206 research outputs found

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    EbbRT: Elastic Building Block Runtime - overview

    Full text link
    EbbRT provides a lightweight runtime that enables the construction of reusable, low-level system software which can integrate with existing, general purpose systems. It achieves this by providing a library that can be linked into a process on an existing OS, and as a small library OS that can be booted directly on an IaaS node

    A storage architecture for data-intensive computing

    Get PDF
    The assimilation of computing into our daily lives is enabling the generation of data at unprecedented rates. In 2008, IDC estimated that the "digital universe" contained 486 exabytes of data [9]. The computing industry is being challenged to develop methods for the cost-effective processing of data at these large scales. The MapReduce programming model has emerged as a scalable way to perform data-intensive computations on commodity cluster computers. Hadoop is a popular open-source implementation of MapReduce. To manage storage resources across the cluster, Hadoop uses a distributed user-level filesystem. This filesystem --- HDFS --- is written in Java and designed for portability across heterogeneous hardware and software platforms. The efficiency of a Hadoop cluster depends heavily on the performance of this underlying storage system. This thesis is the first to analyze the interactions between Hadoop and storage. It describes how the user-level Hadoop filesystem, instead of efficiently capturing the full performance potential of the underlying cluster hardware, actually degrades application performance significantly. Architectural bottlenecks in the Hadoop implementation result in inefficient HDFS usage due to delays in scheduling new MapReduce tasks. Further, HDFS implicitly makes assumptions about how the underlying native platform manages storage resources, even though native filesystems and I/O schedulers vary widely in design and behavior. Methods to eliminate these bottlenecks in HDFS are proposed and evaluated both in terms of their application performance improvement and impact on the portability of the Hadoop framework. In addition to improving the performance and efficiency of the Hadoop storage system, this thesis also focuses on improving its flexibility. The goal is to allow Hadoop to coexist in cluster computers shared with a variety of other applications through the use of virtualization technology. The introduction of virtualization breaks the traditional Hadoop storage architecture, where persistent HDFS data is stored on local disks installed directly in the computation nodes. To overcome this challenge, a new flexible network-based storage architecture is proposed, along with changes to the HDFS framework. Network-based storage enables Hadoop to operate efficiently in a dynamic virtualized environment and furthers the spread of the MapReduce parallel programming model to new applications

    No Provisioned Concurrency: Fast RDMA-codesigned Remote Fork for Serverless Computing

    Full text link
    Serverless platforms essentially face a tradeoff between container startup time and provisioned concurrency (i.e., cached instances), which is further exaggerated by the frequent need for remote container initialization. This paper presents MITOSIS, an operating system primitive that provides fast remote fork, which exploits a deep codesign of the OS kernel with RDMA. By leveraging the fast remote read capability of RDMA and partial state transfer across serverless containers, MITOSIS bridges the performance gap between local and remote container initialization. MITOSIS is the first to fork over 10,000 new containers from one instance across multiple machines within a second, while allowing the new containers to efficiently transfer the pre-materialized states of the forked one. We have implemented MITOSIS on Linux and integrated it with FN, a popular serverless platform. Under load spikes in real-world serverless workloads, MITOSIS reduces the function tail latency by 89% with orders of magnitude lower memory usage. For serverless workflow that requires state transfer, MITOSIS improves its execution time by 86%.Comment: To appear in OSDI'2

    Simurgh: a fully decentralized and secure NVMM user space file system

    Get PDF
    The availability of non-volatile main memory (NVMM) has started a new era for storage systems and NVMM specific file systems can support extremely high data and metadata rates, which are required by many HPC and data-intensive applications. Scaling metadata performance within NVMM file systems is nevertheless often restricted by the Linux kernel storage stack, while simply moving metadata management to the user space can compromise security or flexibility. This paper introduces Simurgh, a hardware-assisted user space file system with decentralized metadata management that allows secure metadata updates from within user space. Simurgh guarantees consistency, durability, and ordering of updates without sacrificing scalability. Security is enforced by only allowing NVMM access from protected user space functions, which can be implemented through two proposed instructions. Comparisons with other NVMM file systems show that Simurgh improves metadata performance up to 18x and application performance up to 89% compared to the second-fastest file system.This work has been supported by the European Comission’s BigStorage project H2020-MSCA-ITN2014-642963. It is also supported by the Big Data in Atmospheric Physics (BINARY) project, funded by the Carl Zeiss Foundation under Grant No.: P2018-02-003.Peer ReviewedPostprint (author's final draft

    EbbRT: Elastic Building Block Runtime - case studies

    Full text link
    We present a new systems runtime, EbbRT, for cloud hosted applications. EbbRT takes a different approach to the role operating systems play in cloud computing. It supports stitching application functionality across nodes running commodity OSs and nodes running specialized application specific software that only execute what is necessary to accelerate core functions of the application. In doing so, it allows tradeoffs between efficiency, developer productivity, and exploitation of elasticity and scale. EbbRT, as a software model, is a framework for constructing applications as collections of standard application software and Elastic Building Blocks (Ebbs). Elastic Building Blocks are components that encapsulate runtime software objects and are implemented to exploit the raw access, scale and elasticity of IaaS resources to accelerate critical application functionality. This paper presents the EbbRT architecture, our prototype and experimental evaluation of the prototype under three different application scenarios

    Efficient and predictable high-speed storage access for real-time embedded systems

    Get PDF
    As the speed, size, reliability and power efficiency of non-volatile storage media increases, and the data demands of many application domains grow, operating systems are being put under escalating pressure to provide high-speed access to storage. Traditional models of storage access assume devices to be slow, expecting plenty of slack time in which to process data between requests being serviced, and that all significant variations in timing will be down to the storage device itself. Modern high-speed storage devices break this assumption, causing storage applications to become processor-bound, rather than I/O-bound, in an increasing number of situations. This is especially an issue in real-time embedded systems, where limited processing resources and strict timing and predictability requirements amplify any issues caused by the complexity of the software storage stack. This thesis explores the issues related to accessing high-speed storage from real-time embedded systems, providing a thorough analysis of storage operations based on metrics relevant to the area. From this analysis, a number of alternative storage architectures are proposed and explored, showing that a simpler, more direct path from applications to storage can have a positive impact on efficiency and predictability in such systems

    A shared-disk parallel cluster file system

    Get PDF
    Dissertação apresentada para obtenção do Grau de Doutor em Informática Pela Universidade Nova de Lisboa, Faculdade de Ciências e TecnologiaToday, clusters are the de facto cost effective platform both for high performance computing (HPC) as well as IT environments. HPC and IT are quite different environments and differences include, among others, their choices on file systems and storage: HPC favours parallel file systems geared towards maximum I/O bandwidth, but which are not fully POSIX-compliant and were devised to run on top of (fault prone) partitioned storage; conversely, IT data centres favour both external disk arrays (to provide highly available storage) and POSIX compliant file systems, (either general purpose or shared-disk cluster file systems, CFSs). These specialised file systems do perform very well in their target environments provided that applications do not require some lateral features, e.g., no file locking on parallel file systems, and no high performance writes over cluster-wide shared files on CFSs. In brief, we can say that none of the above approaches solves the problem of providing high levels of reliability and performance to both worlds. Our pCFS proposal makes a contribution to change this situation: the rationale is to take advantage on the best of both – the reliability of cluster file systems and the high performance of parallel file systems. We don’t claim to provide the absolute best of each, but we aim at full POSIX compliance, a rich feature set, and levels of reliability and performance good enough for broad usage – e.g., traditional as well as HPC applications, support of clustered DBMS engines that may run over regular files, and video streaming. pCFS’ main ideas include: · Cooperative caching, a technique that has been used in file systems for distributed disks but, as far as we know, was never used either in SAN based cluster file systems or in parallel file systems. As a result, pCFS may use all infrastructures (LAN and SAN) to move data. · Fine-grain locking, whereby processes running across distinct nodes may define nonoverlapping byte-range regions in a file (instead of the whole file) and access them in parallel, reading and writing over those regions at the infrastructure’s full speed (provided that no major metadata changes are required). A prototype was built on top of GFS (a Red Hat shared disk CFS): GFS’ kernel code was slightly modified, and two kernel modules and a user-level daemon were added. In the prototype, fine grain locking is fully implemented and a cluster-wide coherent cache is maintained through data (page fragments) movement over the LAN. Our benchmarks for non-overlapping writers over a single file shared among processes running on different nodes show that pCFS’ bandwidth is 2 times greater than NFS’ while being comparable to that of the Parallel Virtual File System (PVFS), both requiring about 10 times more CPU. And pCFS’ bandwidth also surpasses GFS’ (600 times for small record sizes, e.g., 4 KB, decreasing down to 2 times for large record sizes, e.g., 4 MB), at about the same CPU usage.Lusitania, Companhia de Seguros S.A, Programa IBM Shared University Research (SUR

    Khazana: a flexible wide area data store

    Get PDF
    technical reportKhazana is a peer-to-peer data service that supports efficient sharing and aggressive caching of mutable data across the wide area while giving clients significant control over replica divergence. Previous work on wide-area replicated services focussed on at most two of the following three properties: aggressive replication, customizable consistency, and generality. In contrast, Khazana provides scalable support for large numbers of replicas while giving applications considerable flexibility in trading off consistency for availability and performance. Its flexibility enables applications to effectively exploit inherent data locality while meeting consistency needs. Khazana exports a file system-like interface with a small set of consistency controls which can be combined to yield a broad spectrum of consistency flavors ranging from strong consistency to best-effort eventual consistency. Khazana servers form failure-resilient dynamic replica hierarchies to manage replicas across variable quality network links. In this report, we outline Khazana?s design and show how its flexibility enables three diverse network services built on top of it to meet their individual consistency and performance needs: (i) a wide-area replicated file system that supports serializable writes as well as traditional file sharing across wide area, (ii) an enterprise data service that exploits locality by caching enterprise data closer to end-users while ensuring strong consistency for data integrity, and (iii) a replicated database that reaps order of magnitude gains in throughput by relaxing consistency
    • …
    corecore