ1(t/∆t)

...

Ψjmax(t/∆t)


, where ∆t = tfinal − tinitial and jmax = (1 + p).

(4.29)

Spline-based approaches have alternate ways of satisfying boundary conditions. The preced-

ing derivation is included here to demonstrate the completeness with which the flat output

approach satisfies problem requirements. Henceforth, other methods will be developed to

satisfy both boundary conditions and internal curve feasibility requirements.
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Chapter 5

Trajectory Planning for a Single

UAV (Contribution C1)

5.1 Discretization of problem for solution through graph search

Development of a solution starts with the following specifications:

• the area of interest

• the required resolution of the imagery/sensor data

• the on-board camera/sensor specifications

The required resolution in conjunction with the specifications of the on-board camera/sensor

can be used to set the maximum altitude for each vehicle and, consequently, the field of view

of each individual image at the ground plane as follows: by requiring vehicles to actively

align their camera/sensor angle of view (AoV) to a nadir line-of-sight permits uniformity

of image bounds on the ground plane. Resolution requirements of a particular mission, in

conjunction with the sensor AoV, then set the altitude at which vehicles must fly. The lower

left portion of Figure 5.1 depicts the projected frame for an AoV of 45o on either the long

or short sides of the frame for a sensor height that yields 7 cm/pixel resolution1. In order to

avoid specifying flight path orientation for image acquisition, the projection can be used to

size an omnidirectional sensor footprint (circles shown on Figure 5.1 are sized for the short

1Lens focal length can permit altitude variation with the same resolution and field of view.
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side of the frame when this AoV is 45o so that the long side provides further redundancy).

The omnidirectional camera/sensor footprint can then be used to discretize the problem

by tessellating the area of interest with a covering set of footprint circles with minimal

overlap as suggested by Ahmadzadeh et al in their DARPA HURT work [8], as depicted on

Figure 5.1. Variation in terrain and man-made structures further introduce complexity as

occlusions are introduced but can be overlooked when considering basic requirements. The

airspeeds of the vehicles and their maneuver turning performance then further constrain

the rate at which new imagery can be acquired. Minimum turning radius is a function

of airspeed and vehicle maneuverability. Consequently, when the underlying terrain is

relatively flat and the space free of occlusions, the requirement for 3D path planning can

be relaxed without loss of generality by finding 2D paths at specified fixed altitudes.

Maneuver limits of precise navigation permit determination of a time critical path.

Peak heading rate ≡ ψ̇max =
gtan(φmax)

V

where g ≡ acceleration due to gravity

φmax ≡ bank angle and V ≡ ground speed

(5.1)

An important practical consideration is that airspeed variation is best reserved for distur-

bance rejection (gust response, steady winds, etc.) rather than leveraged to minimize time

or turn radius [71]. The trajectory planner must account for all of these details to determine

the flight plans. A plan for a single vehicle can then be used to estimate the time required

to acquire a covering set. Dividing the single agent duration by the refresh period then

identifies the number of (comparable) vehicles that must be flown at equal-spaced distances

along a periodic path. To ensure paths are both feasible and safe to execute there are

additional requirements:

• Verify there are no collisions where paths cross and augment path or spacing as re-

quired (ensure vehicles are temporally separated where paths cross).

• Determine the paths for individual vehicles to join the master path at coordinated

intervals from their current locations (avoid collisions along these paths).
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• Determine an exit strategy for each vehicle when the period of persistence has been

satisfied and the mission is complete.

Many design options are available for each of these steps. Researchers have taken a variety

of directions to develop practical solutions.

Figure 5.1: Area captured by typical 1:1.5 HD camera frame from 170m (45o AoV on short
side of frame - dotted line, 45o AoV on long side of frame - dash-dotted line). Bounds on
covered area shown with outer dashed line.

5.1.1 A Sequential Planner

We develop a solution that involves a series of steps that yield a feasible periodic path

for repetitive full coverage. Persistence is then attained by tasking a sufficient number of

agents to traverse the path with appropriate spacing to avoid collisions where the path may

crossover itself. To limit computational complexity to a manageable level while abiding by

the dynamic constraints of the vehicles, firstly we configure our algorithm for a common

platform (required if team performance is estimated from results of a single agent and

consistent with the work of Nigam and Kroo [43]). We work with constant altitude/constant

speed solutions, as justified earlier and spatially decompose the problem to a set of sites

from which a covering set of imagery/sensor data can be acquired and then plan a tour of

the sites. The algorithm must handle feasibility constraints which are more significant as
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the points are brought into close proximity [72]. We take a geometric approach to embed

constraints into a graph of the problem to develop a tour sequence that will yield a feasible

path. As noted above, the assumptions made to reduce computational complexity preclude

our solutions from being time-optimal but the resultant paths are nevertheless efficient, so

the reduction in complexity is considered to be a practical tradeoff.

Planning at fixed minimum turn radius (i.e. fixed turn rate based on constant speed

and altitude) permits the vehicle speed degree of freedom to be reserved for disturbance

rejection to ensure paths are robust. The path is planned to be a periodic parametric

curve so constraints can be managed over the entire length and persistence is guaranteed.

However, it is too computationally expensive to directly develop a smooth path, so an

efficient periodic tour of points is developed using approximate, abstracted, constraints.

Results are then transformed into a smooth path.

5.1.1.1 Development of an Efficient Tour Through Points of Interest (an aug-

mented A* Traveling Salesman Problem (TSP) solution)- integrating

sensor capability and mission requirements

The problem can be framed as finding the shortest periodic path that interpolates the

centers of all of the tessellating circles depicted on Figure 5.1. The routing problem becomes

one of ordering points so curvature constraints can be satisfied within closed-circuit paths.

Note, in general, the turn radius capability of aerial platforms may not directly admit

the Boustrophedon or similar strategies developed by Choset [41]. Consequently, there is

no simple solution. TSP concepts can be applied to find a tour but Euclidean distances

are not an appropriate metric. Furthermore, most TSP (approximate)solutions assume

that path cost can be divided into two parts: the cost of the path that is not undergoing

optimization and the the cost of the path segment(s) that are being optimized. Because

the paths required in this application must be C2, when any segments are interchanged,

the cost must be recomputed to ensure C2 continuity. The simplicity of heuristics such

as Lin-Kernighan [73] must be modified in order to be applicable. Almost all other TSP

approaches, based on C0 distance metrics, such as Tabu Search, require modification. These
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approaches provide an algorithmic completeness but the overall complexity of this problem is

such that running any algorithm until it converges to a minimum is likely to be impractical.

Consequently, path feasibility and speed of computation are ranked higher than optimality

in the development of our solution.

As noted in Section 2.7, Genetic Algorithms provide a stochastic global search structure.

This technique has been successfully applied to a variety of forms of the traveling salesman

problem and has been specifically applied in the context of aerial vehicle path planning

[35]. Their strength of GA for the persistent surveillance application is that the search

is global, while the principal drawback is that performance guarantees are not possible

[15]. In the absence of any meaningful guidance on how to select new path candidates

except by the final cost of a tour through all points of interest, GA must be configured to

be fully stochastic. This guarantees the search will be global through the solution space

but convergence will likely be slow and prone to being computationally impractical as the

dimension of the problem (number of sites if interest) increases. Development of guidelines

for the parametrization of a GA in this context is a thesis topic in its own right.

We use a modified A* TSP algorithm with which to abstract path constraints into the

tour sequence problem. A* is a widely used path-finding algorithm combining the features

of Dijkstra’s edge-weighted breadth-first search with a heuristic estimate of cost to reach the

goal. It can be classified as an informed search since it uses two data items to decide each

step. In our case, the goal is a cycle that terminates at the starting point. Since the final

stage of our algorithm will be the development of a parametric polynomial spline-based path,

we use a B-spline parametrization metric as the A* distance metric. The metric we use was

developed by Nielson and Foley to interpolate points with sharp discontinuities in direction

with respect to segments of the polygon defined by points of interest in sequence [74]. Their

objective was to develop an affine metric that would embed path turning constraints and

yield fair curves2. We augment their parametrization to use it as an abstraction of the

2The fairness of curves is more of an aesthetic than quantifiable feature of a curve [75]. However, fair
curves have the quality of not including any superfluous inflections or discontinuities and are a qualitative
generalization of the type of curve derived for a vehicle path.
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distance required to traverse from point to point. As defined below in Figure 5.2, the

parametrization uses Nielson’s affine distance metric, denoted as di, although it can also be

used with dimensional distances3. For insight into the geometric interpretation of Nielson’s

metric, see [76]. as illustrated in Figure 5.2, four points define the cost of a segment:

Figure 5.2: Nielson-Foley affine invariant metric applied to spline parametric distance

1. The first three points define the entry angle

2. The middle two define the geometric length of the segment

3. The last three points define the exit angle

Nielson and Foley limited the magnitude of turning angle contribution to their parametriza-

tion [77] but noted that other scaling considerations could be warranted by the application.

Since our objective is curvature constrained splines and not simply smooth, fair curves,

3When specified in dimensional coordinates, the problem is not affine for asymmetric scaling or skewing
transformations. We do not use asymmetric transforms, so we retain dimensionality with respect to distance.
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we augment their metric as illustrated in Figure 5.2. Their limit on turn angle of π/2 is

relaxed to π so parametric distance increases proportionately up to the potential maximum

turn in direction. A minimum exit turning angle of 0.05 radians is introduced so that the

exit segment always has a nonzero contribution, to ensure minimum Euclidean distance for

the final segment will always be selected for the minimum path length when there is no

turning to the final segment without distorting the metric4. They scaled the turning angle

contributions by a factor of 3
2 and normalized angles by the ratio of entry (or exit)segment

to entry (or exit) plus segment, as illustrated in Figure 5.2. When the discrete curvature5 of

the entry to or exit from a segment exceeds the UAS turning radius, an additional distance

penalty is added to account for additional full loop in the path. The penalty is applied

because when the path between points cannot be directly traversed due to curvature lim-

its, then a loop is required. To estimate when loops are required, the discrete curvature

set up by the entry and exit line segments is used. Discrete curvature at point Pi+1 (exit

from segment Li) in Figure 5.2 is determined by using the shorter of the two adjoining line

segments (Li, Li+1) and the complement of the turning angle φi+1 as illustrated below in

Figure 5.3. This form of discrete curvature describes the inscribed circle that is tangent

to the segments. If κdiscrete > κmax, then a loop of minimum turn radius (as expressed in

the Nielson metric) is added. Use of the inscribed circle radius to avoid the requirement

to add a loop is conservative but since the vehicle must potentially transition from zero

curvature to peak curvature over the course of a path segment, it is a practical choice to

guarantee feasibility across a segment. Lastly, the inscribed circular radius test does not

check if an inflection is going to be required in the smooth path. Inflections can require the

largest variation of curvature over a path segment, so cases which constitute an inflection

are penalized by multiplying the Nielson-Foley parametrization scaling constant (3/2 as

derived by Nielson and Foley) by a penalty constant, k, as described in Figure 5.4. The

rationale for augmenting the Nielson-Foley scaling of angles is that the angles are already

4In the original Nielson-Foley parametrization, if the turning angle to the last segment is zero, then there
would be no contribution from this segment and all lengths of this segment would be treated equally.

5As defined by three points on the path polygon associated with the start and end of a segment.
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Figure 5.3: Discrete curvature approximation

normalized with respect to path lengths. When inflections occur and points are widely

spaced, feasibility is not compromised and no penalty is warranted. Consequently, so that

only relatively short segments are penalized, the scaling of the angular contribution to the

distance metric is used since the angular contribution is already configured to account for

this characteristic. The value for k was determined by assessing the magnitude required to

Figure 5.4: Identification of an inflection requirement across a segment

avoid selection of segments which would force inflections in the second stage of the plan-
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ner in which feasible smooth curves are developed. A value of 15 was empirically derived

through many trials6. With these additions, the Nielson-Foley parametrization is suitably

augmented for use as the cost to traverse from node to node in the A* search for a cycle.

While the expansion of nodes in an A* search typically occurs on a graph with a defined

connectivity to the current node, we designate a user selected neighborhood on the grid

from the current node to define a Walkable7 set available for expansion at each iteration

unless no other options exist. This significantly reduces complexity and eliminates imprac-

tical candidates by limiting A* expansion options. We also need a heuristic for the cost to

visit the remaining set of points and terminate at the start to generate a periodic candi-

date cycle. We use a nearest neighbor algorithm8, also using the augmented Nielson-Foley

parametrization to provide the cost-to-go heuristic for the A* search. The nearest neighbor

cost-to-go is not guaranteed to be an admissible A* heuristic but it enables rapid computa-

tion. The consequence is that our solution cannot be considered optimal. As a standalone

algorithm, the nearest neighbor generates expanding or contracting search patterns when

the area is tessellated as a contiguous space, so it is considered to be efficient. In the TSP

context, A* is O(n!) in computational complexity, which is impractical beyond a small set

of points of interest. An admissible heuristic, such as minimum spanning tree9 significantly

under-estimates the remaining path, which will guarantee an exhaustive set of iterations for

the search to converge. The inherent complexity of the problem drives computational times

to impractical levels for optimal solutions using admissible cost-to-go candidates. Conse-

quently, our search is executed for a user defined number of iterations (set by computation

time allocation) and then sorted on path length. Approximate performance bounds are still

available by using the ratio of nearest neighbor to admissible heuristic as the sub-optimality

6Values less than 15 did not prevent selection of inflection inducing segments in the A* search. Values in
excess of 15 were observed to cause excessive penalization of a candidate segment in the A* search. Overall,
a value of 15 was observed to provide reliable rejection of segments with inflections from the A* search.

7Currently nodes within 3 or more steps (inter-nodal spacing) on our grid of points are used to define the
Walkable set. When the graph is contiguous and convex, 3 steps is a practical bound. However, when the
graph is non-convex is not contiguous, more than 3 are required to permit the A* search to have sufficient
options at each decision step.

8The nearest neighbor algorithm is a greedy approach to complete a simple cycle.
9The minimum spanning tree must also be revised to use the Nielson-Foley parametrization.
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factor as described in [78].

Before presenting some results, it is worth documenting the modified A* we use to solve

a periodic (repeating tour) traveling salesman problem. The details of the modified Astar

TSP search are documented below in algorithm 1:

Algorithm 1: Modified A* TSP algorithm to account for curvature using Foley Parametriza-
tion
Input: A graph with pre-calculated distance metrics between nodes, three starting nodes
{x, y, z}, a minimum turning radius, and im = maximum number of search iterations

Output: An estimate of the shortest periodic tour of all nodes

1 OPEN ← {∅} . Initialize OPEN to empty set
2 CLOSED ← {∅} . Initialize CLOSED to empty set
3 START ← nodes {x, y, z} . Load IC nodes into START
4 PATH ← Greedy solution path .Use Foley parametrization to find
5 CURRENT ← START . Load START into CURRENT
6 ITERATION#← 1 . Start iteration count at 1
7 IC past cost ≡ g(1) = 0 . Set to zero
8 IC heuristic ≡ h(1) =

∑
di .Use Foley parametrization to find Greedy solution

9 OPEN ← {g(1), h(1), length(START ), PATH} . Load greedy path data to OPEN
10 WHILE AND(OPEN 6= ∅, ITERATION# < im) . Iterate until OPEN is empty

or im is reached
11 FOR all (N) rows of OPEN . Examine contents of OPEN
12 f(n)← g(n) + h(n),∈ N . Estimate path cost for each member of OPEN
13 NEXT . Loop back to 9 for next member of OPEN
14 Select MIN(f(.) and associated PATH from OPEN set . Sort for minimum
15 CURRENT ←MIN(f(.) . Load selected node to path
16 Expand all WALKABLE nodes from CURRENT . Generate g(n) and h(n) for all
17 ITERATION#← ITERATION# + 1 . Increment iteration count by 1
18 END WHILE . Loop back to 8 until end conditions are met

5.1.1.2 Summary of empirical parameters which configure the A* search

Before presenting some results for our A* traveling salesman problem search, we summarize

the empirical parameters which govern the performance of the search. To recap, these

parameters are:

1. The maximum distance from the current node in the A* search to bound the number

of nodes that are expanded at each iteration: we define this as the Walkable set of

nodes available for expansion at each iteration.
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2. The Nielson-Foley parametrization, which we use as a distance metric.

3. The definition of a discrete radius measurement, which we use to penalize segment

costs which likely would require a full loop to reach a goal (in addition to cost calcu-

lated by basic geometry).

4. The definition of a penalty associated with segments with inflections which would

violate curvature constraints when smooth paths are calculated.

5. A Greedy Algorithm, which is used to compute the A* heuristic cost-to-go.

Walkable Nodes: There are multiple ways a traveling salesman problem can be con-

figured within an A* search framework. Rather than using the entire set of points of interest

as the search graph, which would permit expansion from a current node to all other unvis-

ited nodes, we limit the horizon the A* search can use when selecting a new set of nodes

to expand. Without this consideration, the complexity factor of the search would be N !,

since all remaining nodes would be available for expansion at each time step. Nodes that

are distant from the one under consideration are unlikely to be part of an optimal path. We

only consider them when no others are available for expansion. When the area of interest

is convex, a search horizon of 3 times the nodal point spacing appears to be an appropriate

balance of sufficient exploration versus minimization of computation time. However, when

the area of interest is non-convex or non-contiguous, a wider horizon for the search is war-

ranted, since otherwise, the search may be forced to jump wide distances when there are

no relatively adjacent nodes remaining. The intersection-shaped pattern explored in the

results section required a horizon of at least four times the nodal point spacing to avoid

costly jumps across non-convex portions. Expansion over a horizon of more than four times

the point spacing resulted in an excessive number of nodes being expanded in each time

step. Moreover, results with a horizon of four do not include many inefficient crossovers

from one branch of the intersection to another. Future applications should assess this

parameter at least cursorily if areas of interest have shapes not considered in

this thesis.

Nielson-Foley Parametrization is used as a distance metric so that turning con-
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straints can be abstracted into the graph search. We augment their parametrization to

permit proportional representation of the cost of turning segments up to the maximum

turning angle of π radians. Moreover, when the final segment turning angle has a zero

magnitude, we assign it a small positive value so that in the event of multiple points along

a straight line, the node with the smallest Euclidean offset distance will be selected.

Discrete Curvature requirements are estimated for each segment of the graph search

to embed the cost of a loop when the proximity of endpoints implies a direct C2 path would

violate feasibility (curvature) constraints. We use an inscribed circle to define the turning

radius implies by a candidate path segment. When it is less than the actual turning radius,

we add the cost of a loop to a candidate path segment. Consequently, even in cases when

a feasible path between points may require looping when a smooth C2 path is generated,

the augmented Nielson-Foley metric provides an appropriate balance when ranking distance

versus turning angle requirements with minimal complexity to determine a tour sequence.

Inflections that would be required in the smooth path generation (second) stage of

the planner are detected in the search phase by sign reversals in the required turning an-

gles over each four node set as path candidates are defined. Inflection costs are accounted

as factor on the angles used in the Nielson-Foley parametrization, since the angles in the

parametrization already have distance normalization factors. The magnitude of this factor

was empirically found to be 15 for the types of areas of interest studied to date. These

include:

• Low and high aspect ratio contiguous rectangular areas

• Non-convex (cross-shaped) areas

• Non-contiguous areas with randomly located nodes

Future applications should assess this parameter at least cursorily if areas of

interest have shapes not considered in this thesis.

A Greedy Search is used as the A* heuristic to complete partial tour paths so that

each candidate path is full cycle TSP tour. As noted earlier, the consequence is that paths

cannot be considered to be optimal. However, since the A* search is computed for a user
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defined number of iterations, this heuristic does not cause early termination of the search

as could be the case in a simple start-to-goal type search.

Note, the aforementioned heuristics prevent selection of candidate paths that would violate

curvature constraints when smooth C2 paths are calculated but do not guarantee the smooth

paths are fully free of such instances. In these cases, there are options available during the

smooth path generation stage to fully guarantee paths are feasible.

Results for two examples of our A* search are illustrated on Figures 5.5 and 5.6. The

search is initialized with a three point starting sequence to seed the Nielson-Foley metric,

as identified by red symbols in the figure. The cycle is then closed to the initial point. Both

the Greedy (Nearest Neighbor) and A* path sequences are shown on the right side of these

figures for reference. In the first example case, the point spacing set by data resolution

requirements (≈ 218m) is significantly larger than the minimum turning radius ( 58m), so

adjacent points can readily be traversed through direct turns when curvature constraints

are observed. Hence, a relatively simple cycle tour is determined. In the second example

case, the point spacing set by data resolution requirements (≈ 121m) is only slightly larger

than the minimum turning radius ( 85m), so adjacent points cannot typically be traversed

through direct turns when curvature constraints are observed. Consequently, feasible paths

through adjacent points may require looping or other indirect routing.

The next step is to determine a C2 path that satisfies turning constraints, based on the

results of the A* search.
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Figure 5.5: A* and Nearest Neighbor sequences for an example case where turn radius is
small relative to the sensor/imaging footprint (starting node sequence is 1-2-3).

73



Figure 5.6: A* and Nearest Neighbor sequences for an example case where turn radius is
large relative to the sensor/imaging footprint (starting node is sequence 2-3-4.
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5.2 Continuous Feasible Trajectories

Parametric polynomial curves are a natural framework for this application. Complete tra-

jectories can be encoded with a small set of control points. Parametric curves can be

directly integrated with autopilot commands so that navigation commands can be rapidly

computed based on an arbitrary vehicle location and an associated point on the trajectory

curve [67]. Computation requirements to determine any point along a path as well as other

parameters such as tangent, normal, and curvature are minimal. The approach we take is

to first find paths solely based on boundary conditions using the fewest number of control

points. These paths are then augmented to guarantee feasibility. If required, additional

control points can be added to provide additional degrees of freedom so that boundary

conditions are preserved whilst the interior portion of internal segments can be tailored

to satisfy feasibility. The fewest number of control points that provides C2 continuity at

both ends with fixed boundary conditions is six10. We used this approach to develop a

simultaneous arrival coordination schema for a team [71].

5.2.1 Developing a B-spline Framework

Quartic polynomial-based splines provide sufficient degrees of freedom to approximate feasi-

ble trajectories for fixed-wing UAVs, based on their equations of motion, as noted in Ch. 4,

Section 4.2 or [67]. We use clamped11 uniform12 B-splines. This formulation provides so-

lutions which are well conditioned numerically. The structure of the equation in this case

10Six control points permit location, first and second derivatives of the path to be matched at both ends
but provides limited further independent degrees of freedom.

11The first and final control points of a clamped B-spline are defined by the first and last points on the
spline curve.

12Uniform splines means that the knots used to determine algebraic basis functions are uniformly spaced
along the range of the parameter of the polynomials.
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is:

r(τ) =

5∑
m=0

Nm,4(τ)pm, where τ ∈ [0, 1)

pm ≡ set of 6 geometrically configured control points in R2

Nm,4(τ) ≡ set of 6 basis functions of degree 4

(5.2)

We use (5.2) to define a curve solely on C2 continuity boundary conditions where τ is valued

0 or 1. establishes the following relations:

r(0) =
5∑

m=0

Nm,4(0)pm

r′(0) =
5∑

m=0

N ′m,4(0)pm

r′′(0) =
5∑

m=0

N ′′m,4(0)pm

r′′(1) =
5∑

m=0

N ′′m,4(1)pm

r′(1) =

5∑
m=0

N ′m,4(1)pm

r(1) =

5∑
m=0

Nm,4(1)pm

(5.3)

Since we use clamped uniform B-splines, (5.2) can be expressed numerically (for r(τ)
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and each element of pm in R2), as follows:



r(0)

r′(0)

r′′(0)

r′′(1)

r′(1)

r(1)


=



1 0 0 0 0 0

−4 4 0 0 0 0

12 −18 6 0 0 0

0 0 0 6 −18 12

0 0 0 0 −4 4

0 0 0 0 0 1





p0

p1

p2

p3

p4

p5


(5.4)

The block diagonal structure of (5.4) permits solution through two decoupled equations.
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p1
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1 0 0

1 1
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r(0)

r′(0)

r′′(0)

 (5.5)


p3

p4

p5

 =


1
6
− 3

4
1

0 − 1
4

1

0 0 1



r′′(1)

r′(1)

r(1)

 (5.6)

Positions are fixed by the A* tour but tangents and accelerations at these points are also

required. In general, we assign tangent vectors at each point based on an approach developed

by Calladine [79], where tangent directions are set to the average of the incident chord

directions weighted inversely in proportion to their length. When points are labeled pi, a

tangent vector, ~ti, can be defined by:

~ti =
pi−1 − pi

‖pi−1 − pi‖2
+

pi − pi+1

‖pi − pi+1‖2
(5.7)

However, when there are a sequence of points from the A* tour that all lie along a straight

line, Calladine’s approach would assign all points along the line with the same tangent

direction. This can lead to unnecessarily excessive curvature requirements for segments en-

tering or exiting a sequence of straight line segments. When this situation is detected and

77



the turning angle required (at either the entry or exit from points in a line) as determined

by Calladine’s approach exceeds a threshold. A empirical threshold magnitude of 20o is

used here because it was observed to provide sufficient relief to curvature constraints for

segments adjacent to straight line segments without inducing curvature requirements on

the segment that would otherwise be straight. This adjustment is illustrated on Figure 5.7

below.

Figure 5.7: Empirical adjustment to Calladine assignment of tangent directions for points
along the A* sequence.

Prior to being processed to yield feasible paths, the second and fifth of the B-spline control

points, which are located by the tangent vectors at the boundary condition, are scaled by

the velocity vector: V ~ti. The third and fourth control points, which are located by the

acceleration at the boundary conditions, are assigned by assuming peak (but feasible) cur-

vature will occur at boundary conditions (nodes from the A* sequence). The relation for

centripetal acceleration in a turn is used to scale initial acceleration: V 2

rmin
~ai ≡ V 2κmax~ai,

except in cases where entry and exit chords between nodes are already aligned, in which

case curvature is set to zero.

Note, when the paths are flown, vehicle speed can be set to satisfy C2 continuity in the

time domain, so only G2 continuity is required spatially.
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5.2.1.1 Augmenting candidate paths so that all are feasible

In general, a spline-based solution determined solely on boundary condition and scaled by

velocity fails to satisfy curvature constraints. Therefore, a minimum complexity solution

to tailor each spline path for feasibility is required. We use tangent magnitude scaling to

adjust curvature in the vicinity of both endpoints. The six control point spline boundary

condition solution has a single degree of freedom at each end with which curvature may

be adjusted. G2 continuity can be preserved by appropriately scaling the first and second

derivatives of the path with respect to the parameter, τ . Denoting tangent scaling factors

as ρstart and ρend to be applied respectively to the starting and ending portions of the curve,

(5.4) can be scaled without changing direction or curvature as follows:


p0

p1

p2

 =


1 0 0

1 1
4

0

1 3
4

1
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r(0)

ρstartr
′(0)

ρ2
startr

′′(0)

 (5.8)
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ρ2
endr

′′(1)

ρendr
′(1)

r(1)

 (5.9)

Once equations (5.8) and (5.9) are determined, each ρstart and ρend are initialized to 1.0,

and then iteratively scaled until peak curvature of each segment is no longer decreasing13.

In general, this will be sufficient because of the conservatism built into the metrics of the

A* solution. However, in some cases, further processing is required to satisfy curvature

constraints. In the event that simple tangent scaling does not produce feasible paths, the

user can select from one of the following options, listed in order to selection, to ensure

feasibility of the path.

• Do nothing because the encroachment of curvature is minor in magnitude and the

parametric and physical distance (duration) of the encroachment is relatively short.

13In some cases, no reduction in peak curvature can be accomplished, so no further scaling is introduced.
Iterations are made in fixed increments since the process is computationally fast.
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Since a small measure of maneuverability must be reserved to ensure the vehicle

can accommodate disturbances (like gusts), we can leverage this maneuverability to

address transient encroachment.

• Revise one or more of the boundary condition tangents to reduce the variation in

curvature over the course of the periodic circuit and, thereby, relieve peak curvature.

• Add a loop between the nodes for which a feasible path cannot be found by tangent

scaling. Note, when a looping path may be required (note, loop costs have already

been accounted in the A* solution).

Figures 5.8 and 5.9, show the results achieved by generating B-splines from the A* tour and

then applying tangent scaling. The curvatures associated with each segment achieved by

simple tangent scaling for these two cases are presented on Figures 5.10 and 5.11. Strict

planning feasibility limits on curvature are shown on each figure with a red dashed line.

Note, the minor encroachments of the feasibility limit on curvature on Figures 5.10 and

5.11 are examples where the transient encroachment is sufficiently minor14 such that no

action need be taken.

14The magnitude of these encroachments is such that the vehicle would only have to bank itself and
additional 5o more the capability assumed by the A* planner.
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Figure 5.8: B-splines from A* solution for an example case from a designated start (each
spline segment drawn with a different color) for the example where turning radius is not a
significant factor in path planning.
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Figure 5.9: B-splines from A* solution for an example case from a designated start (each
spline segment drawn with a different color) for the example where turning radius is a
significant factor in path planning.
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Figure 5.10: Curvature of B-splines from A* tour for the example case (segment colors
match those of Figure 5.8).

Figure 5.11: Curvature of B-splines from A* tour for the example case (segment colors
match those of Figure 5.9).
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5.2.2 Tailoring tangents and generating loops to ensure curvature feasi-

bility

As noted earlier, in the event curvature constraints are exceeded following tangent scaling,

local perturbation of the tangent direction from the Calladine convention may be sufficient

to sufficiently reduce the peak curvature of the segments which violate constraints. An

iterative process is used to perturb tangent direction at the end of the offending segment

in 1o increments as follows: The algorithm used to perturb Calladine’s tangent assignment

is as follows: To illustrate the utility of this algorithm, portions of the path generated

Algorithm 2: Local segment tailoring of peak curvature through tangent direction pertur-
bation

Input: The three control points associated with the portion of a segment in which
curvature exceeds constraints (and those of the adjacent segment.

Output: Tangent direction that minimizes curvature for the segment while not causing
constraints to be encroached on the adjacent segment

1 WHILE segment curvature exceeds constraints or perturbation fails to reduce peak
curvature.
2 Rotate tangent direction of three control points of the segment requiring curvature
reduction and the three closest control points of the adjacent segment in the direction of
the opposite boundary condition (perturb in 1o increments).
3 Compute path and resultant curvature of rotated paths.
4 END WHILE

for the high aspect ratio area of interest for vehicles with a low level of maneuverability

were post-processed. Figure 5.12 presents the splines as determined by our algorithm using

Calladine’s approach to set tangents. The adjusted path and the final rotation of control

points is presented on Figure 5.13 below. Lastly, for this case, the adjusted segment curva-

tures (for segments preceding the tailored segment (red), the tailored segment (blue), and

the successive segment (magenta) are shown. The initial parametric histories of curvature

are depicted with dashed lines, while the final adjusted curvature histories are shown with

a solid line, see Figure 5.14. Following post-processing to perturb the tangent direction of

the segment entry, the segment is rendered feasible without disturbing segment preceding

or succeeding it. We further illustrate the utility of the tangent perturbation algorithm
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Figure 5.12: B-splines from A* tour for the high aspect ratio/low maneuverability case to
illustrate tailoring of segment 7 based on Algorithm 2.

Figure 5.13: Tailored B-splines from A* tour for segment 7 based on Algorithm 2.
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Figure 5.14: Curvature of tailored B-splines from A* tour for segment 7 based on Algorithm
2.

by documenting its performance for segment 9 of the same original path. This is a case

where two successive segments encroach curvature constraints, so we perturb tangents of

on both before resorting to a loop insertion. Figure 5.15 presents the splines as deter-

mined by our algorithm using Calladine’s approach to set tangents. The adjusted path

and the final rotation of control points is presented on Figure 5.16 below. Lastly, for this

case, the adjusted segment curvatures (for segments preceding the tailored segment (red),

the tailored segment (blue), and the successive segment (magenta) are shown. The initial

parametric histories of curvature are depicted with dashed lines, while the final adjusted

curvature histories are shown with a solid line, see Figure 5.17. Following post-processing

to perturb the tangent direction of the segment entry, the segment is rendered feasible with

disturbing segment preceding it but the succeeding segment now violates constraints to an

even greater magnitude. It will be a candidate for a loop insertion. Prior to insertion of

a loop for segment 10 of this set, we apply the tangent perturbation algorithm to relieve

the curvature of the exit portion of the segment. Figure 5.18 presents the splines as de-

termined by our algorithm using Calladine’s approach to set tangents. The adjusted path

and the final rotation of control points is presented on Figure 5.19 below. Lastly, for this

case, the adjusted segment curvatures (for segments preceding the tailored segment (red),
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Figure 5.15: B-splines from A* tour for the high aspect ratio/low maneuverability case to
illustrate tailoring of segment 9 based on Algorithm 2.

Figure 5.16: Tailored B-splines from A* tour for segment 9 based on Algorithm 2.
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Figure 5.17: Curvature of tailored B-splines from A* tour for segment 9 based on Algorithm
2.

the tailored segment (blue), and the successive segment (magenta) are shown. The initial

parametric histories of curvature are depicted with dashed lines, while the final adjusted

curvature histories are shown with a solid line, see Figure 5.20. Note, curvature constraints

are still violated on the entry portion of the segment but the exit portion has been rendered

feasible while not disturbing the feasibility of the successive segment.
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Figure 5.18: B-splines from A* tour for the high aspect ratio/low maneuverability case to
illustrate tailoring of segment 10 based on Algorithm 2.

Figure 5.19: Tailored B-splines from A* tour for segment 10 based on Algorithm 2.
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Figure 5.20: Curvature of tailored B-splines from A* tour for segment 10 based on Algorithm
2.

5.2.3 Insertion of a Loop to Ensure Feasibility with Respect to Curvature

At this stage, the loop insertion algorithm is executed to render segment 10 feasible. The

algorithm leverages a geometric construction similar to those of Dubins [18] (fixed curvature

when non-zero) and Scheuer [80] (C2 continuous in curvature for linear variation in curvature

when non-zero). We construct circular paths tangent to the entry and exit of the segment

based on the boundary conditions. The circular paths are based on the Scheuer circles

we used to construct paths in [71]. Scheuer’s construction is similar to Dubins’ but he

uses a radius that permits curvature to vary from zero to the peak value on entry and

exit. Consequently, the radius of this circle is approximately 1.15 times the minimum

radius of turn. We use these circles to establish a convex hull around which to construct a

spline solution that satisfies the boundary conditions and peak curvature constraints. The

construction is illustrated on Figure 5.21. The Scheuer circles on which a convex hull is

based are depicted in cyan (entry to segment Scheuer circle) and green (exit from segment

Scheuer circle). Two 6 control point splines are added to the path based on peak curvature
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at the mid-points (control points 3 and 4). These 6 control point segments are arranged

tangentially to the convex hull so that near circular loops are constructed. The resultant

curvature parametric histories are presented on Figure 5.22. Note, all portions of the loop

satisfy curvature constraints. Also note, this case illustrates the loop algorithm when there

is not an inflection in the segment requiring a loop. If there is an inflection, a pre-computed

path segment that changes the sign of curvature is connected to the path (similar to the

exit path from the pre-mission orbit described in Section 6.2. Thereafter, entry and exit

portions have the same sign of curvature and the convex hull procedure can be used to

generate a feasible loop. The algorithm used to insert loops is documented below.

Figure 5.21: Loop inducing B-splines to render a segment feasible when the tangent per-
turbation fails.
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Algorithm 3: Loop Insertion Algorithm

Input: The six control points associated with the portion of a segment in which curvature
exceeds constraints.

Output: Additional 12 control points required to construct a loop between boundary
conditions

1 Check sign of curvature at both segment boundaries
2 If curvature signs differ append a minimum time curvature reversing path to the start
and consider its endpoint to be the start of the looping segment to be generated.
3 Construct Scheuer circles tangent to both boundary points.
4 Connect these with their common tangents to form a convex hull around which a
feasible path can be constructed.
5 Generate two 6 control point splines similar to those used in Algorithm 4.
6 Locate each of the two six control point segment at the 180o azimuth on their respective
Scheuer circle with respect to each boundary condition.
7 Orient the two new six control point segments so their tangents match their respective
Scheuer circles.
8 Rotate each of the 6 control point added splines so they are equally spaced (with respect
the angle change required to connect boundary conditions) around the Scheuer circle
convex hull.
9 Form three new splines with the original boundary conditions and these intermediate
control points (see Figure 5.21 for construction details.
10 Apply tangent scaling to each of the three new splines so that they satisfy curvature
constraints (see Figure 5.22 for a representative set of results.
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Figure 5.22: Curvature of looping B-splines used to secure feasibility with respect to cur-
vature.
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5.3 A Compilation of Results from the Sequential Search

The sequential search we outlined in the preceding two chapters relies on a set of empirical

parameters. In this chapter the performance of the selection of these empirical parameters

is tested through a variety of cases. The case studies we present are:

1. Low aspect ratio rectangular, contiguous, convex areas of interest

2. High aspect ratio rectangular, contiguous, convex areas of interest

3. Non-convex (cross-shaped) areas

4. Randomly located nodes over non-contiguous areas

(a) Randomly generated for each case (vary area of interest in conjunction with

number of iterations in search)

(b) A single randomly generated area of interest that is then explored with respect

to the number of iterations in the search

In all cases, there are a sufficiently large number of sites that must be over-flown that it

is impractical to attempt to construct a manual solution. Moreover, some of the areas are

configured so that the greedy/nearest neighbor approach would resort to inefficient segments

to complete the periodic path.

In each of the first three cases, we assess the performance of the sequential search for at

least two levels of maneuverability relative to the nodal spacing over the area of interest.

Each individual case is tested over a range of search iterations from 100 through 2500. We

review the following performance metrics:

• Number of nodes expanded and execution time as a function of the number of itera-

tions

• Comparison of the augmented Nielson-Foley parametrization (used by the A* search)

to the actual path length for each new solution

• Assessment of feasibility of final paths (curvature constraint satisfaction)

• Assessment that increased number of iterations yields better paths (shorter paths with

fewer (if any) encroachments of curvature limits)
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5.3.1 A Case Study of a Low Aspect Ratio Rectangular Area

In this case study, the area of interest is rectangular, free from obstacles, and approximately

1km on side. For reference, the Walkable distance horizon for these cases was three times

the nodal spacing of points.

5.3.1.1 Results for a vehicle with a high level of maneuverability relative to

the grid node spacing (in a low aspect ratio rectangular area)

In the first subset of cases, we document results for a vehicle with relatively high maneuver-

ability. Specifically, the vehicle angle of bank capability is taken to be 40o which is towards

the current upper end of UAS capability. This yields a ratio of minimum turn radius to

nodal spacing of 0.269. At this spacing, turning to reach nodes should, in most cases, be

feasible but turn dynamics are significant enough that Euclidean distances are not appro-

priate for planning purposes [43]. The user would expect that turning constraints would be

met for all cases. In all test cases in this subsection, the starting three nodes were along

the lower left row of the area of interest.

Three figures are presented for each case:

1. The A* periodic sequence

2. The smooth path derived from the A* periodic sequence

3. The curvature parametric histories associated with each path segment

The number of paths is too high to label each one individually on the second and third

figure types. Consequently, colors have been randomly assigned to the path segments and

the same color is shown for the corresponding parametric history of curvature.

Cases were were run for a range of iterations from 100 through 2500, in 100 iteration incre-

ments. In this case, for iterations up to 1700, the A* solution was identical.

As expected for this level of maneuverability relative to the nodal spacing, all path segments

satisfy curvature constraints, which are shown with the dashed red line on Figure 5.25.
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Figure 5.23: A* sequence for a 5x6 Grid for a vehicle with a high level of maneuverability
relative to grid spacing; Start=[1 2 3]; 100 through 1700 iterations

Figure 5.24: Path for A* sequence for a 5x6 Grid for a vehicle with a high level of maneu-
verability relative to grid spacing; Start=[1 2 3]; 100 through 1700 iterations
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Figure 5.25: Curvature over all path segments for A* sequence for a 5x6 Grid for a vehicle
with a high level of maneuverability relative to grid spacing; Start=[1 2 3]; 100 through
1700 iterations

At 1800 iterations, the A* search has found a shorter path, as illustrated in the next three

figures. Figure 5.26 presents the A* sequence found by the first stage of the sequential plan-

ner. Figure 5.27 presents the actual path found by the second stage of the sequential planner.

The parametric history of curvature for all segments generated by the second stage of the

sequential planner again satisfies constraints, which are shown with the dashed red line on

Figure 5.28.
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Figure 5.26: A* sequence for a 5x6 Grid for a vehicle with a high level of maneuverability
relative to grid spacing; Start=[1 2 3]; 1800 iterations

Figure 5.27: Path for A* sequence for a 5x6 Grid for a vehicle with a high level of maneu-
verability relative to grid spacing; Start=[1 2 3]; 1800 iterations
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Figure 5.28: Curvature over all path segments for A* sequence for a 5x6 Grid for a vehicle
with a high level of maneuverability relative to grid spacing; Start=[1 2 3]; 1800 iterations

For the range of 1900 through 2100 iterations, a new shorter A* sequence is found, as

illustrated on the next three figures (Figure 5.29, Figure 5.30, and Figure 5.31. Curvature

constraints are satisfied as presented on Figure 5.31.

99



Figure 5.29: A* sequence for a 5x6 Grid for a vehicle with a high level of maneuverability
relative to grid spacing; Start=[1 2 3]; 1900 through 2100 iterations

Figure 5.30: Path for A* sequence for a 5x6 Grid for a vehicle with a high level of maneu-
verability relative to grid spacing; Start=[1 2 3]; 1900 through 2100 iterations
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Figure 5.31: Curvature over all path segments for A* sequence for a 5x6 Grid for a vehicle
with a high level of maneuverability relative to grid spacing; Start=[1 2 3]; 1900 through
2100 iterations

At 2200 iterations, a new, shorter, path is found, as illustrated on the next three figures

(Figure 5.32, Figure 5.33, and Figure 5.34.

Curvature constraints are satisfied over all segments in this case as well, as presented on

Figure 5.34.
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Figure 5.32: A* sequence for a 5x6 Grid for a vehicle with a high level of maneuverability
relative to grid spacing; Start=[1 2 3]; 2200 iterations

Figure 5.33: Path for A* sequence for a 5x6 Grid for a vehicle with a high level of maneu-
verability relative to grid spacing; Start=[1 2 3]; 2200 iterations
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Figure 5.34: Curvature over all path segments for A* sequence for a 5x6 Grid for a vehicle
with a high level of maneuverability relative to grid spacing; Start=[1 2 3]; 2200 iterations

For the upper range of iterations tested (2300 through 2500), yet another, shorter path

is found, as illustrated on the next three figures (Figure 5.35, Figure 5.36, and Figure 5.37.

In all instances in this case study, the A* sequence parametric lengths and the actual smooth

path dimensional lengths are consistent: a shorter augmented Nielson-Foley parametric

length leads to a shorter actual arc-length. This relation is illustrated at the end of the

section when all cases for this shape of area of interest have been documented.

Curvature constraints are also satisfied throughout all of these path segments, as presented

on Figure 5.37.
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Figure 5.35: A* sequence for a 5x6 Grid for a vehicle with a high level of maneuverability
relative to grid spacing; Start=[1 2 3]; 2300-2500 iterations

Figure 5.36: Path for A* sequence for a 5x6 Grid for a vehicle with a high level of maneu-
verability relative to grid spacing; Start=[1 2 3]; 2300-2500 iterations
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Figure 5.37: Curvature over all path segments for A* sequence for a 5x6 Grid for a vehicle
with a high level of maneuverability relative to grid spacing; Start=[1 2 3]; 2300-2500
iterations

5.3.1.2 Results for a vehicle with a moderate level of maneuverability relative

to the grid node spacing in a low aspect ratio rectangular area

In this case study, the area of interest is still approximately 1km on side. The vehicle angle

of bank capability is taken to be 30o which yields a ratio of minimum turn radius to nodal

spacing of 0.391. We expect our A* planner to find a sequence that does not require loops

to be added for feasibility of the smooth curves or any other tailoring. In this specific case,

only one solution was found through 2500 iterations. The A* sequence is presented on

Figure 5.38 below. The corresponding smooth path is presented on Figure 5.39. Curvature

constraints are satisfied for all path segments as presented on Figure 5.40.
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Figure 5.38: A* sequence for a 5x6 Grid for a vehicle with a moderate level of maneuver-
ability relative to grid spacing; Start=[1 2 3]; 100 through 2500 iterations

Figure 5.39: Path for A* sequence for a 5x6 Grid for a vehicle with a moderate level of
maneuverability relative to grid spacing; Start=[1 2 3]; 100 through 2500 iterations
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Figure 5.40: Curvature over all path segments for A* sequence for a 5x6 Grid for a vehicle
with a moderate level of maneuverability relative to grid spacing; Start=[1 2 3]; 100 through
2500 iterations

5.3.2 Results for a vehicle with a low level of maneuverability relative to

the grid node spacing in a low aspect ratio rectangular area

In this case study, the area of interest is approximately 0.6km on side. The vehicle angle

of bank capability is taken to be 30o which yields a ratio of minimum turn radius to nodal

spacing of 0.707. This is an extreme test for the sequential planner. In general, at this nodal

spacing, turns to an adjacent offset node are not feasible. The same three figure types are

presented for each solution. For these cases, we see the sequential planner begins to require

secondary tailoring to some degree. In cases of transient encroachment of small to moderate

magnitude and brief parametric duration, a readjustment to the tangent angles now assigned

by the algorithm by Calladine [81] could be used. The assignment of tangents based on

Calladine’s approach worked well when most turns were feasible options but begins to be

inappropriate for feasible paths to be found in the second stage of the planner. Alternatively,

when the encroachment is severe or long in parametric duration, the addition of a loop is
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likely required to satisfy feasibility constraints. Note, loop costs have already been accounted

in the A* search. To highlight which path segments violate curvature constraints by more

than can be considered to be accommodated by the actual vehicle capability15, both the

path segment (on the figure depicting the path) and its corresponding curvature parametric

history are plotted with a heavy line weight. The curvature parametric histories are also

plotted with an embedded dashed white line to make them easier to spot within the heavily

bunched curvature histories.

The A* solution for the low level of maneuverability is the same through at least 500

iterations. Curvature constraints are presented on Figure 5.43. For this case, constraints

for one of the path segments are transiently encroached by an insignificant magnitude.

No action need be taken and the path segment can be considered feasible in the practical

sense because encroachment would only require an additional angle of bank capability of

approximately 1o to 2o and this much should be available, even though it is generally

reserved to accommodate gust disturbances. Figure 5.41 presents the A* sequence, Figure

5.42 presents the path, and Figure 5.43 presents the curvature parametric histories.

15For reference, a 6o angle of bank threshold is used to delineate between encroachments that can be
tolerated and those that must be considered infeasible and, hence, require further tailoring.
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Figure 5.41: A* sequence for a 5x6 Grid for a vehicle with a low level of maneuverability
relative to grid spacing; Start=[1 2 3]; 100 through 500 iterations

Figure 5.42: Path for A* sequence for a 5x6 Grid for a vehicle with a low level of maneu-
verability relative to grid spacing; Start=[1 2 3]; 100 through 500 iterations
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Figure 5.43: Curvature over all path segments for A* sequence for a 5x6 Grid for a vehicle
with a low level of maneuverability relative to grid spacing; Start=[1 2 3]; 100 through 500
iterations

A new solution is found by the 600th iteration. In this case, three segments encroach

the curvature constraints used by the A* planner, as can be seen in Figures 5.45 and 5.46.

While transient in nature, these require further treatment so the sooth segments can be

considered feasible. The best technical approach to accomplish this will be discussed at the

end of this Chapter.
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Figure 5.44: A* sequence for a 5x6 Grid for a vehicle with a low level of maneuverability
relative to grid spacing; Start=[1 2 3]; 600 through 700 iterations

Figure 5.45: Path for A* sequence for a 5x6 Grid for a vehicle with a low level of maneu-
verability relative to grid spacing; Start=[1 2 3]; 600 through 700 iterations
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Figure 5.46: Curvature over all path segments for A* sequence for a 5x6 Grid for a vehicle
with a low level of maneuverability relative to grid spacing; Start=[1 2 3]; 600 through 700
iterations

For the iteration range of 800 through 2500, the solution is unchanged. In this case, four

path segments require further tailoring because they fail to satisfy curvature constraints by

a significant margin. The nature of the path when curvature constraints are violated can be

seen on Figure 5.48 (heavy line weight paths).
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Figure 5.47: A* sequence for a 5x6 Grid for a vehicle with a low level of maneuverability
relative to grid spacing; Start=[1 2 3]; 800 through 2500 iterations

Figure 5.48: Path for A* sequence for a 5x6 Grid for a vehicle with a low level of maneu-
verability relative to grid spacing; Start=[1 2 3]; 800 through 2500 iterations
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Figure 5.49: Curvature over all path segments for A* sequence for a 5x6 Grid for a vehicle
with a low level of maneuverability relative to grid spacing; Start=[1 2 3]; 800 through 2500
iterations

5.3.2.1 Statistics for the sequential search on a low aspect ratio rectangular

area

For all three of the level of maneuverability, the peak value of the augmented Nielson-Foley

metric used by the A* search of the first stage is compared to the actual path length of

the smooth paths generated in the second stage of the planner. These are presented on

the upper panel of Figure 5.50. The augmented Nielson-Foley metric only roughly predicts

actual path length in an absolute sense but for each level of maneuverability. It has been

tailored with an emphasis on avoiding potentially infeasible paths rather than rectification.

Over large variation in the augmented Nielson-Foley metric, a lower metric results in a

lower path arc-length but small reductions in the augmented Nielson-Foley metric from

one solution case to the next may result in slight increases in path length but only by a

relatively small amount. The augmented metric is not an absolute predictor of length, since

arc-length parametrization is not possible [53]. In this case it has been structured to avoid
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infeasible paths at the expense of an approximation of arc-length parametrization. Figure

5.51 illustrates the trend of augmented parametric length versus actual arc-length for the

high maneuverability case. Arc-length is strictly decreasing as augmented parametric length

is reduced. In the case of moderate maneuverability, the solution was unchanged over 2500

iterations, so this measure cannot be taken. At the low level of maneuverability, a small

increase in arc-length was observed for a corresponding very-small reduction in augmented

parametric length. Over a larger reduction in augmented parametric length, arc-length did

decrease. Consequently, these cases present at least anecdotal information that the abstrac-

tion of length calculated to drive the A* search is a reasonable approximation.

The lower panel of Figure 5.50 depicts the time required to execute the A* search and

the number of nodes that are expanded during the search. All levels of maneuverability

trend along a common curve, which is a function of the aspect ratio of the area of interest

and the Walkable node horizon distance (in this case assigned to be three times the nodal

spacing). The absolute timing values are not significant because these cases were executed

with un-compiled MatLab code, but the relative trend may be useful for planning pur-

poses to determine the number of iterations that is appropriate for a specific application.
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Figure 5.50: Comparison of A* search metric versus actual path length sequence for a 5x6
Grid; Three levels of maneuverability; Start=[1 2 3]

Figure 5.51: Comparison of A* search metric versus actual path length sequence for a 5x6
Grid; High Level of Maneuverability; Start=[1 2 3]
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5.3.3 A Case Study of a High Aspect Ratio Rectangular Area

In this case study, the area of interest is approximately 0.5 by 2.5 km. The high aspect

ratio area selected for this case study has three rows of nodes along its major axis, so there

is no obvious solution that does not include some measure of backtracking.

5.3.4 Results for a vehicle with a high level of maneuverability relative

to the grid node spacing in a high aspect ratio rectangular area

The vehicle angle of bank capability in this case is taken to be 40o which yields a ratio of min-

imum turn radius to nodal spacing of 0.269. As was the case with the low aspect ratio area of

interest, a vehicle with a high level of maneuverability relative to the turning requirements to

reach an adjacent node directly can be directed through almost any tour of the area and still

satisfy curvature constraints. In each of the following cases, the initialization of the path was

the bottom 3 points at the lower left of the area of interest. The same three figures are pre-

sented for these cases as were presented for the low aspect ratio case (A* sequence, smooth

path, curvature parametric histories for all path segments). In this case, the A* solution

was the same for at least the first 400 iterations. The A* sequence is presented on on Figure

5.55. The corresponding smooth path is presented on Figure 5.53. Lastly, the parametric

histories for curvature of all path segments for this case are presented on Figure 5.54.
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Figure 5.52: A* sequence for a 10x3 Grid for a vehicle with a high level of maneuverability
relative to grid spacing; Start=[1 2 3]; 100 through 400 iterations

Figure 5.53: Path for A* sequence for a 10x3 Grid for a vehicle with a high level of maneu-
verability relative to grid spacing; Start=[1 2 3]; 100 through 400 iterations
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Figure 5.54: Curvature over all path segments for A* sequence for a 10x3 Grid for a vehicle
with a high level of maneuverability relative to grid spacing; Start=[1 2 3]; 100 through 400
iterations

By 500 iterations, the A* sequence has changed but the paths still satisfy curvature con-

straints, as can be seen on Figure 5.57. Note, the minor transient encroachment at the end of

one of the segments is an example of a case where the vehicle would be expected to success-

fully execute the path, even though the planner limit on curvature was slightly exceeded.
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Figure 5.55: A* sequence for a 10x3 Grid for a vehicle with a high level of maneuverability
relative to grid spacing; Start=[1 2 3]; 500 iterations

Figure 5.56: Path for A* sequence for a 10x3 Grid for a vehicle with a high level of maneu-
verability relative to grid spacing; Start=[1 2 3]; 500 iterations
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Figure 5.57: Curvature over all path segments for A* sequence for a 10x3 Grid for a vehicle
with a high level of maneuverability relative to grid spacing; Start=[1 2 3]; 500 iterations

The A* sequence remained stable for iterations 600 through 1100. The resultant smooth

path exhibits the same insignificant encroachment of curvature constraints as the was doc-

umented at 500 iterations.
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Figure 5.58: A* sequence for a 10x3 Grid for a vehicle with a high level of maneuverability
relative to grid spacing; Start=[1 2 3]; 600 through 1100 iterations

Figure 5.59: Path for A* sequence for a 10x3 Grid for a vehicle with a high level of maneu-
verability relative to grid spacing; Start=[1 2 3]; 600 through 1100 iterations
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Figure 5.60: Curvature over all path segments for A* sequence for a 10x3 Grid for a ve-
hicle with a high level of maneuverability relative to grid spacing; Start=[1 2 3]; 600-1100
iterations

The A* sequence is then unchanged for 1200 through 2500 iterations. The smooth

path corresponding to this sequence fully satisfies curvature constraints, as can be seen on

Figure 5.63. Note, compared to paths found through fewer iterations, this path exhibits

fewer/shorter inefficient connections required to keep the path periodic.
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Figure 5.61: A* sequence for a 10x3 Grid for a vehicle with a high level of maneuverability
relative to grid spacing; Start=[1 2 3]; 1200 through 2500 iterations

Figure 5.62: Path for A* sequence for a 10x3 Grid for a vehicle with a high level of maneu-
verability relative to grid spacing; Start=[1 2 3]; 1200 through 2500 iterations
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Figure 5.63: Curvature over all path segments for A* sequence for a 10x3 Grid for a vehicle
with a high level of maneuverability relative to grid spacing; Start=[1 2 3]; 1200-2500
iterations

5.3.4.1 Results for a vehicle with a moderate level of maneuverability relative

to the grid node spacing in a high aspect ratio rectangular area

The vehicle angle of bank capability is taken to be 30o which yields a ratio of minimum turn

radius to nodal spacing of 0.391. In this sub-case, there is only one A* sequence for the entire

range of iterations tested (through 2500). Constraints are satisfied for all path segments.
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Figure 5.64: A* sequence for a 10x3 Grid for a vehicle with a moderate level of maneuver-
ability relative to grid spacing; Start=[1 2 3]; 100 through 2500 iterations

Figure 5.65: Path for A* sequence for a 10x3 Grid for a vehicle with a moderate level of
maneuverability relative to grid spacing; Start=[1 2 3]; 100 through 2500 iterations
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Figure 5.66: Curvature over all path segments for A* sequence for a 10x3 Grid for a vehicle
with a moderate level of maneuverability relative to grid spacing; Start=[1 2 3]; 100 through
2500 iterations

5.3.4.2 Results for a vehicle with a low level of maneuverability relative to the

grid node spacing in a high aspect ratio rectangular area

The vehicle angle of bank capability is taken to be 30o which yields a ratio of minimum turn

radius to nodal spacing of 0.703. In this sub-case, we observe that the sequential planner

fails to satisfy curvature constraints without the addition of loops or other tailoring. The

number of encroachments is high enough that the addition of loops may not be a practical

solution.

It should be noted that the particular area of interest is significantly challenging because

with three rows in a high aspect ratio configuration and low maneuverability, many loops

may be required because feasible options will be few and may not even exist. A review of the

details of the augmented parametric cost for this case revealed that multiple loop penalties

were embedded in the A* solution. Further work is required to guarantee feasible

results for this shape of area of interest for a low maneuverability vehicle .
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Figure 5.67: A* sequence for a 10x3 Grid for a vehicle with a low level of maneuverability
relative to grid spacing; Start=[1 2 3]; 100 through 2500 iterations

Figure 5.68: Path for A* sequence for a 10x3 Grid for a vehicle with a low level of maneu-
verability relative to grid spacing; Start=[1 2 3]; 100 iterations
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Figure 5.69: Curvature over all path segments for A* sequence for a 10x3 Grid for a vehicle
with a low level of maneuverability relative to grid spacing; Start=[1 2 3]; 100 iterations

5.3.4.3 Statistics for the sequential search on a high aspect ratio rectangular

area

For the upper two levels of maneuverability, the peak parametric value is compared to the

actual path length of the smooth paths. These are presented on the upper panel of Figure

5.70. Like the low aspect ratio cases, the augmented Nielson-Foley metric only roughly

predicts actual path length in an absolute sense but for each level of maneuverability, lower

augmented Nielson-Foley metric on average results in a lower path length but small reduc-

tions in he augmented Nielson-Foley metric from solution cases to solution case may result

in slight increases in path length but only by a relatively small amount. The augmented

metric is not an absolute predictor of length, since arc-length parametrization is not pos-

sible [53]. As noted in the low aspect ratio case study, it has been structured to avoid

infeasible paths at the expense of of arc-length parametrization for which it can only be

an approximation. Figure 5.71 illustrates the trend of augmented parametric length versus
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actual arc-length for the high maneuverability case. Arc-length is strictly decreasing as aug-

mented parametric length is reduced. Again, in the case of moderate maneuverability, the

solution was unchanged over 2500 iterations, so this measure cannot be taken. At the high

level of maneuverability, a small increase in arc-length was observed for a corresponding

very-small reduction in augmented parametric length (see circle-highlighted area of Figure

5.71. Over a larger reduction in augmented parametric length, arc-length does decrease,

showing the parametric abstraction of arc-length is consistent over large parametric scales.

Consequently, these cases also present further anecdotal evidence that the abstraction of

length calculated to drive the A* search is a reasonable approximation.

The lower panel of Figure 5.70 depicts the time required to execute the A* search and the

number of nodes that are expanded during the search. All levels of maneuverability trend

approximately along a common curve, which is a function of the aspect ratio of the area of

interest and the Walkable node horizon distance (in this case assigned to be three times the

nodal spacing in the case of moderate maneuverability and four in the case of high maneu-

verability). The Walkable node horizon magnitude has a direct influence over the number of

nodes expanded at each stage. Again, the absolute timing values are not significant because

these cases were executed with un-compiled MatLab code, but the relative trend may be

useful for planning purposes to determine the number of iterations that is appropriate for

a specific application.

Statistics on arc-length are not compiled for the low level of maneuverability for this aspect

ratio because the smooth paths encroach curvature limits to the extent that further plan-

ning refinements are warranted.
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Figure 5.70: Comparison of A* search metric versus actual path length sequence for a 10x3
Grid; Two levels of maneuverability; Start=[1 2 3]

Figure 5.71: Comparison of A* search metric versus actual path length sequence for a 10x3
Grid; High Level of Maneuverability; Start=[1 2 3]
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5.3.5 A Case Study of a Non-Convex (cross-shaped) Area of Interest

In this case study, the area of interest is shaped like a typical roadway intersection, which

is a likely scenario for this application. The area is particularly challenging for a planner.

Not only is it not convex, but each branch (row or column in the shape) has three nodes

across, so a greedy path is not going to suffice since it will be prone to back-tracking due to

the odd number of lanes in each branch. Only two levels of maneuverability were studied

when it became clear that further work is required to bring the low maneuverability case to

a practical level of performance. Because of the high number of nodes considered for these

cases, iterations were generally exercised through 500 with some exceptions to 1000. All

cases were initialized at the three nodes at the lower left of the bottom branch of the cross.

Since the number of paths is high, the A* results are not mapped like was done in prior

sections. For these results we depict two figures for each case:

1. The smooth path derived from the A* periodic sequence

2. The curvature parametric histories associated with each path segment

Each path segment and it corresponding curvature parametric history have been assigned

the same random color to facilitate identification. In instances where curvature constraints

have been encroached with any significance, the segment is depicted with a bold line weight

on both plots. Bold curvature curves also feature dotted white lines embedded in the bold

color curve to accentuate their presence.

5.3.5.1 Results for a vehicle with a high level of maneuverability relative to

the grid node spacing in a non-convex cross-shaped area

In this subset of cases, we document results for a vehicle with relatively high maneuverabil-

ity. Specifically, we assign a vehicle whose angle of bank capability 40o to be representative

of high maneuverability for a UAS. This is the current upper end of UAS capability and

yields a ratio of minimum turn radius to nodal spacing of 0.269 for the nodal spacing used

here. At this spacing, turning to reach nodes should, in most cases, be feasible but turn
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dynamics are significant enough that Euclidean distances are not appropriate for planning

purposes [43]. The user would expect that turning constraints would be met for all cases.

In all test cases in this subsection, the starting three nodes were along the lower left edge of

the cross-shaped pattern. The non-convexity of the area makes it particularly interesting.

For this shape we explore two size of the Walkable horizon used by the A* planner:

• Nodal spacing of three (three times the node spacing used for A* expansion unless

there are no other options)

• Nodal spacing of four (four times the node spacing used for A* expansion unless there

are no other options)

The Walkable horizon directly affects the number of nodes that are expanded at each

iteration. For a non-convex shape, it seems appropriate to increase this horizon at the

expense of increased computation time (number of nodes expanded at each step).

5.3.5.2 Results for a Walkable horizon of three times the nodal spacing in a

non-convex cross-shaped area for a highly maneuverable UAS

When the A* search is limited to a Walkable horizon of three, for this area of interest, there

is only one solution through 1000 iterations. Curvature constraints are satisfied for all path

segments, as seen on Figure 5.73.

5.3.5.3 Results for a Walkable horizon of four times the nodal spacing in a

non-convex cross-shaped area for a highly maneuverable UAS

When the A* search Walkable horizon is expanded to four times the nodal spacing, more

options exist. Note, there are more solutions as the number of iterations is increased.

We see there are three distinct solutions for up to 500 iterations. Figure 5.74 and Figure

5.75 depict path and associated curvature for the solution through 100 iterations. Figure

5.76 and Figure 5.77 depict path and associated curvature for the solution for 200 iter-

ations. At 300 iterations through 500, there is a third solution for which the path and
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Figure 5.72: Path for A* sequence for a Non-convex/Cross-shaped area of interest for a
vehicle with a high level of maneuverability relative to grid spacing; start at lower left;
search horizon at each step set to three times the nodal spacing; 100 through 1000 iterations

Figure 5.73: Curvature over all path segments for A* sequence for a Non-convex/Cross-
shaped area of interest for a vehicle with a high level of maneuverability relative to grid
spacing; start at lower left; search horizon at each step set to three times the nodal spacing;
100 through 1000 iterations
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associated curvature are depicted on Figure 5.78 and Figure 5.79. For each of these so-

lutions, the user would expect curvature constraints to be met and they are met except

for insignificant brief transients. In all of these cases, a vehicle with the planned level

of maneuverability with be capable of successfully executing these plans as depicted.

Figure 5.74: Path for A* sequence for a Non-convex/Cross-shaped area of interest for a
vehicle with a high level of maneuverability relative to grid spacing; start at lower left;
search horizon at each step four times the nodal spacing; 100 iterations
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Figure 5.75: Curvature over all path segments for A* sequence for a Non-convex/Cross-
shaped area of interest for a vehicle with a high level of maneuverability relative to grid
spacing; start at lower left; search horizon at each step four times the nodal spacing; 100
iterations

Figure 5.76: Path for A* sequence for a Non-convex/Cross-shaped area of interest for a
vehicle with a high level of maneuverability relative to grid spacing; start at lower left;
search horizon at each step four times the nodal spacing; 200 iterations
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Figure 5.77: Curvature over all path segments for A* sequence for a Non-convex/Cross-
shaped area of interest for a vehicle with a high level of maneuverability relative to grid
spacing; start at lower left; search horizon at each step four times the nodal spacing; 200
iterations

5.3.5.4 Results for a vehicle with a moderate level of maneuverability relative

to the grid node spacing in a non-convex, cross-shaped area

In this subset of cases, we document results for a vehicle with moderate maneuverability

relative to the spacing of the nodes in the area of interest. We, again, assign a vehicle

whose angle of bank capability is 30o in conjunction with widely spaced points to be rep-

resentative of a UAS with moderate maneuverability. This yields a ratio of minimum turn

radius to nodal spacing of 0.39 for the nodal spacing used. At this spacing, turning to reach

nodes may be feasible but turn dynamics are significant enough that Euclidean distances

are not appropriate for planning purposes [43]. The user would still expect that turning

constraints would be met for all cases. In all test cases in this subsection, the starting three

nodes were along the lower left edge of the cross-shaped pattern. The non-convexity of the

area makes it particularly interesting. Based on results for the highly maneuverable case,

we only explore a Walkable horizon used by the A* planner of four times the nodal spac-

ing. Results for these cases demonstrate that further research is required to appropriately
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Figure 5.78: Path for A* sequence for a Non-convex/Cross-shaped area of interest for a
vehicle with a high level of maneuverability relative to grid spacing; start at lower left;
search horizon at each step four times the nodal spacing; 300 through 500 iterations

Figure 5.79: Curvature over all path segments for A* sequence for a Non-convex/Cross-
shaped area of interest for a vehicle with a high level of maneuverability relative to grid
spacing; start at lower left; search horizon at each step four times the nodal spacing; 300
through 500 iterations
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account for cases where the A* planner accrues numerous penalties, meant to avoid po-

tentially infeasible segments, because other options are not available. Further study of the

role of the Walkable horizon is warranted, although it increasing the number of iterations

reduces the number, magnitude, and duration of encroachments to curvature to tolerable

levels, where an autopilot would be expected to successfully execute these paths.

Figure 5.80: Path for A* sequence for a Non-convex/Cross-shaped area of interest for a
vehicle with a moderate level of maneuverability relative to grid spacing; start at lower left;
search horizon at each step four times the nodal spacing; through 100 iterations
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Figure 5.81: Curvature over all path segments for A* sequence for a Non-convex/Cross-
shaped area of interest for a vehicle with a moderate level of maneuverability relative to
grid spacing; start at lower left; search horizon at each step four times the nodal spacing;
through 100 iterations

Figure 5.82: Path for A* sequence for a Non-convex/Cross-shaped area of interest for a
vehicle with a moderate level of maneuverability relative to grid spacing; start at lower left;
search horizon at each step four times the nodal spacing; 200 through 300 iterations
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Figure 5.83: Curvature over all path segments for A* sequence for a Non-convex/Cross-
shaped area of interest for a vehicle with a moderate level of maneuverability relative to
grid spacing; start at lower left; search horizon at each step four times the nodal spacing;
200 through 300 iterations

Figure 5.84: Path for A* sequence for a Non-convex/Cross-shaped area of interest for a
vehicle with a moderate level of maneuverability relative to grid spacing; start at lower left;
search horizon at each step four times the nodal spacing; 400 iterations
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Figure 5.85: Curvature over all path segments for A* sequence for a Non-convex/Cross-
shaped area of interest for a vehicle with a moderate level of maneuverability relative to
grid spacing; start at lower left; search horizon at each step four times the nodal spacing;
400 iterations

Figure 5.86: Path for A* sequence for a Non-convex/Cross-shaped area of interest for a
vehicle with a moderate level of maneuverability relative to grid spacing; start at lower left;
search horizon at each step four times the nodal spacing; 500 iterations
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Figure 5.87: Curvature over all path segments for A* sequence for a Non-convex/Cross-
shaped area of interest for a vehicle with a moderate level of maneuverability relative to
grid spacing; start at lower left; search horizon at each step four times the nodal spacing;
500 iterations

5.3.6 A Case Study of a Non-Convex (randomly populated) area of in-

terest

In this case study we document results for the sequential planner for clustered but random

groupings of points of interest for two levels of maneuverability. Once points become widely

spaced, maneuverability is less of a factor. High and moderate levels of maneuverability are

still documented to illustrate the robustness (or lack thereof) of the planner. The areas of

interest in these cases were developed by randomly sampling points from a grid. In each of

these cases, the Walkable search horizon is four times the nodal spacing of the starting grid.

In general, the user can set this horizon for the search based on a radius that permits a rich

expansion of nodes in the A* search while avoiding excessive computation times associated

with fully expanding all available points at each step.

Rather than study the same area of interest over a range of A* search iterations, at each

100 iteration interval, a new randomized area was generated so that the performance of the

sequential search over wider range of random areas could be assessed. Since each number
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of iterations studied was for its own unique area of interest, these data cannot be used to

provide statistics on the relation between the metric used in the A* search and the actual

path arc-length. Consequently, the last section in this chapter on results is dedicated to

repeated searches of the same random area to successively higher number of iterations.

5.3.6.1 Results for a vehicle with a high level of maneuverability in a non-

convex (randomly populated) area of interest

For the high maneuverability case, at 100 iterations the path and associated curvature para-

metric histories are presented on Figure 5.88 and Figure 5.89. Curvature constraints are

met in all instances for this random area.

At 200 iterations and a new area, the resultant path and associated curvature parametric

history are presented on Figure 5.90 and Figure 5.91. Curvature constraints are met in all

but one instance for this random area. The encroaching segment is highlighted on both

figures with a heavier line weight. On the path plot, the encroaching segment can be seen

to be an inflecting segment.

At 300 iterations, the resultant path and associated curvature parametric history for this

random area are presented on Figure 5.92 and Figure 5.93. Curvature constraints are met

in all instances for this random area.

At 400 iterations, the resultant path and associated curvature parametric history for this

random area are presented on Figure 5.94 and Figure 5.95. Curvature constraints are met

in all but one instance for this random area.

At 500 iterations, the resultant path and associated curvature parametric history for this

random area are presented on Figure 5.96 and Figure 5.97. Curvature constraints are met

in all instances for this random area.

In the case of 200 iterations for the randomly configured areas of interest, a single encroach-

ment to curvature is large enough in magnitude to warrant revision. However minor adjust-

ments to the tangent angles, now determined through Calladine’s method [81] would be suffi-

cient because of the aggregate slack over all other segments.
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Figure 5.88: Path for A* sequence for a Non-convex/randomly populated area of interest
for a vehicle with a high level of maneuverability relative to grid spacing; start at lower left;
search horizon at each step four times the nodal spacing; 100 iterations

Figure 5.89: Curvature over all path segments for A* sequence for a Non-convex/randomly
populated area of interest for a vehicle with a high level of maneuverability relative to grid
spacing; start at lower left; search horizon at each step four times the nodal spacing; 100
iterations
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Figure 5.90: Path for A* sequence for a Non-convex/randomly populated area of interest
for a vehicle with a high level of maneuverability relative to grid spacing; start at lower left;
search horizon at each step four times the nodal spacing; 200 iterations

Figure 5.91: Curvature over all path segments for A* sequence for a Non-convex/Cross-
shaped area of interest for a vehicle with a high level of maneuverability relative to grid
spacing; start at lower left; search horizon at each step four times the nodal spacing; 200
iterations
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Figure 5.92: Path for A* sequence for a Non-convex/randomly populated area of interest
for a vehicle with a high level of maneuverability relative to grid spacing; start at lower left;
search horizon at each step four times the nodal spacing; 300 iterations
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Figure 5.93: Curvature over all path segments for A* sequence for a Non-convex/Cross-
shaped area of interest for a vehicle with a high level of maneuverability relative to grid
spacing; start at lower left; search horizon at each step four times the nodal spacing; 300
iterations

Figure 5.94: Path for A* sequence for a Non-convex/randomly populated area of interest
for a vehicle with a high level of maneuverability relative to grid spacing; start at lower left;
search horizon at each step four times the nodal spacing; 400 iterations
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Figure 5.95: Curvature over all path segments for A* sequence for a Non-convex/Cross-
shaped area of interest for a vehicle with a high level of maneuverability relative to grid
spacing; start at lower left; search horizon at each step four times the nodal spacing; 400
iterations

Figure 5.96: Path for A* sequence for a Non-convex/randomly populated area of interest
for a vehicle with a high level of maneuverability relative to grid spacing; start at lower left;
search horizon at each step four times the nodal spacing; 500 iterations
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Figure 5.97: Curvature over all path segments for A* sequence for a Non-convex/Cross-
shaped area of interest for a vehicle with a high level of maneuverability relative to grid
spacing; start at lower left; search horizon at each step four times the nodal spacing; 500
iterations

5.3.6.2 Results for a vehicle with a moderate level of maneuverability in a

non-convex (randomly populated) area of interest

Again, note, a different randomly configured area is processed by the sequential search al-

gorithm for up to 500 iterations, in 100 iteration increments, this time for the moderate

maneuverability case.

At 100 iterations the path and associated curvature parametric histories are presented on

Figure 5.98 and Figure 5.99. Curvature constraints are met in all but one instance for this

random area. The encroaching segment is highlighted on both figures with a heavier line

weight. The encroachment is minor but significant enough that further path tailoring is

warranted.

At 200 iterations and a new area, the resultant path and associated curvature parametric

history are presented on Figure 5.100 and Figure 5.101. Curvature constraints are met in

all instances for this random area.

At 300 iterations, the resultant path and associated curvature parametric history for this
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random area are presented on Figure 5.102 and Figure 5.103. Curvature constraints are

met in all but two instances for this random area. The encroaching segment is highlighted

on both figures with a heavier line weight. These encroachments also warrant further path

tailoring.

At 400 iterations, the resultant path and associated curvature parametric history for this

random area are presented on Figure 5.104 and Figure 5.105. Curvature constraints are

met in all but one instance for this random area.

At 500 iterations, the resultant path and associated curvature parametric history for this

random area are presented on Figure 5.106 and Figure 5.107. Curvature constraints are

only insignificantly transiently encroached in one instance for this random area. The vehicle

would readily be capable of flying the planned path.

These case illustrate that further path tailoring may be warranted when feasible paths are

not guaranteed between a given set of nodes. Since encroachments to the planned limit of

curvature is always transient over a small parametric range and the vast majority of seg-

ments meet constraints, a small adjustment to the Calladine-based solution for path tan-

gents at the endpoints is warranted. Local adjustment, as described in Section 5.2.1.1 on fea-

sibility adjustments and loop generation is often sufficient. Further treatment is beyond the

scope of this writing. Further discussion on this topic will be presented in the Future Work

chapter of this thesis.
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Figure 5.98: Path for A* sequence for a Non-convex/randomly populated area of interest
for a vehicle with a moderate level of maneuverability relative to grid spacing; start at lower
left; search horizon at each step four times the nodal spacing; 100 iterations

Figure 5.99: Curvature over all path segments for A* sequence for a Non-convex/randomly
populated area of interest for a vehicle with a moderate level of maneuverability relative to
grid spacing; start at lower left; search horizon at each step four times the nodal spacing;
100 iterations
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Figure 5.100: Path for A* sequence for a Non-convex/randomly populated area of interest
for a vehicle with a moderate level of maneuverability relative to grid spacing; start at lower
left; search horizon at each step four times the nodal spacing; 200 iterations

Figure 5.101: Curvature over all path segments for A* sequence for a Non-convex/randomly
populated area of interest for a vehicle with a moderate level of maneuverability relative to
grid spacing; start at lower left; search horizon at each step four times the nodal spacing;
200 iterations
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Figure 5.102: Path for A* sequence for a Non-convex/randomly populated area of interest
for a vehicle with a moderate level of maneuverability relative to grid spacing; start at lower
left; search horizon at each step four times the nodal spacing; 300 iterations
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Figure 5.103: Curvature over all path segments for A* sequence for a Non-convex/randomly
populated area of interest for a vehicle with a moderate level of maneuverability relative to
grid spacing; start at lower left; search horizon at each step four times the nodal spacing;
300 iterations

Figure 5.104: Path for A* sequence for a Non-convex/randomly populated area of interest
for a vehicle with a moderate level of maneuverability relative to grid spacing; start at lower
left; search horizon at each step four times the nodal spacing; 400 iterations
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Figure 5.105: Curvature over all path segments for A* sequence for a Non-convex/randomly
populated area of interest for a vehicle with a moderate level of maneuverability relative to
grid spacing; start at lower left; search horizon at each step four times the nodal spacing;
400 iterations

Figure 5.106: Path for A* sequence for a Non-convex/randomly populated area of interest
for a vehicle with a moderate level of maneuverability relative to grid spacing; start at lower
left; search horizon at each step four times the nodal spacing; 500 iterations
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Figure 5.107: Curvature over all path segments for A* sequence for a Non-convex/randomly
populated area of interest for a vehicle with a moderate level of maneuverability relative to
grid spacing; start at lower left; search horizon at each step four times the nodal spacing;
500 iterations

5.3.7 A Case Study of a Non-Convex (randomly populated) area of in-

terest to illustrate results with successively higher numbers of iter-

ations

In this last case study we document results for the sequential planner for clustered but ran-

dom groupings of points of interest for two levels of maneuverability. However, unlike the

last section, in this case, a single randomly generated area of interest is used to illustrate

results as a function of the number of search iterations. Once points become widely spaced,

maneuverability is less of a factor, but both levels are documented to illustrate the robust-

ness (or lack thereof) of the planner. The areas of interest in these cases were developed by

randomly sampling points from a grid. In each of these cases, the Walkable search horizon

is five times the nodal spacing of the starting grid, so that more options exist at each nodal

expansion. In general, the user can set this horizon for the search based on a radius that

permits a rich expansion of nodes in the A* search while avoiding excessive computation

times associated with fully expanding all available points at each step.
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5.3.7.1 Results for a vehicle with a high level of maneuverability in a non-

convex (randomly populated) area of interest (assess the role the num-

ber of iterations)

In this set of test cases, the A* search uses a Walkable horizon of five times the minimum

spacing of the randomly generated area. There are three distinct solutions for iterations

through 500. For up to 100 iterations, the path and curvature parametric histories are

presented on Figure 5.108 and Figure 5.109. For this solution, curvature constraints are

satisfied.

At 200 iterations, the path and curvature parametric histories are presented on Figure

5.110 and Figure 5.111. For this solution, curvature constraints are satisfied.

For 300 through 500 iterations, the path and curvature parametric histories are presented

on Figure 5.112 and Figure 5.113. Again, at this level of maneuverability, curvature con-

straints are met for all segments.
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Figure 5.108: Path for A* sequence for a Non-convex/randomly populated area of interest
for a vehicle with a high level of maneuverability relative to grid spacing; start at lower left;
search horizon at each step five times the nodal spacing; 100 iterations

Figure 5.109: Curvature over all path segments for A* sequence for a Non-convex/randomly
populated area of interest for a vehicle with a high level of maneuverability relative to grid
spacing; start at lower left; search horizon at each step five times the nodal spacing; 100
iterations
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Figure 5.110: Path for A* sequence for a Non-convex/randomly populated area of interest
for a vehicle with a high level of maneuverability relative to grid spacing; start at lower left;
search horizon at each step five times the nodal spacing; 200 iterations

Figure 5.111: Curvature over all path segments for A* sequence for a Non-convex/randomly
populated area of interest for a vehicle with a high level of maneuverability relative to grid
spacing; start at lower left; search horizon at each step five times the nodal spacing; 200
iterations
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Figure 5.112: Path for A* sequence for a Non-convex/randomly populated area of interest
for a vehicle with a high level of maneuverability relative to grid spacing; start at lower left;
search horizon at each step five times the nodal spacing; 300 through 500 iterations

Figure 5.113: Curvature over all path segments for A* sequence for a Non-convex/randomly
populated area of interest for a vehicle with a high level of maneuverability relative to grid
spacing; start at lower left; search horizon at each step five times the nodal spacing; 300
through 500 iterations
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5.3.7.2 Results for a vehicle with a moderate level of maneuverability in a

non-convex (randomly populated) area of interest (assess the role the

number of iterations)

In this last set of test cases, the A* search uses a Walkable horizon of five times the minimum

spacing of the randomly generated area. There are three distinct solutions for iterations

through 500. For up to 100 iterations, the path and curvature parametric histories are

presented on Figure 5.114 and Figure 5.115. For this solution, there are two segments that

encroach curvature constraints. Review of the path, see Figure 5.114 indicates that a minor

adjustment to the Calladine approach to set segment tangents is all that would be required

to fully satisfy constraints.

For 200 through 300 iterations, the path and curvature parametric histories are presented

on Figure 5.116 and Figure 5.117. For this solution, there are three segments that encroach

curvature constraints. Again, review of the path, see Figure 5.116 indicates that a minor

adjustment to the Calladine approach to set segment tangents is all that would be required

to fully satisfy constraints. In each offending segment, there is an adjacent segment with

slack relative to the curvature constraint.

For 400 through 500 iterations, the path and curvature parametric histories are presented

on Figure 5.118 and Figure 5.119. For this solution, there is only segment that encroaches

curvature constraints. Again, review of the path, see Figure 5.118 indicates that a minor

adjustment to the Calladine approach to set segment tangents is all that would be required

to fully satisfy constraints. The offending segment is adjacent to a segment with slack rel-

ative to the curvature constraint.
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Figure 5.114: Path for A* sequence for a Non-convex/randomly populated area of interest
for a vehicle with a moderate level of maneuverability relative to grid spacing; start at lower
left; search horizon at each step five times the nodal spacing; 100 iterations

Figure 5.115: Curvature over all path segments for A* sequence for a Non-convex/randomly
populated area of interest for a vehicle with a high level of maneuverability relative to grid
spacing; start at lower left; search horizon at each step five times the nodal spacing; 100
iterations
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Figure 5.116: Path for A* sequence for a Non-convex/randomly populated area of interest
for a vehicle with a moderate level of maneuverability relative to grid spacing; start at lower
left; search horizon at each step five times the nodal spacing; 200 through 300 iterations

Figure 5.117: Curvature over all path segments for A* sequence for a Non-convex/randomly
populated area of interest for a vehicle with a high level of maneuverability relative to grid
spacing; start at lower left; search horizon at each step five times the nodal spacing; 200
through 300 iterations
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Figure 5.118: Path for A* sequence for a Non-convex/randomly populated area of interest
for a vehicle with a moderate level of maneuverability relative to grid spacing; start at lower
left; search horizon at each step five times the nodal spacing; 400 through 500 iterations

Figure 5.119: Curvature over all path segments for A* sequence for a Non-convex/randomly
populated area of interest for a vehicle with a high level of maneuverability relative to grid
spacing; start at lower left; search horizon at each step five times the nodal spacing; 400
through 500 iterations
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5.3.8 Summary of Results

In this Chapter, we assessed the performance of the sequential over a variety of types of

areas of interest and vehicle maneuverability relative to the spacing of the points that are

over-flown.

5.3.9 Advice of empirical parameters embedded in the sequential planner

The A* search and smooth path generator relies on a set of empirical factors, as outlined

in section 5.1.1.2. To recap, these are:

1. The maximum distance from the current node in the A* search to bound the number

of nodes that are expanded at each iteration: we define this as the Walkable set of

nodes available for expansion at each iteration.

2. The Nielson-Foley parametrization, which we use as a distance metric.

3. The definition of a discrete radius measurement, which we use to penalize segment

costs which likely would require a full loop to reach a goal (in addition to cost calcu-

lated by basic geometry).

4. The definition of a penalty associated with segments with inflections which would

violate curvature constraints when smooth paths are calculated.

5. A Greedy Algorithm, which is used to compute the A* heuristic cost-to-go.

Of these, the only parameter we recommend be tailored for a specific areas of interest is the

Walkable horizon used by the A* search. When the area of interest is convex, contiguous

and low in aspect ratio, this horizon can be set to as few as three times the minimum nodal

spacing in the area. When the area is non-convex, low in aspect ratio, or non-contiguous,

we recommend exploration of this parameter. If set too high, the A* search will expand a

large number of nodes at each iteration and computation times will increase dramatically.

The other parameters have been shown through the preceding results to be suitably sized.

Further discussion of these continues in the next section.
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5.3.10 Recommendations for algorithmic improvements warranted by per-

formance shortfall in the preceding sections

The sequential planner performed well for highly maneuverable vehicles relative to the spac-

ing of nodes in the area of interest. For non-convex areas of interest, when maneuverability

was reduced to a moderate level, a few segments began to encroach curvature constraints

to the extent that an autopilot executing these plans may not be successful. In most cases,

minor adjustment to the tangent angles of the offending segments is sufficient to correct

this issue because adjacent segments exhibit slack in curvature. These cases have been

observed to occur when the augmented metric used by the A* search is forced to select

among options for which each candidate has penalties associated with either discrete cur-

vature requirements or path inflection. When there are multiple penalties included in the

A* cost, infeasible paths are likely to be selected. While these can be resolved through

the introduction of loops, when multiple loops are required, it is impractical to implement

such solutions. More research is warranted to study the effect of cases for which turning

constraints impose extreme limits on the number of feasible options at each A* expansion.
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5.4 Trajectories for Obstacle Avoidance

Guaranteeing obstacle-free paths is a critical capability for planners for applications in

cluttered environments. The DARPA HURT16 program underscored the importance of

cooperative persistent surveillance in urban and highly featured terrain environments [82].

Terrain features in natural environments can constitute obstacles just as formidable as build-

ings and, even in flat terrain, it may be may be important to impose ‘no-fly’ zones for safety

or tactical purposes. Consequently, obstacle avoidance should be a key feature of a robust

planner. Similarly, when multiple UAS are used, guaranteeing temporal separation when

flight paths intersect is critical. Persistence of coverage can be secured through periodic

(closed circuit) paths. In addition, the period of time required to achieve full coverage (or

to refresh it) can be tailored by using multiple vehicles in series along the path planned for

a single vehicle17. In this case, path temporal de-confliction may be required in the event

there are intersections in the route. So, collision avoidance is a also a key feature of a robust

planner. The most basic taxonomy of path planners that can accommodate obstacles and

avoid collisions is to distinguish between those which directly embed the obstacle avoidance

capability into the planning layer and those that find candidate path paths and then check

them to verify they are collision free and make adjustments as required to the original plan

until satisfactory results are obtained. Figure 5.120 depicts these types. Voronoi Diagrams

and Visibility Graphs are two of the leading methods for embedding obstacle avoidance

directly into a planner. Alternatively, planners that address obstacles by checking and re-

vising plans developed without regard for obstacles may guarantee obstacle-free paths with

less algorithmic complexity but path feasibility may be sacrificed when the candidate paths

lack any slack with respect to constraints, such as curvature limits.

As noted earlier, when the underlying area is relatively flat, such that vertical features

16DARPA conducted demonstrations of the Heterogeneous Urban RSTA (reconnaissance, surveillance,
target acquisition) Teams program in 2005 at the former site of George Air Force Base in Victorville, CA,
in 2006 at the Marine Corps Air Ground Combat Center, Twenty-nine Palms, CA, and in 2007 at Fort
Hunter-Ligget, CA.

17Multiple vehicles, traversing the loop at equal spacings, can be used to achieve a target time to observe
the entire route to satisfy a mission objective.
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Figure 5.120: Top-level Taxonomy of Nonholonomic Path Planners that Support Obstacle
Avoidance

can be treated as obstacles, the requirement for 3D path planning can be relaxed without

loss of generality by finding 2D paths at specified fixed altitudes. In these conditions, al-

titude can be set solely by image resolution requirements, yielding a 2D solution. These

reductions in complexity permit development of practical solutions. Planning around ob-

stacles is best developed in a planar setting and then extended to a full 3D mission planning

space. The presentation here is limited to 2D obstacle models.

5.4.1 Modeling Obstacles with Tight Linear Bounds

In the event linear bounds for obstacles are known apriori, the vertices (points defining the

linear segments) can be used directly to define them. In some cases, only the image of is

available. In such cases, a segmentation algorithm, such as described by Taylor [83] may be

required to identify obstacles boundaries. Thereafter, given the geometry of the perimeter

of an obstacle, a uniform sampling of points can be used to transcribe the point set to a

curve.

A potentially serious drawback of using parametric polynomial splines is that there is

no guaranteed approach to parametrize a path such that the curve will follow the expected

shape implied by the points which generate it [84]. This is especially the case when points

are unevenly spaced. A common approach is to add further points to the defining set an

determine the curve using an optimization technique, such as minimization of the bending

energy [84] or minimizing variation in curvature [85]. This problem arises frequently in
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product design, where the addition of points can be quite complex where aesthetics are in-

volved. However, in the case of path planning, planners can be designed so that points are

densely packed or, at least, uniformly distributed. With this mandate for the set of points

defining a path or constraint to be approximated with a parametric curve, we are able to

use chordal-parametrization to approximate arc-length parametrization without incurring

the bulges, loops, and wiggles often induced when parametrization is not straightforward.

Problems could arise if a sparse/minimal point set is used to define an obstacle or con-

straint but in this case it is straightforward to add uniformly-spaced points to avoid the

aforementioned problems. Depending on the nature of the defining points, a simple chordal

parametrization, as is presented in Section 7.2.2, may be used in conjunction with a least

squares optimization to fit the data to a curve. If the obstacle shape includes multiple

sharp vertices, it is best broken into a series of splines with C0 continuity at the vertices. If

chordal parametrization does not yield adequate results, Speer et al [86] have developed a

global re-parametrization method which, they report, leads to dramatically better results.

In the event obstacle data are in the form of a point cloud, with inherently noisy data,

then a regularization term can be added to the least squares error to ensure a smooth so-

lution curve. A survey of these approaches is provided by Wang et al [87]. By assigning at

least three control points for each shape defining point (bounds, inflection points, locations

of peak curvature, etc.) in a set of defining points and then uniformly distributing these

points in the least squares solution permits the approximating curves to be well behaved

and closely adhere to the original set. An bound can be placed on the peak error between

the defining set of points and the resultant curve and additional control points then used

to attain a desired fidelity to the defining set. The heuristic we use performs with errors

in precision that are on the order of those caused by atmospheric disturbances to the flight

path.

Since there is no universal optimal solution to appropriately generating a curve that

precisely renders a data set, it is best if the user visually confirms the transcription of an

obstacle boundary to a B-spline structure before proceeding. Also note, if the obstacle
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bounds already constitute a convex hull, it is best to use this directly rather than a spline

transcription in order to streamline computations. An example of this shortcut is illustrated

in the Appendix, Section 7.2.2. We use either B-splines or linear segments to define obstacles

because the splines can be transcribed into a set of linear bounds and that is the practical

computational approach to managing avoidance of obstacles (spatial separation of path and

obstacles) and collisions (temporal separation of all vehicles in the event flight paths cross).

5.4.1.1 Development of Linear Bounds

The properties of B-splines permit both path curves and obstacles to be represented as

polygonal shapes with tight bounds to curved paths. We outline the process to map B-spline

curves into a set of tight linear bounds that can be checked for encroachment of obstacles

or potential collision sites where a route has a self-intersection. The technique integrates a

variety of available algorithms into a serial process tailored for UAV applications. We then

outline how to modify a route to avoid these issues or at least preserve path feasibility when

detours are incurred to avoid obstacles.

One of the characteristic features of the basis functions used in B-splines is that they

are a partition of unity, meaning that at any parameter value within the domain of the

spline curve, the sum of all basis functions is 1.0. This causes the spline to be bounded by

the convex hull of the control polygon but also permits bounds on both sides of the curve

to be calculated. These features and the definition of the spline curve, permit tight linear

bounds to be determined for the curve based on the control points and the basis functions.

Lutterkort derived an algorithm to determine linear bounds [88] for B-splines. Bounds are

calculated using the Greville abscissae, which are the mean locations of d − 1 consecutive

knots in the knot vector for each basis spline function of order d, as illustrated in Equation

5.10 below. They tend to be near the parameters associated with the maxima of the basis

functions and permit approximations of the splines to be made. Since we develop spline

paths using a 6 control point convention for each segment across way-points, the process of
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determining linear bounds is illustrated for this convention.

τ∗k ≡
1

d

k+d∑
i=k+1

τi (5.10)

The locations of the Greville abscissae and the basis function values at these parametric lo-

cations are shown on Figure 5.121. What is often overlooked when researchers cite the work

Figure 5.121: Quartic (d = 4) B-spline basis functions for clamped splines with uniform
knots and 6 control points showing locations of Greville abscissae. The knot vector is:
[0 0 0 0 0 1 2 2 2 2]; the Greville abscissae, τ∗k , are located at: [0 0.25 0.75 1.25 1.75 2].

of Lutterkort is that the linear bounds are computed with respect to the spline independent

parameter, τ , independently for each spatial variable. An unfortunate reality of parametric

polynomials of all forms is that they cannot be parametrized with respect to arc-length

[52]. A consequence is that linear bounds with respect to τ cannot be conflated to bounds

in physical space (in this case Northing versus Easting coordinates). This unfortunate

consequence is illustrated for two example cases.

In Case 1, spline bounds in parametric space become improperly sequenced when pro-

jected as planar bounds in physical space. This is a consequence of the form of the algorithm

which identifies upper and lower bounds in parametric space as illustrated below in Figure

5.122, (Upper and lower bounds cease to be appropriate nomenclature in Northing versus

Easting coordinates, even though results often appear to be correct). When these bounds
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Figure 5.122: Linear Bounds as derived by Lutterkort for Case 1 (left panel-Northing
bounds; right panel-Easting bounds) with respect to τ for basis functions as shown in
Figure 5.121.

are projected into the Easting-Northing space, linear segments defining bounds can be seen

to cross. By checking when upper and lower bound segments intersect, the appropriate

sequence of linear bounds can readily determined, as shown on the right panel of Figure

5.123.

Case 2 illustrates a more troubling result that even when linear bounds do not cross,

there may be cases where the spline itself escapes the bounds when they are projected in

the physical space, even though they are correctly determined in the parametric space. In

this case, bounds projected to Northing versus Easting coordinates fail to be appropriate

tight linear bounds with which to compute obstacle avoidance. See Figure 5.124. Note,

when these bounds are projected Northing versus Easting coordinates, the bounds are

incorrect as shown in the inset of Figure 5.125. As a consequence, to use these bounds in

the planning space coordinates, additional steps must be taken to improve the tightness and

validity of the bounds. An algorithm that sorts through Lutterkort’s bounds in parametric

space and derives new bounds for use in the physical space is offered by Jung and Tsiotras

[89]. The algorithm adds a complicating step but yields accurate linear bounds that can be

applied to path planning in the physical space.

The tightness of the linear bounds may vary, especially if the control polygon is oscilla-

tory, so further refinement is required. Since a B-spline curve can be rendered into a series

173



Figure 5.123: Linear bounds for Case 1 as derived by Lutterkort projected into the (pla-
nar) physical space (left panel- bounds as calculated crossing (proper bounds incorrectly
sequenced); right panel- bounds correctly sequenced) for the spline shown in Figure 5.122.

Figure 5.124: Linear Bounds as derived by Lutterkort Case 2 (left panel-Northing bounds;
right panel-Easting bounds) with respect to τ for basis functions as shown in Figure 5.121.
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Figure 5.125: Linear bounds for Case 2 as derived by Lutterkort projected into the (planar)
physical space for the spline shown in Figure 5.124.
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of polygonal segments, we choose to use this structure to also represent obstacles.

The Lutterkort/Jung linear bounding algorithms permit detection of path and obstacle

intersection. Before developing an approach to ensure obstacle avoidance, path intersections

need to be checked for temporal separation. Mørken et al [90] have developed an algorithm

to find intersections of two B-spline curves. The algorithm uses a process denoted as subdi-

vision, where additional knots are added to the knot vector of a given spline and the control

points for an identical curve are determined. As the number of control points in increased

through subdivision, the control points themselves are closer to the actual curve. In the

limit, as the number of control points approaches infinity, the control polygon converges to

the curve itself. As the control polygon itself is closer to the curve, so are the linear bounds

derived by Lutterkort. In practice, only a few subdivisions may be required so that error

in the linear bounds (with respect to the actual curve) can be reduced to a threshold so

that further subdivision is no longer practical an intersections can be satisfactorily located

using the bounds rather than the actual curves. As an example, the subdivision of the

path and the bounds associated with the subdivision are shown on Figure 5.126 below.

The original knot vector was: {0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2} and the subdivided knot vector is:

{0, 0, 0, 0, 0, 0.5, 1, 1.5, 2, 2, 2, 2, 2}. The same curve is generated with 8 control points in

place of the original 6. The subdivision has the effect of reducing the peak error in the

linear bounds from approximately 98 meters to 35 meters. A subdivision loop can be set

up until the peak error has been reduced within an acceptable threshold. For speed of

execution, we would like to work exclusively with the linear bounds for checking obstacle

encroachment and path intersection. In the case of intersection, we also need to extract

the parameter at which an intersection occurs on each spline. Once intersections are found,

they are processed to ensure temporal separation. In cases where temporal separation is

not available, a local perturbation to the the path in an area of low curvature is added to

minimally lengthen the path while breaking the potential for collision.

If the splines computed from the A* tour are augmented to ensure obstacle avoidance,

the resultant splines may no longer be feasible because the A* search did not account this.
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Figure 5.126: Linear Bounds following subdivision for B-splines as derived by Lutterkort

A more practical approach is to reconsider the A* search by deleting locations off limits

due to obstacles and introducing alternative locations to preserve the covering set. Once

obstacles are introduced, the imaging locations to constitute a covering set will feature

more overlap than the obstacle-free tessellation. Figure 7.9 shows this step, where a single

location must be deleted and an new location added (see red dotted line that recovers

the covering set in the presence of obstacles. The A* search is computed in the case of

obstacles by further adding points along the visibility graph when a path segment would

cross through the obstacle. In this case, the cost to traverse this type of path uses the

Nielson Foley parametrization, as defined in Figure 5.2 for a prescribed set of points around

the obstacle. The A* search then embeds the path lengths required to navigate around the

obstacle(s). In this case, paths later specified in detail through a B-spline will have a higher

probability of including sufficient slack so that a feasible spline can be found. Loops may

be required and this additional step has not yet been developed.

Our two-stage algorithm augmented to account for obstacles is as follows:

• Define a list of sites that constitute a covering set.

• Define the convex hull of any obstacles

• Delete sites within obstacles and add sites are required to recover a covering set (place

new image circles so they intersect obstacle bounds, see Figure 7.9).
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• Define a distance metric for the cost to travel from one site to another that captures

the differential constraints of feasible motion, especially as more sites are added to

the path (use same metric developed for obstacle-free case with an additional large

magnitude penalty to any segment that crosses into the obstacle).

• Execute A* search with the obstacle-augmented distance metric.

• Transcribe A* search tour sequence into feasible paths using B-spline formats.

• If a path segment crosses an obstacle add additional sites to navigate around the

obstacle using the visibility graph between endpoints and augment curves to satisfy

constraints.

Results for the A* search with the obstacle depicted on Figure 7.9 are shown on Figure

5.127 The spline-based path that was computed from the A* search tour is shown on Figure

Figure 5.127: Example of A* search with an obstacle

5.128. The path here, as found by tangent scaling from the A* search tour, does not

encroach any obstacle boundaries. In general, this must be verified. For cases that cross

obstacle boundaries, new control points are added on the visibility graph between start
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Figure 5.128: Example of the path generated from the A* search with an obstacle
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and end points and the obstacle and the segment is reconstructed in two parts. Curvature

profiles corresponding to the path shown on Figure 5.128 are shown on Figure 5.129. Again,

there is slight encroachment of curvature curvature constraints but not sufficient to warrant

re-plan.

Figure 5.129: Curvature parametric profiles for the path shown on Figure 5.128. Segment
colors are consistent with Figure 5.128.

180



Chapter 6

Coordination of Multiple UAVs

(Contribution C2)

In the preceding sections periodic paths were developed for a single vehicle. In order for

this solution to be practical, the following steps must be taken:

• Ensure collisions will not occur when multiple vehicles are executing the plan in order

to meet refresh requirements

• A process to launch a team and have each vehicle enter the planned mission at a

coordinated time

6.1 Assessing number of vehicles required to meet data re-

fresh requirements

In order to assign the appropriate number of aerial vehicles to the mission to satisfy and

to ensure there are no collisions the length of the entire periodic loop must be determined

and the number and identity of intersections must be classified. The overall mission length

can be found using techniques we documented in [67]. Potential intersection sites can be

identified by identifying the intersection of tight linear bounds across the set of splines

that comprise the loop, as developed by Lutterkort [88]. Lutterkort’s algorithm must be

augmented as outlined by Jung and Tsiotras [89] so that bounds are properly captured
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in physical space (see 5.4.1.1 for more details). The technique is illustrated for the first

example case in Figure 6.1. The duration of the mission for each vehicle can be found by

Figure 6.1: Intersection of B-splines from example case1 (segments 11 and 22 cross); linear
bounds permit rapid identification

dividing the loop length by the vehicle velocity used in the planner. Dividing the the loop

time by the imagery refresh period and rounding to an integer then yields the number of

vehicle required. For the first example case, a ten second refresh period requires 35 vehicles

to cover the loop which is 7715m in length while traveling at the planned velocity of 22

m/s. In order conclusively identify intersections, candidate cases found using Lutterkort’s

method are processed through an algorithm by Mørken which uses knot insertion [90]. Once

intersections are found, they are processed to ensure temporal separation. The example

case provides a minimum separation of 77m and a maximum separation of 143m as vehicles

negotiate the crossover of segments 11 and 22. See Figure 6.2. In cases where temporal

separation is not available, a slight perturbation to the the path in an area of low curvature

is added to minimally lengthen the path while breaking the potential for collision. The key

is to make an adjustment that is local. This is left as future work. The path illustrated
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Figure 6.2: Locations of path intersections (lower line) and locations of equally spaced
vehicles (upper line) illustrating temporal separation of the example case.

in Figure 5.8 was used to generate flight plan for full aerodynamic simulation (Software in

the Loop simulation with the ArduPilot system. Results are depicted in Figure 6.3. Red

shading illustrates the camera coverage of a full cycle through the mission. A multi-media

file of the simulation is attached as a supplement to this document.

Figure 6.3: Aerodynamic simulation of mission defined in Figure 5.8

6.2 Mission Initialization

In order to execute a persistent surveillance application with a team of UAS platforms flying

in tandem along the periodic path found by our planner, we need another planning layer to
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route the vehicles from somewhat arbitrary locations to their starting points. To accomplish

this, vehicles are typically staged in nearby loitering flight plans until the mission execution

command is issued. Unfortunately, the performance of a typical autopilot falls short of

enabling the use of airspeed as a variable to ensure vehicles, starting at somewhat arbitrary

locations and flight path vectors, to arrive in concert at the initial points of their flight plans.

In some cases, adequate performance can be obtained by buffering the planned mission with

an initial lengthy pre-mission segment for each agent to account for this variability. If inter-

vehicle communications permit vehicle locations to be shared, then the autopilots can be

configured to coordinate approximate synchronized completion of all buffered segments.

However, performance guarantees for such strategies do not exist because the airspeed

range available to regulate coordination is limited and diminishes as ambient temperature

and altitude are increased. The variability of winds aloft further complicates the ground-

referenced coordination problem to the extent that any available airspeed variability is best

allocated to maintaining coordination not establishing it. Consequently, it is useful to have

a near real-time planner that is capable of reacting to instantaneous vehicle location and

surveillance mission entry points and their respective flight path parameters to determine

a precise time of arrival for each that can be tailored to ensure simultaneity of arrival for

the team. Continuity of curvature and constraints on its magnitude and rate of change are

also critical components of feasible paths as noted earlier in Ch. 4. Strict time optimality

is not critical but the paths should be reasonably efficient because mission duration is

also a priority. The critical requirements for a practical simultaneous arrival algorithm are

that paths must be feasible, must be computed in near real-time, and be free of potential

collisions. Collision de-confliction has two solutions:

1. spatial deconfliction of paths

2. temporal deconfliction of paths (that may spatially intersect at points)

The general problem of simultaneous arrival can be posed in two fundamental ways:

1. Mission starting locations and paths are known before the vehicles are deployed into

loitering patterns.

184



2. Mission starting locations and paths are only known after the vehicles have been

deployed.

In either case, it is impractical to coordinate vehicle launch timing to guarantee coordinated

mission initialization.

The persistent surveillance mission falls into the category where complete paths are

known before vehicles are deployed. In this case, the loitering orbits can be tailored to

minimize time between issuing the command to start the mission and the actual simultane-

ous entry of vehicles onto the planned path in series. Alternatively, search and rescue type

missions that work through a priority queue of people/items to find will be in arbitrary

locations whenever an item on the list is discovered and the team is redirected to searching

the highest probability areas for the next item.

Optimization algorithms can be formulated to address the constrained problem as de-

scribed in [91], [92], or [93] but these approaches are computationally expensive and may

not meet the near real-time requirement on an embedded processor. A solution to the fully

constrained problem may, however, be critical in cases where collision deconfliction require-

ments become complex. An approach tailored for embedded processing is developed by

Nelson et al [94] in which C1 continuity is achieved. In this chapter, we present algorithms

that can be rapidly executed even with the limited on-board computing resources and yield

C2 continuity with planned missions. We first address the case where mission entry points

and path parameters are known in advance and then outline the more general second case.

We then address the more general case where orbit centers are not known apriori. The more

general simultaneous arrival algorithm is useful when loitering orbits may not be located

along an approach line. In our case, vehicles can be staged in orbits arranged along an

approach line that enters the planned mission at a designated point.
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6.3 Definition of an approach path from loitering orbit to

start of a persistent surveillance mission

Prior to the coordinated start of a persistent surveillance mission, fixed-wing vehicles must

be staged along pre-mission flight paths. Loitering orbit patterns from which they can

be commanded to commence the actual surveillance mission are typically used to facili-

tate planning. It is important to minimize the spatial footprint of the orbits to avoid the

probability of conflicts between vehicles. The turn radius should be set to the practical

minimum1 for the specific vehicle being used. A path definition from turn exit (where the

initial condition is peak turn rate) to straight and level flight can be pre-computed. This

path for exiting the turn to a straight path or one with specified curvature can be found by

using optimal control techniques to define the path from the initial angle of bank (in the

turn) and straight and level flight. It can be parametrized by orbit curvature so that once

the curvature at the entry point of the persistent surveillance mission is specified, the path

from turn exit is known. A circle with a turn exit segment to this magnitude of curvature

can then be translated and rotated to the entry point for C2 continuity. A sample of the

optimal states for our example vehicle at a velocity of 22 m/s and peak planned angle of

bank of 30o is illustrated below on Figure 6.4 for exit from a CW (clockwise) orbit. The

controls and vehicle states have the opposite sign for exit from a CCW (counter-clockwise)

orbit. This optimal path segment from orbit to straight path can be integrated along an

approach line to the planned mission. Similarly, the controls can be computed to generate

a path from straight flight to curved flight at the maximum curvature to connect the ap-

proach line to an exterior point on the planned path. To minimize maximize the separation

of vehicles in their loiter orbits, the orbits and optimal exit paths can be alternated in di-

rection (clockwise (CW) or counterclockwise (CCW)). The arrangement of CW and CCW

1The practical minimum turn radius should permit a buffer with respect to the peak attainable load
factor so that the vehicle can consistently follow a ground-referenced path in the presence of winds and
atmospheric turbulence. The airspeed should be set at or near the median between stall speed (minimum)
and the maximum level flight speed. The turn radius is then inversely proportional to the turning load
factor.
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Figure 6.4: Control input and vehicle states to exit a CW turning orbit to a straight and
level path.

orbits along an approach line is illustrated on Figure 6.5 below. The spacing between the

points along the approach line is determined by the spacing required for the refresh period

specified for the mission. In order to have each vehicle arrive at the approach line in concert

for arbitrary starting locations, we provide an algorithm that is capable of generating equal

arc-length paths from arbitrary azimuths in the loitering orbit. The first step is to iden-

tify a common departure point from the orbit so that the arc-length tailored path can be

generated from this point while curvature constraints are satisfied. We use tangent scaling

of B-spline control points to both extend arc-length and to satisfy curvature constraints.

In order to guarantee curvature constraints can be satisfied for the maximum arc-length

extension, the departure point must be located from the orbit exit to the optimal turn to

straight by an angle ≥ π + ∠(required to change curvature to zero). In our example case,

an azimuthal change of of 30o along the orbit suffices for the ∠change. The locations of the

departure from loiter orbits are shown on Figure 6.5 with a diamond symbol for the CCW

case and star symbol for the CW case. This angle permits tangent scaling up to the limit

of arc-length extension that may be required.
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Figure 6.5: Arrangement of CW and CCW orbits and their respective exiting paths.

6.3.1 Limits of arc-length extension to satisfy loiter orbit departures from

arbitrary azimuths around the loiter circle

We adopt the nomenclature that the departure point is the point where a vehicle will typ-

ically depart the the loiter orbit for a specific path to the approach line. The exit point

is defined as the point where the turning flight is transitioned to straight and level flight

along the approach line. Since vehicles are not controlled with respect to their azimuths

around the loiter orbits, the maximum difference between earliest and latest departures

occurs when one vehicle is a located just before the departure point and another has just

passed beyond the departure point when the command to start the planned mission is is-

sued. In this case, the vehicle that has already passed the departure point must traverse

the entire loiter orbit circle one more time before actually departing while the other in

principle can immediately depart but its path must be extended accordingly so that both

paths are identical in arc-length. In all cases, vehicles will fly through the exit point before

the transition to the approach line. Each vehicle must have its path tailored in arc-length
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so the distance from position when mission start is ordered to its arrival at the exit point is

identical. In order to execute the process of arc-length extension, six control point splines

are generated to replicate the circular path from departure point to the exit to the opti-

mal path segment to the approach line (this corresponds to no action being required to

tailor arc-length. An additional six control points are added to the definition, based on

the curvature of the orbit. These are centered on the midpoint between departure and exit

points as defined on the left panel of Figure 6.5. The resultant 12 control point spline repli-

cates the orbit itself from departure through exit points. Figure 6.6 displays minimum and

maximum arc-length paths that could be generated depending on the random locations

of vehicles within their loiter orbits. The algorithm used to generate splines with equal

Figure 6.6: Minimum and maximum arc-length paths based on 12 control point splines
(illustrated for a CW loiter orbit)

arc-length from arbitrary starting points around the loiter orbits is as presented below.
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Algorithm 4: Generation of equal arc-length spline paths from arbitrary starting points
within a loiter orbit
Input: Azimuth of each agent in its orbit with respect to the orbit departure point as the

mission start command is issued.
Output: Arc-length addition splines to be appended to all paths shorter than the longest

1 Initialize a six control point B-spline that approximates the circular path between orbit
departure and textitexit points.
2 Scale the control point spacing by a factor of two while preserving boundary conditions.
3 Use the scaled three control points at the start (departure) to form a segment of a new
control polygon at the origin of a local frame.
4 Align these control points so the direction of travel is along the x-axis (East).
5 Mirror these three control points about the local y-axis (North) so the point at the
origin is repeated.
6 Locate the six control point segment at the midpoint on the loiter orbit (between
departure and exit points.
7 Orient the new six control point segment so it is tangent to the loiter orbit circle and its
curvature-based endpoints match the orbit
8 Associate the first three scaled points from the departure point with the closest three
added points to form a new spline path.
9 Associate the remaining three added control points with the final three scaled control
points (in sequence) to form another new spline.
10 Compute the combined arc-length of the the two splines.
11 WHILE total arc-length< desired arc-length
12 Iterate positions of the end of the first new spline and start of the second new spline
along a normal vector with respect to the loiter orbit.
13 Apply tangent scaling to each of the two splines until curvature satisfies constraints.
14 Recompute arc-length and compare to desired length.
15 END WHILE
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6.4 Development of Simultaneous Arrival Plans - mission

known after vehicle launch

An example of coordinated flight requiring this type of consideration was presented on

Figure 1.2, which illustrated the flight plans for two vehicles so they can simultaneously

observe a road segment from opposite sides. In order for this mission to be successful, each

vehicle must maintain precise coordination with its teammate as the road is traversed so

that there is a single sensor location for both. Complex missions, such as coordinated road

search likely require coordination of more than two vehicles.

When points in the mission are known only after the vehicles have been placed in loiter

orbits, the process uses boundary conditions to identify splines that do not intersect from

which feasible curves can be constructed The steps of the overall process are listed below.

1. Identify initial conditions for mission. Mission paths have initial location, direction

and curvature as determined by an external algorithm.

(a) Determine control points p3, p4, and p5 from the boundary conditions at the

start of the planned mission. These are the last three of a six control point

spline.

(b) Determine control points p0, p1, and p2 for a loiter departure point, 75o earlier

on the orbit than the tangent point from orbit to p3.

2. Augment boundary condition spline solutions so that all paths meet curvature con-

straints (use tangent scaling).

3. Deploy the vehicles to their staging orbit locations.

4. Determine the duration (length at constant velocity) of a feasible path for each vehicle

based on current location, traverse to the departure from orbit point and then to the

mission starting point p5.

5. Compare the durations (lengths) of all paths and select the longest as the one to

match.

6. Lengthen the shorter paths while abiding by feasibility constraints until all paths have

191



equal duration.

7. Transmit simultaneous arrival path definitions to vehicles and commence mission.

The first three steps above are not time-critical and can be executed as soon as the plan-

ner converges. The last four steps are time-critical and constitute the requirements for

our simultaneous arrival algorithm. With respect to step 6, since the loiter patterns are

asynchronous, the differences in duration can be on the order of the circumference of a

loiter orbit. The results of the first three steps are illustrated on Figure 6.7. The geometric

construction technique described in preceding sub-section permits path duration for each

vehicle, from present time to mission start, to be computed as the summation of the time

required to traverse along an orbit from present position to the orbit departure point plus

the time to exit the orbit and reach the mission start point. The nominal speed of each

vehicle is used to relate distance to time. If the shorter duration splines are lengthened as

defined during the feasibility validation step, they may incur additional local maxima in

curvature since tangent scaling can cause control points to crossover in the extreme. In order

to preserve the boundary conditions established by the six control points and minimize the

effect on curvature, we leverage the local control characteristic of B-splines by sub-dividing

each path and inserting two additional interior control points. We use the knot refinement

technique described by Lyche and Mørken in [60] to accomplish this with the following knot

vectors:

For a knot vector, tk, defined as tk ∈ [0, 1]

6 control point knot vector ≡ [0, 0, 0, 0, 0, 0.5, 1, 1, 1, 1, 1]

8 control point knot vector ≡

[0, 0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1, 1]

(6.1)

The knot insertion process, which yields an identical curve with additional control points, is

a matrix-based equation (see [60]), which can be pre-computed so during execution it only

requires a single matrix multiply operation. We then tailor the location of the 4th control
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point of the shorter paths to satisfy equal duration (simultaneous arrival) requirements2.

The path of the latest arrival vehicle is used to establish a specified path length to which the

others will be tailored. To effect path lengthening, the 4th control point of all short duration

paths is progressively perturbed, also using a quasi-Newton solver, along its associated

normal line with respect to the feasible path prior to subdivision. The case shown on

Figure 6.7 is the extreme where the instantaneous position of the vehicle on the left would

permit it to instantly depart the loiter orbit while the one on the left was positioned so

that it had to complete nearly a full orbit before it could depart its orbit. Hence, the left

vehicle path required lengthening, as shown, for simultaneous arrival. The location of the

tailored control point and its normal vector to its associated feasible spline is also shown.

The curvature of the tailored paths, both for feasibility through tangent scaling, and path

Figure 6.7: Completed two vehicle example.

length through adjustment of the 4th control point is shown on Figure 6.8 below. See [71]

2Path lengths are computed using a quadrature-based algorithm described in the Section 7.2.3. Nominal
speed of each vehicle is used to relate distance to time for simultaneous arrival.
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Figure 6.8: Curvature with respect to the parameter τ for each vehicle for paths shown on
6.7

for full details.
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Chapter 7

Experimental Platforms and

Spline-based Algorithm Toolbox

(Contribution (C3)

7.1 Demonstration Sites, Platforms and Projects

The algorithms developed in this thesis have undergone extensive real-time aerodynamic

simulation assessment and in many cases have been demonstrated in a flight test envi-

ronment. The locations, test setups, platforms, and scenarios are documented here for

reference.

7.1.1 Naval Postgraduate School RASCAL Platform

This work was supported by the U.S. Office of Naval Research (ONR) grants N00014-

09-1-1051 and N00014-09-1-103. Through these grants, the GRASP Laboratory had the

opportunity to collaborate with researchers at the Naval Postgraduate School (NPS) in

Monterey, CA. NPS hosts open experimental opportunities at the CIRPAS facility near

Paso Robles, CA at the decommissioned Camp Roberts Marine Corps site, see Figure

7.1. GRASP participated in these field experiment opportunities during the period of

2012 through 2014. NPS operates a generic UAV platform built from the popular radio-
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controlled hobby sport airplane, Rascal, see Figure 7.2. It features a wingspan of 110 inches

(2.8m.) and has ample payload capabilities to carry an embedded system, sensors, and an

autopilot with two-way communication. NPS operates a fleet Rascal UAVs. GRASP field

Figure 7.1: Sideview of NPS flight demonstration site and mobile ground station

Figure 7.2: Sideview of NPS RASCAL UAV configuration

experiments typically involved two vehicles in a variety of coordinated mission scenarios.

The embedded system configuration of the NPS Rascal is illustrated in Figure 7.3, excerpted

from an AIAA paper by Kaminer et al [95]. GRASP field experiments used the 900 mHz
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Figure 7.3: NPS Rascal UAV embedded system architecture

communication channel. The autopilot used Piccolo hardware by Cloud Cap Technology

but all navigation control laws were developed by NPS, see [95] for details. Experiments

could be interactively configured from a mobile ground station using the graphical display

illustrated below in Figure 7.4.

The following types of missions were demonstrated:

• Trajectory transcription to B-splines to minimize communication requirements be-

tween ground station and vehicles

• Coordinated search pattern through multiple candidate sites with interactive capabil-

ity to verify the discovery of items of interest

• Coordinated road/path search from opposing points of view

• Simultaneous arrival at mission start locations for a team of UAVs starting from

random locations.

7.1.2 DARPA CODE Flight Demonstration

In 2015, GRASP supported a Lockheed Martin Company team on the DARPA Collaborative

Operations in Denied Environments (CODE) project. See [96] for details. This research
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Figure 7.4: NPS Groundstation graphical telemetry

involved formation flight of a team of four Stalker XE UAV, see [97]. Stalker XE has a

12 foot wingspan ( 3.67m.), a payload capacity of 5.5 lbs (2.5kg.) and an endurance time

of approximately 4 hours in the configuration flown during experiments with GRASP. A

series of flight demonstrations were conducted at Dugway Proving Grounds in the Great

Salt Desert of north central Utah in November 2015, see figure 7.5. Figure 7.6 illustrates

the types of formations that were demonstrated with transitions in between executed in

real time based on interactive user commands. The algorithms to define and synchronize

to formation flight were developed at GRASP by Whitzer et al (paper presented June 7,

2016 at the ICUAS2016 IEEE conference in Arlington, VA). Formations were interactively

sequenced by a user with selection in real-time around a specified reference trajectory (that

was mapped by convention to the vehicle designated as the leader). The actual reference

trajectory used during demonstrations at Dugway Proving Grounds is depicted on Figure

7.7. Note, command and control of all vehicles was executed by transcribing the formation

solution developed by Whitzer into B-splines using algorithms described in Sections 7.2.1

through 7.2.6.

The following algorithms, first developed for NPS flight tests in 2D planar form were
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Figure 7.5: Overview of field operations at Dugway Proving Grounds

Figure 7.6: Description of formations demonstrated at Dugway Proving Grounds with the
CODE algorithms
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Figure 7.7: Reference trajectory demonstrated during CODE flight tests at Dugway Proving
Grounds

tailored to 3D profiles for the formation flight demonstrations:

• Transcription of pre-computed detailed formation trajectories to 3D B-splines to min-

imize communication requirements between ground station and vehicles (preserve pre-

cision of original definition spatially and temporally).

• Identification of when a vehicle has arrived a the start of a planned mission segment

(transition from approach to start of formation flight)

• Identification of a the point on a planned path (B-spline curve in 3D) associated with

a random location in the vicinity of the path item Identification of a the point on

a planned path (B-spline curve in 3D) that is a user specified distance ahead of the

point associated with a random location in the vicinity of the path

Real time formation transcription to B-splines and management of the formations were

demonstrated with a precision commensurate with the aerodynamic performance of the

vehicle platform (Stalker XE).
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7.1.3 GRASP Lab UAV

In 2003, the GRASP Lab developed an autonomous UAV platform using a 1
4 -scale Piper Cub

airframe. These were used through 2007 after which increased FAA regulation prevented

flying these platforms on local hobby club fields. Contributions to the DARPA MAR2020

program in the area of multi-robot coordination and HURT program path planning were

realized using these platforms. See Chaimowicz et al [98] for contributions to the MARS2020

program and Ahmadzadeh et al [8] and [99] for contributions to the DARPA HURT program.

These airframes were also used in the formative stages of work by the GRASP Lab later

realized with the Naval Postgraduate School cited earlier.

Figure 7.8: GRASP UAV used for DARPA MARS2020 and HURT programs
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7.2 Numerical Algorithms for the Computation of Trajecto-

ries

The following algorithms were tailored from the derivations of other researchers. The are

presented in this section because they are the building blocks on which the thesis con-

tributions presented earlier are based. After documenting the details of each algorithm,

we outline how it was applied and tailored for this thesis. The following algorithms are

presented:

1. Determination of B-spline basis functions

2. Approximating a set of path points as a B-spline curve

3. Determining the arc-length of a B-spline curve

4. Determining arrival to the start of planned path (crossing a plane in space)

5. Associating a point in space with a parametric location on a spline-based curve

6. Nonlinear optimization of a candidate paths using Minimum Variation Curvature

Splines
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7.2.1 Computation of the B-spline Basis Functions

The format of a B-spline curve, r (τ), for degree d basis functions and M +1 control points,

p, is:

r (τ) =
M∑
m=0

Nm,d (τ)pm (7.1)

Note, the basic construct is that for each control point, there is an associated basis function

and the sum of the product of the pairs (algebraic basis function and geometric control

point pairs) constitute the curve. The B-spline basis functions, Nm,d (τ), are recursively

defined over a knot sequence. The knot sequence is drawn from the same domain as the

parameter, τ , so the algebraic basis functions have a geometric dependency with respect to

when they are active. Some use a convention that the curve parameter and knot sequence

are drawn from the domain [0, 1)1. However, while zero is a convenient starting point, it

is only important that both are drawn from the same domain and that the knot sequence

terminate at the maximum parameter value. Moreover, the knot sequence must only be

ascending in order. Repeated knot values can be used to selectively control continuity of

the curve. In general, the curve parameter, τ , and knot sequence, τi, i = 0 . . . d + 1 + M .

are defined:

τ ∈ [0, τmax]

0 = τ0 ≤ τi ≤ τi+1 ≤ τm = τmax

(7.2)

The basis functions are then generated recursively:

Ni,d(τ) =
τ − τi
τi+d − τi

Ni,d−1(τ) +
τi+d+1 − τ
τi+d+1 − τi+1

Ni+1,d−1(τ)

starting with:

Ni,0(τ) =

 1 if τ ∈ [τi, τi+1]

0 otherwise

(7.3)

1Note, the domain has a closed bound at the start and a an open bound at the ending point. This permits
B-spline curves to be concatenated without overlap of any points. Boundary conditions must be matched
between them accordingly to provide the desired level of continuity.
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Note, to avoid division by zero when computing equation (7.3), Ni,d(τ) = 0 when the

denominator of either term in equation (7.3) vanishes. Rather than writing recursive code

to generate Ni,4 basis functions, we use a matrix form of equation (7.3) as derived by Lyche

and Mørken, [60]. The matrix form can be derived by noting that over a nonempty knot

span a single basis function spans its degree+1. So, Ni,0(τ) is nonzero only on the span τi

through τi+1. Similarly, Ni,1(τ) is nonzero only on the span τi through τi+2 and so forth,

so that a function of degree d is nonzero over a span of d + 1 knots. Given a knot vector

that spans τ0 = 0 . . . τmax = M + 1 − d (for uniform integer knot spacing), the values of

these functions at an arbitrary parameter value can be recursively computed in matrix form

starting at Ni,1(τ). The values of the two Ni,1(τ) basis functions can be expressed as the

row vector of the following matrix equation, again, as derived by Lyche and Mørken, [60]:

[Ni−1,1(τ), Ni,1(τ)] =

[
τi+1 − τ
τi+1 − τi

,
τ − τi
τi+1 − τi

]
(7.4)

The values of the three Ni,2(τ) basis functions can be expressed as the row vector result of

this matrix equation:

[Ni−2,2(τ), Ni−1,2(τ), Ni,2(τ)] = [Ni−1,1(τ), Ni,1(τ)]

 τi+1−τ
τi+1−τi−1

τ−τi−1

τi+1−τi−1
0

0 τi+2−τ
τi+2−τi

τ−τi
τi+2−τi

 (7.5)

Adding another degree to the basis polynomials adds another function to those spanning

any consecutive knot span, so the row vector of function values at parameter, τ expands by

one. This structure permits spline functions of any degree, d, to be computed as a matrix

product as follows:

Ni,d(τ) = R1(τ)R2(τ) . . .Rd(τ) (7.6)

Thus, the dimension of the matrix Rk, for each integer k ≤ d is [k × k + 1]. The general

form for Rk(τ) is block diagonal with only two nonzero entries on each row starting at the

diagonal element. The matrix equation for these two elements between knots τi and τi+1
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at indices (n, n) and (n, n+ 1) is:

Rk(τ)(n,n:n,n+1) =

[
τi+n − τ

τi+n − τi+n−k
τ − τi+n−k
τi+n − τi+n−k

]
(7.7)

7.2.1.1 Basis function algorithmic tailoring for path planning

Since these functions are intended for parametric trajectories, there must be a basis function

for each control point in the spline. For minimum computational complexity with favorable

numerical stability we use even integer knot spacing for our splines with clamped endpoints.

Moreover, since we typically do not know the distribution of curvature along a path until

it has been determined from other factors, we use uniformly spaced basis functions so path

complexity can be distributed anywhere between starting and ending points. Use of uniform

knots also expedites the computation of the basis functions since they can be sorted by

cardinality. The minimum length knot vector is, therefore, 2(d+ 1), for which only starting

and ending points are defined. For M + 1 control points and degree d basis functions, our

knot vectors have M + d+ 2 elements, structured so the first d+ 1 knots are at 0 and the

last d+ 1 knots are at M + 1− d. Knots beginning at the index d+ 2 are integers from 1

to M + 1− d. For example, for 6 control points and quartic splines, the knot vector would

be: [0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2]. In principle, as long as the knot vector is contained within

the parametric range, then any scaling will suffice. Integer scaling is a convention to speed

computation. The critical characteristic of this application is the uniform spacing of the

knots.
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7.2.2 Least Squares Approximation Algorithm for B-splines

In some cases, we can rely on an external planner to define a closely-spaced set of way-

points to define a path. In others, obstacle definitions are not always available in a compact

form suitable for computing paths that satisfy these constraints. In cases where a desired

path or constraint is defined by a relatively dense ordered set of points, it is straightforward

to determine the closest fit of the shape to a given parametric polynomial. The simplest

approach is to apply a least squares optimized fit, without regularization, as outlined by

[100] and [101]. The technique is outlined below. Spline interpolation of every point in

the sequence is not necessary or computationally practical. Approximation is preferred so

that the resultant curve is a compact representation of the defining set of points. The

selection of the number of control points is a compromise between path complexity and the

processing speed of the spline-based algorithms. A practical heuristic for this step is to

assign three control points to each shape-defining point on the curve to be approximated.

This conceptually permits location, tangent, and curvature to be matched at each point.

The next step is to assign a parameter to each point in the sequence. We apply the Chord-

based method using the Euclidean distance between L+ 1 uniformly sampled points, since

this will approximate an arc-length parametrization [102] for our curve. An example is

illustrated below on Figure 7.9. The preliminary parametrization is as follows:

τ0 = 0 τl = τl−1 + ‖ql − ql−1‖ , for l = 1, 2, . . . , L. (7.8)

We then scale the result so that the parameter will have the same domain as the knot

sequence.

total chord length =

L∑
l=1

τl

scale factor =
M + 1− d

total chord length

(7.9)

The least squares solution to approximate L+ 1 data points, ql | l = 0 . . . L, with M + 1
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Figure 7.9: Example of obstacle modeling with splines

control points, pm, using quartic B-splines is developed as two steps. First, boundary

conditions are used to directly determine the first and last control points. Next, the internal

control points are found through the least squares algorithm.

Given a set of points, ql | l = 0 . . . L, the B-spline curve that best approximates the set

can be determined:

r(τ) =
M∑
m=0

Nm,d(τ)pm,

where the elements of a column vector, P ,

of control points are defined:

pm |m = 0 . . .M.

The control points derived from boundary conditions are:

p0 = q0, pM = qL.

The internal control points are derived from a minimization:

min

L−1∑
l=1

(
ql −

M−1∑
m=1

Nm,d(τl)pm

)2

(7.10)
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A matrix of basis function values (for the functions that multiply the internal control points,

N1,d(τl) through NM−1,d(τl)) is computed for the internal points (q1 through qL−1 in the

set to be approximated.

N =



N1,d(τ1) N2,d(τ1) . . . NM−1,d(τ1)

N1,d(τ2) N2,d(τ2) . . . NM−1,d(τ2)

...
...

. . .
...

N1,d(τL−1) N2,d(τL−1) . . . NM−1,d(τL−1)


(7.11)

The constant terms in equation (7.10) are also grouped into a column vector, Q, for each

internal point in the set to be approximated.

Q =



q1 −N0,d(τ1)q0 −NM,d(τ1)qL

q2 −N0,d(τ2)q0 −NM,d(τ2)qL
...

qL−1 −N0,d(τL−1)q0 −NM,d(τL−1)qL


(7.12)

Now, the function to be minimized in equation (7.10) can be expressed:

min

L−1∑
l=1

(
M−1∑
m=1

Nm,d(τl)pm −Ql

)2

(7.13)

The solution for the column vector of internal control points, P , can be expressed [100]

[101] :

R = NTQ(
NTN

)
P = R

(7.14)

In order to ensure the matrix NTN is not singular, there must be at least one data point in

the set to be approximated within each knot span, τi to τi+1 | i = 0 . . .M+d+2. A close-up

of the obstacle boundaries and the associated spline control polygon is show on Figure 7.10.

Note, the spline fit is excellent but the control polygon is still erratic, so when obstacle
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bounds already form a convex hull, it is best to work directly with the polygon formed by

the convex hull, rather fitting a curve to the points, to minimize subsequent calculations.

Figure 7.10: Close-up of example of obstacle modeling with splines
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7.2.3 Computation of the B-spline Arc-length

An unfortunate consequence of using parametric polynomial to model curves in n dimensions

of the form r (τ) = [x1 (τ) , x2 (τ) , . . . , xn (τ)] is that they cannot be uniformly parametrized

with respect to arc length [52]. In graphics applications, it may suffice to identify points on

a curve with respect to their parameter, τ , but when these curves represent physical motion,

it is critical to be able to use time to locate points. Since speed can be used to relate time

to distance, given a curve, it is straightforward to find an arc length position on a curve

given a value of time. It is the irregular spacing of parameter versus arc-length along the

curve that then mandates determination of a functional representation of arc length based

on a parameter value and vice-versa, so the relation between parameter and time can be

determined. The following operations are standard requirements for our application:

1. Calculation of overall path length, S

2. Calculation of path length between two parameter values

3. Calculation of dS/dτ , since basic operations on a curve are only with respect to the

parameter, τ .

4. Determination of the parameter associated with a specific partial arc length

The overall path length of a parametric polynomial curve, r (τ),can be found:

S (τ) =

∫ τfinal

τinitial

∥∥r′ (τ)
∥∥ dτ (7.15)

To simplify the presentation without loss of generality, the balance of this discussion is

presented for curves in a 2D space: r (τ) = [x (τ) , y (τ)]. Once the degree of the supporting

polynomial basis functions exceeds 2, the integral expressed in Equation (7.15) can no longer

be computed analytically because the unit speed involves a radical2.

2A special type of parametric polynomial denoted as a Pythagorean Hodograph by its author, Farouki
[52], constrains unit speed components to constitute perfect squares, so parametric speed simplifies to a
polynomial. In this case, analytical integration to determine arc length is trivial but the constraints to
ensure this condition are quadratic, which ends up being computationally expensive. Hence, arc length is
computed numerically in our application.
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7.2.3.1 Computing overall path length, S

We numerically approximate arc length using a Gaussian quadrature formula as derived by

Ralston [103]. ∫ b

a
f(τ)dτ =

n∑
j=1

Hjf(aj) + E (7.16)

where aj are the specified zeros of the Legendre-Gauss quadrature polynomial of degree n.

To minimize the number of quadrature points required for precise approximation, we derive

a quadrature integral approximation specifically for B-splines. The knot vector on which

the spline curve is defined can be used so that a quadrature calculation is made for each

pair that span the curve. For an arc length calculation across each knot span that uses n

points, the highest degree polynomial for which the quadrature error, E can be made null

is 2n − 1, so we select a three point formula for minimum complexity in our application,

which uses quartic polynomial basis functions. For an arbitrary value of τ between knots,

the quadrature can be set up over the range of 0 to 1, so the appropriate zero locations

are:
[

0.225403τ̂
2 , τ̂

2 , 1.774597τ̂
2

]
, where τ̂ is the minimum remainder: τ̂ ≡ min (τ − τi) |τ̂ ≥ 0

(i.e. remainder with respect to nearest lower knot). The quadrature is executed across the

entire knot vector to compute arc-length at each knot and results are summed to get the

composite path length.

7.2.4 Calculation of the path parameter at specified arc-length

Since we also require the the precise parameter value associated with an arbitrary arc-length

distance, S, we couple application of this quadrature formula with a Newton’s Method

algorithm, as suggested by [102] to find the root of:

L(τ)− S = 0 (7.17)

Since we are operating on a smooth polynomial to find the appropriate parameter, τ , only

about 3 iterations are required if we start from the nearest last known pair (τ , L(τ)). The

quadrature function is called each iteration. To ensure the Newton’s Method does not
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erroneously overshoot into the adjacent knot span, we bound the minimum and maximum

values an iteration can attain. In this case the Newton’s Method iterations can be expressed:

τj+1 = τj −
L(τj)− S
‖L′(τj)‖

‖L′(τj)‖ ≡ magnitude of parametric speed at τj

(7.18)

In order to compute the parametric speed, we use the matrix equation for the basis functions

and, using D as the operator for differentiation of a matrix in this case with respect to the

parameter τ , note:

DNi,d(τ) = dNi,d−1(τ)DRd (7.19)

The form of the matrix of derivatives, DRd, is also block diagonal with the same dimension

as Rd. It also has two nonzero elements on each row. The matrix equation for these two

elements between knots τi and τi+1 at indices (n, n) and (n, n+ 1) is:

Rd(τ)(n,n:n,n+1) =

[
−1

τi+n − τi+n−d
1

τi+n − τi+n−d

]
(7.20)

Using these equations, a function can be written that uses Newton’s Method to identify

the parameter, τ , associated with a specific arc-length along the curve. The distance, knot

vector, vector of arc-length distances associated with each knot, and the B-spline curve

control points are used as input to return the associated parameter value.
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7.2.5 Determining Arrival to the Start of Planned Path (crossing a plane

in space)

Positive identification that a path from an arbitrary initial condition has arrived at the start

of formal path or crossed a boundary of significance such that a goal can be considered to

be attained can be computed in a variety of ways. Figure 7.11 illustrates nomenclature

fundamental to navigation. Many autopilot guidance laws use a simple relation that com-

bines cross track error, track angle error and Euclidean distance to a goal/waypoint to

guide a vehicle. In most legacy systems, the distance of actual location with respect to the

goal/waypoint must satisfy a threshold for credit to be taken for arrival. The drawback

in this technique is that if disturbances cause a vehicle to fail to meet the arrival distance

threshold, then the autopilot will try to loop back until the threshold is satisfied. In time

critical operations, rather than fine-tune the capture threshold to balance precision with

robustness to disturbances, it is more appropriate to use a vertical plane that is normal to

the path at the goal/waypoint or at some offset before or after the goal. In this manner, the

user does not have to worry about a suitable capture radius to switch navigation modes to

a new goal, but only verify if the vehicle has broken a vertical plane normal to the path. We

use this approach to identify when a vehicle has arrived at the start or end of a path. To

compute when this occurs, we use a cross product expression of the line segments from the

current location to the goal point and a segment from the goal that is normal to the path.

By computing and storing the result of a candidate cross product at an offset distance from

the (approximately 100m before the line), we only need to determine if the product of the

magnitude of stored and the current cross product calculation is less than 0.0. When the

product of cross product magnitudes is negative in sign, the vehicle has broken the goal

plane and all subsequent guidance calculations then switch to a spline-based approach as

described in the next section.
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Figure 7.11: Basic Autopilot Navigation Nomenclature

7.2.5.1 Tailoring of identifying arrival to a goal for this application

The technique we use to account for arrival to a goal state (start or end of a planned path)

is adapted from a commonly used geometrical scenario. The product of the cross product

based on segments from the vehicle current position to the goal and normal to the goal and

the cross product based on segments from an initialization point to the goal and the normal

will flip its sign when the plane is crossed, regardless of the value (+/-) of the initialization

cross product or orientation of the path. It is computationally straightforward, is robust to

atmospheric disturbances, permits precise identification of the instance of arrival to a goal

so navigation modes can be switched to begin following a spline-based path and requires no

tuning. The technique used to follow splines is documented in the next section.

214



7.2.6 How an Arbitrary Location is Associated with a Position of a Spline

Curve and How the Vehicle is Guided through the curve

In order for spline curves to useful in the execution of a mission, we need an algorithm

that will appropriately associate an arbitrary position in space to a point on the desired

path and a technique to generate steering commands from this information. In this man-

ner, navigational errors (spatial and temporal) with respect to the planned mission can be

formed to guide a vehicle along the path, as conceptually described by Park and How [104].

Determination of a point on the spline must be a real-time calculation in order to be useful.

Moreover, since the curve may include loops or round trip type paths where outbound and

inbound paths are relatively closely spaced, the calculation must be capable of sorting these

types of scenarios.

For an arbitrary point in space in the vicinity of a B-spline commanded path, the inner

product of the vector drawn from the actual position to the commanded path and the

tangent vector of the commanded path is zero when the vector from actual position to

commanded path is normal to the spline curve. This is the criterion used to identify the

current parameter of a vehicle with respect to its command, as illustrated below in Figure

7.12. The corresponding position is found by starting a gradient descent type root solver

to find the parameter, τ , of the commanded path, r(τ), associated with a zero value for the

inner product. The root solver is an approximation to Newton’s method, which uses the

value of the function (in this case the inner product) and its derivative. The standard form

of this iterative algorithm show below.

τn+1 = τn −
f(τn)

f ′(τn)

f ′(τn) = ∂f(τn)/∂τn

f ′(τn) ≈ f(τn + δτ)− f(τn)

δτ

(7.21)

The solver is denoted as quasi-Newton because a numerical calculation of the partial deriva-

tive of the inner product function relative to the parametric index is used in place of a more
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Figure 7.12: Geometry associated with an arbitrary location relative to its corresponding
point on the commanded path: The inner product of the vector from aircraft location to the
tangent vector of the corresponding position on the spline defining the commanded path is
zero.

computationally complex analytic expression, as illustrated in the approximation in Equa-

tion (7.21). The user must select either a fixed value for the perturbation, δτ , or compute

it as fixed spatial distance on the path. For expediency, we have applied a fixed pertur-

bation size (δτ = 0.001) with good results when path segments were on the order of 1km

in length. A more sophisticated approach that would scale this parameter for any length

paths would be to determine the perturbation from a fixed spatial offset along the path

(δτ ⇐⇒ 0.1rturnminimum would be a practical fixed value). The distance 7.2.4 would be

used in the algorithm presented in section 7.2.4 to determine the appropriate parameter

perturbation.

In order for the solver to reliably converge each time step, an initial candidate solution

that is close to the true solution is required. At the start of the mission, the first point on the

path is used. The cross product technique described in the prior section provides a precise

start. All subsequent calculations use the previous time step solution as the candidate to

initialize the solver. This approach was tested for robustness to communication dropout

where the start or previous index could be an indeterminate number of time steps old.
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Robustness tests indicated that the solver converged to the correct solution for initialization

of the solver offset by up to 300 meters. This was considered to be adequate for this

application because the formation flight itself is not viable if inter-vehicle communication is

lost for many seconds or errors in flight path control are on the order of 300m. By finding the

closest point on the spline to an arbitrary location that is parametrically close to the point

from the previous time step (and in strictly increasing parametric magnitude) guarantees

that loops and return (inbound) paths in close proximity to an outbound portions of the

path are not confused.

The convergence rate, (k), of an iterative algorithm can be expressed as illustrated

below:

lim
x→∞

∣∣errorn+1
∣∣

|errorn|k
= C

such that 0 < C < 1.

(7.22)

The convergence rate of this algorithm is approximately 1.62. Iterations can be carried out

until the magnitude of the error meets a threshold criterion or for a fixed number of loops.

Precision of better than 1m. error can be achieved within 20 iterations.

7.2.6.1 Vehicle Navigation to a Spline-based Path

The vehicle current position and the associated point on the spline curve can be used to

generate steering/driving commands commands by finding a point on the path that is a

fixed offset in distance ahead of the current position. The look-ahead point is found by

using the current position parameter and the using techniques described in Section 7.2.4

to calculate the parameter associated with a point on the path a user-specified distance

ahead of the current position. Combining this point with the current vehicle position and

velocity vector to generate speed and steering commands is outlined by Park et al in [104].

These researchers also provide heuristics for the determination of an appropriate look-ahead

distance based on the path curvature. Stability guarantees are provided.
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7.2.6.2 Algorithmic tailoring spline-based equations to enable computation of

guidance commands

A group of standard algorithms are combined to determine the information required to

generate speed and steering commands. While the techniques are iterative, because the

curves on which they operate are smooth G2 splines and the solvers converge faster than

linearly, the set of algorithms developed for this purpose perform robustly. These techniques

were successfully applied in four separate flight test activities. Precision formation control

of up to four vehicles was executed repeatedly in a variety of atmospheric conditions with

precision, as illustrated below in Figure 7.13, which is a video frame acquired during flight

tests in November 2015.

Figure 7.13: Formation flight performance (view from a vehicle towards others in a line
abreast formation
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7.2.7 A Framework for Non-linear Parametric Optimization of 2D Peri-

odic B-splines: Minimum Variation Curvature Splines

As noted in Ch. 1, the complexity class of trajectory planning for UAS aircraft is NP-Hard

when orientation at each visited point is not prescribed. Including feasibility constraints

of turn radius and rate of change of turn radius does not reduce complexity. However, by

imposing a requirement that trajectories be periodic (closed-circuit paths) constrains the

problem sufficiently that a deterministic candidate solutions can be found. These candidate

solutions typically require further parametric optimization in order to meet feasibility con-

straints. In this section a framework for mapping the problem to a non-linear constrained op-

timization will be presented so that standard optimization tools can be applied to tailor 2D

splines for this application. The first step is to identify a set of points,{Pi|i ∈ {1, . . . , n}},

that the trajectory must interpolate. A periodic trajectory can then be determined by

finding n spline segments defined over a parametric range of [0, 1) that span each successive

pair of points and join with at least C2 continuity. A feasible periodic path is defined as

one where for each segment, the following constraints are met:

κ(τ) < κmax∀τ ∈ [0, 1)

κ̇(τ) < κ̇max∀τ ∈ [0, 1)

κ̈(τ) < κ̈max∀τ ∈ [0, 1)

(7.23)

Note, strict C2 continuity is not required in the parametric domain. As long as the para-

metric splines have G2 continuity, they can be flown at constant speed in the time domain

as continuous curvature paths. Another consideration for splines to be practical in a per-

sistent surveillance application is that their length must also be constrained by data/image

refresh considerations. Candidate optimization approaches could be:

• minimum square of curvature: min(
∫
κ2ds), where ds ≡ differential arc-length (also

denoted as minimum energy curves: MEC)

• minimum path length and curvature (weighted minimum): min(
∫

(a+ bκ2ds), where

219



a and b are weights on arc-length and curvature respectively [105].

• scale invariant MEC curves:
∫
ds
∫
κ2ds) (denoted as SI-MEC curves)

• minimum square of the variation in curvature: min(
∫
κ̇2ds) (also denoted as minimum

variation curvature paths: MVC)

• minimum of maximum square of curvature anywhere along the path: min(max(κ(τ)2)),

where τ is the spline parameter and τ ∈ [0, τmax)

We have constructed algorithms for MEC and MVC curves using b-splines with constrained

path length. While MEC paths present the least complex functional for optimization, they

can lead to impractical path lengths for segments whose tangents approach ±π. Hence

the introduction of path length into the functional as a weighted parameter or a factor.

MVC curves are more stable but not free from bulging to infinite length, so path length

constraints are also required. Theses by Moreton [85] and Berglund [106] develop algorithms

for MVC curves. Berglund presents an obstacle avoiding planner in the context of B-

splines using MVC curves. As noted in Equations (5.2) through (5.6) can be used to define

spline segments with six control points each, the minimum number required to control

curvature at endpoints. Specifically, Equations (5.5) and (5.6) can be used to parametrize

each segment using an appropriate vector assignments for speed and acceleration at each

point interpolated. A candidate path must be determined as an initial condition for an

optimization algorithm. In his PhD thesis [85], Moreton, outlined a construction for such a

spline that is a candidate for optimization for minimum curvature and minimum curvature

variation splines. He adopted an approach developed by Calladine [81] to initialize spline

tangents at segment endpoints. This process takes the distance between points to be visited

into account, as well as the approach and departure direction of the edges of a polygon

formed by these points. The unit tangent, ti, at each interpolated point is given by:

ti =
Pi −Pi−1

‖Pi −Pi−1‖
+

Pi+1 −Pi

‖Pi+1 −Pi‖
(7.24)
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This approach, while more complex than others like Catmull-Rom splines, provides the

advantage of consistency3 of the tangent assignment, which is important since an optimized

solution can be found faster if the initial candidate is close. Moreton initializes the second

derivative of the splines and, hence their curvature, by using the curvature implied by

circular approximations of triples of points as illustrated in Figure 7.14 below. Rather than

Figure 7.14: Moreton’s initialization assign of curve parametric acceleration through circular
curvature approximation

apply this heuristic, curves are initialized with maximum feasible magnitude of curvature

at segment endpoints and the sign of curvature is derived from the polygon of points that

are interpolated. This approach is based on the concept that shortest path Dubins and

Clothoid curve segments can be shown to exhibit extremal curvature near their endpoints

and not within their mid-spans. Parametric acceleration is derived from curvature by noting

the instantaneous turning radius for constant speed is the centripetal acceleration:

‖a‖ = κ ∗ v2, where: κ ≡ 1/r (7.25)

3Consistency with respect to a spline curve relates to how the curve would change if a new point is added
for interpolation that is already on the curve determined using Equation (7.24), then the tangent assignment
is defined as consistent if the tangent of the new curve at that point (as determined by Equation (7.24))
would be close to its value before the point was explicitly considered for interpolation.
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The vector direction for acceleration can be determined by differentiating the unit tangent

vector and multiplying this direction by the sign of curvature4. While Moreton uses (7.25)

to determine segment endpoint acceleration with r defined by the polygon of points to be

interpolated, an alternate approach is to use rmin to define a. Note, the alternate approach

presets curvature at the interpolated points to the maximum feasible magnitude. In this

manner, given a set of points for interpolation, the independent parameters available for

optimization of a periodic (closed) path using splines composed of six control points for

each segment are:

• parametric speed at start of a segment

• path tangent direction at the start of a segment

• path tangent direction at the end of a segment

Dependent parameters are the acceleration at the start, which is set by curvature and speed.

Parametric optimization can then applied to minimize a desired functional. an example of

such a case is presented in Figure 7.15

Figure 7.15: Moreton’s initialization assign of curve parametric acceleration through circular
curvature approximation

4Note: κ > 0, when the path turns to the left and κ < 0, when the path turns to the right.
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Chapter 8

Conclusions

We developed a sequential, constructive, planning algorithm (C1) to generate C2 feasible

paths for UAS executing persistent surveillance missions. Results are presented for a variety

of real-world scenarios and performance limits for the approach are documented so that

users can decide if this application meets their requirements. The building blocks for our

approach have been developed and validated with a combination of dynamic simulation and

flight test data. An approach to discretize an area of interest into a list of sites to be visited

is outlined that provides blanket coverage. Periodic tours are used to satisfy persistence

requirements. We developed an abstraction of path arc-length that accounts for turning

requirements so that curvature constraints can be managed in a computationally compact

manner in a Traveling Salesman Problem-type algorithm to find a cycle tour of the points

that define the covering set. We augmented an A* graph search to find the best TSP tour

attainable within an allocated processing period. The TSP cycle sequence is then used

in a B-spline curve generation algorithm to develop smooth paths that satisfy curvature

constraints. Once a detailed path is found, collision detection and re-planning steps are

taken to guarantee safe paths. The solution is generalized to include fixed obstacles or

no-fly zones. While the approach does not scale directly for large-scale areas, the problem

can be symmetrically subdivided and this solution replicated across each subdivision. A

procedure to coordinate multiple vehicles (C2) is presented to provide the number of agents
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required to satisfy user specified data refresh requirements for persistence to initialize this

type of mission. The approach has practical limits as the spacing of points to be visited

approaches the turning radius of the vehicle being used. We define these limits and outline

the direction of future research to resolve them. The components of the planner have been

validated experimentally (C3). A toolbox of spline-based equations contextually tailored

for UAV planning is presented for use in other applications.

8.1 List of Contributions

The three contributions made through this thesis:

C1 We developed a sequential path planner that generates a C2 flight plan to persistently

acquire a covering set of data over a user designated area of interest. The two stages

of our planner are distinct in that either one can be used independent of the other.

While the motivating problem was persistent surveillance, any list of way-points can be

processed through the second stage of our planner to verify and validate the feasibility

and safety of a proposed path. The planner features the following innovations:

• A path length abstraction that embeds kino-dynamic motion constraints to es-

timate feasible path length

• A Traveling Salesman-type planner to generate a covering set route based on the

path length abstraction

• A smooth path generator that provides C2 routes that satisfy user specified

curvature constraints

C2 We developed a set of algorithms to coordinate multiple UAVs, including mission

commencement from arbitrary locations to the start of a coordinated mission and

de-confliction of paths to avoid collisions with other vehicles and fixed obstacles

C3 The algorithms we developed were validated using a variety of UAV platforms in a

flight test setting. A numerically robust toolbox of spline-based algorithms tailored

for flight vehicles is available for cafeteria-style selection by other researchers. For

example, even when the proposed path is simply a dense set of points, the spline-
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based algorithms developed here can process the set to a smooth curve.

8.2 Future Work

The following are directions for work to enhance the performance of the planner:

1. Through a detailed set of trials we identified a shortcoming in the algorithm when

the minimum spacing of points in the covering for the area of interest approaches the

turning capability of the vehicle. When direct paths cannot be generated to satisfy

curvature constraints, our planner instantiates loops to guarantee feasibility. When

vehicle maneuverability is low, loops may be required in up to 10 percent of the

segments. Since these increase the probability of self-intersections to be addressed

in addition to lengthening the path, we believe this magnitude of secondary path

tailoring is impractical and warrants further research. For some extreme shapes and

maneuver constraints, such looping may be required but more research is warranted

to validate them as a best technical approach.

2. The obstacle avoidance algorithm described in this thesis assumes multiple obstacles

do not affect each other as paths are planned around them. It is not configured for

multiple obstacles.

3. We are working on a faster algorithm to detect and classify path self-intersections.
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