
Khazana: A Flexible Wide Area Data Store

Sai Susarla and John Carter
{sa i , r e tra c }@ c s .u ta h .e d u

UUCS-03-020

School of Computing
University of Utah

Salt Lake City, UT 84112 USA

October 13, 2003

A b s t r a c t

Khazana is a peer-to-peer data service that supports efficient sharing and aggressive caching
of mutable data across the wide area while giving clients significant control over replica di
vergence. Previous work on wide-area replicated services focussed on at most two of the
following three properties: aggressive replication, customizable consistency, and general
ity. In contrast, Khazana provides scalable support for large numbers of replicas while
giving applications considerable flexibility in trading off consistency for availability and
performance. Its flexibility enables applications to effectively exploit inherent data locality
while meeting consistency needs. Khazana exports a file system-like interface with a small
set of consistency controls which can be combined to yield a broad spectrum of consis
tency flavors ranging from strong consistency to best-effort eventual consistency. Khazana
servers form failure-resilient dynamic replica hierarchies to manage replicas across vari
able quality network links. In this report, we outline Khazana's design and show how its
flexibility enables three diverse network services built on top of it to meet their individual
consistency and performance needs: (i) a wide-area replicated file system that supports se
rializable writes as well as traditional file sharing across wide area, (ii) an enterprise data
service that exploits locality by caching enterprise data closer to end-users while ensur
ing strong consistency for data integrity, and (iii) a replicated database that reaps order of
magnitude gains in throughput by relaxing consistency.

1 I n t r o d u c t i o n

The development of scalable, high-performance, highly available Internet services remains
a daunting task due to lack of reusable system support. Replication is well-understood
as a technique to improve service availability and performance. The prevalence of repli
cable data in distributed applications and the complexity of replication algorithms moti
vates the need for reusable system support (middleware) for replicated data management.
Typical distributed systems hardcode domain-specific assumptions into their consistency
management subsystems (e.g., NFS [21], Coda [12], Pangaea [20], and ObjectStore [13]).
This design makes them highly efficient for their problem domain, but adapting their con
sistency management mechanisms for different applications requires significant redesign.
In general, Internet services must make tradeoffs between performance, consistency, and
availability to meet application requirements [8]. Thus, any distributed data management
system designed to support a wide variety of services must allow applications to customize
the way replicated data is managed [25].

The ideal wide area data management middleware would have the following three features:
aggressive replication to support large systems, customizable consistency management to
enable applications to meet their specific performance and consistency requirements, and
sufficient generality to support diverse application characteristics efficiently. Existing dis
tributed data management middleware systems [4 ,17 ,20 ,25] lack one or more of these fea
tures. Several peer-to-peer systems support aggressive replication of read-only data [9, 17]
or rarely write-shared data [20], but such systems are not designed to handle frequent write-
sharing. Though several reusable consistency toolkits have been proposed (e.g., Bayou [4]
and TACT [25]), there exists no reusable middleware to exploit their power in an aggres
sively replicated environment.

Khazana is a wide area peer-to-peer data service that supports aggressive replication and
highly customizable consistency mechanisms to support a wide variety of scalable dis
tributed services. It exports a simple filesystem-like interface and a carefully chosen set
of consistency management options that, when used in various combinations, yield useful
consistency semantics on a per-file or per-replica basis. The choice of consistency-related
options Khazana provides derives from a detailed survey of the consistency needs of dis
tributed applications [18]. We found that the sharing needs of distributed applications could
be described along five dimensions:

• concurrency - the degree to which conflicting read/write accesses can be tolerated,

• consistency - the degree to which stale data can be tolerated,

Home Node
Ul

Corp. LAN Q■
Workstation ----- NAV link

B/W: 1Mbps
8 Router Labels: RTT

100Mbps LAN ---► Parent-child replicas

Figure 1: Typical Khazana Replication Topology

• availability - how data access should be handled when some replicas are unreachable,

• visibility - the time at which local modifications to replicated data must be made
visible globally, and

• isolation - the time at which remote updates must be made visible locally.

There are multiple reasonable options for each of these issues. Khazana’s approach to cus
tomizable consistency enables applications to make more precise tradeoffs between con
sistency, availability, and performance than is possible with other systems.

To achieve scalability and performance in the wide area, the Khazana servers (Kservers)
caching a particular piece of data organize themselves into a self-repairing dynamic replica
hierarchy. This replica hierarchy is used for all consistency-related communication and is
organized in a way that attempts to minimize the use of slow links. Figure 1 illustrates a
representative Khazana caching network consisting of ten nodes spanning five WAN sites
and two continents. Each node accessing a file connects to the “nearest” node in the existing
replica hierarchy, e.g., F1 connects via T1 to avoid using the intercontinental link.

In this paper, we outline Khazana’s design, and show its value in replicating three different
network-based services with diverse needs and data access characteristics. First, we show
that KidFS, a distributed file system built on top of Khazana, can exploit locality more
effectively than existing file systems, while supporting a broader variety of file usage modes
with diverse consistency requirements. Second, we show that Kobj, an enterprise object
proxy built on top of Khazana, can significantly improve its responsiveness to wide-area
clients via intelligent caching. We demonstrate that Khazana’s adaptive caching algorithm

makes good decisions about when and where to replicate data, so that data with good
locality tends to be aggressively migrated or replicated, while data with poor locality or
heavy write sharing tends to be managed via a more efficient centralized mechanism. We
further show how building Kobj on top of Khazana enables it to automatically adapt to
shifts in data locality and sudden periods heavy of contention. Finally, we demonstrate how
Kdb, a replicated version of the BerkeleyDB built on top of Khazana, performs when using
consistency requirements ranging from strong (appropriate for a conventional database)
to time-based (appropriate for many directory services). Our results show that relaxing
consistency requirements even slightly can significantly improve throughput.

The goal of this paper is to motivate the value of Khazana’s flexible consistency mecha
nisms and demonstrate the feasibility of building a shared data management middleware
layer to support a broad variety of distributed services. As such, we do not present Khaz
ana’s failure resiliency mechanisms in detail, nor do we propose a particularly sophisticated
distributed naming mechanism. In Section 2 we describe Khazana’s design and implemen
tation, including its flexible consistency mechanisms. In Section 3 we present the three
experiments outlined above. Finally, in Sections 4 and 5 we compare Khazana with related
systems and conclude.

2 K h a z a n a D e s i g n

In this section, we briefly describe the Khazana prototype. We start with an overview of
Khazana’s basic organization in Section 2.1. In Section 2.2 we describe the various con
sistency options that Khazana supports, including some particular sets of options that are
commonly useful. Finally, in Sectionsection:khazana-discussion summarize our discussion
of Khazana’s design.

2.1 Overview

Khazana provides coherent wide area file access at a page granularity. A typical distributed
service can use Khazana to store its shared persistent state and specify consistency-related
attributes for this state on a per-file basis. Khazana clients (Kclient) access shared data by
contacting any nearby Khazana server (Kserver). Kservers cooperate to locate and cache
data close to where they are used while maintaining consistency according to the specified
attributes. Each Kserver utilizes a portion of its persistent local store for permanent copies
of some files and the rest as a cache of remotely stored files. Kservers discover each other

through external means such as a directory service. Each Kserver monitors its connection
quality (latency, bandwidth, connectivity) to other Kservers with which it communicates
and uses this information in forming efficient replica networks. Because Khazana manages
the shared state, services are no longer tied to the particular physical nodes where their data
resides, and can more easily migrate or replicate.

Khazana manages flat arrays of bytes called (interchangeably) files or regions. Khazana
can maintain consistency at the granularity of a 4-kilobyte page (when using physical up
dates) or the entire file (when using operational updates). Khazana clients can control how
the consistency of each region is maintained per-file (affecting all replicas), per-replica (af
fecting its local sessions), or per-session (affecting only one session). A file’s permanent
copy site is called its home node. Replicas are created at other Kservers as a side-effect of
local access.

Khazana exports a file system-like interface that supports traditional read/write as well as
operational updates on files. Specifically, Khazana exports the following operations to its
clients via the Kclient library. Kclients internally communicate with Kservers using socket-
based IPC.

KID ^ k h _ a l l o c (a t t r i b u t e s)
s i d ^ k h _ o p e n (K I D , o f f , s z , mode)
k h _ r e a d / w r i t e (s i d , o f f , s z , b u f)
k h _ s n o o p (s i d , o p t s , c a l l b a c k _ f u n c)
k h _ c l o s e (s i d)
k h _ f r e e (K I D)
k h _ g e t a t t r / s e t a t t r (K I D , a t t r)

k h _ a l l o c () creates a new file with the specified consistency attributes and returns a
unique Khazana ID (KID). k h _ o p e n () starts an access session for a portion (perhaps all)
of the specified file, returning a session id. Depending on the file’s consistency attributes
and the requested access mode, the Kserver may need to obtain a copy of the data and/or
perform operations needed to bring the local copy up to date. A session is Khazana’s point
of concurrency control and isolation. k h _ r e a d () and k h _ w r i t e () transfer file contents
to/from a user buffer. Depending on the consistency requirements, these operations may
need to perform consistency operations. k h _ s n o o p () can be used by clients to register
to receive remote updates via a registered callback function, i.e., to “snoop” on updates
arriving for the local replica. It is used to support operational updates, described below.
k h _ c l o s e () terminates the current session. k h _ g e t a t t r () and k h _ s e t a t t r () let
the client inspect or modify region attributes, such as the consistency requirements. Finally,
k h _ f r e e () deletes the specified file from Khazana.

File Naming and Location Tracking

Khazana files are named by unique numeric IDs (called KIDs). Because file location is
not a focus of our work, and has well known scalable solutions [17, 23], we employ the
following simple scheme for assigning KIDs. Each Kserver manages its own local ID
space,and KIDs are a combination of its home Kserver’s IP address and its ID within the
Kserver’s local ID space. A Kserver finds a file’s permanent copy site based on the address
hard-coded in the file’s KID. Khazana’s design allows this simple scheme to be easily
replaced by more sophisticated file naming and dynamic location tracking schemes such as
those of Pastry [17] and Chord [23]. To improve access latency, each Kserver maintains a
cache of hints of nearby (i.e., strongly connected) Kservers with copies of a file, which it
contacts before contacting the home node. This helps avoid crossing slow links for inter
replica communication.

Creating and Destroying Replicas

Here we briefly outline the method by which replicas are created and destroyed, and how
the replica hierarchy is built and managed. We refer the interested reader to a more detailed
description elsewhere [19].

W hen one Kserver queries another to request a copy of a file, the responder either supplies
the requester a copy itself (if it has not reached its configured fanout limit), forwards the
request to a few randomly selected children, or sends a list of its children to the requestor.
In the last case, the querying Kserver selects the “nearest” child node (in terms of network
quality) and sends it the request. The node that supplies the file data to the requestor be
comes its parent in the replica hierarchy. This mechanism dynamically forms a hierarchical
replica network rooted at the file’s home node that roughly matches the physical network
topology. It is similar to dynamic hierarchical caching as introduced by Blaze [1]. Figure 1
illustrates one such network.

Replicas continually monitor the network link quality (currently RTT) to other known repli
cas and rebind to a new parent if they find a replica closer than the current one. The fanout
of any node in the hierarchy is limited by its load-handling capacity or explicitly by the
administrator. W hen a link or node in the hierarchy goes down, the roots of the orphaned
subtrees try to re-attach themselves to the hierarchy, starting at a known copy site (home
node by default), effectively repairing the replica hierarchy.

To guard against transient home node failure, the root’s direct children are called custo

dians. Their identity is propagated to all replicas in the background. If the root node
stops responding, these custodians keep a file’s replica hierarchy together until the home
node comes up, and prevent it from getting permanently partitioned. In the future we plan
to make these custodians into redundant primary replicas for fault tolerance. A Kserver
(other than a custodian) is free to delete locally cached copies of files to reclaim local store
space at any time, after propagating their updates to neighboring copy sites.

Reconnecting to the Replica Hierarchy

W hen a replica R loses its connection to its parent, it first selects a new parent P as described
above. Subsequently, it loads a fresh copy from P and re-applies any pending updates to
this copy. (Khazana normally avoids this reload unless the replicas are ”too far out of sync” .
See [19]). If R simply propagated its local updates to P without resynchronizing, it might
propagate a duplicate update.

Update Propagation

Updates are propagated up (from clients to the root) and down (from the root to clients) the
distributed replica hierarchy. Associated with each replica/update is a version. Each replica
maintains the version numbers of its neighboring replicas. Each update message (physical
or operational) contains a version number. The version numbers are used to identify when
updates need to be propagated and to detect update conflicts. Due to space limitations we
refer the reader to a more detailed document describing our version management mecha
nism [19].

A replica’s responsibility for an update is considered over once it propagates it successfully
to its parent replica. Once a child replica’s updates have been accepted by its parent, the
parent treats those updates as its own for the purpose of propagating them to other repli
cas. The child should not propagate those updates to any other new parent that it contacts
later (e.g., due to disconnection and re-attachment to replica hierarchy) to avoid duplicate
updates.

An update conflict arises when two replicas are independently modified, starting from the
same version. Certain (lock-based) consistency options avoid conflicts by serializing con
flicting operations, but other consistency modes allow conflicts. Update conflicts can be
detected via object and update version numbers. Khazana supports three conflict resolution
mechanisms. For operational updates, Khazana lets the client plugin resolve the conflict as

it wishes, e.g., merging the updates. For physical updates, Khazana can be configured to
quietly apply a “last writer wins” policy for updates arriving at the local replica, or to drop
the update and inform the client of the conflict.

2.2 Consistency Management

In this section we describe how Khazana’s consistency management subsystem is imple
mented, and the set of consistency options it supports.

Khazana clients access shared data via the Kclient library API. Before performing any op
erations, a Kclient must locate and bind to a nearby (often co-located) Kserver. To access
a particular shared file, the client performs a k h _ o p e n () . Before responding, the Kserver
must have a local replica of the file at the specified level of consistency. Typically this
involves obtaining a copy of the file from a remote Kserver and attaching to the dynamic
replica hiearchy. The Kclient can then perform k h _ r e a d () and k h _ w r i t e () opera
tions on the local replica - what the Kserver does in response to these reads and writes (if
anything) depends on this file’s consistency semantics.

Associated with each active replica of a file is a set of access privileges. The privileges de
termine whether the local replica can be read or written without contacting remote replicas.
W hen no Kserver is currently serving a particular file, the file’s root node owns all privi
leges. As clients request read and write access to a file, the access privileges are replicated
or migrated to other replicas - the manner in and time at which privileges are exchanged
between Kservers also depends on the file’s consistency semantics.

Khazana maintains consistency via two basic mechanisms, absolute updates where updates
to a file’s data directly overwrites remote copies as in a distributed shared memory system,
and operational updates where what is exchanged are logical operations that should be ap
plied to each replica (e.g., “Add 1 to the data element at offset 1000”). Operational updates
can greatly reduce the amount of data transferred to maintain consistency and increase the
amount of parallelism achievable in certain circumstances, e.g., updating a shared object
or database. To use operational updates, the Kclient accessing each replica must provide
callback functions that interpret and apply “updates” on the local copy of a region. We cur
rently use simple plugins, implemented via callbacks, to handle operational updates with
low overhead.

As described in Section 1, the consistency options provided by Khazana can be described
along five dimensions: concurrency, consistency, availability, visibility, and isolation. In

this Section we describe the various options that Khazana provides along each dimension.
Kclients can specify almost arbitrary combinations of options, although not all combina
tions make sense. Other existing systems (e.g., WebFS [24] and Fluid replication [3]) bun
dle options as part of the implementation of individual policies, and do not let applications
choose arbitrary combinations.

Concurrency Options

Concurrency control refers to the parallelism allowed among reads and writes at various
replicas. Khazana supports four distinct access modes that can be specified when opening
a session:

RD (snapshot read): In this mode, only reads are allowed. A read returns a snapshot of
the data that is guaranteed to be the result of a previous write. Such reads do not block for
ongoing writes to finish nor do they block them. Successive reads within a session may
return different data. The semantics provided by this mode are similar to that of the Unix
O_RDONLY open() mode.

RDLK (exclusive read): In contrast to RD mode, this mode ensures that the data is not
updated anywhere for the duration of the read session. This provides conventional CREW
locking semantics and strongly consistent reads. It blocks for ongoing write sessions as
well as blocks future write sessions until the session ends.

WR (shared write): In this write mode, each individual write concurrent write sessions
are allowed and may interleave their writes. These writes might conflict. For applications
where write conflicts are either rare or can be easily resolved, this mode improves paral
lelism and write latency. The semantics provided by this mode are similar to that of the
Unix O_RDWR open() mode.

WRLK (exclusive write): This mode provides serializable writes. It blocks and is blocked
by other ongoing RDLK, WR, and W RLK sessions and hence trades parallelism for stronger
consistency.

Consistency Options

Consistency refers to the degree to which stale data can be tolerated. Khazana allows clients
to specify their consistency needs in terms of timeliness or data interdependencies.

Timeliness refers to how close data read from the file must be to the most current global
version. Khazana supports three choices for timeliness: m ost current, tim e-bounded and
modification-bounded. Time bounds are specified in tens of milliseconds. As shown in
Section 3, even time bounds as small as ten milliseconds can signficantly improve per
formance of m ost current. Modicication bound specifies the number of unseen remote
writes tolerated by a replica, similar to the numerical error metric provided by the TACT
toolkit [25].

Khazana allows clients to specify whether the timeliness requirements are hard (true re
quirements) or soft (best-effort suffices). If a client specifies that it requires hard guaran
tees, then requests are blocked until the required timeliness guaranteed can be met. Hard
guarantees are implemented using pull-based consistency protocols. For example, close-to-
open consistency for files can be achieved by choosing to pull updates. If a client specifies
that soft best-effort guarantees are adequate, Khazana uses push-based consistency pro
tocols. Soft timeliness guarantees are adequate for applications like bulletins boards and
email, and can lead to significantly better performance and scalability.

D ata interdependence refers to whether an application requires that updates be propagated
in any particular order. Khazana currently supports two data interdependence options: none
- each update can be propagated independent of all other updates and can be applied in dif
ferent orders at different replicas, and total order - all updates must be applied in the same
order to all replicas. We are considering adding support for causal ordering and atomic or
dering of updates to multiple objects , the latter of which is useful for distributed databases
and must currently be implemented on top of Khazana. Khazana currently supports causal
ity and atomicity for multiple updates to a single file, and thus within a single replica
hierarchy, but adding support for multi-file causality or atomicity would require significant
work and violate the end-to-end principle.

Availability Options

Many applications, e.g., mobile ones, must continue to operate during periods of intermit
tent connectivity. To support this class of applications, Khazana gives clients two avail
ability choices: optim istic - the best available data is supplied to the user, even if it cannot
be guaranteed to be current due to network or node failures, or pessim istic - accesses stall
(or fail) if Khazana cannot supply data with the requisite consistency guarantees due to
network or node failures. During failure-free performance, the optimistic and pessimistic
availability options perform identically. Optimistic availability is only a viable option for
data with “weak” consistency requirements.

Visibility and Isolation Options

Visibility refers to the time at which updates are made visible to remote readers. Isolation
refers to the time when a replica must apply pending updates. Khazana enable clients to
specify three options for visibility and isolation:

Session: This specifies that updates are visible to sessions on remote replicas after the local
session ends. Session isolation means that checks for remote updates are made only at the
beginning of a session not before each read operation. Session semantics prevent readers
from seeing intermediate writes of remote sessions.

Per-access: This means that updates are immediately available to be propagated to remote
replicas. W hen they will actually be propagated depends on the consistency desired and the
isolation needs of remote readers. Per-access isolation means that a replica applies remote
updates before each read operation.

Manual: Manual visibility means that a session’s owner specifies when its updates should
be made visible. They are always made visible at the end of the session. Manual isolation
means that remote updates are only incorporated when the local client explicitly requests
they be applied. These settings enable an application to hand-tune its update propagation
strategy to balance timeliness of data against performance.

Discussion

The above options allow applications to compose consistency semantics appropriate for
their sharing needs. Table 1 lists what we anticipate will be some common sets of options
that correspond to well known “hard wired” consistency schemes. The first column denotes
a particular well known consistency scheme, and the other fields denote the set of options
that an application should specify to achieve this desired semantics. For example, “close-
to-rd” semantics means that a session reads only writes by completed sessions, not the
intermediate writes of still open sessions. If an application’s updates preserve data integrity
only at session boundaries, this set of options ensure that reads always return stable (i.e.,
internally consistent) data regardless of ongoing update activity. In contrast, “wr-to-rd”
semantics does not provide this guarantee, but is useful when up-to-date data is preferred
over stable data, or when write sessions are long-lived as in the case of distributed data
logging, or live multimedia streaming. Finally, the rightmost column gives an example
situation or application where that choice of consistency options is appropriate.

Access (rd & wr)
semantics

Check for
updates

Wr
Visible

Strength of
guarantee

Availability
in partition

Use/
Provider

strong (exclusive) on open on close hard(pull) no serializability
close-to-open on open on close hard app. choice collaboration, AFS

close-to-rd on access on close hard app. choice read stable data
wr-to-open on open on write hard app. choice NFS

wr-to-rd on access on write hard app. choice log monitoring
eventual close-to-rd never on close soft(push) yes Pangaea

eventual wr-to-rd never on write soft yes chat, stock quotes

Table 1: Some “reasonable” sets of consistency options

3 E v a l u a t i o n

In this section, we present our evaluation of the benefits of using Khazana middleware to
build three distinct data services.

In Section 3.1 we describe our experimental setup. In Section 3.2, we show that KidFS, a
distributed file system built on top of Khazana, can exploit locality more effectively than
existing file systems, while supporting a broader variety of file usage modes with diverse
consistency requirements. Kidfs supports a variety of file access semantics ranging from
exclusive file locking, close-to-open to eventual consistency on a per-file basis. In Sec
tion 3.3, we show that Kobj, an enterprise object proxy built on top of Khazana, can signif
icantly improve its responsiveness to wide-area clients via intelligent caching. Khazana’s
adaptive caching algorithm decides when and where to replicate data; data with good local
ity tends to be aggressively migrated or replicated, while data with poor locality or heavy
write sharing tends to be managed via a more efficient centralized mechanism. Caching
improves responsiveness by an order of magnitude even under modest locality. Finally,
in Section 3.4, we demonstrate how Kdb, a replicated version of the BerkeleyDB built on
top of Khazana, performs using five different consistency requirements ranging from strong
(appropriate for a conventional database) to time-based (appropriate for many directory ser
vices). We find that relaxing consistency requirements even slightly significantly improves
throughput.

3.1 Experimental Setup

For all our experiments, we used the University of U tah’s Emulab Network Testbed [5].
Emulab allows us to model a collection of PCs connected by arbitrary network topologies
with configurable per-link latency, bandwidth, and packet loss rates. The PCs had 850Mhz
Pentium-III CPUs with 512MB of RAM. Depending on the experimental requirements,
we configured them to run FreeBSD 4.7 (BSD), Redhat Linux 7.2 (RH7.2), or RedHat 9
(RH9). In addition to the simulated network, each PC is connected to a 100Mbps control
LAN isolated from the experimental network.

Kservers run as user-level processes and store regions in a single directory in the local file
system, using the KID as the filename. The replica fanout was set to a low value of 4
to induce a multi-level hierarchy. Clients and servers log experimental output to an NFS
server over the control network. All logging occurs at the start or finish of an experiment
to minimize interference.

3.2 Kidfs: A Flexible Distributed File System

We built a distributed file system called Kidfs using Khazana, that exploits Khazana’s flex
ible consistency options to efficiently support a broad range of file sharing patterns. In
particular, it efficiently provides on a per-file-replica basis: the strong consistency seman
tics of Sprite [22], the close-to-open consistency of AFS [10] and Coda [12] and the (weak)
eventual consistency of Coda, Pangaea [20], and NFS [21].

From a client’s perspective, Kidfs consists of a collection of peer Kidfs agents spread across
the network. Each Kidfs agent is tightly integrated into a local Kserver process, which is
responsible for locating and caching globally shared files.

Each Kidfs agent exports the global Kidfs file space to local users at the mount point
’ / k i d f s ’ by taking the place of Coda’s client-side daemon, ’venus’. W hen clients ac
cess files under / k i d f s , Coda’s in-kernel file module routes them to the Kidfs agent via
upcalls on a special device. These upcalls are made only for metadata and open/close op
erations on files. Kidfs agent can perform consistency management actions on a file only
during those times. The Coda module performs file reads and writes directly on the under
lying local file, bypassing Kidfs. Kidfs agents create files in the local file system to satisfy
client file creation requests or to persistently cache files created by other agents. In Kidfs,
KIDs take the place of inode numbers for referencing files. Kidfs implements directories as
regular files in Coda’s directory format and synchronizes replicas via operational updates.

Users can set consistency options on individual files and directories via i o c t l () sys
tem calls. By default, a directory’s consistency attributes are inherited by its subsequently
created files and subdirectories. We describe the supported consistency attributes below.

Unlike typical client-server file systems (e.g., NFS, AFS, and Coda), Kidfs exploits Khaz
ana’s underlying peer-to-peer replica hierarchy to access a file’s contents from geographi
cally nearby (preferably local) copies of the file.

To determine the value of building a file service on top of Khazana, we evaluate Kidfs
under three different usage scenarios.

First, in Section 3.2.1, we consider the case of a single client and server connected via a
high-speed LAN. This study shows that the inherent inefficiencies of adding an extra level
of middleware to a LAN file system implementation has little impact on performance. Our
second and third experiments focus on sharing files across a WAN. In Section 3.2.2 we
consider the case where a shared set of files are accessed sequentially on series of widely
separated nodes. This study shows that the underlying Khazana layer’s ability to satisfy file
requests from the “closest” replica can significantly improve performance. Finally, in Sec
tion 3.2.3 we consider the case where an shared RCS repository is accessed in parallel by
a collection of widely separated developers. This study shows that Khazana’s lock caching
not only provides correct semantics for this application, but can also enable developers to
fully exploit available locality by caching files near frequent sharers.

3.2.1 Local Client-Server Performance

To provide a performance baseline, we first study the performance of Kidfs and several
other representative distributed file systems in a simple single-server, single-client topol
ogy. In this experiment, a single client runs Andrew-tcl, and scaled up version of the
Andrew benchmark on a file directory hosted by a remote file server, starting with a warm
cache. Andrew-tcl consists of five phases, each of which stresses a different aspect of
the system (e.g., read/write performance, metadata operation performance, etc.). For this
experiment, there is no inter-node sharing, so eventual consistency suffices.

We ran the Andrew-tcl benchmark on four file systems: the Redhat Linux 7.2 local file
system, NFS, Coda, and Kidfs. For Kidfs, we considered two modes: kcache, where the
client is configured to merely cache remotely homed files, and kpeer, where files created
on the client are locally homed in full peer-to-peer mode. Figure 2 shows the relative per
formance of each system where the client and server are separated by a 100-Mbps LAN,
broken down by where the time is spent. Execution time in all cases was dominated by

70

60

50(/)■o
o 40u0)IA

30

20

10

0

80

A n d r e w - T c l R e s u l t s o n 1 0 0 M b p s L A N

m - a

linuxlocal nfs coda kcache

□ stat
□ mkdir
□ grep
□ copy
□ compile

kpeer

Figure 2: Andrew-Tcl Results on 100Mbps LAN

the compute bound compile phase, which is identical for all systems. Figure 3 focuses on
the other phases. As expected, the best performance is achieved running the benchmark
directly on the client’s local file system. Among the distributed file systems, NFS per
forms best, followed by kpeer, but all distributed file systems performed within 10%. kpeer
performance particularly well during the data-intensive c o p y and m k d i r phases of the
benchmark, because files created by the benchmark are homed on the client node1. Coda’s
file copy over LAN takes twice as long as kcache due to its eager flushes of newly created
files to the server.

1The performance of Kidfs metadata operations, which are used heavily in the g r e p and s t a t phases of
the benchmark, is poor due to a flaw in our current Kidfs implementation. We do not fully exploit the Coda
in-kernel module’s ability to cache directory data. When we enhance Kidfs to incorporate this optimization,
Kidfs performance during the metadata-intensive phases of the benchmark will match Coda’s performance.

A n d r e w - T c l D e t a i l s o n 1 0 0 M b p s L A N

8

7

6

m 5o
$ 4(/)

3

2

1

0

9

I i i H*

□ copy
□ grep
□ mkdir
□ stat

linuxlocal nfs coda kcache kpeer

Figure 3: Andrew-Tcl Details on 100Mbps LAN

3.2.2 Sequential Wide Area Access (Roaming)

In our second experiment we focus on a simple scenario in which files are shared in migra
tory fashion across a WAN. For this experiment, we assume a network topology like that
illustrated in Figure 1 consisting of widely distributed five sites, each of which contains
two nodes connected via a 100Mbps LAN.

Each of the ten nodes run the Andrew-tcl benchmark in turn on a shared directory to com
pletion, followed by a “m ake c l e a n ”. First one node on the University LAN runs the
benchmark, then its second node, then the first node in ISP1, etc., in the order University
(U) ^ ISP1 (I) ^ Corporate (C) ^ Turkey (T) ^ France (F). Each node starts with a cold
file cache. This scenario represents any situation where access behavior tends to be mi
gratory, e.g., due to a single user roaming among nodes or an outsourced operational with
24-hour service provided by operators across the globe. The initial copy of the Andrew-
tcl benchmark tree is hosted by a Kidfs agent on the node marked “Home Agent” on the
University LAN.

We performed this experiment using three distributed file systems: Kidfs in peer-to-peer
mode, Coda in strongly-connected mode (Coda-s), and Coda in adaptive mode (Coda-w).
Kidfs was configured to provide close-to-open consistency. Coda-s provides strong con
sistency, whereas Coda-w quickly switched to weakly connected operation due to the high
link latencies. During weakly connected operation, coda-w employed trickle reintegration
to write back updates to the server “eventually” .

Figure 4 shows the time each node took to perform the compile phase of the Andrew-tcl
benchmark. As reported in the previous section, both Kidfs and Coda perform comparably
when the file server is on the local LAN, as is the case on nodes U1 and U2. However, there
are two major differences between Kidfs and Coda when the benchmark is run on other
nodes. First, Kidfs always pulls source files from a nearby replica , whereas Coda clients
always pull file updates through the home server incurring WAN roundtrips from every
client. As a result, Coda clients suffered 2x-5x higher file access latency than Kidfs clients.
Second, Kidfs was able to provide “ju s t enough ” consistency to implement this benchmark
efficiently but correctly, whereas the two Coda solutions were either overly conservative
(leading to p o o r perform ance fo r coda-s) o r overly optim istic (leading to incorrect results
fo r coda-w).

Kidfs had a number of advantages over coda-s. One was the aforementioned ability to
read a source file from any replica, not just the home node. This flexibility was especially
important when the benchmark was run either on the second node of a LAN or run for the
second (or subsequent) time in “Europe”. Also, file creation in coda-s is mediated by the

home server, which leads to poor performance when the latency to the server is high, such
as is the case for C1-F2. The net result is that the benchmark ran 2-4X faster on Kidfs than
on coda-s on the WAN clients, as might be expected given that coda-s is not intended for
WAN use.

The comparison between Kidfs and coda-w illustrates the importance of having user-configurable
consistency policies. In adaptive mode, if Coda determines that the client and server are
weakly connected, it switches to ‘eventual consistency” mode, wherein changes to files are
lazily propagated to the home server, from which they are propagated to other replicas. Un
fortunately, in this scenario, that degree of consistency is insufficient to ensure correctness.
Reintegrating a large number of object files and directory updates over a WAN link takes
time. If a second benchmark run starts before all changes from the previous run have been
pushed to the current client, conflicts occur. In this case, Coda reports an update conflict,
which requires manual intervention. If these conflicts are ignored, delete messages associ
ated with intermediate files created by earlier nodes are not integrated in time, which leads
later nodes to incorrectly assume that they do not need to recompile the associated source
files. In contrast, Khazana enforces Kidfs's desired close-to-open consistency policy on
each file, thereby ensuring correct operation regardless of contention.

3.2.3 Simultaneous WAN Access

Some distribued applications (e.g., email servers and version control systems) require re
liable file locking or atomic file/directory operations to synchronize concurrent read/write
accesses. However, the atomicity guarantees required by these operations are not provided
by most wide area file systems across replicas. As a result, such applications cannot benefit
from caching, even if they exhibit high degrees of access locality.

For example, the RCS version control system uses the exclusive file creation semantics pro
vided by the POSIX open() system call’s O_EXCL flag to gain exclusive access to reposi
tory files. During a checkout/checkin operation, RCS attempts to atomically create a lock
file and relies on its pre-existence to determine if someone else is accessing the underly
ing repository file. Coda’s close-to-open consistency semantics is inadequate to guarantee
the exclusive file creation semantics required by RCS. Thus hosting an RCS repository in
Coda could cause incorrect behavior. In contrast, Kidfs can provide strong consistency that
ensures correct semantics for repository directory and file updates required by RCS. This
allows Kidfs to safely replicate RCS files across a WAN, thereby exploiting locality for
low latency access. We evaluated two versions of RCS, one for which the RCS repository
resides in Kidfs (peer sharing mode) and one in which the RCS repository resides on U1
and is accessed via ssh (client-server/RPC mode).

Roaming User - Compile Latency

□ kpeer
■ coda-s
□ coda-w

*>

%

O

LAN-node#, RTT to Home

%

Figure 4: Compile Phase: Kidfs pulls files from nearby replicas. Strong-mode CODA behaves
correctly, but exhibits poor performance. Weak-mode CODA performs well, but generates incorrect
results on the final three nodes.

To illustrate how Kidfs performs in the face of concurrent file sharing, we simulated con
current development activities on a project source tree using RCS for version control. We
chose RCS, rather than CVS, because RCS employs per-file locking for concurrency con
trol and hence allows more parallelism than CVS, which locks the entire repository for
every operation. For this set of experiments, we used a simplified version of the topol
ogy shown in Figure 1 without the ISP1 LAN (I). The “Home Node” initially hosts three
project subdirectories from the Andrew-tcl benchmark: u n i x (39 files, 0.5MB), m ac (43
files, 0.8MB), and t e s t s (131 files, 2.1MB).

Our synthetic software development benchmark consists of six phases, each lasting 200
seconds. In Phase 1 (widespread development), all developers work concurrently on the
u n i x module. In Phase 2 (clustered development), the developers on the University and
Corporate LANs switch to the t e s t s module, the developers in Turkey continue work on
the u n i x module, and the developers in France switch to the m ac module. In Phases 3-6
(migratory development), work is shifted between “cooperating” LANs - the u n i x mod
ule migrates between the University and Turkey, while the m ac module migrates between
Corporate LAN and France (e.g., to time shift developers). During each phase, a developer
updates a random file every 0.5-2.5 seconds from the directory she is currently using. Each
update consists of an RCS checkout, a file modification, and a checkin.

Figure 5 shows the checkout latencies observed from clients on the University LAN, where
the master copy of the RCS repository is hosted. Figure 6 shows the checkout latencies
observed from clients on the “Turkey” LAN. The checkout latencies were fairly consistent
at each node in client-server mode. Therefore, we plotted the average latency curve for
each node on both graphs. The checkout latencies in peer sharing mode were heavily
dependent on where the nearest replica was located and the amount of work needed to
maintain consistency between replicas, so we provide a scatter-plot of all checkout latencies
in this mode.

Overall, our results indicate that Kidfs enables RCS developers to realize the perform ance
benefits o f caching when there is locality, while ensuring correct operation under all work
loads and avoiding perform ance meltdowns when there is little to no locality. This is shown
by the fact that checkout latency under clustered development (i.e., phases 3 and 5 of Fig
ure 5, and phases 2, 4 and 6 of Figure 6) quickly drop to that of local RCS performance
observed by U1 (shown in Figure 5). At low locality (as in Phase 1 for all developers,
and Phase 2 for U1-C2), RCS on Kidfs still outperforms client-server RCS. RCS on Kidfs’
latency is close to two seconds or less for all developers, while that of client-server RCS
degrades in proportion to the latency between the client and central server. This is because
Khazana avoids using the slow WAN link as much as possible. Finally, Kidfs responds
quickly to changes in data locality.

RCS on Kidfs: Checkout Latency Distribution

o <D io

>»uc<D

OO

10000

1000 S m s -

100

10

all unix

H+ '

U,C tests III unix
T unix ;C mac
F mac

X , +L

■~X* X* I

T unix
F mac

U unix
C mac

T unix
F mac

>̂-+
%?%■-

+ + -H

x>4_

200 4 0 0 6 0 0 8 0 0

Time (seconds)
1000 1200 1 4 0 0

kidfs U1 + rpcT -------- rpc U2 ----- phases --------
kidfs U2 x roc C rocU1 -------

Figure 5: RCS on Kidfs: Checkout Latencies on the “University LAN”

When the set o f nodes sharing a file changes, Khazana m igrates the replicas to the new
set o f sharers fa irly rapidly. This phenomenon is illustrated by the initial high checkout
latency for each node during Phases 3-6, which rapidly drops to local checkout latency
once Khazana determines that the new sharing pattern is stable and persistent. The time at
the beginning of each phase change when nodes see high checkout latency represents the
hysteris in the system, whereby Khazana does not migrate data with low locality.

3.3 Kobj: Wide-area Object Caching

Distributed enterprise services that handle business-critical information (e.g., sales or in
ventory data) could benefit from object proxy caching. However, they tend to have stringent
integrity requirements that can lead to significant coherence traffic if data with poor locality
is cached widely. In this section we demonstrate that Khazana can be used to build robust
object proxy servers that operate on cached enterprise data without compromising integrity,
by employing strong consistency and caching optimizations. For data with poor locality,
Khazana automatically inhibits migration or replication of data to limit performance degra
dation.

RCS on Kidfs: Checkout Latency Distribution

o <D io

>»uc<0

oo

10000

1000

100

10

all unix U,C tests III unix
T unix ;C mac
F mac

<̂+

_^X >
XX

T unix
F mac

X + o

U unix ; T unix
C mac ! F mac

200 400 600 800
Time (seconds)

1000

s<+

. ;>t+ pMf

1200 1400

kidfs L41 + rpc T -------- rpc U2 ------ phases --------
kidfs L42 x roc C rpcU1 -------

Figure 6: RCS on Kidfs: Checkout Latencies from “Turkey”

We simulate a simple three-tier enterprise service consisting of a collection of ASPs that
accept input via the web and operate on data stored in a distributed object database. To
enhance performance, we introduce an object proxy cache (Kobj) that caches enterprise
objects near where they are being used if there is sufficient locality. Kobj consists of two
data components: an index structure and a collection of 256 4-kilobyte enterprise objects,
both of which reside in a single Khazana file managed as a persistent page heap. The
index structure maps object IDs to offsets within this heap. We use a relatively small
object space to ensure a reasonable degree of sharing and contention over the course of the
experiment. For all Kobj experiments, we deploy 64 Kobj clients on 16 nodes (K1-K16)
running RedHat 9, each residing in a separate LAN. Independent LANs are connected via
1Mbps WAN connections with a 40msec roundtrip latency.

The modeled workload is similar to TPC-A, where each client repeatedly (at full speed)
selects a bank account at random on which to operate and then randomly chooses to query
or update the account. We model a 50-50 mix of reads and writes to evaluate Kobj’s per
formance during periods of heavy write contention. We vary the degree of access locality
as follows. Associated with each of the 16 nodes are 16 “local” objects. W hen a client
randomly selects an object on which to operate, it first decides whether to select a local
object or a “random” object. We vary the likelihood of selecting a local object from 0%,
in which case the client selects any of the 256 objects with uniform probability, to 100%,

in which case the client selects one of its node’s 16 local objects with uniform probability.
In essence, the 100% case represents a partitioned object space with maximal throughput
because there is no sharing, while the 0% case represents a scenario where there is no ac
cess locality. Kobj specifies to the Khazana layer that it requires strong consistency for the
heap file. Despite the strong consistency requirement, Kobj improves service throughput
when clients exhibit moderate to high access locality; during periods of low locality and/or
heavy contention, feedback from the Khazana layer causes Kobj it to inhibit caching and
switch to RPC mode to avoid thrashing.

At the start of each experiment, all data is hosted by a single node K0 in its own server LAN.
As the experiment progresses, we add a Kobj proxy (and associated Kserver) to a new LAN
(K1-K16) every 50 seconds. Throughout the entire experiment, each client selects an object
at random, using the locality distribution described above, and then contacts either the
“home” server or a local Kobj proxy if one exists. The selected Kobj asks the local Kserver
where the closest replica of the requested object is currently cached, and forwards the client
request to the proxy on that node. The receiving proxy performs the operation locally and
returns results directly to the initiating client. Processing a request involves walking the B-
tree index in RDLK mode to find the requested object’s offset and then locking the object’s
page in appropriate mode. As we add proxies, we increase Khazana’s ability to cache data
near where it is most often accessed, at the cost of potentially greatly increasing the amount
coherence traffic needed to keep individual objects strongly consistent.

After the experiment has run long enough to start a Kobj proxy on each LAN, each client
shifts its notion of what objects are “local” to be those of its next cyclical neighbor. We
run this scenario for 100 seconds, a period denoted as “expt 2” in Figures 9 through 11.
After this phase ends, clients 33-64 all treat client 1’s “local” objects as their own “local”
objects, which introduces very heavy contention on those 16 objects. We run this scenario
for 100 seconds, a period denoted as “expt 3” . We ran each of the above experiments in
two modes, eager replication m ode: where Kservers always create a local replica when an
object is accessed locally, and adaptive replication m ode : where Khazana adapts between
replication and master-slave (RPC) modes to prevent thrashing.

Figures 7 and 8 show how aggregate throughput varies as we increase the number of Kobj
proxies at different degrees of locality (0%-100%). Vertical bars denote the creation of
a new proxy. W ithout adaptive lock caching, aggregate throughput quickly levels off as
more proxies contend for the same objects. The higher the degree of locality, the higher the
throughput, but even at 95% locality throughput using eager replication never exceeds 2500
ops/sec. Using adaptive caching, clients initially forward all requests to the root server on
k0, but once locality exceeds 40%, Kobj proxies quickly cache their “local” objects after
they are spawned. Under these circumstances, nodes will use RPCs to access “remote”
objects, rather than replicating them, which eliminates thrashing and allows throughput to

cu
m

ul
ati

ve

op
s/s

ec

o
cu

m
ul

ati
ve

op

s/
se

c

Kobj: Aggregate throughput (ops/sec) w/ Adaptive Lock Caching

4000 -

2000 -
cal: 1000
rpc: 4g0_

100%! locality
95%; loqality
90%! locality
80% loqality
60% locality

20% locality
0% loqality

phases

400 600
Time (seconds)

Figure 7: Kobj aggregate throughput (ops/sec) with adaptive replication.

3000

2500

2000

1500

1000

500

Kobj: Aggregate throughput (ops/sec) w/ Eager Lock Caching

95% Ipcajity
90% Ipcajity
80p/o locality
60P/o locality
40% locality

0% locality
phases

400 600
Time (seconds)

Figure 8: Kobj aggregate throughput (ops/sec) with eager replication.

Kobj: Latency Distribution w/ Adaptive Lock Caching on k9-1

oa><n

>.o
ca>

10000

1000

100

10

0.1

0.01

read-p
avg. read~p

update-p
avg. update^

200 400 600

Time (seconds)
800

shift contenj
to k10 for k1 r

1000

Figure 9: Kobj “local” object access latencies on node k9 with adaptive replication at 40% locality.
Once a Kobj proxy is started on k9, Khazana’s adaptive caching protocol inhibits k9’s “local” objects
from being replicated remotely.

Kobj: Latency Distribution w/ Eager Lock Caching on k9-1

O
CD (.0

>.oc
£co

10000

1000

100

0.1

0.01

read-p
avg. read-p

update-p
avp. update-p

iphases -I— !-

shift contenj
to k1 Cl for k1 t

200 400 600
Time (seconds)

800 1000

Figure 10: Kobj “local” object access latencies on k9 with eager replication at 40% locality. Locks
on private objects keep shuttling to and from k9, reducing throughput.

continue to scale as proxies are added. With high (> 95%) locality, the adaptive protocol
can support almost 9000 ops/sec in the fully populated system.

Figures 9 through 11 provide a detailed breakdown of typical access latencies under differ
ent scenarios at a client on node K9. Figure 9 shows that even with modest (40%) locality,
the adaptive protocol reduces the access latency to “local” objects from 100msecs to under
5msecs once a proxy is spawned. In contrast, Figure 10 shows that under the same circum
stances the average access latency of local objects increases to over 200msecs using eager
replication due to frequent lock shuttling. Figure 11 shows that the adaptive protocol also
outperforms the eager protocol for accesses to “non-local” objects, despite never caching
these objects locally, by eliminating useless coherence traffic.

W hen we have each node shift the set of objects that most interest it, the phase denoted
“expt2” in the graphs, the adaptive protocol migrates each object to the node that now
accesses it most often after about 10 seconds, as seen in Figure 9. Performance of the eager
protocol does not change, nor does the average access latency of “non-local” objects.

Finally, when we induce extremely heavy contention for a small number of objects, the
phase denoted “expt3” in the graphs, the adaptive protocol almost immediately picks a sin-

La
ten

cy

(m
ill

ise
c)

Kobj: Latency Distribution for ac ce ss to non-private objects on K9

Time (seconds)

Figure 11: Kobj “non-local” object access latencies on k9 at 40% locality. Adaptive caching
handles these accesses via RPCs rather than via replication, which results in an average latency of
roughly 50% that of eager caching.

gle replica to cache the data and shifts into RPC mode. By doing so, it is able to serve
even heavily accessed objects in roughly 100msecs. In contrast, the eager replication pro
tocol often requires over 500msecs to service a request and only rarely is able to exploit the
aggressive sharing (as seen by the small number of sub-100msec latency accesses during
“expt3” in Figure 10.

In summary, we find that a wide-area object service built on top of Khazana can exploit
available access locality to scale, while at the same time guaranteeing strong consistency
requirements. Khazana’s adaptive caching protocol inhibits data replication or migration
when there is insufficient locality to warrant it, which dramatically improves access la
tency.

3.4 Kdb: Replicated BerkeleyDB

To demonstrate how Khazana can be used to add replication to an existing data service
without altering its internals, we implemented Kdb, a BerkeleyDB database (representing
a directory) stored in a Khazana file. Kdb aggressively caches the database file on all
nodes, and uses operational updates to propagate modifications to all replicas. The same
approach can be used, for example, to replicate a relational database such as mySQL across
wide area. All update queries will then be intercepted and propagated among replicas as
operational updates.

A common way to improve the performance of distributed databases is to allow objects to
be read-only replicated close to clients, but require all writes to be sent to a central “mas
ter” replica. This approach to replication is relatively easy to implement and ensures strong
consistency for updates. However, it severely limits scalability and does not perform well
in the presence of heavy write traffic. Relaxing consistency for writes can significantly en
hance system throughput, but can lead to update conflicts. By using Khazana to implement
data replication, we can choose on a per datum basis how much consistency is required,
thereby achieving high throughput when the consistency requirements are less strict, e.g., a
directory service [15], while using the same code base as a conventional strongly consistent
database.

We evaluated Kdb’s performance and scalability using five flavors of consistency semantics
(listed from strongest to weakest) and compared it to a client-server (RPC) version: (1)
push-based peer-to-peer where writes are serialized before being propagated (serialized
writes, eventual reads), (2) master-slave where all writes are sent to the root of the replica
hierarchy and propagated (single-m aster writes, eventual reads, and (3) pull-based peer-to-
peer with close-to-open semantics (close-to-open), (4) pull-based peer-to-peer where data

100000
Kdb Read throughput per-replica

local -

‘ rpclocal ". klnral .

> .._.......
......- ..*_.B_............_ ^ ;
— i— eventual rd, immediate wr ;

_ eventual rd, serialized wr
....*--r*eventuai.rd, single-master wr
 - e - 10msec-bounded ’
-- ---- close-to-open
- - - rpc '

Replicas

Figure 12: Kdb Per-replica Read Throughput

is synched upon access if more than 10msecs have passed since last synch (time-bounded
staleness), (5) push-based peer-to-peer where writes are performed locally before being
propagated to other replicas (local-imm ediate writes, eventual reads).

For our Kdb experiments, the DB stores 100 key-value pairs inside a Khazana file. The
database size does not affect performance because we employ operational updates and the
entire database file is treated as a single consistency unit. As in Section 3.3, we employ a
small dataset to measure the system under periods of heavy contention - all of the imple
mentations work well when sharing is infrequent. For each experiment, we run a directory
server process on each node. We vary the number of nodes from 2 to 48. Nodes run
FreeBSD 4.7 and are connected by a 1Mbps, 40-msec latency WAN link. Each server
executes an update-intensive workload consisting of 10,000 random operations run at full-
speed (i.e., no think time) on its local database replica. The operation mix consists of
5% adds, 5% deletes, 20% updates, 30% lookups, and 40% cursor-based scans. Reads
(lookups and cursor-based scans) are performed directly on the database file, while writes
(adds, deletes, and updates) are sent to the local Kserver. Each operation opens a Khazana
session on the database file in the appropriate mode, performs the operation, and closes the
session.

Figures 12 and 13 show the average throughput observed per replica for reads and writes.
In addition to the Kdb results, we present baseline performance when directly operating on
a database file stored in the local file system (local), when invoking RPCs to a colocated
berkeleyDB server (rpclocal), and when accessing a local Khazana-based database file
with no contention (klocal). Klocal represents the best throughput using Kdb on top of our
Khazana prototype. The high cost of socket-based IPC between the directory server and
Kserver processes account for the performance degradation compared to l o c a l .

Kdb: Write throughput per-repiica

immediate wr — '—
10msec-bounded —*—

ciose-to-open
- serialized wr -..e..-

rpc
____________ jucioaaL_

- kiQcal -

Repiicas

Figure 13: Kdb Per-replica Write Throughput

Figure 12 shows that read throughput scales well when we request soft (push-based) or
time-based consistency guarantees, but not when we request hard (firm pull-based) guar
antees, as expected. Due to the update-intensive nature of the workload, there is almost
always a write in progress somewhere in the system. Thus the strict pull-based schemes
are constantly pulling updates across the WAN, suffering the same high latency that the
RPC-based solution inherently incurs.

Close-to-open and strong consistency do not scale beyond 16 replicas as expected, given
the high degree of write-sharing in the workload. Eventual consistency scales well to large
replica sets even when pushing updates eagerly. Timer-based consistency, wherein a replica
pulls updates from neighbors only periodically, also significantly improves read and write
performance, even with a very small staleness factor (10msecs).

In summary, different consistency options provide vastly different semantics and perfor
mance characteristics, even for the same workload. Khazana enables an application to
choose the right semantics based on specific need at hand.

4 R e l a t e d W o r k

Providing coherent shared data access across variable quality networks has been exten
sively studied by previous work. However, previous solutions either target specific appli
cation domains [12, 4], adopt a monolithic design unsuitable for reuse [16, 15], or lack
customizability for efficiency [3, 24].

Numerous consistency schemes have been developed individually to handle the data coher
ence needs of specific services such as file systems, directory services [15], databases and
persistent object systems [14, 7], Distributed file systems such as NFS, Pangaea, Sprite,
AFS, Coda and Ficus target traditional file access with low write-sharing among multi
ple users. Khazana supports the consistency flavors of all these systems in a peer-to-peer
setting. Bayou [4] explored optimistic replication and epidemic-style propagation of op
erational updates in the context of database applications under ad-hoc connectivity. we
employ a hierarchical replica topology in a more connected environment to achieve more
bounded synchronization.

Flexibility in consistency management has often taken the form of supporting multiple
selectable consistency policies for application data (e.g., Munin [2], WebFS [24], Fluid
replication [3]). In contrast, Khazana offers primitives that can be combined to yield a va
riety of policies. Our approach is closer to that of TACT [25] but more conservative, as our
goal is scalable performance under aggressive replication for several popular applications.

Several solutions exist to manage coherence of aggressively replicated data over variable
quality network links. However, most previous work has targetted specific data access
patterns. B laze’s PhD thesis [1] showed the value of constructing dynamic per-file cache
hierarchies to support efficient large-scale file sharing and to reduce server load in dis
tributed file systems. Pangaea [20] provides eventual consistency among files hosted by
wide-area peer file servers. They organize replicas as a graph. Our use of a hierarchy to or
ganize replicas helps avoid version vector sizes proportional to the total number of replicas.
PAST [17], Kazaa and several other systems manage large-scale peer sharing of read-only
files such as multimedia, but do not address updates.

The OceanStore [6] project aims to provide a secure, global scale persistent data utility.
Objects in OceanStore are immutable and consistency is maintained based on versioning
instead of in-place updates. Khazana’s goals are more specific, namely, to provide a flexible
middleware for managing shared data in diverse services behind a simple API.

Lastly, many techniques have been proposed to maintain consistency among data replicas
for fault-tolerance in the face of network partitions (e.g., Deno [11]). These are comple
mentary to our work which is to provide a flexible middleware that enables these techniques
to benefit a variety of services.

5 C o n c l u s i o n s

In this paper we demonstrated the feasibility and value of implementing a wide area storage
middleware that effectively serves the data access needs of a variety of wide-area services
with diverse characteristics.

We outlined the description of a middleware called Khazana that we implemented and
showed that it exploits locality more effectively while accurately meeting consistency needs
of a variety of services.

Khazana builds a scalable caching network and gives its clients control over how the net
work keeps data consistent. Khazana exports a simple file-like abstraction, but provides a
variety of hooks to control the caching and consistency mechanisms used to manage data.
These hooks can be employed in various combinations to yield a rich variety of consistency
semantics. We evaluate Khazana in the context of three diverse distributed applications: a
file system, an enterprise object proxy and a replicated BerkeleyDB database. Despite the
very different data management requirements of these three applications, Khazana is able
to effectively detect and exploit locality while ensuring correct semantics.

Khazana provides several benefits over existing systems. It enables reuse of consistency
mechanisms for a variety of applications with coexistence of different consistency schemes
in the same system. It provides aggressive replication, customizable consistency and sig
nificant generality in the same system.

R e f e r e n c e s

[1] M. Blaze. Caching in Large Scale Distributed File Systems. PhD thesis, Princeton University,
1993.

[2] J. Carter, J. Bennett, and W. Zwaenepoel. Techniques for reducing consistency-related com
munication in distributed shared memory systems. ACM Transactions on Computer Systems,
13(3):205-243, Aug. 1995.

[3] L. Cox and B. Noble. Fast reconciliations in Fluid Replication. In Proceedings of the 21st
International Conference on Distributed Conputing Systems, Apr. 2001.

[4] A. Demers, K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and B. Welch. The Bayou
architecture: Support for data sharing among mobile users. In Proceedings of the Workshop
on Mobile Computing Systems and Applications, Dec. 1994.

[5] Emulab. h t t p : / / w w w . e m u l a b . n e t / , 2001.

[6] J. K. et al. OceanStore: An architecture for global-scale persistent storage. In Proceedings
of the 9th Symposium on Architectural Support for Programming Languages and Operating
Systems, Nov. 2000.

[7] P. Ferreira and M. S. et. al. PerDis: Design, implementation, and use of a PERsistent Dis
tributed Store. In Submitted to The Third Symposium on Operating System Design and Imple
mentation, Feb. 1999.

[8] A. Fox, , and E. Brewer. Harvest, yield and scalable tolerant systems. In Proceedings of the
Seventh Workshop on Hot Topics in Operating Systems, Mar. 1999.

[9] Gnutella. h t t p : / / g n u t e l l a . w e g o . c o m / , 2000.

[10] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Sidebotham, and
M. West. Scale and performance in a distributed file system. ACM Transactions on Com
puter Systems, 6(1):51-82, Feb. 1988.

[11] P. Keleher. Decentralized replicated-object protocols. In Proceedings o f the 18th Annual ACM
Symposium on Principles of Distributed Computing, Apr. 1999.

[12] J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda file system. In Pro
ceedings of the 13th Symposium on Operating Systems Principles, pages 213-225, Oct. 1991.

[13] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The Objectstore database system. Com
munications of the ACM, Oct. 1991.

[14] B. Liskov, A. Adya, M. Castro, M. Day, S. Ghemawat, R. Gruber, U. Maheshwari, A. C.
Myers, and L. Shrira. Safe and efficient sharing of persistent objects in Thor. In Proceedings
of SIGMOD ’96, June 1996.

[15] Microsoft Corp. Windows 2000 server resource kit. Microsoft Press, 2000.

[16] P. Reiher, J. Heidemann, D. Ratner, G. Skinner, and G. Popek. Resolving file conflicts in the
Ficus file system. In Proceedings of the 1994 Summer Usenix Conference, 1994.

[17] A. Rowstron and P. Druschel. Storage management and caching in PAST, a large-scale, persis
tent peer-to-peer storage utility. In Proceedings of the 16th Symposium on Operating Systems
Principles, 2001.

[18] Sai Susarla. A survey of implementation techniques for distributed applications.
h t t p : / / w w w . c s . u t a h . e d u / ~ s a i / p a p e r s / a p p - s u r v e y . p s , Mar. 2000.

[19] Sai Susarla. Flexible consistency management in a wide-area caching data store.
h t t p : / / w w w . c s . u t a h . e d u / ~ s a i / p a p e r s / p r o p o s a l . p s , Sept. 2001.

[20] Y. Saito, C. Karamanolis, M. Karlsson, and M. Mahalingam. Taming aggressive replication
in the Pangaea wide-area file system. In Proceedings of the Fifth Symposium on Operating
System Design and Implementation, pages 15-30, 2002.

http://www.emulab.net/
http://gnutella.wego.com/
http://www.cs.utah.edu/~sai/papers/app-survey.ps
http://www.cs.utah.edu/~sai/papers/proposal.ps

[21] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design and implementation
of the SUN Network Filesystem. In Proceedings of the Summer 1985 USENIX Conference,
pages 119-130, 1985.

[22] V. Srinivasan and J. Mogul. Spritely NFS: experiments with cache-consistency protocols.
In Proceedings of the 12th Symposium on Operating Systems Principles, pages 45-57, Dec.
1989.

[23] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications. In Proceedings of the Sigcomm ’01
Symposium, August 2001.

[24] A. Vahdat. Operating System Services For Wide Area Applications. PhD thesis, University of
California, Berkeley, CA, 1998.

[25] H. Yu and A. Vahdat. Design and evaluation of a continuous consistency model for repli
cated services. In Proceedings of the Fourth Symposium on Operating System Design and
Implementation, Oct. 2000.

