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Abstract 

A Storage Architecture for Data-Intensive Computing 

by 

Jeffrey Shafer 

The assimilation of computing into our daily lives is enabling the generation 

of data at unprecedented rates. In 2008, IDC estimated that the "digital universe" 

contained 486 exabytes of data [9]. The computing industry is being challenged 

to develop methods for the cost-effective processing of data at these large scales. 

The MapReduce programming model has emerged as a scalable way to perform 

data-intensive computations on commodity cluster computers. Hadoop is a pop

ular open-source implementation of MapReduce. To manage storage resources 

across the cluster, Hadoop uses a distributed user-level filesystem. This filesystem 

— HDFS — is written in Java and designed for portability across heterogeneous 

hardware and software platforms. The efficiency of a Hadoop cluster depends 

heavily on the performance of this underlying storage system. 

This thesis is the first to analyze the interactions between Hadoop and storage. 

It describes how the user-level Hadoop filesystem, instead of efficiently captur

ing the full performance potential of the underlying cluster hardware, actually 

degrades application performance significantly. Architectural bottlenecks in the 

Hadoop implementation result in inefficient HDFS usage due to delays in schedul

ing new MapReduce tasks. Further, HDFS implicitly makes assumptions about 



how the underlying native platform manages storage resources, even though na

tive filesystems and I/O schedulers vary widely in design and behavior. Methods 

to eliminate these bottlenecks in HDFS are proposed and evaluated both in terms 

of their application performance improvement and impact on the portability of the 

Hadoop framework. 

In addition to improving the performance and efficiency of the Hadoop storage 

system, this thesis also focuses on improving its flexibility. The goal is to allow 

Hadoop to coexist in cluster computers shared with a variety of other applications 

through the use of virtualization technology. The introduction of virtualization 

breaks the traditional Hadoop storage architecture, where persistent HDFS data is 

stored on local disks installed directly in the computation nodes. To overcome this 

challenge, a new flexible network-based storage architecture is proposed, along 

with changes to the HDFS framework. Network-based storage enables Hadoop to 

operate efficiently in a dynamic virtualized environment and furthers the spread 

of the MapReduce parallel programming model to new applications. 
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CHAPTER 1 

Introduction 

New applications that store and analyze huge quantities of data are regularly 

emerging in the fields of commerce, science, and engineering. For example, con

sider scientific applications written for the Large Hadron Collider, an instrument 

expected to produce 15 petabytes of data per year during normal operation. Or, 

consider search and indexing applications for the Internet Archive, which cur

rently stores 2 petabytes worth of archive data and is growing at a rate of 20 ter

abytes a month [43]. Data-intensive Computing (DC) applications such as these 

have significant value to consumers, scientists, governments, and corporations, 

and have motivated the development of programming techniques and cluster 

computer architectures to store, search, and manipulate these massive datasets. 

DC applications generally are embarrassingly parallel, and can easily scale to 

hundreds or thousands of loosely synchronized processors. These applications 

exploit parallel programming models so that the work can be dynamically dis

tributed to many computing elements, each of which are responsible for solving a 

small part of the entire problem [2, 3, 29, 32, 35, 63]. Because of the loose synchro-

1 
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nization requirements, application performance can be scaled almost linearly by 

increasing the available computation resources. This style of application program

ming has motivated the development of a new class of cluster computer. In these 

DC clusters, unlike traditional cluster supercomputers, it is more cost effective to 

increase the total number of compute nodes in the system than to increase the per

formance of each node. This encourages compute nodes to be constructed out of 

commodity components to reduce the per-node cost. 

The MapReduce programming model, in particular, has emerged as a scal

able way to perform data-intensive computations on a commodity cluster com

puter [35,37]. It was developed at Google to support their web indexing and search 

applications, but has subsequently been used to support many other services. The 

success of the proprietary Google implementation of MapReduce has inspired the 

creation of Hadoop, a popular open-source alternative [2]. Written in Java for 

portability across heterogeneous hardware and software platforms, Hadoop is em

ployed today by a wide range of commercial and academic users for backend data 

processing. A key component of Hadoop is the Hadoop Distributed File System 

(HDFS), which is used to store all input and output data for applications. 

When designing storage systems for DC clusters, raw capacity is of utmost im

portance, as datasets can range in size from hundreds of terabytes to dozens of 

petabytes [43]. Given these massive data sets, a key premise in DC architecture de

sign has been that there is insufficient network bandwidth to move the data to the 
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computation, and thus computation must move to the data instead. Based on the 

assumption that remote data can only be accessed with low bandwidth and high 

latency, current MapReduce architectures co-locate computation and storage in the 

same physical box. Although storage is shared across the network via a global file 

system that performs replication and load balancing, the goal of the task scheduler 

is to migrate computation to use data on locally-attached disks whenever possible. 

The efficiency of the MapReduce model has been questioned in recent research 

contrasting it with the parallel database paradigm for large-scale data analysis. 

Typically, Hadoop is used as representative of the MapReduce model because pro

prietary (e.g., Google-developed) implementations with potentially higher perfor

mance are not publicly available. In one study, Hadoop applications performed 

poorly when compared against applications using parallel databases, despite ac

complishing the same tasks [67, 77]. For example, Figure 1.1 taken from the study 

uses a simple test application performing a data aggregation task, and compares 

the execution time of that application on two parallel databases and the Hadoop 

MapReduce framework. The application was tested at varying cluster sizes, with a 

constant amount of data per node, to evaluate scalability. As shown, Hadoop was 

at least twice as slow as the parallel databases at performing the same task. This 

gap was attributed to differences in the high-level programming model. However, 

this work did not perform the profiling necessary to distinguish the fundamental 

performance of the MapReduce programming model from a specific implementa-
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tion, i.e., Hadoop. A characterization of the Hadoop framework performed in this 

thesis shows that it is actually the implementation of the Hadoop storage system 

that degrades performance significantly. 

The performance penalty incurred by HDFS can be easily demonstrated by 

comparing disk storage bandwidth in the native operating system against disk 

storage bandwidth inside Hadoop, using the same disk and host system. Table 1.1 

shows the storage bandwidth of two simple test applications that write 10GB of 

data to disk with large, sequential accesses, and subsequently read it back. One 

application was run in the native operating system, and the other equivalent ap

plication was run in the Hadoop environment with and without data replication. 

While the test application running in the native operating system achieves full 

disk bandwidth, the application accessing data in HDFS without replication only 

achieves 70% of the original bandwidth. When replication is enabled, resulting 
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Environment 

Native Application 
Hadoop Application 
Hadoop Application 

Replication 

N/A 
No 
Yes 

Bandwidth (MB/s) 
Write 

95 
68 
36 

Read 
105 
72 
54 

Table 1.1: Native versus Hadoop Storage Bandwidth (MB/s) for Synthetic Test 
Applications 

in 3 copies of the data being saved to disk concurrently, the aggregate bandwidth 

(total of all 3 copies) degrades further, achieving only 37-50% of the native disk 

bandwidth. Thus, the Hadoop storage architecture imposes a substantial perfor

mance penalty and fails to provide the full performance of the underlying storage 

hardware to the application layer. 

1.1 Contributions 

This thesis contributes to the field of data-intensive computing in several ways. 

First, it focuses on improving the performance and efficiency of the Hadoop 

storage system using the traditional local disk architecture where storage and 

computation are co-located in the same box. Eliminating HDFS bottlenecks not 

only boosts application performance, but also improves overall cluster efficiency, 

thereby reducing power and cooling costs and allowing more computation to be 

accomplished with the same number of cluster nodes. Second, it explores the chal

lenges in spreading the MapReduce programming paradigm to smaller or more 

intermittent jobs. Finally, it introduces a new architecture for persistent HDFS stor

age using networked disks that allows Hadoop to function effectively in a virtual-
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ized and shared cluster computing environment. The specific contributions are as 

follows: 

Characterization of Hadoop Performance — This thesis is the first to analyze 

the interactions between Hadoop and storage. It describes how the user-level 

Hadoop filesystem, instead of efficiently capturing the full performance poten

tial of the underlying cluster hardware, actually degrades application performance 

significantly. 

Increasing Disk Utilization by Identifying and Eliminating Software Archi

tectural Bottlenecks — HDFS is not utilized to its full potential due to schedul

ing delays in the Hadoop architecture that result in cluster nodes waiting for new 

tasks. The impact of this is that the disk is utilized in a periodic, not continuous 

fashion, and sits idle for significant periods. A variety of techniques are applied 

to this problem to reduce the task scheduling latency and frequency at which new 

tasks need to be scheduled, thereby increasing disk utilization to near 100%. 

Increasing Disk Efficiency and Identifying Tradeoffs Related to Portabil

ity and Performance — After increasing disk utilization, the disk efficiency is 

also examined. This is directly related to Hadoop's goal of providing a portable 

MapReduce framework. The classic notion of software portability is simple: does 

the application run on multiple platforms? But, a broader notion of portabil

ity is: does the application perform well on multiple platforms? While HDFS is 

strictly portable, its performance is highly dependent on the behavior of underly-
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ing software layers, specifically the OS I/O scheduler and native filesystem allo

cation algorithm. These components of the native operating system are designed 

for general-purpose workloads, not data-intensive computing. As such, they pro

duce excessive disk seeks and fragmentation, degrading storage bandwidth sig

nificantly. Further, some performance-enhancing features in the native filesystem 

are not available in Java in a platform-independent manner. This includes options 

such as bypassing the filesystem page cache and transferring data directly from 

disk into user buffers. As such, the HDFS implementation runs less efficiently 

and has higher processor usage than would otherwise be necessary. A variety of 

portable and non-portable methods are described and evaluated in order to in

crease the efficiency at which the underlying storage system is used. 

Spreading the MapReduce Model — MapReduce was designed (by Google, 

Yahoo, and others) to marshal all the storage and computation resources of a ded

icated cluster computer. Unfortunately, such a design limits this programming 

paradigm to only the largest users with the financial resources and application de

mand to justify deployment. Smaller users could benefit from the MapReduce pro

gramming model too, but need to run it on a cluster computer shared with other 

applications through the use of virtualization technologies. The traditional storage 

architecture for MapReduce that places persistent HDFS data on locally-attached 

disks is evaluated and deemed unsuitable for this new workload, motivating a 

fresh look at alternative architectures. 
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Evaluating Persistent Network-Based Storage for MapReduce — Network-

based storage is proposed to allow MapReduce to coexist in a shared datacen-

ter environment. Network-based storage offers advantages in terms of resource 

provisioning, load balancing, fault tolerance, and power management. Network-

based storage is feasible for Hadoop for several reasons. First, data-intensive com

puting applications access storage using streaming access patterns and thus are 

bandwidth, not latency, sensitive. Second, network bandwidth historically has ex

ceeded disk bandwidth for commodity technologies. Third, modern switches offer 

extremely high bandwidth and low latency to match that of the raw network links, 

unlocking fast connectivity to devices co-located in the same rack and connected 

to the same switch. 

Design for Remote Storage Architecture — A design space analysis is per

formed for potential Hadoop network storage architectures. These architectures 

meet high-level constraints, such as using commodity hardware and a single net

work to lower installation and administration costs, and providing a scalable de

sign without centralized bottlenecks. These designs are evaluated in terms of 

achieved storage bandwidth and processor overhead in order to determine the 

most efficient design that incurs the least overhead over the conventional Hadoop 

local storage architecture. The most efficient design takes advantage of the existing 

Hadoop network capabilities for data replication. Optimizations to the Hadoop 

filesystem scheduler are evaluated to reduce contention for network storage re-
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sources and thereby improve performance. Network and storage bandwidth in

side of a virtual machine is analyzed and optimized to ensure that the new remote 

storage architecture functions efficiently inside a virtualized environment. 

1.2 Organization 

This thesis is organized as follows. Chapter 2 provides a background into the 

Hadoop framework and global filesystem, and discusses related work to the tra

ditional local storage architecture used in MapReduce computation. Chapter 3 

characterizes the performance of Hadoop and its storage system utilizing locally-

attached disks. In this chapter, bottlenecks are identified that degrade disk uti

lization and efficiency, thus slowing application performance. Chapter 4 proposes 

and evaluates architectural changes to Hadoop to improve storage system effi

ciency and performance. Chapter 5 discusses a broad history of network-based 

storage architectures. Next, Chapter 6 motivates a new storage architecture using 

networked disks to allow MapReduce to co-exist with other applications in a dat-

acenter running a virtualization framework. Chapter 7 performs a design space 

analysis of several realizations for network storage, evaluates the architectures in 

terms of performance and computational efficiency, and examines modifications to 

the Hadoop framework to reduce resource contention and improve performance. 

Finally, Chapter 8 concludes this thesis. 



CHAPTER 2 

Hadoop Background 

As the demand for data-intensive computing grows, the number and scale of 

DC clusters is increasing. One of the key elements of making such clusters both 

inexpensive and highly utilized is appropriate software frameworks and applica

tion programming models. The MapReduce programming model has emerged as 

an easy write to write scalable embarrassingly parallel applications that can ex

ploit large commodity clusters for data-intensive computations [35]. MapReduce 

is designed to enable scalability by allowing each node to process its slice of the 

overall dataset with only loose coordination with other nodes. With this program

ming model, increasing the number of compute nodes increases the amount of 

parallelism that can be exploited and improves overall application performance. 

Hadoop [2] is an open source framework that implements the MapReduce par

allel programming model [35]. Hadoop was chosen for this thesis for several rea

sons. First, it is popular and in widespread use today by a number of leading 

Internet service companies, including Amazon, Facebook, Yahoo, and others. Sec

ond, it has a history of large-scale deployments, including a Yahoo cluster with 

10 
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over 4000 nodes [6]. Third, it is designed for commodity hardware, significantly 

lowering the expense of building a research cluster. Google has shown in their 

web indexing framework that a specialized supercomputer is not needed for data-

intensive computing, just a large number of commodity computers networked to

gether. Fourth, Hadoop is open source, making it easier to obtain, profile, and 

modify when necessary. Fifth, the design philosophy used in Hadoop is similar to 

other DC frameworks [42, 68]. Thus, this research into the architecture of Hadoop 

and its filesystem should be applicable to similar systems. 

The Hadoop framework is composed of a MapReduce engine and a user-level 

filesystem that manages storage resources across the cluster. For portability across 

a variety of platforms — Linux, FreeBSD, Mac OS/X, Solaris, and Windows — and 

ease of installation, both components are written in Java and only require com

modity hardware. Here, the architecture of a Hadoop cluster is described, along 

with the operation of its various software services for computation and storage. 

Further, related work to Hadoop is presented, including the Google implementa

tion of the MapReduce programming model, other file storage architectures, and 

databases and streaming media servers. 

2.1 Hadoop Cluster Architecture 

Given the highly parallelizable nature of the MapReduce computation model, it 

becomes relatively straightforward to exploit large clusters to increase application 
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Figure 2.1: Hadoop Cluster Architecture (Single Rack) 

throughput. Therefore, in a DC cluster running this type of application, the capa

bility of each node is less important than the ability to scale the number of nodes in 

the cluster. Based on this philosophy, DC systems designed to run frameworks like 

Hadoop are built with the following commodity technologies in mind: x86-based 

processors, Ethernet networks, and Serial ATA (SATA) hard disks. Any other tech

nology choice increases the per-node cost of the cluster and thus limits the number 

of nodes that can be economically purchased and utilized. For example, although 

Solid State Drives (SSDs) built on flash memory are expanding their presence in 

the storage marketplace thanks to impressive performance, SSDs are not suitable 

for use in DC clusters due to their expense. Flash-based storage will not match the 

capacity/dollar metric of disk-based storage for the foreseeable future [48, 61]. 

In such a cluster, storage bandwidth becomes a first order determinant of over

all system performance [25, 32]. Each map or reduce task must have sufficient 

storage bandwidth available to efficiently complete its task on a given computa-
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tion node. This requirement has led to a cluster architecture in which local disks in 

the computation nodes are utilized as part of a distributed file system to store file 

blocks. To efficiently exploit local disk bandwidth, Hadoop attempts to schedule 

tasks on nodes which store that task's input data. 

An example of the Hadoop architecture in a single rack is shown in Figure 2.1. 

As the figure shows, each computation node is equipped with one or more disks 

and the nodes are interconnected with a commodity Ethernet network. A single 

rack is likely to be interconnected by a single, high-performance Ethernet switch 

which provides full bandwidth among all of the nodes within the rack. Each rack is 

then connected to the other racks through a hierarchy of Ethernet switches, with far 

less inter-rack bandwidth due to cost and cabling constraints. While any node can 

communicate with any other node, there is far more bandwidth available within a 

rack than across racks. 

2.2 Hadoop MapReduce Engine 

In the MapReduce model, computation is divided into a map stage and a reduce 

stage. In the map stage, the data to be processed is divided into many pieces and 

assigned (i.e., mapped) to specific cluster nodes, each of which can work indepen

dently with minimal coordination. In the reduce stage, the output from the map 

stage on each node is read and combined to produce the final program output. 

Both the map and reduce stages process data in the form of key/values pairs. 
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The map stage reads in input key/value pairs and produces one or more interme

diate key/value pairs. This intermediary data is saved to memory or spilled to 

local disk temporarily until the reduce stage executes. The reduce stage then takes 

these intermediate key/value pairs and merges all values corresponding to a sin

gle key. The map function can run independently on each key/value pair, exposing 

enormous amounts of parallelism. Similarly, the reduce function can run indepen

dently on each intermediate key value, also exposing significant parallelism. 

In Hadoop, the MapReduce engine is implemented by two software services, 

the JobTracker and TaskTracker. The centralized JobTracker runs on a dedicated clus

ter node and is responsible for splitting the input data into pieces for processing 

by independent map and reduce tasks (by coordinating with the user-level filesys-

tem), scheduling each task on a cluster node for execution, monitoring execution 

progress by receiving heartbeat signals from cluster nodes, and recovering from 

failures by re-running tasks. On each cluster node, an instance of the TaskTracker 

service accepts map and reduce tasks from the JobTracker. By default, when a new 

task is received, a new JVM instance will be spawned to execute it. Each Task

Tracker will periodically contact the JobTracker via a heartbeat message to report 

task completion progress and request additional tasks when idle. 
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2.3 Hadoop Distributed File System 

The Hadoop Distributed File System (HDFS) provides global access to files in 

the cluster [4,78]. Map tasks can read input data from HDFS, and reduce tasks can 

save output data to HDFS. As previously mentioned, intermediary data between 

Map and Reduce tasks is not stored in HDFS, but instead resides on each local node 

in temporary storage. For maximum portability and ease of installation, HDFS is 

implemented as a user-level filesystem in Java which exploits the native filesystem 

on each node, such as ext3 or NTFS, to store data. Files in HDFS are divided into 

large blocks, typically 64MB, and each block is stored as a separate file in the local 

filesystem. 

HDFS is implemented by two services: the NameNode and DataNode. The Na-

meNode is responsible for maintaining the HDFS directory tree, and is a centralized 

service in the cluster operating on a single node. Clients contact the NameNode 

in order to perform common filesystem operations, such as open, close, rename, 

and delete. The NameNode does not store HDFS data itself, but rather maintains a 

mapping between HDFS file name, a list of blocks in the file, and the DataNode(s) 

on which those blocks are stored. 

In addition to a centralized NameNode, all remaining cluster nodes provide 

the DataNode service. Each DataNode stores HDFS blocks on behalf of local or 

remote clients. Each block is saved as a separate file in the node's local filesystem. 

Because the DataNode abstracts away details of the local storage arrangement, all 
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nodes do not have to use the same local filesystem. Blocks are created or destroyed 

on DataNodes at the request of the NameNode, which validates and processes 

requests from clients. Although the NameNode manages the namespace, clients 

communicate directly with DataNodes in order to read or write data at the HDFS 

block level. 

Hadoop MapReduce applications use storage in a manner that is different from 

general-purpose computing [42]. First, the data files accessed are large, typically 

tens to hundreds of gigabytes in size. Second, these files are manipulated with 

streaming access patterns typical of batch-processing workloads. When reading 

files, large data segments (several hundred kilobytes or more) are retrieved per 

operation, with successive requests from the same client iterating through a file 

region sequentially. Similarly, files are also written in a sequential manner. 

This emphasis on streaming workloads is evident in the design of HDFS. First, 

a simple coherence model (write-once, read-many) is used that does not allow data 

to be modified once written. This is well suited to the streaming access pattern of 

target applications, and improves cluster scaling by simplifying synchronization 

requirements. Second, each file in HDFS is divided into large blocks for storage 

and access, typically 64MB in size. Portions of the file can be stored on different 

cluster nodes, balancing storage resources and demand. Manipulating data at this 

granularity is efficient because streaming-style applications are likely to read or 

write the entire block before moving on to the next. In addition, this design choice 
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improves performance by decreasing the amount of metadata that must be tracked 

in the filesystem, and allows access latency to be amortized over a large volume of 

data. Thus, the filesystem is optimized for high bandwidth instead of low latency. 

This allows non-interactive applications to process data at the fastest rate. 

To read an HDFS file, client applications simply use a standard Java file input 

stream, as if the file was in the native filesystem. Behind the scenes, however, this 

stream is manipulated to retrieve data from HDFS instead. First, the NameNode 

is contacted to request access permission. If granted, the NameNode will translate 

the HDFS filename into a list of the HDFS block IDs comprising that file and a list 

of DataNodes that store each block, and return the lists to the client. Next, the 

client opens a connection to the closest DataNode and requests a specific block ID. 

That HDFS block is returned over the same connection, and the data delivered to 

the application. Ideally, the closest DataNode is the same node where the client 

application is already running, thus reducing the amount of network traffic in the 

cluster. If the data is not available locally, Hadoop falls back on its rack-awareness 

algorithm. Cluster administrators can configure Hadoop with knowledge of the 

arrangement of physical nodes in the cluster, specifically what nodes are physically 

adjacent in the same rack and connected to the same network switch. Because 

intra-rack network bandwidth is greater than inter-rack network bandwidth, due 

to limited uplink bandwidth in the hierarchical network, the HDFS framework will 

try to read data from a node within the same rack (connected to the same network 
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switch) whenever possible. 

To write data to HDFS, client applications see the HDFS file as a standard out

put stream. This abstraction hides a great deal of complexity in the Hadoop frame

work, however. Three threads perform a variety of tasks related to writing HDFS 

data to disk. The first thread, the client-facing thread, first fragments the data 

stream into HDFS-sized blocks (64MB) and then into smaller packets (64kB). Each 

packet is enqueued into a FIFO that can hold up to 5MB of data, thus decoupling 

the client thread from storage system latency during normal operation. A second 

thread is responsible for dequeuing packets from the FIFO, coordinating with the 

NameNode to assign HDFS block IDs and destinations, and transmitting blocks 

to the DataNodes (either local or remote) for storage. A third thread manages ac

knowledgements from the DataNodes that data has been committed to disk. 

For reliability, HDFS implements an automatic replication system. By default, 

two copies of each block are stored by different DataNodes in the same rack and a 

third copy is stored on a DataNode in a different rack (for greater reliability). Thus, 

in normal cluster operation, each DataNode is servicing both local and remote 

clients simultaneously. HDFS replication is transparent to the client application. 

When writing a block, a pipeline is established whereby the client only communi

cates with the first DataNode, which then echos the data to a second DataNode, 

and so on, until the desired number of replicas have been created. The write oper

ation is only finished when all nodes in this replication pipeline have successfully 



19 

committed all data to disk. DataNodes periodically report a list of all blocks stored 

to the NameNode, which will verify that each file is sufficiently replicated and, in 

the case of failure, instruct DataNodes to make additional copies. 

2.4 Related Work 

This thesis focuses on the storage architecture of data-intensive computing clus

ters. As such, it builds upon prior work in a number of related areas. Topics related 

to the traditional Hadoop local storage architecture are discussed here, while top

ics related to the proposed network-based storage architecture are discussed later 

in Chapter 5. 

Here, the original Google File System for data-intensive computing is first de

scribed and compared to the open-source HDFS implementation. The similari

ties between these systems are high, and many HDFS optimizations are equally 

applicable to the Google architecture. Second, the HDFS storage architecture is 

contrasted with the traditional file server model for storage. The need to scale to 

large cluster sizes makes the file server model impractical for MapReduce. Third, 

the design requirements for HDFS storage are compared with those for databases 

and streaming media servers. Here, discussion focuses on how those differences 

translate into the specific storage architecture used and techniques to accelerate 

performance. User-space filesystems are also discussed as one potential way to 

overcome the limitations of general-purpose filesystems for specific application 
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workloads, such as data-intensive computing. 

2.4.1 Google File System 

Hadoop and HDFS were conceived as open-source implementations of the 

Google MapReduce engine [35, 36, 37] and the Google File System (GFS) [42], 

respectively. The MapReduce programming model for data-intensive computing 

was developed at Google from earlier functional programming research, and it 

plays an important role in the operations of this Internet giant. The most recently 

published report indicates that, by 2008, Google was running over one hundred 

thousand MapReduce jobs per day and processing over 20 PB of data in the same 

period [36]. By 2010, Google had created over ten thousand distinct MapReduce 

programs performing a variety of functions, including large-scale graph process

ing, text processing, machine learning, and statistical machine translation [37]. In 

this section, the similarities and differences between HDFS and GFS are discussed. 

Overall, the differences are minor, meaning that many of the optimizations applied 

to HDFS in this thesis are equally applicable to the GFS architecture. 

HDFS and GFS have common design goals. They are both targeted at data-

intensive computing applications where massive data files are common. Both are 

optimized in favor of high sustained bandwidths instead of low latency, to better 

support batch-processing style workloads. Both run on clusters built with com

modity hardware components where failures are common, motivating the inclu-
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sion of built-in fault tolerance mechanisms through replication. Both filesystems 

provide applications with a write-once, read-many API that eschews full POSIX 

compliance in favor of design simplicity. Finally, both implementations provide no 

data caching. Clients experience little re-use because they either stream through a 

file, or have working sets that are too large. 

By virtue of these common design goals, HDFS and GFS are also implemented 

in a similar manner. In both systems, the filesystem is implemented by user-

level processes running on top of a standard operating system (in the case of GFS, 

Linux). A single GFS master server running on a dedicated node is used to coordi

nate storage resources and manage metadata. Multiple slave servers (chunkservers 

in Google parlance) are used in the cluster to store data in the form of large blocks 

(chunks), each identified with a 64-bit ID. Files are saved by the chunkservers on 

local disk as native Linux files, and accessed by chunk ID and offset within the 

chunk. Both HDFS and GFS use the same default chunk size (64MB) to reduce 

the amount of metadata needed to describe massive files, and to allows clients to 

interact less often with the single master. Finally, both use a similar replica place

ment policy that saves copies of data in many locations — locally, to the same rack, 

and to a remote rack — to provide fault tolerance and improve performance by 

reducing hot spots. 

Although HDFS and GFS share many similarities, they are not exact clones 

of each other, and differ in a few ways. First, HDFS does not currently provide an 
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equivalent to the atomic file append functionality as available in GFS, although the 

implementation of this feature is on-going. Atomic file appends allow many con

current writers to each append data to an otherwise immutable file without speci

fying the exact offset to write data to. GFS calculates the end of the file automati

cally while ensuring that the entire write operation is atomic. Second, HDFS does 

not yet provide an equivalent file or directory snapshot feature to HDFS. Snapshots 

can be used to make a copy of data without interfering with ongoing appends. GFS 

uses a copy-on-write framework to accomplish this. Finally, GFS does not provide 

the high level of portability provided in HDFS. GFS was reported to only run on 

Linux, and was not implemented in Java. From a corporate perspective, it is eas

ier to standardize proprietary technology like GFS and Google MapReduce to run 

only on a specific OS (e.g., a customized fork of the Linux kernel) rather than sup

port a wide variety of host environments. 

Optimizations proposed later in this thesis for Hadoop are equally applicable to 

the Google-developed MapReduce implementation that is not publicly available. 

In fact, they may already be present in some form. The optimizations described for 

the Google implementation include reducing disk seeks for writes by batching and 

sorting intermediate data, and reducing disk seeks for reads by smart scheduling 

of requests [37]. Further, it is reasonable to assume that Google also employs non

portable optimizations to improve performance further, such as tuning filesystem 

behavior to increase extents and thereby reduce fragmentation and disk seeks, and 
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bypassing the operating system page cache and transferring data directly from the 

disk into the user-space application buffer. These have not been described in public 

documents. Google has a history of extensive Linux kernel modifications, as most 

recently described at the Linux Kernel Summit in 2009 [7]. Storage-related im

provements that have been made to the kernel — but not yet released or described 

in any detail — include proportional I/O scheduling, tracing of disk accesses for 

operations analysis, and lowering the system call overhead of fadviseO to provide 

caching hints to the operating system. 

2.4.2 File Server Model 

In Hadoop, both MapReduce (i.e., TaskTracker) and storage (i.e., DataNode) 

services are typically executed on the same set of cluster nodes, allowing compu

tation to access local storage resources at high bandwidth. This use of local storage 

in Hadoop runs counter to the prevalent file server model. In that model, a sin

gle file server, perhaps with a small number of backup servers for redundancy, 

provides access to a large number of clients across a network. Distributed stor

age systems [23, 39, 46, 49] are meant to alleviate the performance and reliability 

problems associated with a centralized file server, which is a single point of entry 

into the file system. Load balancing can be utilized on such distributed systems in 

order to distribute accesses to several servers and improve overall storage system 

performance [22,83]. However, with the exception of [23], such distributed filesys-
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terns do not typically include storage on the clients as a part of the file system. 

The file server model is not compatible with the ever-increasing scale of 

Hadoop systems, particularly at Internet service companies. The cost of a server-

based distributed file system that can scale to support the needs of a large Hadoop 

cluster are likely to be prohibitive. As an example of the scale of these systems, 

Yahoo announced its largest Hadoop cluster in September 2008, consisting of 4000 

nodes, each with 2 quad-core x86 processors, 4 1TB SATA disks, 8GB of RAM, and 

a 1 gigabit Ethernet port. Each rack contained 40 compute nodes, and the rack 

switch had 4 gigabit Ethernet uplinks to the core network. Overall, the Hadoop 

cluster contained in excess of 30,000 processor cores and 16PB of raw disk capac

ity [6]. In this type of system, a conventional centralized or distributed file server 

would create a bandwidth bottleneck that would place severe limits on the peak 

performance of the cluster. Instead, the massive distributed storage within the 

compute nodes is incorporated directly into a serverless global file system pro

vided by HDFS or the Google file system [4,42]. 

2.4.3 Databases and Streaming Media Servers 

HDFS servers (i.e., DataNodes) and traditional streaming media servers are 

both used to support client applications that have access patterns characterized 

by long sequential reads and writes. As such, both systems are architected to fa

vor high storage bandwidth over low access latency [70]. Beyond this, however, 
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there are key requirements that differentiate streaming media servers from HDFS 

servers. First, streaming media servers need to rate pace to ensure that the maxi

mum number of concurrent clients receives the desired service level. In contrast, 

MapReduce clients running batch-processing non-interactive applications are la

tency insensitive, allowing the storage system to maximize overall bandwidth, and 

thus cluster cost-efficiency. Second, media servers often support differentiated ser

vice levels to different request streams, while in HDFS all clients have equal pri

ority. Taken collectively, these requirements have motivated the design of a large 

number of disk scheduling algorithms for media servers [18, 30, 52, 71, 70, 76]. 

Each algorithm makes different tradeoffs in the goals of providing scheduler fair

ness, meeting hard or soft service deadlines, reducing memory buffer require

ments, and minimizing drive seeks. 

In addition to similarities with streaming media servers, HDFS servers also 

share similarities with databases in that both are used for data-intensive comput

ing applications [67]. But, databases typically make different design choices that 

favor performance instead of portability. First, while Hadoop is written in Java for 

portability, databases are typically written in low-level application languages to 

maximize performance. Second, while Hadoop only uses Java native file I/O fea

tures, commercial databases exploit OS-specific calls to optimize filesystem per

formance for a particular platform by configuring or bypassing the kernel page 

cache, utilizing direct I/O, and manipulating file locking at the inode level [38,53]. 
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Third, while HDFS relies on the native filesystem for portability, many well-known 

databases can be configured to directly manage storage as raw disks at the applica

tion level, bypassing the filesystem entirely [1,47,62]. Using storage in this manner 

allows the filesystem page cache to be bypassed in favor of an application cache, 

which eliminates double-buffering of data. Further, circumventing the filesystem 

provides the application fine-grained control over disk scheduling and allocation 

to reduce fragmentation and seeks. Thus, databases show the performance that 

can be gained if portability is sacrificed or if additional implementation effort is 

exerted to support multiple platforms in different manners. 

One particular aspect of database design — application-level I/O scheduling 

— exploits application access patterns to maximize storage bandwidth in a way 

that is not similarly exploitable by HDFS. Application-level I/O scheduling is fre

quently used to improve database performance by reducing seeks in systems with 

large numbers of concurrent queries. Because database workloads often have data 

re-use (for example, on common indexes), storage usage can be reduced by sharing 

data between active queries [26, 84]. Here, part or all of the disk is continuously 

scanned in a sequential manner. Clients join the scan stream in-flight, leave after 

they have received all necessary data (not necessarily in-order), and never inter

rupt the stream by triggering immediate seeks. In this way, the highest overall 

throughput can be maintained for all queries. This particular type of scheduling 

is only beneficial when multiple clients each access some portion of shared data, 
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which is not common in many HDFS workloads. 

Based on work done in database and streaming media systems, Wang et al. 

proposed the concept of UCFS - User-space Customized Filesystems - to over

come application-specific bottlenecks in filesystems designed for general-purpose 

computing [81]. In such a system, the application or library would directly man

age the raw disk, thus bypassing any OS buffering and filesystem limitations, and 

allowing the on-disk file layout to be extensively customized to the application re

quirements. As an example, they implemented a custom filesystem and caching 

scheme for a web proxy server. Particular attention was paid to implementing 

clustering, grouping, and prefetching algorithms to ensure that all disk accesses 

are done in large blocks, that each cluster contains all cache payload and meta

data necessary to satisfy a request without further seeks, and future requests are 

likely to be satisfied by the same or adjacent clusters on disk. Such techniques 

could also be beneficial in improving HDFS performance by eliminating the local 

filesystem. As shown later in this thesis, however, the best-case improvement in 

storage bandwidth made possible by removing the general-purpose filesystem is 

relatively small, and any replacement system implemented in user-space must in

cur some overhead of its own for bookkeeping. Thus, it is questionable whether 

the performance improvement can justify the development time of a UCFS. 
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2.4.4 Efficient Cluster Architectures 

Researchers have recently focused on new cluster architectures for data-

intensive computing using application frameworks such as MapReduce [35] and 

Dryad [50] that allow efficient parallel computation over massive data sets. These 

architectures are in contrast to traditional clusters composed of high power, high 

performance servers with a small number of high power (and hot) disks in the 

same chassis. But, they still use locally-attached storage co-located with computa

tion resources. 

Caulfield et al. proposed an architecture called Gordon where myriads of com

pute nodes are constructed of low-power, inexpensive, efficient processors such as 

an Intel Atom coupled with solid-state flash storage instead of conventional hard 

drives [27]. The goal of this architecture is to increase both overall performance 

(by leveraging the improved bandwidth and latency of solid state storage) and 

power efficiency (by balancing the storage bandwidth required by the processor 

with the bandwidth that can be sustained by the storage system). The low-power 

requirements and compact design of both the processor and storage system allows 

high-density clusters to be constructed, with a standard rack in the near future pre

dicted to hold 256 compute nodes with 64TB of aggregate storage. A MapReduce 

computation framework is used to scale the application across these large numbers 

of processors. Although flash storage has desirable power and performance char

acteristics, the current cost premium over conventional disks limits its potential for 
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data-intensive computing applications. In addition, this architecture provides an 

even tighter coupling between computation and storage than conventional servers. 

Instead of placing separate processors, motherboards, and hard drives in a case as 

discrete components, this design places processors and flash memory chips on the 

same circuit board, leaving almost no flexibility to vary the ratio between compu

tation and storage. 

A similar architecture has also been proposed by Vasudevan et ah in the FAWN 

(Fast Array of Wimpy Nodes) project [79]. This architecture couples low-power 

embedded processors with a variety of storage systems, including compact flash, 

solid-state disks, conventional hard drives, and DRAMs. These designs have 

been analyzed in the context of two different types of workloads: scan-oriented 

workloads (as exemplified by MapReduce) and seek-oriented random-access small 

read workloads (as exemplified by databases and web applications utilizing mem-

cached), with the conclusion that the optimal storage system varies depending on 

application requirements. 



CHAPTER 3 

Hadoop Local Performance Characterization 

The performance of the storage system is of utmost importance in a DC clus

ter. In this thesis, the Hadoop distributed filesystem configured with local disks 

is first evaluated in order to identify bottlenecks that degrade application perfor

mance. Because this architecture represents the common cluster design today, per

formance optimizations to the local disk architecture will have a broad impact. 

Further, many of the bottlenecks uncovered apply equally to disks accessed across 

the network as well, thus improving the performance of remote storage architec

tures, discussed later in this thesis. 

In this section, the experimental cluster and test applications used for perfor

mance characterization will be described. Then, a representative hard drive will 

be profiled outside of the Hadoop environment in order to determine the best-case 

performance possible from the raw cluster hardware. Next, several types of bot

tlenecks will be identified in the Hadoop framework. These include architectural 

bottlenecks that result in an inefficient periodic utilization of cluster resources, un

necessary processor overhead incurred by portability choices in the Hadoop im-

30 



31 

Ethernet Switch 

TaskTracker 

DataNode 

App 

Node 

TaskTracker 

DataNode 

App 

Node. 

HDFS 

TaskTracker 

DataNode 

App 

Node. 

JobTracker 

NameNode 

Node. 

TaskTracker 

DataNode 

App HDFS 

Node. 

Figure 3.1: Cluster Setup 

plementation, and excessive disk seeks and fragmentation caused by operating 

system components outside the direct control of Hadoop. Finally, the behavior of 

Hadoop running on top of other popular operating systems will be discussed to 

show that the performance problems identified here are widespread. 

3.1 Experimental Setup 

For performance characterization, a 5-node Hadoop cluster was configured, as 

shown in Figure 3.1. The first 4 nodes provided both computation (as MapReduce 

clients) and storage resources (as DataNode servers), and the 5th node served as 

both the MapReduce scheduler and NameNode storage manager. Each node was 

a 2-processor Opteron server running at 2.4 GHz or above with 4GB of RAM and 

a gigabit Ethernet NIC. All nodes used FreeBSD 7.2, Hadoop framework 0.20.0, 
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Code 
S-Wr 
S-Rd 
Rnd-Text 
Rnd-Bin 
Sort 
Search 
AlO-Wr 
AIO-Rd 

Program 
Synthetic Write 
Synthetic Read 
Random Text Writer 
Random Binary Writer 
Simple Sort 
Simple Search 
Synthetic Write 
Synthetic Read 

Data Size 
10GB / node 
10GB / node 
10GB / node 
10GB / node 

40GB / cluster 
40GB / cluster 
10GB / node 
10GB / node 

Notes 
Hadoop sequential write 
Hadoop sequential read 
Hadoop sequential write 
Hadoop sequential write 
Hadoop sort of integer data 
Hadoop text search for rare string 
Native C Program - Asynch. I/O 
Native C program - Asynch. I/O 

Table 3.1: Application Test Suite 

and Java 1.6.0. The first four nodes were configured with two Seagate Barracuda 

7200.11 500GB hard drives. One disk stored the operating system, Hadoop ap

plication, and application scratch space, while the second disk stored only HDFS 

data. All disks used the default UFS2 filesystem for FreeBSD with a 16kB block 

size and 2kB fragment size. An HP ProCurve 1800-24G Gigabit Ethernet switch 

was used to interconnect cluster nodes. Unless otherwise stated, Hadoop repli

cation was disabled in order to focus on the efficiency with which Hadoop uses 

locally-attached (not network-attached) storage. 

To characterize the Hadoop framework, a variety of test applications were in

stalled as shown in Table 3.1. This test suite includes a simple HDFS synthetic 

writer and reader doing sequential streaming access, an HDFS writer that gen

erates random binary numbers or text strings and writes them to the disk in a se

quential fashion, a simple integer sort, and a simple search for a rare text pattern in 

a large file. Complex applications — like those used in industry — were not pub

licly available for use in this characterization. Hadoop is still a young platform 
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Model Number 
Capacity 
Rotation Speed 
Interface 
Features 
Seek time 
Price in 2009 

ST3500320AS 
500GB 
7200rpm 
SATA 
Native Command Queuing 
8.5ms 
$70 

Table 3.2: Commodity Hard Drive - Seagate Barracuda 7200.11 

and thus an ecosystem of open-source applications or benchmarks has not yet de

veloped. For comparison purposes, a program written in C was used to perform 

asynchronous I/O (AIO) on the raw disk to determine the best-case performance, 

independent of any Hadoop, Java, or filesystem-specific overheads. 

Next, the latency and bandwidth characteristics of the hard drives used in the 

experimental cluster are profiled, in order to place an upper-bound on the perfor

mance of applications running inside the Hadoop framework. 

3.2 Raw Disk Performance 

A modern disk used for DC applications has a sequential bandwidth in excess 

of lOOMB/s (0.8 Gb/s) and a seek time under 9ms. All cluster nodes were outfitted 

with the representative commodity hard drive shown in Table 3.2. To place an 

upper bound on Hadoop performance, the raw bandwidth of the commodity hard 

drive used in the cluster was measured independent of OS filesystem and cache 

effects. 

To quantify the performance of the hard drive for sequential reads and writes 
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Figure 3.2: Hard Drive Bandwidth by Position (Large Sequential Accesses) 

at various regions of the disk, the HDTach synthetic utility [11] was employed. 

A sequential test of peak I/O bandwidth matches the expected best-case stream

ing access patterns of DC workloads. The results of the drive test are shown in 

Figure 3.2. 

By convention, logical block addresses on the drive are numbered such that the 

lowest address is placed at the outside edge of the drive, and the highest address is 

placed at the inside edge of the drive. Sectors stored on outer regions of the drive 

have the highest I/O bandwidth because more data is stored in the outer tracks 

while the angular velocity of the entire drive remains constant. This technique 

is called Zone Bit Recording or Zone Constant Angular Velocity. The commodity 
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hard drive tested has a sequential read speed in excess of HOMB/s and a sequen

tial write speed approaching lOOMB/s, and is able to sustain this I /O bandwidth 

over at least the first third of the drive. In all hard drives, write bandwidth is typ

ically lower than read bandwidth due to the extra time needed to read back the 

data from the platter after writing and verify its correctness. The raw performance 

of the drive measured here represents the peak storage bandwidth that should be 

possible for any given Hadoop cluster node under ideal conditions. 

In addition to position, seeks also directly impact the performance of hard 

drives. Hard drives are optimized for streaming access patterns. Randomly ac

cessed blocks force the drive heads to seek to a new location on disk, incurring 

latency and degrading the achievable I/O throughput. To quantify the perfor

mance impact of seeks, the AIO program (running on a raw disk and bypassing 

the Hadoop filesystem, OS-provided file cache, and native filesystem) was config

ured to perform long duration sequential reads and writes, with a seek to a random 

aligned location every n megabytes. This represents the best-case Hadoop behav

ior where a large HDFS block of n megabytes is streamed from disk, and then the 

drive seeks to a different location to retrieve another large block. The outer re

gions of the drive (identified by low logical addresses) were used to obtain peak 

bandwidth. As shown in Figure 3.3, the drive performance approaches its peak 

bandwidth when seeks occur less often than once every 32MB of sequential data 

accessed. Thus, the HDFS design decision to use large 64MB blocks is quite rea-



36 

m 
2 

•g 
5 
C 
m 

OQ 

<D 

a> 
2 
QJ 
> 
< 

120 

110 

100 

90 

80 

70 

60 

50 

40 

TTT 1 1 1 1 

- A 

A 
J J L - 1 

..A'* 

1 

.A 

i 

m 

•-•Read Bandwidth . 
A A Write Bandwidth 

1 — i 1 — • E4 8 16 32 64 
Sequential Run Length (MB) 

Figure 3.3: Hard Drive Read and Write Bandwidth from AIO Test With Random 
Seek Every n Megabytes 

sonable and, assuming that the filesystem maintains file contiguity, should enable 

high disk bandwidth. 

In the following sections, data-intensive application performance is evaluated 

using the previously described cluster in order to uncover performance bottlenecks 

in the Hadoop storage architecture. 

3.3 Software Architectural Bottlenecks 

Software architectural bottlenecks degrade the performance of Hadoop appli

cations by interfering with the desired disk access pattern. Ideally, MapReduce 

applications should manipulate the disk using streaming access patterns. The ap

plication framework should allow for data to be read or written to the disk con

tinuously, and overlap computation with I/O. Many simple applications with low 
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computation requirements do not achieve this ideal operating mode. Instead, they 

utilize the disk in a periodic fashion, decreasing performance. 

To determine if Hadoop is using the disk to its full potential, several FreeBSD 

utilities including iostat and vmstat were used to profile the system. Data samples 

were taken every second for the duration of application execution to measure pro

cessor and disk utilization. Processor utilization was measured on a per-core basis, 

and disk utilization was measured as the percentage of time that the disk had at 

least one I/O request outstanding. As such, this profiling did not measure the 

relative efficiency of disk accesses (which is done later in this chapter), but sim

ply examined whether or not the disk was kept sufficiently busy with outstanding 

service requests. 

The behavior of the disk and processor utilization over time for the simple 

search benchmark is shown in Figure 3.4. Here, the system is not accessing the 

— Processor Avg 
Processor 0 
Processor 1 

— HDFSDisk 
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disk in a continuous streaming fashion as desired, even though there are ample 

processor resources still available. Rather, the system is reading data in bursts, pro

cessing it (by searching for a short text string in each input line), and then fetching 

more data in a periodic manner. This behavior is also evident in other applications 

such as the sort benchmark, shown in Figure 3.5. Note that the sort benchmark 

also uses the scratch disk in a periodic fashion to spill temporary key/value pairs 

that are too large to store in memory. 

The overall system impact of this periodic behavior is shown in Figure 3.6, 

which presents the average HDFS disk and processor utilization for each applica

tion in the test suite. The AIO test programs (running as native applications, not 

in Hadoop) kept the disk saturated with I/O requests nearly all the time (97.5%) 

with very low processor utilization (under 3.5%). Some Hadoop programs (such 

as S-Wr and Rnd-Bin) also kept the disk equivalently busy, albeit at much higher 

— Processor Avg 
Scratch Disk 

— HDFS Disk 
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processor usage due to Hadoop and Java virtual machine overheads. In contrast, 

the remaining programs have poor resource utilization. For instance, the search 

program accesses the disk less than 40% of the time, and uses the processors less 

than 60% of the time. 

This poor efficiency is a result of the way applications are scheduled in Hadoop, 

and is not a bottleneck caused by HDFS. By default, the test applications like search 

and sort were divided into hundreds of map tasks that each process only a single 

HDFS block or less before exiting. This can speed recovery from node failure (by 

reducing the amount of work lost) and simplify cluster scheduling. It is easy to 

take a map task that accesses a single HDFS block and assign it to the node that 

contains the data. Scheduling becomes more difficult, however, when map tasks 
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access a region of multiple HDFS blocks, each of which could reside on different 

nodes. Unfortunately, the benefits of using a large number of small tasks come 

with a performance price that is particularly high for applications like the search 

test that complete tasks quickly. When a map task completes, the node can be idle 

for several seconds until the TaskTracker polls the JobTracker for more tasks. By 

default, the minimum polling interval is 3 seconds for a small cluster, and increases 

with cluster size. Then, the JobTracker runs a scheduling algorithm and returns the 

next task to the TaskTracker. Finally, a new Java virtual machine (JVM) is started, 

after which the node can resume application processing. 

This bottleneck is not caused by the filesystem, but does affect how the filesys-

tem is used. Increasing the HDFS block size to 128MB, 256MB, or higher — a 

commonly-proposed optimization [64,67] — indirectly improves performance not 

because it alleviates any inefficiency in HDFS but because it reduces the frequency 

at which a node is idle and awaiting scheduling. Another option, over-subscribing 

the cluster by assigning many more Map and Reduce tasks than there are proces

sors and disks in the cluster nodes, may also mitigate this problem by overlapping 

computation and I / O from different tasks. But, this technique risks degrading per

formance in a different manner by increasing I / O contention from multiple clients, 

a problem discussed further in Section 3.5. More direct methods to attack this per

formance bottleneck are described and evaluated in Section 4.1. 

Even when tasks are available for processing and each task is operating over 
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large HDFS blocks located on the same node, a bottleneck still exists because the 

HDFS client implementation is highly serialized for data reads. As discussed in 

Chapter 2, there is no pipelining to overlap application computation with I/O. 

The application must wait on the I/O system to contact the NameNode, contact 

the DataNode, and transfer data before processing. This latency is greater on large 

clusters with busy NameNodes, or in cases where the data being accessed is not on 

the same node. Similarly, the I/O system must wait for the application to complete 

processing before receiving another request. Beyond the lack of pipelining, there 

is also no data prefetching in the system, despite the fact that MapReduce applica

tions access data in a predictable streaming fashion. Only metadata is prefetched, 

specifically the mapping between HDFS filename and block IDs. Rather than con

tact the NameNode each time a new block ID is required, the client caches the next 

10 blocks in the file with each read request. 

In addition to suffering from software architectural bottlenecks that interfere 

with efficient storage access, Hadoop applications are also slowed by processor 

overhead imposed by the HDFS framework. 

3.4 Portability Limitations 

The Hadoop framework and filesystem impose a significant processor over

head on the cluster. While some of this overhead is inherent in providing neces

sary functionality, other overhead is incurred due to the design goal of creating a 
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portable MapReduce implementation. As such, they are referred to here as Porta

bility Limitations. 

An example of the total overhead incurred is shown in Figure 3.6. The asyn

chronous I/O write (AlO-Wr) test program — written in C and accessing the raw 

disk independent of the filesystem — takes less than 10% of the processor during 

operation. But, the synthetic writer (S-Wr) test program — written in Java and run

ning in Hadoop — takes over 50% of the processor to write data to disk in a similar 

fashion with equivalent bandwidth. That overhead comes from four places: Java, 

HDFS implementation, the local filesystem, and the filesystem page cache. While 

the first two overheads are inherent in the Hadoop implementation, the last two 

are not. 

As discussed in Chapter 2, the Hadoop DataNode uses a local filesystem to 

store data, and each HDFS block exists as a separate file in the native filesystem. 

While this method makes Hadoop simple to install and portable, it imposes a com

putation overhead that is present regardless of the specific filesystem used. The 

filesystem takes processor time to make data allocation and placement decisions. 

Similarly, the filesystem page cache consumes both memory resources and proces

sor time to manage cache allocation, deallocation, and copying of data into user 

buffers due to alignment restrictions. This overhead is not necessary for Hadoop, 

which already provides its own filesystem (HDFS) and whose streaming access 

pattern is unlikely to benefit from OS-provided caching. 
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To quantify the processor resources consumed by the filesystem and cache, a 

synthetic Java program was used to read and write 10GB files to disk in a stream

ing fashion using 128kB buffered blocks. This program is similar to the dd utility 

in UNIX, but does not access other file descriptors such as /dev/zero or /dev/null that 

make profile interpretation difficult. The test program incurs file access overheads 

imposed by Java but not any Hadoop-specific overheads. It was executed both on 

a raw disk and on a large file in the filesystem in order to compare the overhead 

of both approaches. The pmcstat utility was used to obtain callgraph profiles of 

the FreeBSD kernel during application execution. The UFS filesystem overhead 

is computed by examining the gathered kernel profiles and summing the cycles 

consumed by the ffsjreadO /ffsjwriteO functions (for the read test and write test, 

respectively) as well as the cycles consumed by all of their descendents in the call-

graph. 

As shown in Table 3.3, using a filesystem has a low processor overhead. When 

reading, 4.4% of the processor time was spent managing filesystem and file cache 

related functions, and while writing, 7.2% of the processor time was spent on the 

same kernel tasks. This overhead would be lower if additional or faster processors 

had been used for the experimental cluster, and higher if additional or faster disks 

were added to the cluster. 

A third class of performance bottlenecks is described next. These are caused by 

Hadoop's lack of control of the underlying operating system behavior. Instead of 
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Metric 

Bandwidth (MB/s) 
Processor (total) 
Processor (FS+cache) 

Read 
Raw 
99.9 
7.4% 
N/A 

Filesystem 
98.4 
13.8% 
4.4% 

Write 
Raw 
98.1 
6.0% 
N/A 

Filesystem 
94.9 
15.6% 
7.2% 

Table 3.3: Processor Overhead of Disk as Raw Device versus Disk with Filesystem 
and Page Cache (FS+cache) 

causing excessive processor utilization, these problems cause excessive disk seeks 

and on-disk fragmentation. 

3.5 Portability Assumptions 

A final class of performance bottlenecks exists in the Hadoop filesystem that 

we refer to as Portability Assumptions. Specifically, these bottlenecks exist because 

the HDFS implementation makes implicit assumptions that the underlying OS 

and filesystem will behave in an optimal manner for Hadoop. Unfortunately, I /O 

schedulers can cause excessive seeks under concurrent workloads, and disk alloca

tion algorithms can cause excessive fragmentation, both of which degrade HDFS 

performance significantly. These agents are outside the direct control of HDFS, 

which runs inside a Java virtual machine and manages storage as a user-level ap

plication. 

To identify disk seeks and fragmentation effects at the lowest levels of the sys

tem, the adstrategyO function in the FreeBSD kernel was instrumented to gather 

a block-level I/O trace of all storage requests issued. Several parameters of the 

I/O request were logged, including the transfer size, access type (read or write), 
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destination disk to distinguish between the system and HDFS disks, and logical 

block address (LBA) of the request. Each LBA number in the trace corresponds to 

a 512 byte sector on disk. Traces are saved in a 64k-entry kernel memory buffer, 

and then later dumped to disk via a control utility. After profiling a desired ap

plication, the traces are analyzed with a Python script to determine the amount 

of sequential versus random disk access, the run length of all sequential accesses, 

and the number of I/O operations per second. Sequential seeks are defined as the 

block strictly following the last request (accounting for its length, which can vary). 

Random seeks are classified as any seek that is not strictly sequential from the pre

vious access. The run length is simply the total length of all sequential accesses in 

a series terminating with a random seek. 

3.5.1 Scheduling 

HDFS performance degrades whenever the disk is shared between concurrent 

writers or readers. Excessive disk seeks occur that are counter-productive to the 

goal of maximizing overall disk bandwidth. This is a fundamental problem that 

affects HDFS running on all platforms. Existing I/O schedulers are designed for 

general-purpose workloads and attempt to share resources fairly between com

peting processes. In such workloads, storage latency is of equal importance to 

storage bandwidth; thus, fine-grained fairness is provided at a small granularity 

(a few hundred kilobytes or less). In contrast, MapReduce applications are almost 
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entirely latency insensitive, and thus should be scheduled to maximize disk band

width by handling requests at a large granularity (dozens of megabytes or more). 

To examine the impact of OS disk scheduling, a synthetic test program in 

Hadoop was used to write 10GB of HDFS data to disk in a sequential streaming 

manner using 64MB blocks. 1-4 copies of this application were run concurrently 

on each cluster node. Each instance writes data to a separate HDFS file, thus forc

ing the system to share limited I/O resources. The aggregate bandwidth achieved 

by all writers on a node was recorded, as shown in Figure 3.7(a). Aggregate band

width dropped by 38% when moving from 1 writer to 2 concurrent writers, and 

dropped by an additional 9% when a third writer was added. 

This performance degradation occurs because the number of seeks increases 

as the number of writers increases and the disk is forced to move between dis

tinct data streams. Eventually, non-sequential requests account for up to 50% of 

disk accesses, despite the fact that, at the application level, data is being accessed 

in a streaming fashion that should facilitate large HDFS-sized block accesses (e.g., 

64MB). Because of these seeks, the average sequential run length decreases dra

matically as the number of writers increases. What was originally a 4MB average 

run length decreases to less than 200kB with the addition of a second concurrent 

writer, and eventually degrades further to approximately 80kB. Such short sequen

tial runs directly impact overall disk I/O bandwidth, as seen in Figure 3.3. 

A similar performance issue occurs when HDFS is sharing the disk between 
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Figure 3.7: Impact of Concurrent Synthetic Writers and Readers on HDFS Drive 
Access Patterns 

concurrent readers. To demonstrate this, the same synthetic test program was 

used. First, a single writer was used per node to write 4 separate 10GB HDFS 

files. A single writer process creates data that is highly contiguous on disk, as 

shown by the negligible percentage of seeks in the previous 1-writer test. Then, 

1-4 concurrent synthetic reader applications were used per node to each read back 

a different file from disk. 

In this test, the aggregate bandwidth for all readers on a particular node was 

recorded, as shown in Figure 3.7(b). The aggregate bandwidth dropped by 18% 

when moving from 1 reader to 2 readers. This is because the number of seeks 
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increased as the number of readers increased, reaching up to 50% of total disk 

accesses. This also impacted the average run length before seeking, which dropped 

from over 4MB to well under 200kB as the number of concurrent readers increased. 

By default, the FreeBSD systems used for testing employed a simple elevator 

I/O scheduler. More sophisticated schedulers are available that aim to minimize 

seeks, such as the Anticipatory Scheduler. The Anticipatory Scheduler attempts to 

reduce seeks by waiting a short period after each request to see if further sequential 

requests are forthcoming [51]. If they are, the requests can be serviced without 

extra seeks; if not, the disk seeks to service a different client. 

To determine the effect of a more sophisticated scheduler on disk seeks, an an

ticipatory scheduler for FreeBSD was configured and tested using concurrent in

stances of the Hadoop synthetic writer and reader application. The new scheduler 

had no impact on the I/O bandwidth of the test programs. Profiling revealed that, 

for the read workload, the scheduler did improve the access characteristics of the 

drive. A high degree of sequential accesses (over 95%) and a large sequential run 

length (over 1.5MB) were maintained when moving from 1 to 4 concurrent readers. 

But, because the drive was often idle waiting on new read requests from the syn

chronous HDFS implementation, overall application bandwidth did not improve. 

Profiling also showed that the scheduler had no impact on the access characteris

tics of write workloads. This is expected because the filesystem block allocator is 

making decisions before the I/O scheduler. Thus, even if the anticipatory sched-
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uler waits for the next client request, it is often not contiguous in this filesystem 

and thus not preferred over any other pending requests. 

3.5.2 Fragmentation 

In addition to poor I/O scheduling, HDFS also suffers from file fragmentation 

when sharing a disk between multiple writers. The maximum possible file con

tiguity — the size of an HDFS block — is not preserved by the general-purpose 

filesystem when making disk allocation decisions. 

File fragmentation can be characterized by examining the on-disk metadata 

associated with each file and retrieving the exact disk placement. For the purposes 

of this work, however, the precise details of file fragmentation are less important 

than the overall impact of fragmentation on application-level disk bandwidth and 

disk seek rates. Both of these metrics can be measured using the infrastructure 

previously used to characterize concurrent disk accesses. 

To measure the impact of file fragmentation on a freshly formatted disk, 1-4 

synthetic writer applications were used per node to each create 10GB files, written 

concurrently. Next, a single synthetic reader application was used to read back 

one of the 1-4 files initially created. If the data on disk is contiguous, the single 

reader will be able to access it with a minimum of seeks and maintain high read 

bandwidth. As fragmentation increases, however, the amount of disk seeks will 

increase and the application bandwidth will decrease. 
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The results from this experiment are shown in Figure 3.8. Here, file fragmen

tation occurs whenever multiple writers use the disk concurrently. When the sin

gle reader accesses data written when only one writer was active, it receives high 

bandwidth thanks to a negligible percentage of random seeks, showing that the 

data was written to the disk in large contiguous blocks. However, when the reader 

accesses data written when 2 writers were active, read bandwidth drops by 30%. 

The cause of this drop is an increase in the number of random seeks, and a cor

responding decrease in the average sequential run length from over 4MB to ap-
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proximately 250kB. This trend continues when 3-4 concurrent writers were used, 

showing that files suffer from increasing fragmentation as the number of concur

rent writers is increased. The level of fragmentation here was produced by using a 

freshly formatted disk for each experiment. In a Hadoop cluster running for many 

months or years, the real-world disk fragmentation would likely be greater. 

The average run lengths shown in Figure 3.8 for the fragmentation test are al

most twice as long as the multiple writers test shown in Figure 3.7(a). This demon

strates that after a disk does a seek to service a different writer, it will sometimes 

jump back to the previous location to finish writing out a contiguous cluster. Un

fortunately, the filesystem used only attempts to maintain small clusters (128kB). 

As such, the overall level of on-disk file contiguity is still very low compared to 

what would be optimal for HDFS. 

3.6 Discussion 

As shown previously, concurrent readers and writers degrade the performance 

of the Hadoop filesystem. This effect is not a rare occurrence in cluster operation 

that can be disregarded. Concurrent disk access is found in normal operation be

cause of two key elements: multiple map/reduce processes and data replication. 

MapReduce is designed to allow computation tasks to be easily distributed 

across a large computer cluster. This same parallelization technique also allows 

the exploitation of multiple processor cores. In the cluster used for experimenta-



52 

tion, each node had 2 processors, and thus was configured to run 2 MapReduce 

processes concurrently. While 2 processes allowed the test suite to use more com

putation resources, the concurrent reads and writes created slowed the overall ap

plication execution time. Although it might be reasonable in this configuration 

to either install a second HDFS disk or run only 1 application process per node, 

this "solution" is not scalable when cluster nodes are constructed with processors 

containing 4, 8,16, or more cores. It is unreasonable to either install one disk per 

core or leave those cores idle — abandoning the parallelization benefits made pos

sible by the MapReduce programming style — to bypass performance problems 

caused by concurrent disk access. Further, Hadoop installations often deliberately 

oversubscribe the cluster by running more Map or Reduce tasks than there are pro

cessors or disks. This is done in order to reduce system idle time caused by high 

latency in scheduling and initiating new tasks as identified in Chapter 3.3. 

In addition to multiple computation processes, concurrent disk access can also 

arise due to HDFS data replication. As previously mentioned, clusters typically 

operate with a replication factor of 3 for redundancy, meaning that one copy of the 

data is saved locally, one copy is saved on another node in the same rack, and a 

third copy is saved on a node in a distant rack. But, writing data to disk from both 

local and remote programs causes concurrent disk accesses. 

The effect of a cluster replication factor of 2 on disk access patterns was tested. 

The results in Table 3.4 show that replication is a trivial way to produce concurrent 
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Metric 

Sequential % 
Non-Sequential % 
Avg. Sequential Run Length 

Synthetic 
Write 
77.9% 
22.1% 
275.2kB 

Synthetic 
Read 
70.3% 
29.7% 
176.8kB 

Table 3.4: Disk Access Characteristics for Synthetic Write and Read Applications 
with Replication Enabled 

access. The behavior of the synthetic writer with replication enabled is highly sim

ilar to the behavior of 2 concurrent writers, previously shown in Figure 3.7(a). The 

mix of sequential and random disk accesses is similar, as is the very small aver

age run length before seeking. Similar observations for the read test can be made 

against the behavior of 2 concurrent readers, previously shown in Figure 3.7(b). 

Thus, the performance degradation from concurrent HDFS access is present in ev

ery Hadoop cluster using replication. The final section in this chapter shows how 

these same problems are present in other platforms beyond FreeBSD. 

3.7 Other Platforms - Linux and Windows 

The primary results shown in this thesis used HDFS on FreeBSD 7.2 with the 

UFS2 filesystem. For comparison purposes, HDFS was also tested on Linux 2.6.31 

using the ext4 and XFS filesystems and Windows 7 using the NTFS filesystem. 

Here, multiple synthetic writers and readers were used to repeat the same tests 

described in Section 3.5.1 and Section 3.5.2. 

HDFS on Linux suffers from the same type of performance problems as on 

FreeBSD, although the degree varies by filesystem and test. A summary of test 
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results is shown in Figure 3.9 for both the ext4 and XFS filesystems. Previously-

reported results for FreeBSD using the UFS2 filesystem are also included for com

parison. The most important thing to observe with regards to the raw performance 

numbers is the higher disk bandwidth in Linux compared to FreeBSD. This is due 

solely to placement decisions made by the filesystem, as confirmed by instrument

ing the operating system. By default, the Linux filesystems start writing at the 

outer edge of the empty disk, yielding the highest bandwidth from the device as 

seen in Figure 3.2. In contrast, FreeBSD starts writing at the center of the disk, a re

gion that has lower bandwidth. Both of these placement decisions are reasonable, 

because as the disk eventually fills with data, the long-term performance average 

will be identical. Thus, what is important to observe in this filesystem comparison 

is not the absolute performance, but the change in performance as the number of 
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multiple writers and readers increases. 

Concurrent writes on Linux exhibited better performance characteristics than 

FreeBSD. For example, the ext4 filesystem showed a 8% degradation moving be

tween 1 and 4 concurrent writers, while the XFS filesystem showed no degrada

tion. This compares to a 47% drop in FreeBSD as originally shown in Figure 3.7(a). 

In contrast, HDFS on Linux had worse performance for concurrent reads than 

FreeBSD. The ext4 filesystem degraded by 42% moving from 1 to 4 concurrent 

readers, and XFS degraded by 43%, compared to 21% on FreeBSD as originally 

shown in Figure 3.7(b). Finally, fragmentation was reduced on Linux, as the ext4 

filesystem degraded by 8% and the XFS filesystem by 6% when a single reader 

accessed files created by 1 to 4 concurrent writers. This compares to a 42% degra

dation in FreeBSD, as originally shown in Figure 3.8. 

Hadoop in Windows 7 relies on the Cygwin Unix emulation layer to function. 

Disk write bandwidth was acceptable (approximately 60MB/s), but read band

width was very low (under 10MB/s) despite high disk utilization exceeding 90%. 

Although the cause of this performance degradation was not investigated closely, 

it is consistent with small disk I/O requests (2-4kB) instead of large requests (64kB 

and up). Because Hadoop has only received limited testing in Windows, this con

figuration is supported only for application development, and not for production 

uses [14]. All large-scale deployments of Hadoop in industry use Unix-like oper

ating systems such as FreeBSD or Linux, which are the focus of this thesis. 



CHAPTER 4 

Optimizing Local Storage Performance 

As characterized in Chapter 3, the portable implementation of Hadoop suffers 

from a number of bottlenecks in the software stack that degrade the effective band

width of the HDFS storage system. These problems include: 

Task Scheduling and Startup — Hadoop applications with large numbers of 

small tasks (such as the search and sort benchmarks) suffer from poor overall disk 

utilization, as seen in Section 3.3. This is due to delays in notifying the JobTracker 

of the previous task completion event, receiving a new task, and starting a new 

JVM instance to execute that task. During this period, disks sit idle, wasting stor

age bandwidth. 

Disk scheduling — The performance of concurrent readers and writers suffers 

from poor disk scheduling, as seen in Section 3.5.1. Although HDFS clients access 

massive files in a streaming fashion, the framework divides each file into multiple 

HDFS blocks (typically 64MB) and smaller packets (64kB). The request stream ac

tually presented to the disk is interleaved between concurrent clients at this small 

granularity, forcing excessive seeks and degrading bandwidth, and negating one 

56 
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of the key potential benefits that a large 64MB block size would have in optimizing 

concurrent disk accesses. 

Filesystem allocation — In addition to poor I/O scheduling, HDFS also suf

fers from file fragmentation when sharing a disk between multiple writers. As 

discussed in Section 3.5.2, the maximum possible file contiguity — the size of an 

HDFS block — is not preserved by the general-purpose filesystem when disk allo

cation decisions are made. 

Filesystem page cache overhead — Managing a filesystem page cache imposes 

a computation and memory overhead on the host system, as discussed in Sec

tion 3.4. This overhead is unnecessary because the streaming access patterns of 

MapReduce applications have minimal locality that can be exploited by a cache. 

Further, even if a particular application did benefit from a cache, the page cache 

stores data at the wrong granularity (4-16kB pages vs 64MB HDFS blocks), thus 

requiring extra work to allocate memory and manage metadata. 

To improve the performance of HDFS, there are a variety of architectural im

provements that could be used. In this section, portable solutions are first dis

cussed, followed by non-portable solutions that could enhance performance fur

ther at the expense of compromising a key HDFS design goal. 
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4.1 Task Scheduling and Startup 

There are several methods available to reduce the delays inherent in issuing 

and starting new tasks in the Hadoop framework, and their impact on applica

tion performance is evaluated here. These include decreasing the heartbeat inter

val at which the JobTracker is contacted, re-using the JVM for multiple tasks, and 

processing more than a single HDFS block with each task. All these changes are 

portable and would function effectively across all Hadoop host platforms. 

Fast Heartbeat — Each TaskTracker periodically contacts the JobTracker with 

a heartbeat message to report its current status and any recently completed tasks, 

and request new tasks if work is available. By default, the polling interval is stat

ically set by the JobTracker as either 3 seconds, or 1 second per 100 nodes in the 

cluster, whichever is larger. This allows the per-node heartbeat interval to increase 

on large clusters in an attempt to prevent the JobTracker from being swamped with 

too many messages. To examine the relationship between heartbeat interval and 

application performance, the interval was decreased to a fixed 0.3 seconds. This 

decreased task scheduling latency at the cost of increasing JobTracker processor 

load. For the small cluster size used in these experiments, there was no apprecia

ble increase in JobTracker resource utilization. 

JVM Reuse — By default, Hadoop starts a new Java Virtual Machine (JVM) 

instance for each task executed by the TaskTracker. This provides several benefits 

in terms of implementation convenience. With separate JVMs, it is easier to at-
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tach log files to the standard output and error streams and prevent spurious writes 

from subsequent tasks. Further, separate JVMs provide stronger memory isolation 

between subsequent tasks. It is easy to guarantee that a task will have a full com

plement of memory available to it if the JVM used for the previous task has been 

killed and re-launched. It is harder to ensure that all memory from a potentially 

misbehaved task has been completely freed. Although this default choice simpli

fied the implementation of the Hadoop framework, it incurs processor overhead 

with every new task and consequently delays application execution. Here, the con

figuration of Hadoop is modified to start a new JVM instance for every job, where 

a job can consist of hundreds or thousands of individual tasks per node. For the 

well-behaved applications used in the test suite, this change caused no reliability 

problems. 

Large Tasks — When splitting a large input file into pieces to be processed by 

individual compute node, Hadoop by default splits the file into HDFS block-sized 

chunks (64MB), each of which is processed by an independent map task. Thus, it 

is common to run thousands of tasks to accomplish a single job. Here, that default 

is modified to assign up to 5GB of input data to a single task, thereby reducing the 

number of tasks and the amortizing the latency inherent in issuing each task across 

a larger amount of productive work. 

The individual contribution of each of these changes is shown in Figure 4.1 for 

the search benchmark, along with the default and combined performance. In this 
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figure, the percent labels on top of each bar represent the HDFS disk utilization, or 

the percent of time that the HDFS disk had at least 1 request outstanding. 

As shown in the figure, adjusting the polling interval for new tasks increased 

search performance by 11%, although disk utilization was still only 38%. Re-using 

the JVM between map tasks increased search performance further, yielding a 27% 

improvement over the default configuration. Making each map task process 5GB 

of data instead of 64MB before exiting improved search performance by 37% and 

boosted disk utilization to over 68%. Finally, combining all three changes im

proved performance by 46% and increased HDFS disk utilization to 97%. 

The cumulative impact of these optimizations is shown for the simple search 

benchmark in Figure 4.2. Here, the disk and processor utilization over time are 

monitored. The behavior of the search benchmark compares favorably against the 

unoptimized original behavior shown in Figure 3.4. Previously, the HDFS disk was 
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Figure 4.2: Optimized Simple Search Processor and Disk Utilization (% of Time 
Disk Had 1 or More Outstanding Requests) 

used in a periodic manner with frequent periods of idle time. Now, the HDFS disk 

is used in an efficient streaming manner with near 100% utilization. The average 

processor overhead is higher, as expected, due to the much higher disk bandwidth 

being managed. 

These specific changes to improve Hadoop task scheduling and startup impose 

tradeoffs, and may not be well suited to all clusters and applications. Many other 

design options exist, however, to eliminate the bottlenecks identified here. For ex

ample, increasing the heartbeat rate increases the JobTracker processor load, and 

will limit the ultimate scalability of the cluster. Currently, Hadoop increases the 

heartbeat interval as cluster size increases according to a fixed, conservative for

mula. The framework could be modified, however, to set the heartbeat dynami

cally based on the current JobTracker load, thus allowing for a faster heartbeat rate 

to be opportunistically used without fear of saturating the JobTracker node on a 
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continuous basis. As another example, re-using JVM instances may imposes long-

term reliability problems. The Hadoop framework could be modified, however, 

to launch new JVM instances in parallel with requesting new task assignments, 

instead of serializing the process as in the current implementation. Finally, as a 

long-term solution, if task scheduling latency still imposes a performance bottle

neck in Hadoop, techniques to pre-fetch tasks in advance of when there are needed 

should be investigated. The combined performance improvements shown in this 

section can be considered the best-case gains for any other architectural changes 

made to accelerate Hadoop task scheduling. 

Improving Hadoop task scheduling and startup can improve disk utilization, 

allowing storage resources to be used continuously and intensely. Next, disk-level 

scheduling is optimized in order to ensure that the disk is being used efficiently, 

without excessive fragmentation and unnecessary seeks. 

4.2 HDFS-Level Disk Scheduling 

A portable way to improve disk scheduling and filesystem allocation is to mod

ify the way HDFS batches and presents storage requests to the operating system. 

In the existing Hadoop implementation, clients open a new socket to the DataN-

ode to access data at the HDFS block level. The DataNode spawns one thread 

per client to manage both the disk access and network communication. All ac

tive threads access the disk concurrently. In a new Hadoop implementation using 
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HDFS-level disk scheduling, the HDFS DataNode was altered to use two groups 

of threads: a set to handle per-client communication, and a set to handle per-disk 

file access. Client threads communicate with clients and queue outstanding disk 

requests. Disk threads — each responsible for a single disk — choose a storage 

request for a particular disk from the queue. Each disk management thread has 

the ability to interleave requests from different clients at whatever granularity is 

necessary to achieve full disk bandwidth — for example, 32MB or above as shown 

in Figure 3.3. In the new configuration, requests are explicitly interleaved at the 

granularity of a 64MB HDFS block. From the perspective of the OS, the disk is 
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Figure 4.4: Impact of HDFS-Level Disk Scheduling on Data Fragmentation 

accessed by a single client, circumventing any OS-level scheduling problems. The 

previous tests were repeated to examine performance under multiple writers and 

readers. The results are shown in Figure 4.3(a) and Figure 4.3(b). 

Compared to the previous concurrent writer results in Figure 3.7(a), the im

proved results shown in Figure 4.3(a) are striking. What was previously a 38% 

performance drop when moving between 1 and 2 writers is now a 8% decrease. 

Random seeks have been almost completely eliminated, and the disk is now con

sistently accessed in sequential runs of greater than 6MB. Concurrent readers also 

show a similar improvement when compared against the previous results in Fig-
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ure 3.7(b). In addition to improving performance under concurrent workloads, 

HDFS-level disk scheduling also significantly decreased the amount of data frag

mentation created. Recall that, as shown in Figure 3.8, files created with 2 concur

rent writers were split into fragments of under 300kB. However, when re-testing 

the same experiment with the modified DataNode, the fragmentation size ex

ceeded 4MB, thus enabling much higher disk bandwidth as shown in Figure 4.4. 

HDFS-level scheduling also has performance benefits in operating systems 

other than FreeBSD. Recall from Figure 3.9 that in Linux using the ext4 filesystem, 

HDFS performance degraded by 42% moving from 1 to 4 concurrent readers. Run

ning the same synthetic writer and reader experiments with HDFS-level schedul

ing enabled greatly improved performance, as shown in Figure 4.5. In all three 

test scenarios — multiple writers, multiple readers, and fragmentation — HDFS 

throughput degraded by less than 3% when moving between 1 and 4 concurrent 

clients. 

Although this portable improvement to the HDFS architecture improved per

formance significantly, it did not completely close the performance gap. Although 

the ideal sequential run length is in excess of 32MB, this change only achieved 

run length of approximately 6-8MB, despite presenting requests in much larger 

64MB groups to the operating system for service. To close this gap completely, 

non-portable techniques are needed to allocate large files with greater contiguity 

and less metadata. 
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Figure 4.5: Impact of HDFS-Level Disk Scheduling on Linux ext4 Filesystem 

4.3 Non-Portable Optimizations 

Some performance bottlenecks in HDFS, including file fragmentation and cache 

overhead, are difficult to eliminate via portable means. A number of non-portable 

optimizations can be used if additional performance is desired, such as delivering 

usage hints to the operating system, selecting a specific filesystem for best perfor

mance, bypassing the filesystem page cache, or removing the filesystem altogether. 

OS Hints — Operating-system specific system calls can be used to reduce disk 

fragmentation and cache overhead by allowing the application to provide "hints" 

to the underlying system. Some filesystems allow files to be pre-allocated on disk 

without writing all the data immediately. By allocating storage in a single opera

tion instead of many small operations, file contiguity can be greatly improved. As 

an example, the DataNode could use the Linux-only fallocateO system call in con-
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junction with the ext4 or XFS filesystems to pre-allocate space for an entire HDFS 

block when it is initially created, and later fill the empty region with application 

data. In addition, some operating systems allow applications to indicate that cer

tain pages will not be reused from the disk cache. Thus, the DataNode could also 

use the posixjadvise system call to provide hints to the operating system that data 

accessed will not be re-used, and hence caching should be a low priority. The third-

party jposix Java library could be used to enable this functionality in Hadoop, but 

only for specific platforms such as Linux 2.6 / AMD64. 

Filesystem Selection — Hadoop deployments could mandate that HDFS be 

used only with local filesystems that provide the desired allocation properties. For 

example, filesystems such as XFS, ext4, and others support extents of varying sizes 

to reduce file fragmentation and improve handling of large files. Although HDFS 

is written in a portable manner, if the underlying filesystem behaves in such a 

fashion, performance could be significantly enhanced. Similarly, using a poor local 

filesystem will degrade HDFS. 

Cache Bypass — In Linux and FreeBSD, the filesystem page cache can be by

passed by opening a file with the OJDIRECT flag. File data will be directly trans

ferred via direct memory access (DMA) between the disk and the user-space buffer 

specified. This will bypass the cache for file data (but not filesystem metadata), 

thus eliminating the processor overhead spent allocating, locking, and deallocat

ing pages. While this can improve performance in HDFS, the implementation is 
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non-portable. Using DMA transfers to user-space requires that the application 

buffer is aligned to the device block size (typically 512 bytes), and such support is 

not provided by the Java Virtual Machine. The Java Native Interface (JNI) could 

be used to implement this functionality as a small native routine (written in C or 

C++) that opens files using O-DIRECT. The native code must manage memory al

location (for alignment purposes) and deallocation later, as Java's native garbage 

collection features do not extend to code invoked by the JNI. Implementing this 

in the DataNode architecture might be challenging, but it would only need to be 

implemented once, and then all Hadoop applications would benefit from the im

proved framework performance. 

Local Filesystem Elimination — To maximize system performance, the HDFS 

DataNode could bypass the OS filesystem entirely and directly manage file allo

cation on a raw disk or partition, in essence replacing the kernel-provided filesys

tem with a custom application-level filesystem. This is similar to the idea of a 

user-space filesystem previously discussed in Section 2.4.3. A custom filesystem 

could reduce disk fragmentation and management overhead by allocating space 

at a larger granularity (e.g. at the size of an HDFS block), allowing the disk to 

operate in a more efficient manner as shown in Figure 3.3. 

To quantify the best-case improvement possible with this technique, assume 

an idealized on-disk filesystem where only 1 disk seek is needed to retrieve each 

HDFS block. Because of the large HDFS block sizes, the amount of metadata 
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needed is low and could be cached in DRAM. In such a system, the average run 

length before seeking should be 64MB, compared with the 6MB runs obtained with 

HDFS-level scheduling on a conventional filesystem (See Figure 4.3). On the test 

platform using a synthetic disk utility, increasing the run length from 6MB to 64MB 

improves read bandwidth by 16MB/s and write bandwidth by 18MB/s, a 19% 

and 23% improvement, respectively. Using a less optimistic estimate of the custom 

application-level filesystem efficiency, even increasing the run length from 6MB to 

16MB will improve read bandwidth by 14 MB/s and write bandwidth by 15 MB/s, 

a 13% and 19% improvement, respectively. 

One way to achieve a similar performance gain while still keeping a traditional 

filesystem is to add a small amount of non-volatile flash storage to the system, and 

partition the filesystem such that the flash memory is used to store metadata and 

the spinning disk is reserved solely for large, contiguous HDFS blocks. This idea 

has been explored by Wang et al. who made the observation that, of all the pos

sible data that would benefit from being saved in faster memory than a spinning 

disk, metadata would benefit the most [80]. To that end, they proposed a system 

called Conquest that improved storage performance by separating the filesystem 

metadata from the actual data and storing both on separate devices. In their sys

tem, metadata (and small data files) were stored solely on battery-backed mem

ory, while the data portions of large files remained stored on disk. Their work 

shared some similarities with the preceding HeRMES architecture that coupled a 
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disk with a magnetic RAM, which, like flash memory, is non-volatile [59]. Both de

signs were created for general-purpose computing with a mix of small and large 

files (the same file mix for traditional filesystems), and as such can be optimized 

for DC-style data storage. Further, the memory technologies used by both exam

ples have different usage requirements than modern flash memory. For example, 

storing metadata in flash memory instead of battery-back RAM might require a 

different design (such as a log structure), due to the block-erasure requirement of 

flash memory that makes in-place writes very slow compared to random reads. 

4.4 Conclusions 

In the previous chapter, the interactions between Hadoop and storage were 

characterized in detail. The performance impact of HDFS is often hidden from 

the Hadoop user. While Hadoop provides built-in functionality to profile Map 

and Reduce task execution, there are no built-in tools to profile the framework 

itself, allowing performance bottlenecks to remain hidden. User-space monitoring 

tools along with custom kernel instrumentation were used to gain insights into the 

black-box operation of the HDFS engine. 

Although user applications or the MapReduce programming model are typi

cally blamed for poor performance, the results presented showed that the Hadoop 

framework itself can degrade performance significantly. Hadoop is unable in 

many scenarios to provide full disk bandwidth to applications. This can be caused 
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by delays in task scheduling and startup, or fragmentation and excessive disk 

seeks caused by disk contention under concurrent workloads. The achieved per

formance depends heavily on the underlying operating system, and the algorithms 

employed by the disk scheduler and allocator. 

In this section, techniques to improve Hadoop performance using the tradi

tional local storage architecture were evaluated. HDFS scheduler performance can 

be significantly improved by increasing the heartbeat rate, enabling JVM reuse, 

and using larger tasks to amortize any remaining overhead. Although these spe

cific techniques may involve tradeoffs depending on cluster size and applica

tion behavior, the performance gains show the benefits possible with improved 

scheduling, and motivate future work in this area. Further, HDFS performance un

der concurrent workloads can be significantly improved through the use of HDFS-

level I/O scheduling while preserving portability. Additional improvements by 

reducing fragmentation and cache overhead are also possible, at the expense of 

reducing portability. All of these architectural improvements boost application 

performance by improving node efficiency, thereby allowing more computation to 

be accomplished with the same hardware. 



CHAPTER 5 

Storage Across a Network 

The field of enterprise-scale storage has a rich history, both in terms of research 

and commercial projects. Remote storage architectures have been created for a va

riety of network configurations, including across a wide-area network (WAN) with 

high latency links, across a local-area network (LAN) shared with application data, 

and across a storage-area network (SAN) used solely for storage purposes. Further, 

previous research has introduced several models for network-attached disks with

out the overhead of a traditional network file server. These architectures share a 

common element in that clients access storage resources across a network, and not 

from directly attached disks, as done by Hadoop in its traditional local-storage de

sign. Here, a number of existing network storage architectures are described and 

compared to the proposed remote-storage HDFS design presented in this thesis. 

In addition, existing data replication and load balancing strategies are described 

and related to the methods used by HDFS. These ensure reliability and high per

formance by exploiting the flexibility offered by network-based storage. 
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5.1 Wide Area Network 

For clients accessing storage across a WAN such as the Internet, a variety of 

solutions have been developed. These systems - often referred to as storage clouds 

- can be divided into two categories: datacenter-oriented and Internet-oriented. 

Datacenter oriented solutions are exemplified by systems such as Sector [46] and 

Amazon's Simple Storage Service (S3) [66]. They are typically administered by 

a single entity and employ a collection of disks co-located in a small number of 

datacenters interconnected by high-bandwidth links. Clients access data in the 

storage cloud using unique identifiers that refer to files or blocks within a file, and 

are not aware of the physical location of the data inside the datacenter. To a client, 

the storage cloud is simply one large disk. Storage clouds and HDFS are similar in 

that both present an abstraction of a huge disk, and both use unique identifiers to 

access blocks within a file. But, in both the traditional local Hadoop architecture, 

and in the proposed remote-storage architecture, HDFS clients are aware of the 

location of data in the datacenter, and must contact the specific DataNode in order 

to retrieve it. 

In contrast to this datacenter-driven approach, Internet-based distributed peer-

to-peer storage solutions have also been developed. Examples of this architecture 

include OceanStore [55], the Cooperative File System (CFS) [33], and PAST [73]. In 

these systems, a collection of servers collaborate to store data. These servers are not 

co-located in a datacenter, but are instead randomly distributed across the Internet. 
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Client nodes choose storage nodes via distributed protocols such as hashing file 

identifiers, and are typically fully exposed to storage architecture concerns such as 

the physical location of the data being accessed. Implementations of these peer-

to-peer storage systems differ in details, such as whether the storage servers are 

trusted [33] or untrusted [55],whether access is provided at the block level [33] or 

file level [73], and whether erasure coding [55] or duplication is used to provide 

data replication. Some peer-to-peer file systems have similarities with the global 

file system provided by the Hadoop framework. For example, CFS provides a 

read-only file system [33], while PAST provides "immutable" files [73]. Both of 

these have similar access semantics to the write-once, read-many architecture of 

HDFS. 

To reduce the performance impact of accessing storage resources via a high 

latency WAN, a number of different techniques have been developed. These in

clude employing parallel TCP streams between client and server [20], perform

ing disk access and network I/O in parallel instead of sequentially on the stor

age server [24], and employing asynchronous I/O operations on clients to decou

ple computation and I/O access [21]. These techniques are valuable for Hadoop, 

even when accessing data across a low-latency network. They are partially but not 

consistently implemented in the existing HDFS framework. In addition to these 

optimizations for WAN access, aggressive client-side caching is often applied to 

frequently accessed files to entirely bypass the network access. Caching effective-
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ness is dependent on data reuse frequency and the size of the working set. In 

data-intensive computing applications, however, files are accessed in a streaming 

fashion and either not reused at all, or reused only with huge working sets. Thus, 

client-side caching is not traditionally employed in file systems for MapReduce 

clusters [42], and it is not proposed for the remote storage architecture either. 

In the case of the traditional Hadoop architecture or the new proposed remote 

architecture, all storage resources are co-located within the confines of a single 

datacenter, or even within a few racks in the same datacenter. Thus, it is similar to 

other related work that focuses on storage interconnected by a low-latency, high-

bandwidth enterprise network. 

5.2 Local Area Network 

In contrast to storage clouds operating across wide area networks such as the 

Internet, other storage architectures have been developed to operate across a low-

latency datacenter LAN shared with application-level traffic. Lee et al. developed 

a distributed storage system called Petal that uses a collection of disk arrays to 

collectively provide large block-level virtual disks to client machines via an RPC 

protocol [56]. Because co-locating disks across a low latency LAN allows for tighter 

coupling between storage servers and performance that is less sensitive to network 

congestion or packet loss, Petal is able to hide the physical layout of the storage 

system from clients and simply present a virtual disk interface. A simple master-
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slave replication protocol is used to distribute data for redundancy and to allow 

clients to load-balance read requests, although the protocol is vulnerable to net

work partitioning. In contrast to Petal, Hadoop exploits the low-latency network 

to simplify the storage system implementation. A centralized NameNode service 

is used for convenience. This service must be queried for every file request to ob

tain a mapping between file name and the blocks (and storage locations) making 

up that file, and its response time directly impacts file access latency. 

Storage architectures in the datacenter do not need to rely on traditional server-

class machines with high-power processors and many disks per chassis. Saito et 

al. proposed a system that uses commodity processors, disks, and Ethernet net

works tied together with software to provide a storage service [75]. Although the 

philosophy of using commodity parts is similar to Hadoop and other MapReduce 

frameworks, this architecture does not co-locate storage with computation. Stor

age is an independent service. In this system, a large numbers of small storage 

"bricks" (nodes containing a commodity processor, disk, NVRAM, and a network 

interface) running identical control software are combined in a single datacenter 

to form a "Federated Array of Bricks". The control software is responsible for pre

senting a common storage abstraction (such as iSCSI) to clients. To access the array, 

clients pick a brick at random to communicate with. That brick is responsible for 

servicing all requests received, but will often have to proxy data that is not stored 

locally. An erasure coding system using voting by bricks is employed so that the 



77 

system can tolerate failed bricks, overloaded bricks, or network partitioning. This 

erasure-coding algorithm was redesigned in a subsequent work to be fully decen

tralized [41]. Although the control software was designed for use in a datacenter, 

the concept of a small storage "brick" would work equally well across a WAN. 

The "brick" architecture described comes close, in many ways, to the proposed 

design for remote storage in Hadoop that will be described fully in Chapter 7. It 

shares a common vision for decoupling storage and computation resources in the 

cluster, and using lightweight storage nodes to present a common abstraction to 

the clients of a unified pool of storage. Where it differs is in terms of software ar

chitecture. DataNodes in Hadoop do not proxy data on behalf of clients - the client 

must contact the desired DataNode direct and request blocks. (In Hadoop, DataN

odes do proxy data for client write requests, but only as part of the replication 

process). Further, there is no erasure coding or voting in the Hadoop architecture. 

Fault tolerance is provided by full data replication as directed by the NameNode, 

a centralized master controller. 

The final traditional type of remote storage architecture, like the local-area net

work designs described previously, functions over a low-latency network. Unlike 

before, however, this network is dedicated to storage traffic only, enabling the use 

of proprietary designs optimized specifically for storage workloads. 
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5.3 Storage Area Network 

Storage systems for cluster computers are commonly implemented across dedi

cated storage area networks. These storage area networks traditionally use propri

etary interconnect technology such as Fibre Channel, or special protocols such as 

iSCSI over more conventional IP networks. Regardless, in a storage area network, 

disks are accessed via a dedicated network that is isolated from application-level 

traffic. This means that compute nodes must either have an additional network 

interface to communicate with the storage network, or gateway servers must be 

utilized to translate between the storage network (using storage protocols) and the 

application network (using standard network file system protocols). MapReduce 

clusters are the only modern example of a large-scale computing system that does 

not employ network-based storage, and instead tightly couples computation and 

storage. 

As distinguished from these conventional approaches, a non-traditional stor

age area network architecture was proposed by Hospodor et al [49]. In this system, 

a petabyte-scale storage system is built from a collection of storage nodes. Each 

node is a network-accessible disk exporting an object-based file system, and is 

joined with a 4-12 port gigabit Ethernet switch. By adding a switch to the existing 

smart disk architecture, many different network topologies can be realized with a 

variety of cost/performance tradeoffs. This network is dedicated for storage traffic 

only, and was not designed to be shared with application data. Further research 
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on this system focused on improving system reliability in the case of failure [39]. 

Storage area networks have been rejected for use in traditional MapReduce 

clusters (using a local storage architecture) due to their reliance on expensive, pro

prietary technologies. By eliminating the expensive SAN entirely, clusters built on 

a framework such as Hadoop decrease administrative overhead inherent in man

aging two separate networks, and also achieve a much lower per-node installation 

cost. The number of NICs, cables, and switches have all been reduced, lower

ing costs for installation, management, power, and cooling. MapReduce clusters 

can be constructed entirely out of commodity processors, disks, network cards, 

and switches that are available at the lowest per-unit cost. Thus, a larger number 

of compute nodes can be provisioned for the same cost as the architecture built 

around a SAN. The same logic holds true for the remote storage architecture pro

posed here for Hadoop, which also rejects the use of a dedicated SAN. Although 

a remote architecture necessitates more network ports, both storage and cluster 

traffic are designed to run across the same network. 

In the field of network-based storage, regardless of the exact network topology 

used (i.e., WAN, LAN, or SAN), an ongoing question is: what is the desired divi

sion of work between compute resources and storage resources? Should storage 

nodes be lightweight, or is there value in giving them more processing power? 
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5.4 Network Disks and Smart Disks 

Disks do not have to be placed in conventional file servers in order to be ac

cessed across a network. A number of "network disk" or "smart disk" architec

tures to transform disks into independent entities have been previously described, 

with many variations. These fall into two main categories: adding a network inter

face to a remote disk for direct access, and adding a processor to a locally-attached 

disk to offload application computation. Some proposals combine elements of both 

approaches to add processing and network capabilities to disks that are located re

motely. 

In the category of networked disks, Gibson et ah proposed directly attaching 

storage (disks) to the network through the use of the embedded disk controller. 

They referred to such devices as "network attached storage devices" or "network 

attached secure disks", depending on whether the emphasis was on storage or 

security. This architecture supports direct device to client transfers, without the 

use of a network server functioning as an intermediary (as in a traditional storage-

area network architecture) [45, 44]. This work built upon previous research by 

Anderson et ah who proposed one of the first examples of a serverless network file 

system [23]. In such a system, any client can access block storage devices across the 

network at any time without needing to communicate with a centralized controller 

first. All the clients communicate as peers. This lightweight storage device would 

make an ideal platform for remote storage in a Hadoop cluster, provided that the 
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network attached storage devices could be manufactured cheaply enough to be 

cost competitive with simply placing disks in a commodity server. Regardless, 

it serves as an example of how lightweight systems can still effectively provide 

network storage resources. 

In the category of smart disks, a number of designs have proposed making 

disks intelligent ("active") to process large data sets [19, 72, 54, 31, 68]. In these 

architectures, disks are outfitted with processing and memory resources and a 

programming model is used to offload application-specific computation from the 

general-purpose client nodes. This is similar to the current DC concept of mov

ing computation to the data, but instead of putting disks in the compute nodes, it 

places compute nodes (in some embedded form with limited capabilities) in the 

disk itself. In these architectures, there are often two layers of computation: com

putation performed at the disk (in a batch-processing manner), and computation 

performed at dedicated compute nodes (in a general-purpose manner). Compu

tation is done at the disk to reduce the amount of data that must be moved to the 

compute nodes, thus reducing network bottlenecks in the cluster. 

Smart disks do not have to be restricted to only using general-purpose proces

sors. Netezza is an example of a commercial smart-disk product that uses FPGAs 

to filter data. In this architecture, an FPGA, processor, memory, and gigabit Ether

net NIC are co-located with a disk [34]. The FPGA servers as a disk controller, but 

also allows queries (filters) to be programmed into it. Data is streamed off the disk 
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and through the FPGAs, and any data that satisfies the queries is then directed to 

the attached processor and memory for further processing. After processing in the 

local unit, data can be sent across the Ethernet network to clients. 

As an example of combining both network disk and smart disk features, sev

eral architectures have proposed exploiting the computation power of networked 

smart disk to provide an object-based interface to storage instead of a block-

based interface [60, 40]. These "object-based storage device" (OSD) systems can 

be thought of as another form of "active disk", where disk computation resources 

are used for application purposes. In this case, the disk is now responsible for 

managing data layout. This provides opportunities for tighter coupling with soft

ware stack, as many parallel file systems already represent data as objects. Such 

opportunities also exist in HDFS regardless of whether it is accessed locally or 

remotely. The DataNode service exports data at the HDFS block level, which is 

independent of the physical arrangement of data on the disk. Thus, several disks 

can be managed by a single DataNode as a single storage unit. 

5.5 Data Replication 

For data-intensive computing applications, the reliability of the storage system 

is of high importance. Data written to the storage system is commonly replicated 

across multiple disks to decrease the probability of data loss and enable load bal

ancing techniques for read requests (discussed in the subsequent section). There 
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are many methods that can be used to determine where replicated data should be 

written to, for both wide-area networks and local-area networks. 

For storage systems spanning wide-area networks, data can be written to ran

dom nodes to ensure an even distribution of storage traffic. This is the method 

employed by CFS, a peer-to-peer, read-only file system. In CFS, blocks are placed 

on random servers in the network, without regard to performance concerns. Such 

servers are adjacent in terms of a distributed hash ring for implementation conve

nience, but this translates to random nodes in terms of physical location. The first 

storage server is responsible for ensuring that sufficient active replicas are main

tained at all times [33]. In addition to random placement, replicas can be placed 

so that overall latency from client to storage nodes is minimized. A generalized 

framework for this is proposed in [28]. In addition to latency, peer-to-peer file sys

tems can also use scalar metrics such as the number of IP routing hops, bandwidth, 

or geographic distance [73]. 

Storage systems that are limited to a single datacenter may be less concerned 

about available bandwidth or access latency than systems spanning a wide-area 

network. Instead, datacenter-based storage systems typically focus on the current 

load on the storage servers when determining where to place or relocate repli

cas [58], thereby reducing imbalances across the cluster. A number of techniques 

have been employed to share information about current storage system load and 

decide optimal placement strategies, including as chained-declustering [56] and 
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5.6 Load Balancing 

In a storage system containing replicated copies of data, load balancing tech

niques are frequently employed to distribute read requests across multiple disks 

to reduce hot spots and improve overall storage bandwidth for popular files. Load 

balancing techniques have previously been proposed in two major categories: cen

tralized architectures where a server or other network device is used to balance re

quests to a number of (slave) disks, and distributed architectures where the clients 

balance their requests without benefit of centralized coordination. 

Centralized load balancing techniques have been proposed for both content 

servers and storage servers, and can function in a generalized fashion. In such sys

tems, a front-end server distributes requests to a collection of back-end servers 

based on the content being requested and the current load of each back-end 

server [65]. By balancing based on the content being requested, cache effective

ness can be improved, and back-end servers specialized towards specific types of 

content. 

Such centralized load balancing need not be limited to a centralized "server" in 

the traditional sense, as other network devices could play a similar role. Anderson 

et al. proposed a load-balancing architecture where a switching filter is installed 

in the network path between client and network-attached disks [22]. This filter is 
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part of the network itself (for example, a switch or NIC) and is responsible for in

tercepting storage requests, decoding their content, and transparently distributing 

the requests across all storage systems downstream. The client only sees a single 

storage system accessed at some virtual network address. 

In contrast to these centralized techniques, distributed architectures are possi

ble where the clients automatically load balance their requests across a collection 

of storage resources. Wu et al. introduced a distributed client-side hash-based 

technique to dynamically load-balance client requests to remote distributed stor

age servers with replicated (redundant) data on a LAN [83]. In this scheme, clients 

are aware of the existence of multiple copies of replicated data, and choose be

tween the available replicas. This architecture is useful primarily for disks located 

on the same LAN, where network latency is low and essentially uniform, and the 

benefit gained by accessing a lightly loaded disk is high. When disks are located 

across a WAN, or when the network is congested, then network latency can domi

nate the disk latency, making it more efficient overall to simply use the closest disk 

network-wise [83]. 

A distributed approach to load balancing does not have to be done with storage 

clients, however. Lumb et al. proposed an architecture where a collection of net

worked disks (referred to as "bricks") collaborate to distribute reads requests [57]. 

In this system, each brick is a unit consisting of a few disks, processor, and memory 

for caching. Each brick receives all write and read requests. Writes are committed 
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to every disk to provide replication, and one brick also caches the write in RAM. 

Reads are received by every brick, and only the brick with cached data "claims" the 

request and services it. If the requested data is not currently cached by any brick, 

the request is placed in a queue and then a distributed shortest-positioning-time-

first (D-SPTF) algorithm is used to pick queue entries to service and thus balance 

load. For storage networks with low latencies (10-200us), this distributed algo

rithm performed equivalently to load balancing on a centralized storage server 

with locally attached disks [57]. 



CHAPTER 6 

The Case for Remote Storage 

The MapReduce programming model, as implemented by Hadoop, is increas

ingly popular for data-intensive computing workloads such as web indexing, data 

mining, log file analysis, and machine learning. Hadoop is designed to marshal 

all of the storage and computation resources of a large dedicated cluster computer. 

It is this very ability to scale to support large installations that has enabled the 

rapid spread of the MapReduce programming model among Internet service firms 

such as Google, Yahoo, and Microsoft. In 2008, Yahoo announced it had built the 

largest Hadoop cluster to date, with 30,000 processor cores and 16PB of raw disk 

capacity [6]. 

While the Internet giants have the application demand and financial resources 

to provision one or more large dedicated clusters solely for MapReduce computa

tion, they represent only a rarefied point in the design space. There are a myriad 

of smaller firms that could benefit from the MapReduce programming model, but 

do not wish to dedicate a cluster computer solely to its operation. In this market, 

MapReduce computation will either be lightweight — consuming only a fraction 
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of all nodes in the cluster — or intermittent — consuming an entire cluster, but only 

for a few hours or days at a time, or both. MapReduce will share the cluster with 

other enterprise applications. To capture this new market and bring MapReduce 

to the masses, Hadoop needs to function efficiently in a heterogeneous datacenter 

environment where it is one application among many. 

Modern datacenters often employ virtualization technology to share comput

ing resources between multiple applications, while at the same time providing 

isolation and quality-of-service guarantees. In a virtualized datacenter, applica

tion images can be loaded on demand, increasing system flexibility. This dynamic 

nature of the cluster, however, motivates a fresh look at the storage architecture 

of Hadoop. Specifically, in a virtualized datacenter, the local storage architecture 

of Hadoop is no longer viable. After a virtual machine image is terminated, any 

local data still residing on the disk may fall under the control of the next virtual 

machine image, and thus could be deleted or modified. Further, even if the data 

remained on disk, there is no guarantee that when Hadoop is executed again — 

several hours or days in the future — it will receive the same set of cluster nodes it 

had previously. They might be occupied by other currently running applications. 

In a virtualized datacenter, a persistent storage solution based on networked disks 

is necessary for Hadoop. To draw a distinction from the traditional local storage 

architecture of Hadoop, this new design will be referred to as remote storage. 

This chapter will serve to further motivate the design of a remote storage archi-
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tecture for Hadoop and provide the necessary background and related work. Sub

sequent chapters will investigate design specifics. In this chapter, current trends 

in datacenter systems will first be discussed, such as virtualization and the emer

gence of cloud computing and platform-as-a-service technology. Second, a virtu

alization framework called Eucalyptus will be described, as it provides a private 

cloud computing framework suitable for sharing a cluster between MapReduce 

and other applications. The operation of Hadoop in this virtualized environment 

will be discussed, as this motivates why persistent network-based storage is nec

essary. Third, the concept of accessing storage resources across a network will be 

shown to be viable due to the access characteristics of Hadoop and the raw perfor

mance potential of modern network and switching technologies. Finally, some of 

the inherent advantages of remote storage architectures will be described. These 

are due to the decoupling of storage and computation resources, which previously 

were tightly coupled. 

6.1 Virtualization and Cloud Computing 

Virtualization technology is transforming the modern datacenter. Instead of in

stalling applications directly onto physical machines, applications and operating 

systems are installed into virtual machine images, which in turn are executed by 

physical servers running a hypervisor. Virtualizing applications provides many 

benefits, including consolidation — running multiple applications (with different 
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operating system requirements) on a single physical machine — and migration 

— transparently moving applications across physical machines for load balancing 

and fault tolerance purposes. In this environment, the datacenter becomes a pool 

of interchangeable computation resources that can be leveraged to execute what

ever virtual machine images are desired. 

Once all applications are encapsulated as virtual machine images and the data-

center is configured to provide generic computation resources, it becomes possible 

to outsource the physical datacenter entirely to a third-party vendor. Beginning 

in 2006, Amazon started their Elastic Compute Cloud (EC2) service, which allows 

generic x86 computer instances to be rented on-demand [12]. In this canonical 

example of public cloud computing, customers can create virtual machine images 

with the desired operating system and applications, and start and stop these im

ages on demand in Amazon's datacenter. Customers are billed on an hourly basis 

only for resources actually used. Such a capability is particularly useful for ap

plications that vary greatly in terms of resource requirements, saving clients from 

the expense of building an in-house datacenter that is provisioned to support the 

highest predicted load. 

Not every application, however, is suitable for deployment to public clouds 

operated by third party vendors and shared with an unknown number of other 

customers. Medical records or credit card processing applications have security 

concerns that may be challenging to solve without the cooperation of the cloud 
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vendor. Further, many other business applications may require higher levels of 

performance, quality-of-service, and reliability that are not guaranteed by a public 

cloud service that, by design, keeps many details of the datacenter architecture and 

resource usage secret. Thus, there is a motivation to maintain the administrative 

flexibility of cloud computing but to run the virtual machine images on locally-

owned machines behind the corporate firewall. This is referred to as private cloud 

computing. To meet this need, a new open-source framework called Eucalyptus 

was released in 2008 to allow the creation of private clouds. Eucalyptus imple

ments the same API as Amazon's public cloud computing infrastructure, allow

ing for application images to be migrated between private and public servers. By 

maintaining API compatibility, the private cloud can be configured, if desired, to 

execute images onto the public EC2 system in peak load situations, but otherwise 

operate entirely within the private datacenter under normal load. Further, API 

compatibility allows many of the same administrative tools to be used to manage 

both platforms. 

The private cloud computing model proposed by Eucalyptus is an attractive 

solution to an enterprise that wants to share a datacenter between MapReduce 

(Hadoop) computation and other programming models and applications. To ex

plore this usage model, the Eucalyptus architecture is described along with its de

fault local and network storage options. 
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6.2 Eucalyptus 

Eucalytpus is a cloud computing framework that allows the creation of private 

clouds in enterprise datacenters [10,13]. Although there are different ways to ac

complish this goal, Eucalyptus was chosen for this thesis because it provides a co

herent vision for sharing a single datacenter or cluster computer between many ap

plications through the use of virtualization technology. Further, its vision is com

patible (and, in many ways, identical) with the current industry leader for public 

cloud computing. Eucalyptus provides API compatibility Amazon Web Services 

(AWS), which allows management tools to be used in both environments and for 

computing images to be migrated between clouds as desired. Further, Eucalyptus 

is available as an open-source project that can be easily profiled, modified, and run 

on the same commodity hardware (x86 processors, SATA disks, and Ethernet net

works) that supports traditional Hadoop clusters. This framework is designed for 

compatibility across a broad spectrum of Linux distributions (e.g., Ubuntu, RHEL, 

OpenSUSE) and virtualization hypervisors including KVM [15] and Xen [17]. It is 

the key component of the Ubuntu Enterprise Cloud (EUC) product, which adver

tises that an entire private cloud can be installed from the OS up in under 30 min

utes. During testing, installation was completed in that time period, but further 

configuration (and documentation reading to understanding the various configu

ration options) took significantly longer. 

A Eucalyptus cluster consists of many cloud nodes, each running one or more 
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Figure 6.1: Eucalyptus Cluster Architecture [82] 

virtual machine images and each equipped with at least one local disk to store the 

host OS and hypervisor software. Beyond the cloud nodes, a number of special

ized nodes also exist in the cluster to provide storage and management services. 

The arrangement of a Eucalytpus cluster and its key software services is shown in 

Figure 6.1. These services include: 

Cloud Controller (CLC) — The cloud controller provides high-level manage

ment of the cloud resources. Clients wishing to instantiate or terminate a virtual 

machine instance interact with the cloud controller through either a web interface 

or SOAP-based APIs that are compatible with AWS. 

Cluster Controller (CC) — The cluster controller acts as a gateway between 
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the CLC and individual nodes in the datacenter. It is responsible for controlling 

specific virtual machine instances and managing the virtualized network. The CC 

must be in the same Ethernet broadcast domain as the nodes it manages. 

Node Controller (NC) — The cluster contains a pool of physical computers 

that provide generic computation resources to the cluster. Each of these machines 

contains a node controller service that is responsible for fetching virtual machine 

images, starting and terminating their execution, managing the virtual network 

endpoint, and configuring the hypervisor and host OS as directed by the CC. The 

node controller executes in the host domain (in KVM) or driver domain (in Xen). 

Elastic Block Storage Controller (EBS) — The storage controller provides per

sistent virtual hard drives to applications executing in the cloud environment. To 

clients, these storage resources appear as raw block-based devices and can be for

matted and used like any physical disk. But, in actuality, the disk is not in the local 

machine, but is instead located across the network. An EBS service can export one 

or more disks across the network. 

Walrus Storage Controller (WS3) - Walrus provides an API-compatible imple

mentation of the Amazon S3 (Simple Storage Service) service. This service is used 

to store virtual machine images and application data in a file, not block, oriented 

format. 

In Eucalyptus, cluster administrators can configure three different types of stor

age to support virtualized applications. The first type of storage is provided by 
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Figure 6.2: Eucalyptus Storage Architectures — Local Disk and Network Disk 

the WS3 controller and allows data to be accessed at the object level via HTTP. It is 

not investigated further here because in its current Eucalyptus implementation it is 

provided by a single centralized service, and thus represents an obvious bottleneck 

for cluster scalability.1 The second two types of storage are suitable for many types 

of data-intensive applications, however. The two options are ephemeral local storage 

that exists only as long as the virtual machine is active, and persistent network-based 

storage. From the perspective of an application running inside a virtual machine 

instance, both options appear identical. A standard block-based device abstraction 

is used which allows guests to format the device with a standard filesystem and 

use normally. These two architectures are shown in Figure 6.2. 

The first architecture, local storage, uses a file on the locally-attached hard drive 

Eucalyptus WS3 is API compatible with Amazon's S3 service, which does scale to support 
massive numbers of clients. Thus, it is not the S3 API that limits scalability, merely the current 
centralized implementation in Eucalyptus. 
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of the cloud node for backing storage. This file is ephemeral and only persists for 

the life of the target virtual machine, and is deleted by the node controller when 

the virtual machine is terminated. Under the direction of the node controller, the 

hypervisor maps the backing file into the virtual machine via a block-based storage 

interface. The virtual machine can use the storage like any other disk. 

In contrast to the first architecture, the network storage architecture eschews the 

local disk in favor of a networked disk that can provide persistent storage even af

ter a specific virtual machine is terminated. Because the storage is network-based, 

when that virtual machine is restarted later, it can easily access the same storage 

resources regardless of where in the cluster it is now assigned. It does not need 

to be assigned to its original node. In this architecture, a file is used as backing 

storage on one of the EBS-attached hard drives. On the EBS node, a server process 

exports that file across the network as a low-level storage block device. Eucalyp

tus uses the non-routable (but lightweight) ATA over Ethernet protocol for this 

purpose, which requires that the virtual machine and EBS server be on the same 

Ethernet segment [8]. Across the network on the cloud node, an ATA over Eth

ernet driver is used in the host domain to mount the networked disk. The driver 

is responsible for encapsulating ATA requests and transmitting them across the 

Ethernet network. The node controller instructs the hypervisor to map the virtual 

disk provided by the driver into the virtual machine using the same block-based 

storage interface used in the local storage architecture. 
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To run Hadoop in the Eucalyptus cloud environment, both ephemeral and per

sistent storage resources are necessary. Ephemeral or scratch storage is used for 

temporary data produced in MapReduce computations. Typically, a Map process 

will buffer temporary key/value pairs in memory after processing, and spill them 

to disk when memory resources run low. This data does not need persistent stor

age, as it is consumed and deleted during the Reduce stage of the application, and 

can always be regenerated if lost due to failure. The local storage architecture pro

vided by Eucalyptus is well suited for this role, as this storage is deleted when the 

virtual machine is stopped. 

Although ephemeral storage is efficiently supported by the local storage design 

in Eucalyptus, persistent HDFS data is not. Persistent data cannot be left on the lo

cal disk after MapReduce computation is finished because Eucalyptus will delete 

it. Even if this behavior was changed to protect the data, other problems remain. 

For instance, other applications might need the local storage resources in the fu

ture. Or, other applications might still be running on the node when MapReduce 

computation is resumed at a later point in time, posing the question of what to 

do. Should the data should be migrated to where it is needed, the current appli

cation migrated elsewhere to allow MapReduce to run on the node, or the data be 

accessed remotely instead? All three options pose challenges. 

A naive scheme to provide persistent network storage for HDFS without other

wise changing the storage architecture would be to store the data inside the virtual 
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machine image, which is located (when not in use) on a network drive. When 

MapReduce computation is started, this much larger image would be copied to a 

cluster node, and then Hadoop could use local storage exclusively for the duration 

of program execution. The data would be copied back to the network drive (with 

the virtual machine image) when finished. Such a scheme has several drawbacks. 

First, MapReduce startup latency would be excessively high, due to the volume 

of data that needs to be moved, and the fact that the copy would need to be 100% 

complete on all nodes before MapReduce could initialize and begin execution. A 

similarly lengthy copy would also be needed once MapReduce computation is fin

ished. Second, the full upfront data migration inherent in this scheme will be at 

least partially unnecessary. The MapReduce application will certainly not access 

all the data copied immediately, and even over long time scales may access only 

a portion of the full HDFS data set. Third, this design requires twice the storage 

capacity in order to store data both on local nodes and in network storage with the 

virtual machine images. Finally, this design poses a bandwidth concern. There is 

no guarantee that virtual machine images are stored in the same rack as the clus

ter nodes. In fact, virtual machine images may be stored in a centralized location 

elsewhere in the datacenter. In such a configuration, data would need to be copied 

across the cross-switch links, increasing the potential for network congestion. 

These reasons motivate the design of a better persistent network-based stor

age architecture. This architecture should allow MapReduce applications to access 
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only the specific data currently needed, should store data in the same place even 

when MapReduce computation is (temporarily) halted, and co-locate that storage 

with computation in the same rack and attached to the same network switch. There 

are many possible ways to enable this in a virtualized environment such as Eu

calyptus, and specific options will be discussed later in this thesis in Chapter 7. 

But, regardless of the specific network disk architecture used to provide persistent 

storage, long term performance trends support the vision of accessing HDFS data 

across the network. 

6.3 Enabling Persistent Network-Based Storage for Hadoop 

There are several major reasons why, at a high level, networked disks can pro

vide high levels of storage performance for DC clusters running frameworks such 

as Hadoop. 

First, DC applications like Hadoop use storage in a manner that is different 

from ordinary applications. Application performance is more dependant on the 

storage bandwidth to access their enormous datasets than the latency of accessing 

any particular data element. Furthermore, data is accessed in a streaming pattern, 

rather than random access. This means that data could potentially be streamed 

across the network in a pipelined fashion and that the additional network latency 

to access the data stream should not affect overall application performance. 

Second, network bandwidth exceeds disk bandwidth for commodity technolo-
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gies, making it possible for an efficient network protocol to deliver full disk band

width to a remote host. To show how a commodity network can be provisioned 

to deliver the full bandwidth of a disk to a client system, network and hard drive 

performance trends over the past two decades were evaluated, as shown in Fig

ure 6.3. The disk bandwidth was selected as the high-end consumer-class (not 

server-class) drive introduced for sale in that particular year. The network band

width was selected from the IEEE standard, and the network dates are the dates 

the twisted-pair version of the standard was ratified. This is typically later than 

the date the standard was originally proposed for fiber or specialty copper cables, 

which are too expensive for DC cluster use. 

Since the introduction of lOOMb/s Fast Ethernet technology, network band

width has always matched or exceeded disk bandwidth. Thus, it is reasonable to 

argue that the network will not constrain the streaming bandwidth of disks ac

cessed remotely, and that such bandwidth will be cost-effective to provide. Note 

that this is only single device bandwidth - more network bandwidth could be pro

vided for faster disks by trunking links between hosts and the switch. Similarly, 

in the case of faster networks, more disk bandwidth could be achieved by ganging 

multiple disks on a single network link, thus allowing the network link to be more 

efficiently and fully utilized. 

Third, modern network switches offer extremely high performance to match 

that of the raw network links. A typical 48- or 96-port Ethernet switch can provide 
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Figure 6.3: Scaling Trends - Disk vs Network Bandwidth 

the full bisection bandwidth across its switching fabric, such that an entire rack of 

hosts can communicate with each other at full network speed. Furthermore, even 

a modestly priced (around $3000) datacenter switch not only offers full switching 

bandwidth, but also provides low latency forwarding of under 2ns for a minimum-

sized Ethernet frame [5]. In addition, Ethernet switches are starting to emerge in 

the marketplace that perform cut-through routing, which will lead to even lower 

forwarding latencies. Compared to hard disk2 seek latencies, which are measured 

in milliseconds, the forwarding latency of modern switches is negligible. Data-

2While solid-state disks have lower latencies, they are still 100s of microseconds. Regardless, 
conventional hard disks are the likely choice for mass storage in DC clusters in the foreseeable 
future due to capacity and cost. 
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center switches also provide the capability to do link aggregation, where multiple 

gigabit links are connected to the same host in order to increase available band

width. These high performance switches will incur minimal overhead to network 

storage that is located in the same rack as the client computation node. 

In this chapter, remote storage has been motivated as a requirement for Hadoop 

to function in a virtualized datacenter shared with other applications. Further, the 

concept of accessing storage resources has been shown to be viable due to the ac

cess characteristics of Hadoop and the raw performance potential of modern net

work and switching technologies. Next, potential benefits of a storage architecture 

incorporating remote or network disks are discussed. 

6.4 Benefits of Remote Storage 

Remote storage is necessary to allow Hadoop to function in a virtualized data-

center shared with many other applications. Although using a remote storage ar

chitecture may entail performance tradeoffs compared to a local disk architecture, 

it does have several potential advantages. These arise from the fact that compu

tation and storage resources are no longer bound together in one tightly coupled 

unit, as they are in a traditional Hadoop node. 

Resource Provisioning — Remote storage allows the ratio between computa

tion and storage in the cluster to be easily customized, both during cluster con

struction and during operation. This is in contrast to the traditional Hadoop local 
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storage architecture, which places disks inside the compute nodes and thereby as

sumes that the storage and computation needs will scale at the same rate. If this 

assumption is not true, the cluster can become unbalanced, forcing the purchase 

and deployment of extra disks or processors that are not strictly necessary, wast

ing both money and power during operation. For example, if more computation 

(but not storage) is needed, extra compute nodes without disks can be added, but 

they will need to retrieve all data remotely from nodes with storage. Or, unneeded 

disks will be purchased with the new compute nodes, increasing their cost unnec

essarily. Similarly, if more storage or storage bandwidth (but not computation) is 

needed beyond the physical capacity of the existing compute nodes, extra compute 

nodes with more disks will need to be added even though the extra processors are 

not necessary. 

Load Balancing — Remote storage has the potential for more effective load 

balancing that eliminates wasted storage bandwidth. Instead of over-provisioning 

all compute nodes with the maximum number of disks needed for peak local 

storage bandwidth, it would be cheaper to simply provision the entire rack with 

enough network-attached disks to supply the average aggregate storage band

width needed. Individual compute nodes could consume more or less I/O re

sources depending on the instantaneous (and variable) needs of the application. 

The total number of disks purchased could thus be reduced, assuming that each 

compute node is not consuming 100% of the storage bandwidth at all times and as-
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suming that many disks are purchased to increase I/O bandwidth and not simply 

for the raw storage capacity. 

Fault Tolerance — A failure of the compute node no longer means the failure 

of the associated storage resources. Thus, the distributed file system does not have 

to consume both storage and network bandwidth making a new copy of the data 

from elsewhere in the cluster in order to maintain the minimum number of data 

replicas for redundancy. Disk failure has a less detrimental impact, too. New 

storage resources can be mapped across the network and every disk connected to 

the same network switch offers equivalent performance. 

Power Management — In a cluster with a remote storage architecture, fine

grained power management techniques can be used to sleep and wake stateless 

compute nodes on demand to meet current application requirements. This is not 

possible in a local storage architecture, where the compute nodes also participate 

in the global file system, and thus powering down the node removes data from the 

cluster. Further, because computation is now an independent resource, it is also 

possible to construct the cluster with a heterogeneous mix of high and low power 

processors. The runtime environment can change the processors being used for a 

specific application in order to meet administrative power and performance goals. 



CHAPTER 7 

Remote Storage in Hadoop 

In the previous chapter, the motivations for a remote storage architecture for 

Hadoop were discussed. MapReduce frameworks such as Hadoop currently re

quire a dedicated cluster for operation, but such a design limits the spread of 

this programming paradigm to only the largest users. Smaller users need to run 

MapReduce on a cluster computer shared with other applications. Virtualization 

might be used to facilitate sharing, as well as gain benefits such as increased flexi

bility and security isolation. In such an environment, the MapReduce framework 

will be loaded and unloaded on demand and typically execute on a different set 

of nodes with each iteration. This motivates the deployment of a remote storage 

architecture for Hadoop, because the traditional local architecture has problems 

in this environment. For example, if data is stored on a local disk and then the 

MapReduce framework is stopped, the next application to execute on that node 

could potentially delete the data and re-use the disk. Or, even if the data remains 

intact, there is no guarantee that MapReduce will be scheduled on the same node 

in a future invocation, rendering the data inaccessible. Storing persistent HDFS 
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data on network disks instead of locally-attached disks will eliminate these prob

lems. 

The desired performance and scale of Hadoop using a remote storage architec

ture is somewhat different from Hadoop using a local storage design, due to the 

different usage scenario. First, the scale of the cluster is inherently smaller. Follow

ing the previous logic, if the application scale was large enough to require thou

sands of nodes, then such an application could certainly justify a dedicated cluster 

computer built with the traditional Hadoop architecture. MapReduce applications 

sharing a cluster with other workloads are necessarily smaller, requiring tens to 

perhaps hundreds of nodes on a part-time basis. Second, in such a usage scenario, 

the ability to share the cluster between multiple applications has a higher priority 

than the ability to maximize the performance of a given hardware budget. This is 

not to say that performance is an unimportant goal, just that high performance is 

not the only goal of the system. Applications requiring the highest possible perfor

mance can justify a dedicated cluster built, once again,with the traditional Hadoop 

local architecture. 

In this Chapter, the design space of viable remote storage architectures for 

Hadoop is explored, and several key configurations identified. Next, these con

figurations are evaluated in terms of achieved storage bandwidth and processor 

efficiency to identify the best approach. With the most efficient remote storage 

architecture selected, problems related to replica target assignments by the Na-



107 

meNode are identified that dramatically hurts performance due to storage conges

tion. An improved scheduling framework is proposed and evaluated to eliminate 

this bottleneck. Next, the impact of virtualization on storage and network I/O 

bandwidth is examined in order to test the viability of remote storage in a cloud 

computing framework. Finally, a complete design is described for data-intensive 

MapReduce computation in a cloud computing environment shared with many 

other applications. 

7.1 Design Space Analysis 

There is a large design space of possible remote storage architectures for 

Hadoop. In this section, a few key architectures that can achieve high storage 

bandwidth are described, compared, and evaluated in terms of processor over

head. These architectures are independent of any storage architecture provided by 

a virtualization or cloud computing system such as Eucalyptus. Integration with 

existing systems will be discussed later in this chapter. 

When evaluating potential network storage architectures for Hadoop, a few 

restrictions were imposed, including the use of commodity hardware, a single net

work, and a scalable design. 

Commodity Hardware — Any proposed architecture has to be realizable with 

only commodity hardware, such as x86 processors and SATA disks. This lowers 

the up-front installation cost of the cluster computer. As a practical matter, this 
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necessitates the use of Ethernet as the network fabric. 

Single Network — Any proposed architecture has to use a single (converged) 

network in the datacenter, carrying both storage and application network traffic. 

Using a single network reduces cluster installation cost (from separate network 

cards, switches, and cabling) and administrative complexity. This restriction elim

inates a number of designs involving dedicated storage-area networks. 

Scalable Design — Any proposed architecture has to be scalable to support 

MapReduce clusters of varying sizes. Although it is unlikely that this design will 

be used for thousands of nodes in a shared datacenter — because any applica

tion at that scale could justify a cluster for dedicated use — scalability to tens or 

hundreds of nodes is a reasonable target. Ideally, a remote storage design should 

maintain similar scalability to the traditional local storage architecture. Because 

of this goal, no designs involving centralized file servers were considered. This 

restriction eliminated using NFS servers, and, perhaps more importantly, using 

the S3 storage service provided with Eucalyptus (named WS3). S3 would be a 

complete replacement for HDFS, as it provides all the necessary data storage and 

file namespace management functionality. Hadoop applications can directly use 

S3 storage without the need for any NameNode or DataNode services. S3 allows 

data to be manipulated at the file or object level via HTTP, and does not use a tra

ditional disk block abstraction. But, as previously described in Section 6.2, Euca

lyptus implements S3 as a centralized service provided by a single node, and thus 
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is an obvious bottleneck impeding the performance and scalability of MapReduce 

on even a small-scale cluster. This is an implementation issue, not a fundamental 

challenge with S3. Amazon provides a commercial S3 service hosting hundreds of 

billions of objects, and uses a decentralized architecture to support large numbers 

of concurrent clients. 

Preserve Locality — Any proposed architecture should preserve storage local

ity, albeit at the level of the same rack (attached to the same network switch), in

stead of at the same node. This requires effort by both the storage allocator (when 

deciding where to store blocks) and job scheduler (when deciding where to run 

tasks), and some level of integration between the two, such as when the job sched

uler queries the storage system for location information. As a practical matter, this 

discourages the wholesale replacement of the DataNode and NameNode services 

with an alternative architecture such as Amazon S3. For example, if S3 were used, 

the Hadoop job scheduler would have no API available to determine the physical 

location of data in the cluster, and thus would be unable to schedule tasks in a 

locality-aware fashion. Such an API would have to be added. 

Based on these restrictions, a number of viable storage architectures for Hadoop 

were identified. 
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7.1.1 Architecture Overview 

The storage architectures under consideration for Hadoop are shown in Fig

ure 7.1. The architectures include the default local architecture, a remote archi

tecture using the standard Hadoop network data transfer protocol, and a remote 

architecture using the ATA over Ethernet (AoE) protocol. In the figure, the 4 key 

Hadoop software software services are shown, including the MapReduce engine 

components (JobTracker plus one of many TaskTrackers) and HDFS components 

(NameNode plus one of many DataNodes). In all architectures, the JobTracker and 

NameNode services continue to run on dedicated nodes with local storage. For a 

small cluster, they can share a single node, while in a larger cluster, separate nodes 

may be needed. 

The location of key disks in the cluster are also shown. Disks labeled HDFS are 

used exclusively to store HDFS block data. Disks labeled Meta are used to store 

Hadoop metadata used by the JobTracker and NameNode, such as the filesystem 

namespace and mapping into HDFS blocks. Finally, disks labeled Scratch store 

MapReduce intermediate (temporary) data, such as key/value pairs produced by 

a Map task but not yet consumed by a Reduce task. Storage for the operating 

system and applications is not shown, as that space could be shared with the 

scratch or metadata disks without degrading performance significantly. HDFS 

storage is shown with a dedicated disk due to provide high storage bandwidth. If 

needed based on application requirements, storage bandwidth could be increased 
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Figure 7.1: Comparison of Local and Remote (Split, AoE) Storage Architectures 

by adding multiple disks. 

The local architecture, shown in Figure 7.1(a), is the traditional Hadoop storage 

architecture initially described in Chapter 2. This architecture was designed with 

the philosophy of moving the computation to the data. Here, the DataNode service 

uses the HDFS disk that is directly attached to the system for persistent storage, 

and the TaskTracker service uses the scratch disk that is directly attached to the 

system for temporary storage. 

In contrast to the local architecture, the Split architecture shown in Figure 7.1(b) 

accesses data across the network. This architecture exploits the inherent flexibility 

of the Hadoop framework to run the DataNode service on machines other than 

those running the application and TaskTracker service. In essence, these two ser

vices, which previously were tightly coupled, are now split apart. Hadoop already 
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uses a network protocol to write block replicas to multiple nodes across the net

work, and to read data from remote DataNodes in case the job scheduler is unable 

to assign computation to a node already storing the desired data locally. In this de

sign, there is never any local HDFS storage. The computation nodes (running the 

application and TaskTracker service) are entirely disjoint from the storage nodes 

(running the DataNode service and storing HDFS blocks). Scratch storage is still 

locally provided, and will be used to store temporary key/value pairs produced 

by the Map stage and consumed by the Reduce stage. These intermediary values 

are not stored in the HDFS global filesystem because of their short lifespan. This 

Split architecture has the advantage of being simple to implement using existing 

Hadoop functionality. 

The final AoE architecture shown in Figure 7.1(c) replaces the standard Hadoop 

network protocol with a different protocol — ATA over Ethernet — to enable re

mote storage. Here, the DataNode, TaskTracker, and application reside on the 

same host, and communicate via local loopback. The actual HDFS disk managed 

by the DataNode is not locally attached, however. The AoE protocol is used in

stead to map a remote disk, attached somewhere else in the Ethernet network, 

to the local host as a block device. In this design, the DataNode and the rest of 

the Hadoop infrastructure are unaware that storage is being accessed across the 

network. AoE provides an abstraction that storage in this configuration is still 

locally-attached. As such, this architecture is similar to the default network storage 
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architecture provided by Eucalyptus. As shown previously in Figure 6.2(b), that 

architecture also uses AoE to transparently provide the illusion of locally-attached 

storage. In this AoE architecture for Hadoop, scratch storage is still locally pro

vided for application use. 

There are several key differences between the Split and AoE architectures that 

both provide persistent network storage. First, the network protocol used for stor

age traffic is different. The Split architecture uses the native Hadoop socket-based 

protocol to transfer data via TCP, while the AoE architecture uses the ATA over 

Ethernet protocol. AoE was conceived as a lightweight alternative to more com

plex protocols operating at the TCP/IP layer. This non-routable protocol operates 

solely at the Ethernet layer to enable remote storage. Second, the two architec

tures differ in terms of caching provided. In the Split architecture, the only disk 

caching is provided at the storage node by the OS page cache, which is on the 

opposite side of the network from the client, thus incurring higher latency. But, 

in the AoE architecture, caching is inherently provided both at the storage node 

and at the compute node, thus providing lower latency, but also a duplication of 

effort. Depending on application behavior, there may be no effective performance 

difference however, as data-intensive applications typically have working sets too 

large to effectively cache. Third, both architectures differ in terms of the respon

sibilities of the storage node. Conceptually, the AoE server is a less complicated 

application than the DataNode service, as it only needs to respond to small AoE 
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packets and write or read the requested block, not manage the user-level filesys-

tem and replication pipeline. The processor overhead of each architecture will be 

evaluated later in this chapter, but reducing the processor overhead of the storage 

node is a desirable goal, as that would allow those nodes to be built from slower, 

lower-power, and cheaper processors. 

Next, these three architectures will be evaluated in terms of bandwidth and 

processor overhead. 

7.1.2 Storage Bandwidth Evaluation 

In this section, the three architectures under consideration are evaluated in 

terms of storage bandwidth provided to the MapReduce application. For test 

purposes, a subset of the FreeBSD-based test cluster previously described in Sec

tion 3.1 was isolated with separate machines used for the master node, compute 

node, and storage node. A synthetic Hadoop application was used to write and 

then read back 10GB of data from persistent HDFS storage in a streaming fashion. 

In all tests, the raw disk bandwidth for the Seagate drive used for HDFS storage is 

less than the raw network bandwidth, and as such the network should not impose 

a bandwidth bottleneck on storage. The results of this test are shown in Table 7.1. 

The bandwidth to local storage is first shown for comparison purposes, as this 

provides a baseline target to reach. The Split architecture achieves 98-100% of the 

local storage bandwidth using the default cluster configuration. The AoE architec-
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Configuration 

Local 
Split 
AoE-Default 
AoE-Modified 

Bandwidth (MB/s) 
Write 
67.3 
67.8 
16.8 
46.7 

Read 
70.1 
68.7 
40.5 
57.6 

Table 7.1: Storage Bandwidth Comparison 

ture, however, shows a significant performance penalty with its default configura

tion, achieving only 25-57% of the local storage bandwidth. 

The cause of the AoE performance deficit was investigated and tracked to sev

eral root causes. First, AoE is sensitive to Ethernet frame size. Each AoE packet 

is an independent entity, and thus can only write or read as many bytes as fits 

into the Ethernet frame, subject to the 512 byte granularity of ATA disk requests. 

Thus, a standard 1500-byte Ethernet frame can carry lkB of storage data, and a 

9000 byte "jumbo frame" packet can carry at most 8.5kB of storage data. Thus, the 

AoE client (in this case, the compute node) has to fragment larger storage requests 

into a number of consecutive AoE packets. 

Second, AoE is sensitive to disk request size. Each standard Ethernet frame 

arrives at the storage node with only a lkB payload of data for the AoE server. A 

naive server implementation will dispatch each small request directly to the disk. 

Regardless of whether consecutive request are to sequential data on disk or not, 

the disk controller and low-level storage layers will be overwhelmed by the sheer 

number of small requests, limiting effective bandwidth. As an example of this 

performance bottleneck, the Seagate drive used in the test was characterized on a 
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local system. Sending sequential lkB write requests to the drive yielded a write 

bandwidth of only 22.1 MB/s, compared to 110 MB/s using 64kB requests. A 

more sophisticated AoE server implementation could coalesce adjacent sequential 

requests into one large request that is delivered to the disk. This would decouple 

the size of the Ethernet frame from the size of the disk request, and allow the 

storage hardware to be used more efficiently. 

After investigating the AoE system, the test configuration was modified and re-

tested. The network was configured to use 9000 byte packets (i.e., jumbo frames), 

and the default AoE server application was replaced with an implementation that 

performs packet coalescing of adjacent requests. The improved performance re

sults are also shown in Table 7.1. At best, the AoE architecture achieves 70% of the 

target write bandwidth and 82% of the target read bandwidth. 

The higher performance of the Split architecture compared to AoE highlights a 

fundamental difference in design. The Split architecture uses the native Hadoop 

protocol to transfer data in a streaming manner. Data is delivered directly to the 

receiver (either the DataNode when writing a block, or the client application when 

reading a block). By design, the recipient can begin processing the data immedi

ately without waiting for the transfer to complete in its entirety. In contrast, the 

AoE protocol operates in a synchronous fashion. The traditional block-based in

terface used to link it with the data consumers (the DataNode and applications) 

provide no mechanism to announce the availability of a block until all data is re-
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ceived. Thus, the consumer is not provided with any data until the last byte in the 

transfer arrives. This is a challenge inherent to all block-based protocols, and is not 

limited to just ATA over Ethernet. 

After evaluating storage bandwidth, the processor overhead of each architec

ture is examined to determine relative efficiency per byte transferred. 

7.1.3 Processor Overhead Evaluation 

In this section, the three architectures under consideration are evaluated in 

terms of processor overhead per unit of bandwidth. Rather than focus on raw 

performance, this discussion focuses on the efficiency of each architecture. 

To evaluate the architectures shown in Figure 7.1, a subset of the FreeBSD-based 

test cluster previously described in Section 3.1 was isolated. Two nodes were used 

for the local architecture, and three nodes were used for both remote architectures 

under test. The first node — the master node — runs the JobTracker and NameNode 

services. The second node — the compute node — runs the application and Task-

Tracker service, and also the DataNode in the case of the local architecture. Finally, 

the third node — the storage node — houses the HDFS disk and runs the service that 

exports storage data across the network (either the DataNode or an AoE server). 

In each of the three test configurations, a synthetic Hadoop application was 

used to write and then read back 10GB of data from persistent HDFS storage in 

a streaming fashion. User-space system monitoring tools were used on both the 
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compute node and storage node (in the remote architectures) to capture proces

sor overhead and categorize time consumed by user-space processes, the operat

ing system, and interrupt handlers. The master node was not profiled, because 

its workload (HDFS namespace management and job scheduling) remains un

changed in any proposed design. User-space processes include (when applica

ble) the test application, Hadoop framework, and AoE server application. Oper

ating system tasks include (when applicable) the network stack, network driver, 

AoE driver, filesystem, and other minor responsibilities. Interrupt handler work 

includes processing disk and network interrupts, among other less significant 

tasks. Figure 7.2 summarizes the processor overhead for each storage architec

ture, normalized to storage bandwidth. Conceptually, this is measuring processor 

cycles per byte transferred. But, due to limitations in the available monitoring 

tools, the actual measurement units are aggregate processor percent utilization per 

megabyte transferred, times 100. 

Before describing the performance of each individual architecture in detail, 

there are a few high level comments on the test and system behavior to discuss. 

First, the synthetic test application used here is very lightweight, doing minimal 

processing beyond writing or reading data. Thus, the majority of the user-space 

overhead is incurred by the Hadoop framework. Other MapReduce applications 

would likely have higher overall processor utilization, as well as higher user-space 

utilization on the compute node. Second, the synthetic write test consumes more 
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processor resources per megabyte transferred than the synthetic read test. When 

writing data to HDFS, the Hadoop framework has a number of responsibilities 

that are not needed when reading data. These responsibilities include commu

nicating with the NameNode for allocation and ensuring that data is transferred 

to all desired replicas successfully. To accomplish this, the outgoing data stream 

is buffered several times, fragmented into smaller pieces, and handled by several 

threads, each one incurring additional overhead. This complexity is not needed 

when reading data from HDFS. Conceptually, all a DataNode needs to do to trans

fer data to a client is locate the requested HDFS block and call sendfile() on the 

file. (As a technical point, sendfile is not supported in the Java Virtual Machine 

on FreeBSD, but its block-based replacement is not significantly more complex.) 
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Support for this observation that HDFS writes are more complex than HDFS reads 

is shown in the processor overhead observed in the local architecture, as reading 

requires about half the user-space compute resources as write for an equivalent 

bandwidth. 

As shown in Figure 7.2, the baseline local storage architecture is the most ef

ficient, computation-wise. On the compute node, user-space processor time is 

spent running the application and Hadoop services including the TaskTracker and 

DataNode. As previously described, the overhead in Hadoop of writing data to 

HDFS is higher than reading data from HDFS, as evidenced by the difference in 

processor time between the write and read tests. System processor time on the 

compute node is consumed accessing the local HDFS disk and using the local loop-

back as an interprocess communication mechanism between the TaskTracker and 

the DataNode. The system overhead is symmetric for both reading and writing, 

and the measured overhead is consistent for both tests. Finally, the interrupt pro

cessing time is incurred managing local loopback and disk data transfer. 

After testing the local architecture, the two remote storage architectures were 

profiled, starting with the Split architecture. This is the most efficient remote stor

age architecture, but enabling remote storage does incur processor overhead com

pared to the default local architecture. In this configuration, the user-space pro

cessing time for the compute node remains unchanged, but the work performed 

in that time is significantly different. Specifically, the DataNode service has been 
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migrated to the storage node, which means that the remaining Hadoop services 

are consuming more processing resources to send/receive data across the network 

instead of across local loopback. Thus, this part of the framework is functioning 

less efficiently. The DataNode service now runs on the storage node, and consumes 

user-space processing resources there. Once again, there is a significant different in 

processor overhead for the DataNode when comparing writing data against read

ing data. 

In the Split configuration, the system processing time is also used for differ

ent tasks. Instead of transferring data across local loopback, system time is used 

instead in the TCP network stack. The net impact on system utilization at the 

compute node is unchanged, but additional system resources are required at the 

storage node for network processing and HDFS disk management. In addition, 

interrupt handling time is negligible at both the compute and storage nodes. Disk 

I/O does not trigger computationally intensive interrupts. Although network in

terrupts would normally be computationally intensive, the driver for the specific 

Intel Pro/1000 network interface card used in the cluster employs an interrupt 

moderation scheme that, in cases of high network utilization (such as during these 

experiments), operates the NIC in a polling mode that is not interrupt driven. 

Rather, received packets are simply transferred to the host at the same time that 

the driver schedules new packets to transmit. 

The third storage architecture tested, AoE, was the least efficient computation-
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wise. The compute node incurs all the user-space overhead running the applica

tion, TaskTracker, and DataNode, just as in the local architecture. In fact, the over

all user-space overhead is higher when compared against the local architecture, a 

change that is attributed to the DataNode running less efficiently when accessing 

the higher latency remote (AoE) disk. The compute node also incurs system over

head using interprocess communication between the TaskTracker and DataNode 

services. Further, it is responsible for running the AoE driver to access the remote 

disk. The AoE driver accounts for the increase in system time on the compute node 

when compared against the local architecture. Finally, interrupt processing time is 

incurred on the compute node to receive AoE packets. 

On the AoE storage node, a small amount of user-space time is used to run 

the AoE server application, while a larger amount of system time is used to access 

the HDFS disk and process AoE packets. Similarly, interrupt processing time is 

incurred to receive AoE packets. When comparing the write test versus the read 

test, the highest interrupt processing overhead is incurred on the system receiving 

AoE payload data. In the write test, the storage node is receiving the data stream, 

whereas in the read test, the compute node is receiving the data stream. 

When comparing the interrupt processing time in the Split and AoE architec

tures, an interesting difference emerges. In the split architecture, there is negligi

ble interrupt processing time, but a significant overhead in the AoE configuration. 

Both architectures were tested using the same Intel NICs that should minimize 
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interrupt processing. The cause of this difference is the behavior of the network 

protocol used. Take the case of reading HDFS data, for example. In the Split con

figuration, a single request packet can request a large quantity of data in return. 

This response data is sent using TCP, a reliable protocol that employs acknowl

edgement packets. When the long-running stream of TCP data is received by the 

compute node, that node sends acknowledgement packets (ACKs) in the opposite 

direction. Because ACKs are transmitted regularly, the device driver can learn of 

recently received packets at the same time without need of an interrupt. (Simi

larly, the storage node is sending HDFS data constantly, and can learn of received 

acknowledgement packets at the same time). In contrast, the AoE protocol run

ning at the Ethernet layer uses a simpler request/response design. The compute 

node issues a small number of requests for small units of storage data (limited 

to an Ethernet frame size), and waits for replies. Because no more packets are 

being transmitted, the network interface card must use an interrupt to alert the 

device driver when the reply packets are eventually received. This argues for a 

fundamental efficiency improvement of the Split architecture over the AoE archi

tecture, and for using a network protocol (such as TCP) that can transfer data in 

long streaming sessions, instead of the short request/reply protocol of AoE that 

limits message size to the Ethernet frame limit. 

The data shown in Figure 7.2 indicates that the Split architecture using the stan

dard Hadoop network protocol is more processor efficient than the AoE architec-



124 

hire. Further, as discussed in Section 7.1.2, the Split configuration also had a higher 

out-of-the-box bandwidth than AoE, and required much less system configuration 

and tuning to get running efficiently. Another strike against the AoE architecture 

is that its storage node processor requirements are not significantly lower than for 

the Split architecture by the time interrupt overhead is included. This negates a 

big hoped-for advantage of AoE discussed previously, which was the ability to 

use a cheaper storage node processor. In fact, subsequent testing of the Split ar

chitecture showed that it is already processor efficient, and that the storage node 

does not need to be a high-powered system. The DataNode daemon was able to 

achieve equivalent storage bandwidth to the server-class Opteron processor used 

in the standard test cluster when the storage node was temporarily replaced with a 

system using an 8 watt Atom 330 processor, and it still showed over 50% processor 

idle time. Thus, for the remainder of this thesis, the focus will be on improving the 

performance and behavior of the native Hadoop remote storage system using the 

Split architecture. 

In the next section, the performance of the Split architecture for remote storage 

will be evaluated with larger numbers of nodes. Here, it will be shown that the 

lack of locality in the cluster degrades the performance of the NameNode sched

uler as soon as the cluster size is increased beyond 1 compute node and 1 server 

node. Modifications to the NameNode are proposed and evaluated to mitigate this 

problem. 
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7.2 NameNode Scheduling 

After evaluating the computation overhead of the various remote storage ar

chitectures using a simple 1 client cluster, the same architectures were tested in 

a larger cluster. Unfortunately, the most efficient remote storage architecture, 

Split, exhibited poor scalability. The cause of this poor performance was traced 

to DataNode congestion instigated by poor NameNode scheduling policies. The 

NameNode scheduler was subsequently modified to reduce the performance bot

tleneck. 

The performance bottleneck can be most clearly shown by comparing a simple 

cluster configuration with one HDFS client and one HDFS server to another cluster 

with two HDFS clients and two HDFS servers. To demonstrate this, the local ar

chitecture was configured with 2 or 3 nodes (1 master plus 1 or 2 compute/storage 

nodes), and the Split and AoE architectures were configured with 3 or 5 nodes (1 

master node, 1 or 2 compute nodes, and 1 or 2 storage nodes). A simple synthetic 

writer and reader application was used with 1 task per compute node to access 

HDFS storage. 10GB of data per task was first written to HDFS, and then read 

back. HDFS replication was disabled for simplicity. 

In this test setup, doubling the number of compute nodes and storage nodes 

should double the aggregate storage bandwidth. Unfortunately, the actual per

formance did not match the ideal results. The poor scalability of the Split con

figuration by default is shown in Table 7.2, along with the other architectures for 
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Configuration 

Local 
Split 
AoE 

1 Writer 

67.3 
67.8 
16.3 

2 Writers 
145.2 
61.6 
27.2 

1 Reader 

70.1 
68.7 
37.2 

2 Readers 

142.6 
51.8 
79.1 

Table 7.2: Aggregate Storage Bandwidth (MB/s) in 1 and 2-Node Configurations 

comparison. 

The best scaling performance is exhibited by the traditional Hadoop local stor

age architecture. Here, the write and read bandwidth doubles when the number of 

HDFS clients and the number of HDFS disks double. Similarly, in the AoE architec

ture, the write bandwidth increases by 66% and the read bandwidth by 100% when 

the size of the cluster is doubled. (The low absolute performance of the AoE con

figuration can be improved through judicious configuration and the use of more 

sophisticated AoE server applications. This section ignores the absolute perfor

mance in favor of focusing on the scalability of the architecture.) But, while both 

the local and AoE architectures exhibit good performance scaling, the split archi

tecture does not. Doubling the amount of cluster hardware actually decreases the 

write bandwidth by 10%, and decreases the read bandwidth by 25%. Obviously, 

it will be impossible to build a large Hadoop cluster if the system slows down as 

more nodes are added! 

To identify the cause of the poor storage bandwidth, disk utilization was mea

sured by a user-level utility. Utilization was captured at the local HDFS disk re

gardless of architecture, and thus is after the influence of the DataNode service or 

AoE server. Results for all three storage architectures are shown in Figure 7.3. 



127 

1 Node 2 Nodes 
100 

80 

60 

^ 40 
b 

a 
x 

20 

0 - H b F S b i s k T 

sS 100 

i 80h 
(0 

= 60 

^ 40 
b 
10 
Il
ia 
X 

20 

0 

£ 100 

| 80 
"•M 
(0 

* 60 
4-1 

40 

20 

0 

uo 

a 
LL. 
a 
x 

100 

80 

60 

40 

20 

0 

~ - ^ i , 1 ; « : , 

- HDFS Disk 1 
HDFSDisk2 

10 20 
Time (s) 

30 10 20 
Time (s) 

30 

(a) Local Architecture - 1 and 2-Node Configurations 

INode 2 Nodes 

- HDFS DiskT 
10 20 

Time (s) 
30 20 

Time (s) 

(b) Split Architecture - 1 and 2-Node Configurations 

INode 2 Nodes 

.1 -HbFsbismr 

100 

80 

60 

40 

20 

0 

^yv^-?<^-^v—^-^v 

-HDFS Disk 1 
HDFS Disk 2 

i 

10 20 
Time (s) 

30 10 20 
Time (s) 

30 

(c) AoE Architecture - 1 and 2-Node Configurations 

Figure 7.3: HDFS Disk Utilization of Storage Architectures in 1 and 2-Node Con
figurations 



128 

Here, both the local and AoE architectures demonstrate consistent HDFS disk 

usage, keeping the disk busy at least 90% of the time. The Split architecture in the 

1-disk configuration also kept the HDFS disk busy 98% of the time. But, the Split 

architecture in the 2-node configuration exhibits periodic behavior with long idle 

times, which result in a drive utilization of only 55-60%, and a significant perfor

mance degradation. Because the test application streams data continuously, the 

long periods of time where one disk is idle imply that the other disk must be han

dling two data streams at once, thus doing additional work and causing additional 

slowdowns from excessive seeks. Read bandwidth is worse than write bandwidth 

because reads suffer both from fragmentation (when the data was originally writ

ten), and congestion caused by an unbalanced cluster. 

The cause of this behavior in the Split architecture is the lack of locality as seen 

by the NameNode. Each synthetic writer (one per client node) writes a single large 

file composed of many HDFS blocks. In the 1-node configuration, only a single file 

is created, whereas in the 2 node configuration, 2 files are written. Inspection of 

the specific HDFS block assignments for the files via the Hadoop web interface re

vealed that in the local and AoE architectures, each client is assigned HDFS blocks 

exclusively on the "local" disk. In the local architecture, the disk is genuinely lo

cal, whereas in the AoE configuration, the disk simply appears to be local, but is 

actually accessed across the network. For the purposes of the NameNode, that 

disk is still managed by a single DataNode, and is treated identically. In the Split 
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configuration, however, there is no apparent locality in the system. The pool of 

TaskTrackers and the pool of DataNodes are entirely disjoint. 

Locality plays an important part in the logic the NameNode uses to optimize 

replica placement in the cluster. Specifically, a client contacts the NameNode to re

quest a new HDFS block ID for a file and n target DataNodes on which to store 

block replicas. When choosing n replicas, the NameNode will assign the first 

replica to the DataNode co-located with the client. If that node is not available, 

a random DataNode will be selected. The second replica will be assigned to a 

DataNode in a different rack as the client, using Hadoop's built-in rack awareness 

framework. The third replica will be placed in the same rack as the first replica, 

and the forth and any further replicas will be assigned to random DataNodes in 

the cluster. The NameNode will return the list of assigned replicas to the client, 

who must contact them directly in order to write data. In practice, the client will 

contact the first DataNode and establish a replication pipeline through it to subse

quent DataNodes. 

Replica choices are always subject to the following availability rules which can 

veto a selection made according to the process just described. First, sufficient disk 

space must be available at the DataNode to store all pending HDFS blocks that 

have been assigned to it, but perhaps not written yet. If space is not available, 

a different replica must be chosen. Second, course-grained load balancing is ap

plied based on the number of files being written. If a selected DataNode has more 
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than twice the number of current clients (sampled and reported periodically) as 

the average load of all DataNodes in the entire cluster, a different replica must be 

selected. Third, course-grained load balancing is applied to ensure that all racks 

have roughly the same number of replicas, defined as within 2 of the average. This 

rule typically takes effect only when there are more than three replicas for a specific 

block, and thus it has no impact in the default Hadoop configuration. 

The impact of this design is clear in the experimental results. In the Split archi

tecture with no DataNode locality, the NameNode is forced into a situation where 

the first replica is randomly assigned. The effect of this random assignment policy 

can be seen in Figure 7.3(b), where each disk is either oversubscribed (accessed by 

two clients at the same time), or under-subscribed (completely idle), depending on 

the random selection process. In the 2-client and 2-datanode test cluster, conflicts 

occurred roughly 50% of the time. This problem did not exist in the local or AoE 

architectures because the preference for using the local node tended to ensure that 

all disks were equally busy, all the time. 

To mitigate this problem for the Split architecture, the NameNode target se

lection system was modified. Persistent assignments were introduced by caching 

targets and re-using the assignments for future blocks. This prevents clients from 

rapidly switching between nodes when randomly selecting a target, as was seen in 

the unmodified system. Further, the target allocation scheme was modified to first 

select a target in the local rack, then in the remote rack, and randomly thereafter. 
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Figure 7.4: Disk Utilization of Split Storage Architecture with NameNode Modifi
cations in 1 and 2-Node Configurations 

Finally, a load balancing thread was added to periodically balance the number of 

active clients for each DataNode. 

The improved performance of the Split architecture over time with these mod

ifications is shown in Figure 7.4. Here, both HDFS disks are in use continuously. 

File tracing through the Hadoop web interface revealed that both clients are con

sistently using different DataNodes in a manner identical to the way clients use the 

same local node in the local storage architecture. With the NameNode improve

ments, the split architecture now shows a substantial performance improvement 

in aggregate bandwidth when going from a 1-node to 2-node configuration, as 

shown in Table 7.3. What was previously a 10% drop in write bandwidth is now 

a 92% improvement, and what was previously a 25% drop in read bandwidth is 

now a 91% improvement. Thus, the performance of the Split architecture is now 

competitive with the traditional Hadoop local storage architecture. 

This chapter thus far has focused on providing persistent network-based stor-
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Configuration 
Local 
Split-Modified 
AoE 

1 Writer 
67.3 
70.4 
16.3 

2 Writers 
145.2 
130.7 
27.2 

1 Reader 
70.1 
69.8 
37.2 

2 Readers 
142.6 
131.4 
79.1 

Table 7.3: Storage Bandwidth (MB/s) in 1 and 2-Node Configurations with Na-
meNode Modifications 

age for Hadoop independent of any virtualization framework. Now, the virtual-

ization framework itself is evaluated to determine its performance impact on the 

storage architecture. 

7.3 Performance in Eucalyptus Cloud Computing Framework 

The new storage architecture for Hadoop combines local storage for temporary 

data with network-based storage for persistent HDFS data. Such an architecture is 

compatible with the Eucalyptus cloud computing framework previously discussed 

in Section 6.2, which uses a virtualization framework to provide isolation between 

applications. In such an environment, Hadoop temporary data can reside on local 

storage provided by the cloud environment using an architecture such as the one 

shown in Figure 6.2(a). Further, persistent data can reside on network-accessible 

storage nodes outside of the cloud environment. The native cloud network stor

age, shown in Figure 6.2(b), is not used for HDFS storage, as the Hadoop data 

transfer protocol functions more efficiently than AoE for this application. 

Such a storage architecture depends heavily on the performance of the virtu-

alized machine. High disk I/O bandwidth between the virtual machine and the 
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native disk is critical for scratch storage performance, and high network I/O band

width between the virtual machine and an external host is critical for persistent 

storage performance. Here, these two metrics are evaluated using the Eucalyp

tus cloud computing framework in order to determine its suitability. Given the 

research that has been invested in I/O virtualization in recent years, and the ease-

of-installation that was promised by Eucalyptus, the hope was that performance 

would be suitable out-of-the-box. 

7.3.1 Test Configuration 

To test Eucalyptus, a simplified two-node cluster was used. This cluster is not 

the same as the one used for previous experiments. The software is different be

cause Eucalyptus runs on Linux systems, not FreeBSD. Further, the hardware is 

different because Eucalyptus requires processor support for hardware virtualiza

tion extensions. In the test cluster, a front-end node with two network interfaces 

was connected to both the campus network and a private test network, and a back-

end node was connected only to the private network. Both networks ran at gigabit 

speeds. 

The front-end node was equipped with two AMD Opteron processors running 

at 2.4GHz with 4GB of RAM and a 500GB hard drive. It was configured to run 

the CLC, CC, EBS, and WS3 services as shown in Figure 6.1. The back-end node 

was equipped with two quad-core AMD Opteron processors running at 3.1GHz 
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with 16GB of RAM and a 500GB hard drive. These processors support the AMD-

V virtualization extensions as required for KVM support in Linux. The back-end 

node was configured to run the NC service and all virtual machine images. 

Two different software configurations were used: 

Eucalyptus with KVM — In the first configuration, Eucalyptus with the KVM 

hypervisor was used. This is a default installation of Ubuntu Enterprise Cloud 

(UEC), which couples Eucalyptus 1.60 with Ubuntu 9.10 [82]. The key benefit of 

UEC is ease-of-installation — it took less than 30 minutes to install and configure 

the simple two-node system. 

Eucalyptus with Xen — In the second configuration, Eucalyptus was used with 

the Xen hypervisor. Unfortunately, Ubuntu 9.10 is not compatible with Xen when 

used as the host domain (only as a guest domain). Thus, the CentOS 5.4 distribu

tion was used instead because of its native compatibility with Xen 3.4.2. The guest 

VM image still used Ubuntu 9.10. 

Two microbenchmarks were used inside the virtual machine to evaluate I/O 

performance. First, the simple dd utility was used to generate storage requests 

similar to those produced by Hadoop (large sequential writes and reads), but with

out the computation overhead of Java and the rest of the MapReduce framework. 

When using dd, 20GB tests were conducted using a 64kB block size. Second, the 

lightweight netperf utility was used to stress the virtual network with a minimum 

computation overhead. 
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To provide a performance baseline, the storage and network components were 

profiled with these utilities outside of the virtual machine. For storage, the Sea

gate Barracuda 7200.11 500GB hard drive (as profiled previously in Section 3.2) 

has a peak write and read bandwidth of approximately 111 and 108MB/s, respec

tively, assuming large block sizes (64kB+) and streaming sequential access pat

terns. For networking, the gigabit Ethernet network has a max application-level 

TCP throughput of 940Mb/s for both transmit and receive. In an ideal cloud com

puting system, this performance would be available to applications running inside 

the virtual environment. 

7.3.2 Performance Evaluation 

In testing, the storage and network performance significantly degraded under 

Eucalyptus with the KVM hypervisor and other default settings. Write bandwidth 

to the local disk is only 1.3 MB/s, a 98% reduction, while read bandwidth to local 

disk is 71.9 MB/s, a 38% reduction. Network bandwidth to the front-end node 

suffered too, achieving only 667 Mb/s transmitting and 431 Mb/s receiving, a 29% 

and 54% reduction from the non-virtualized performance, respectively. 

To investigate the cause of the poor out-of-the-box storage performance, follow-

up tests were conducted with a variety of non-default configurations. Several vir

tual machine monitors (VMMs) were used with Eucalyptus, including none (in

dicating that only the host domain was used for comparison purposes), KVM, 
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and Xen. The storage target was either a sparse file on local disk (by default), a 

fully-allocated file on local disk, or the raw disk mapped in its entirety into the 

guest. Several KVM I/O visualization mechanisms were used, including a fully-

virtualized SCSI driver (emulating a LSI Logic 53c895a controller) and a para-

virtualized Virtio driver [16, 74]. Similarly, Xen used either a fully-virtualized 

SCSI driver or para-virtualized XVD driver. Performance results are reported in 

Table 7.4 for write bandwidth and Table 7.5 for read bandwidth. 

Several metrics are reported for each configuration. First, the application-level 

bandwidth (as seen in the guest domain by the dd application) is provided. Next, 

several disk utilization metrics were measured in the host domain (not the guest 

domain) by the iostat utility to track disk access efficiency after the influence of 

the I/O visualization mechanism. These metrics include avgrq-sz , the average 

disk request size measured in kB, avgqu-sz, the average queue depth measured 

in disk requests, and percent utilization, the percent of time that the disk had at 

least one request outstanding. 

Several conclusions can be drawn from the expanded suite of test configura

tions. First, pre-allocating the backing file on local disk (instead of using a sparse 

file that grows as data is written) eliminates the abnormally low write bandwidth 

of 1.3 MB/s initial reported, boosting it to 62.6 MB/s. The tradeoff implicit in this 

change is the time required to initialize the file on disk, which can be amortized 

by long-running virtual machine instances. Second, using para-virtualized device 
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VMM 
None 
KVM(*) 
KVM 
KVM 
KVM 
KVM 
Xen(*) 
Xen 
Xen 

Driver 
N/A 
SCSI/sparse file 
SCSI/full file 
SCSI/disk 
Virtio/full file 
Virtio/disk 
SCSI/full file 
SCSI/disk 
XVD/disk 

Bandwidth 
111 
1.3 
62.6 
71.5 
87.0 
110 
58.4 
65.8 
102 

Avgrq-sz 
512 
15 
128 
128 
490 
512 
498 
126 
350 

Avgqu-sz 
140 
0.9 
0.82 
0.57 
42 
60 
142 
0.87 
3.0 

% Util 
100% 
90% 
81% 
64% 
100% 
100% 
100% 
86% 
100% 

Table 7.4: DD Write Bandwidth (MB/s) to Local Disk and Disk Access Pattern Mea
sured at Host Domain. Entries marked (*) are Eucalyptus Default Configurations. 

VMM 
None 
KVM(*) 
KVM 
KVM 
KVM 
KVM 
Xen(*) 
Xen 
Xen 

Driver 
N/A 
SCSI/sparse file 
SCSI/full file 
SCSI/disk 
Virtio/full file 
Virtio/disk 
SCSI/full file 
SCSI/disk 
XVD/disk 

Bandwidth 
108 
71.9 
71.4 
70.5 
75.9 
76.2 
83.1 
42.8 
94.8 

Avgrq-sz 
256 
225 
241 
256 
256 
256 
121 
7 
64 

Avgqu-sz 
0.94 
1.1 
0.64 
0.7 
0.7 
0.5 
1.6 
22.4 
2.2 

% Util 
96% 
96% 
64% 
68% 
69% 
57% 
99% 
99% 
99% 

Table 7.5: DD Read Bandwidth (MB/s) to Local Disk and Disk Access Pattern Mea
sured at Host Domain. Entries marked (*) are Eucalyptus Default Configurations. 

drivers (virtio and XVD) instead of fully-virtualized devices increases bandwidth 

in both KVM and Xen. Para-virtualized drivers are able to use the underlying disk 

efficiently, with both large requests and deep queues of pending requests. The 

tradeoff here is that this requires device support in the guest operating system, 

although such support is nearly universal today. Third, mapping the entire lo

cal disk into the guest domain, instead of mapping a file on local into the guest 

domain, improves performance further. The tradeoff here is that the disk can no 
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longer be shared between virtual machines without partitioning the device. By 

combining these techniques together, local disk bandwidth from the guest domain 

is increased to within 80-100% of the non-virtualized bandwidth, depending on 

the hypervisor used. Thus, local storage is a viable platform for Hadoop scratch 

storage assuming that the virtual environment is properly configured before use. 

Like storage bandwidth, network bandwidth also was improved by switching 

to para-virtualized drivers instead of fully-virtualized drivers. Using the virtio 

driver in KVM yielded a transmit bandwidth of 888.7 Mb/s and a receive band

width of 671.6 Mb/s, which is a 5% and 28% drop over the ideal performance, 

respectively. Xen did slightly better, generating 940 Mb/s and 803 MB/s for trans

mit and receiving from the guest domain, which is a 0% and 14% degradation, 

respectively. Other work has shown that Xen, properly configured, is able to sat

urate a lOGb/s Ethernet link from a guest domain [69]. This is an active topic 

of research that is receiving significant attention from the virtualization commu

nity. Thus, network storage is a viable platform for Hadoop persistent storage 

assuming that the virtual environment is properly configured before use. Next, 

virtualization is combined with remote storage to provide a complete architecture 

for Hadoop execution in a datacenter shared with other applications. 
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7.4 Putting it All Together 

In this final section, a complete vision is presented for implementing the pro

posed remote storage architecture for MapReduce and Hadoop in a datacenter 

running a virtualization framework such as Eucalyptus. This design exploits the 

high bandwidth of datacenter switches and co-locates computation and storage 

inside the same rack (connected to the same switch), instead of co-locating compu

tation and storage in the same node as in the traditional local storage architecture. 

A generic rack in the datacenter is shown in Figure 7.5. Here, all nodes in the rack 

are connected to the same Ethernet switch with full bisection bandwidth. Uplink 

ports from the switch (not shown) interconnect racks, allowing this design to be 

generalized to a larger scale if desired. For simplicity, operating system details are 

not shown in the figure. But, all nodes have an operating system, and that OS is 

stored on a local disk or flash memory. For example, the master node metadata 

disk could also store the host OS running the JobTracker and NameNode services. 

There are three types of nodes in the cluster: master, compute, and storage. 

Both the master and storage nodes are specialized nodes exclusively for Hadoop-

specific purposes. In contrast, the compute node is a standard cloud computing 

node that can be shared and re-used for other non-MapReduce applications as 

required. 

Master node — The master node runs the JobTracker and NameNode services. 

In a small Hadoop installation, a single master node could run both services, and 
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Figure 7.5: Rack View of Remote Storage Architecture for Hadoop 

in a larger Hadoop installation two master nodes could be used; one for the Job-

Tracker, and the other for the NameNode service. The master node is not virtual-

ized like other nodes in the datacenter, and its persistent metadata is stored on a 

locally-attached disk. The services running on the master node are more latency 

sensitive than MapReduce applications accessing HDFS block storage. 

Compute node — Compute nodes run MapReduce tasks under the control of 
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a TaskTracker service. There are many compute nodes placed in each datacen-

ter rack. Each compute node is virtualized using a cloud computing framework 

such as Eucalyptus, and thus these nodes can be allocated and deallocated on de

mand in the datacenter based on application requirements. The local storage ar

chitecture, previously shown in Figure 6.2(a), allows the virtual machine access to 

local storage that is well suited to temporary or scratch data produced as part of 

the MapReduce computation process, such as intermediary key/value pairs which 

are not saved in persistent HDFS storage. After the MapReduce computation has 

ended, compute nodes can be re-used for other purposes by the cloud controller. 

The temporary data stored to local disk can be deleted and the storage re-used 

for other purposes. Later, when MapReduce computation is started up again, the 

cloud controller should try to allocate compute nodes in the same rack as the non-

virtualized storage nodes whenever possible, thereby preserving some locality in 

this architecture. 

Storage Node — Storage nodes provide persistent storage for HDFS data un

der the control of a DataNode daemon. There are many storage nodes placed in 

each rack, and each node contains at least one HDFS disk. Storage nodes are not 

virtualized. The HDFS data stored here is persistent regardless of whether or not 

MapReduce applications are currently running. As such, these nodes do not ben

efit from management by the virtualization / cloud computing framework, and 

would perform better by avoiding the overhead of virtualization. The DataN-
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ode daemon can either run continuously, or the cloud framework can be con

figured to start/stop DataNode instances whenever the MapReduce images are 

started/stopped on the compute nodes. For energy efficiency, storage nodes could 

be powered down when no MapReduce computations are active. The number of 

HDFS disks placed in a storage node could vary depending on the physical de

sign of the rack and rackmount cases, the processing resources of the storage node 

(more disks require more processing resources), and the network bandwidth to 

the datacenter switch. A 10 Gb/s network link could support more disks than a 

gigabit Ethernet link. 

The ratio between compute nodes and storage nodes is flexible based on appli

cation requirements and the number of disks placed in each storage node. It can be 

changed during cluster design, and even during cluster operation if a few network 

ports and space in the rack is left open for future expansion. This flexibility is one 

of the key advantages of a remote storage architecture. 

If desired, both the storage and compute nodes could be shared with other con

current applications. Sharing of the storage node is possible because the DataN

ode daemon uses the native filesystem to store HDFS block data, and thus the disk 

could be used by other native applications. (Whether sharing is likely is a differ

ent question, however. HDFS data may consume most if not all of the disk space 

on the storage node, leaving no available resources left for other uses.) Sharing 

of the compute node is also possible because of the cloud computing framework. 
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Additional virtual machines could be started and assigned to other CPU cores. 

The cloud storage architecture provides a standardized method to provision each 

VM with independent local storage. Obviously, sharing these nodes entails perfor

mance tradeoffs, particularly with regards to finite storage bandwidth. 

The master node could be a standard virtualized node, if desired. Unlike the 

compute node, however, the master node could not use the local storage resources 

provided by the cloud framework. The master node needs to store persistent non-

HDFS data such as the filesystem namespace (managed by the NameNode) even 

when MapReduce computation is not active. Thus, the only suitable storage loca

tion provided by the cloud environment is the remote AoE-based storage shown 

in Figure 6.2(b). The benefit of running the master node in a virtualized environ

ment is that it allows that node to be re-used for other application purposes when 

MapReduce computation is not active. The drawback is that the network-based 

storage provided by the cloud environment has higher latency than local storage, 

and the NameNode and JobTracker running on the master node are more latency 

sensitive than MapReduce applications. 

The design of the storage nodes in this architecture can vary widely depending 

on technology considerations. For instance, storage nodes could be lightweight, 

low-powered devices consisting of a disk, embedded processor, and gigabit net

work interface. This is similar to the network-attached secure disks concept dis

cussed in Section 5.4, where the standard disk controller also contains a network 
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interface, allowing a disk to be directly attached to the network. As a proof of 

concept, the DataNode daemon was tested on an 8 watt Atom 330 processor and 

achieved equivalent network storage bandwidth with over 50% processor idle 

time. Or, depending on technology considerations like network speed, it may be 

more effective to deploy a smaller number of large storage nodes with multiple 

disks, a high-powered processor, and a single ten-gigabit network interface. Re

gardless of the exact realization of the storage node, the interface provided (that of 

the DataNode daemon) would stay the same. 

This new storage architecture requires cooperation from the cluster scheduler 

to operate efficiently. MapReduce computation should be executed on compute 

nodes located in the same rack as the persistent storage nodes. Otherwise, data 

in the hierarchical network will be transferred over cross-switch links, increasing 

the potential for network congestion. The cluster-wide node scheduler (e.g., as 

provided in Eucalyptus) needs to be modified to take the location of storage nodes 

into account when assigning virtual machine images to specific hosts. To ensure 

good MapReduce performance, it may be desirable or necessary to migrate other 

applications away from racks containing persistent storage nodes, in order to make 

room for MapReduce computation and to enable its efficient operation. 



CHAPTER 8 

Conclusions 

This thesis was initially motivated by debate in academic and industrial circles 

regarding the best programming model for data-intensive computing. Two lead

ing contenders include parallel databases and MapReduce, each with their own 

strengths and weaknesses [37, 67, 77]. The MapReduce model has been demon

strated by Google to have wide applicability to a large spectrum of real-world 

programs. The open-source Hadoop implementation of MapReduce has allowed 

this model to spread to other well-known Internet service providers and beyond. 

But, Hadoop has been called into question recently, as published research shows 

its performance lagging by 2-3 times when compared with parallel databases [67]. 

To close this performance gap, the first part of this thesis focused on a previ

ously neglected portion of the Hadoop MapReduce framework: the storage sys

tem. Data-intensive computing applications are often limited by the available 

storage bandwidth. Unfortunately, the performance impact of the Hadoop Dis

tributed File System (HDFS) is hidden from Hadoop users. While Hadoop pro

vides built-in functionality to profile Map and Reduce task execution, there are no 

145 
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built-in tools to profile the framework itself, allowing performance bottlenecks to 

remain hidden. User-space and custom kernel instrumentation was used to break 

the black-box abstraction of HDFS and observe the interactions between Hadoop 

and storage. 

As shown in this thesis, these black-box framework components can have a 

significant impact on the overall performance of a MapReduce framework. Many 

performance bottlenecks are not directly attributable to user-level application code 

as previously thought, but rather are caused by the task scheduler and distributed 

filesystem underlying all Hadoop applications. For example, delays in the task 

scheduler result in compute nodes waiting for new tasks, leaving the disk to sit 

idle for significant periods. A variety of techniques were applied to this problem 

to reduce the task scheduling latency and frequency at which new tasks need to be 

scheduled, thereby increasing disk utilization to near 100%. 

The poor performance of HDFS goes beyond scheduling bottlenecks. A large 

part of the performance gap between MapReduce and parallel databases can be 

attributed to challenges in maintaining Hadoop portability across different oper

ating systems and filesystems, each with their own unique performance charac

teristics and expectations. For example, disk scheduling and filesystem alloca

tion algorithms are frequently designed in native operating systems for general-

purpose workloads, and not optimized for data-intensive computing access pat

terns. Hadoop, running in Java, has no way to impact the behavior of these under-
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lying systems. Fortunately, HDFS performance under concurrent workloads was 

significantly improved through the use of HDFS-level I/O scheduling while pre

serving portability. Further improvements by reducing fragmentation and cache 

overhead are also possible, at the expense of reducing portability. However, main

taining Hadoop portability whenever possible will simplify development and ben

efit users by reducing installation complexity. 

Optimizing HDFS will boost the overall efficiency and performance of 

MapReduce applications in Hadoop. While this may or may not change the ul

timate conclusions of the MapReduce versus parallel database debate, it will cer

tainly allow a fairer comparison of the actual programming models. Further, 

greater efficiencies can reduce cluster power and cooling costs by reducing the 

number of computers required to accomplish a fixed quantity of work. 

In addition to improving the performance of MapReduce computation, this 

thesis also focused on improving its flexibility. MapReduce and Hadoop were 

designed (by Google, Yahoo, and others) to marshal all the storage and compu

tation resources of a dedicated cluster computer. Unfortunately, such a design lim

its this programming model to only the largest users with the financial resources 

and application demand to justify deployment. Smaller users could benefit from 

the MapReduce programming model too, but need to run it on a cluster computer 

shared with other applications through the use of virtualization technologies. 

The traditional Hadoop storage architecture tightly couples storage and com-
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putation resources together in the same node. This is due to a design philosophy 

that it is better to move the computation to the data, than to move the data to the 

computation. Unfortunately, this architecture is unsuitable for use in a virtual-

ized environment. In this thesis, a new architecture for persistent network-based 

HDFS storage is proposed. This new design breaks the tight coupling found in 

the traditional architecture in favor of a new model that co-locates storage and 

computation at the same network switch, not in the same node. This is made pos

sible by exploiting the high bandwidth and low latency of modern datacenter net

work switches. Such an architectural change greatly increases the flexibility of the 

cluster, and offers advantages in terms of resource provisioning, load balancing, 

fault tolerance, and power management. The new remote architecture proposed 

here was designed with virtualization in mind, thereby increasing the flexibility of 

MapReduce and encouraging the spread of this parallel computing paradigm. 

8.1 Future Work 

After contributing to the storage architecture of MapReduce and Hadoop, a 

wide variety of interesting projects remain as future work. With regards to the 

traditional local storage architecture, further improvements could be made in the 

areas of task scheduling and startup. For example, task prefetching could be imple

mented, or JVM instances started up in parallel with requesting new tasks. Both 

methods could reduce scheduling latency with fewer tradeoffs than the mecha-
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nisms evaluated to date. 

The use of Java as the implementation language for Hadoop could be re-visited 

as future work, regardless of the storage architecture employed. The benefit of Java 

for Hadoop is portability, specifically in simplifying the installation process by pro

viding a common experience across multiple platforms and minimizing the use of 

third party libraries. The cost of Java is partially in overhead, but more signifi

cantly in loss of feature support. Testing with synthetic Java programs shows that 

Java code is able to achieve full local disk bandwidth and full network bandwidth, 

at the expense of a slight increase (less than 3%) in processor overhead compared 

with native programs written in C. Considering that data-intensive computing ap

plications are often storage bound, not processor bound, this extra overhead is 

unlikely to pose a significant problem. The bigger drawback with Java is its least-

common-denominator design. In the Java language, a feature is not implemented 

unless it can be provided by the Java Virtual Machine running on all supported 

platforms. The tradeoff here is that Java is unable to support platform-specific 

optimizations. Hadoop could benefit, for example, by pre-allocating space for an 

entire HDFS block to reduce fragmentation. Ideally, this would be conditionally 

enabled based on platform support (i.e., the ext4 or XFS filesystem), but Java does 

not provide any mechanism to do so beyond the use of the Java Native Interface 

or other ad-hoc, inconvenient methods. Instead of using Java, it is possible to 

imagine a new HDFS framework where the DataNode service is written in C and 
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takes advantage of a library such as the Apache Portable Runtime to benefit from 

platform-specific optimizations like block pre-allocation. A C-language implemen

tation could also employ 0_DIRECT to bypass the OS page cache and transfer data 

directly into user-space buffers, something that is not possible in Java and would 

reduce processor overhead. 

The new persistent network storage architecture for HDFS in a virtualized dat-

acenter motivates further research into scheduling algorithms. In this new archi

tecture, MapReduce computation should be executed on compute nodes located 

in the same rack as the persistent storage nodes. Otherwise, data in the hierarchi

cal network will be transferred over cross-switch links, increasing the potential for 

network congestion. The cluster-wide node scheduler (for example, in Eucalyptus) 

needs to be modified to take the location of storage nodes into account when as

signing virtual machine images to specific hosts. To ensure good MapReduce per

formance, it may be desirable or necessary to migrate other applications away from 

racks containing persistent storage nodes, in order to make room for MapReduce 

computation. 

Persistent network storage for Hadoop has many benefits related to design flex

ibility that could also be investigated as future work. First, rack-level load balanc

ing could be evaluated as a way to reduce cluster provisioning cost. Racks could be 

provisioned for the average aggregate I/O demand per rack, rather than the peak 

I/O demand per node. Compute nodes can consume more or less I/O resources on 
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demand. Second, the benefits related to fault isolation could be more clearly identi

fied and evaluated. In a network storage architecture, a failure in a compute node 

only affects computation resources, and a failure in a storage node only affects 

storage resources. This is in contrast to a failed node in the traditional local stor

age architecture, which impacts both computation and storage resources. Third, 

fine-grained power management techniques that benefit from stateless compute 

nodes could be investigated. For example, a cluster could be built with a mix of 

compute nodes, some employing high-power/high-performance processors, and 

others employing low-power/low-performance processors. The active set of com

pute nodes could be dynamically varied depending on application requirements 

for greater energy efficiency. 
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