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Abstract

As the speed, size, reliability and power efficiency of non-volatile
storage media increases, and the data demands of many applica-
tion domains grow, operating systems are being put under escalating
pressure to provide high-speed access to storage. Traditional mod-
els of storage access assume devices to be slow, expecting plenty
of slack time in which to process data between requests being ser-
viced, and that all significant variations in timing will be down to the
storage device itself. Modern high-speed storage devices break this
assumption, causing storage applications to become processor-bound,
rather than I/O-bound, in an increasing number of situations. This
is especially an issue in real-time embedded systems, where limited
processing resources and strict timing and predictability requirements
amplify any issues caused by the complexity of the software storage
stack.

This thesis explores the issues related to accessing high-speed stor-
age from real-time embedded systems, providing a thorough analysis
of storage operations based on metrics relevant to the area. From
this analysis, a number of alternative storage architectures are pro-
posed and explored, showing that a simpler, more direct path from
applications to storage can have a positive impact on efficiency and
predictability in such systems.
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1
Introduction

This chapter provides an overall introduction to the thesis, outlining
the general research direction and motivation. A research hypothesis
is also presented, along with a list of contributions, and the structure
for the remainder of the document.

1.1 Introduction

Persistent secondary storage is an integral part of almost all mod-
ern computer systems, with advances in Hard Disk Drives (HDDs),
Solid-State Drives (SSDs), and other Non-Volatile Memory (NVM)
technologies constantly pushing the boundaries of the size and speed
of data available to a system. Data stored on these devices typically
relies on abstractions provided by a file system for access, allowing
applications to read from and write to storage in a structured way
that separates a logical collection of data (such as a specific file) from
its physical representation on the medium (such as a set of sectors on
a hard disk). Below file-level abstractions, most storage devices are
treated as block-level memories, allowing read and write operations
only on relatively large portions of data (typically 512 or 4096 bytes).
This is in contrast to the byte- or word-level access granularity of
primary system memory (potentially via a cache fetching data from
RAM in line lengths), but was historically a necessary trade-off for
persistent storage in order to provide efficient access to large or slow
devices. Emerging types of non-volatile memory are beginning to
allow byte-addressable access to persistent storage, however these
technologies are currently limited to experimental architectures and
are not widely available [11].

Traditionally, persistent storage media have been many orders of
magnitude slower than main system memory, meaning file systems
and the operations around them were not required to operate at a
particularly high speed. This has led to issues of storage technology
speeds overtaking the abilities of Central Processing Units (CPUs) and
interfaces, especially when dealing with embedded systems that have

17
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limited resources, or real-time large-scale data problems, which require
the reliable storage and retrieval of data at high bandwidths [12].

Some efforts are being made by hardware manufacturers at the
operating system and interface levels to address the issue of high
CPU usage caused by high-speed storage, with the introduction of
technologies such as NVM Express (NVMe) [13] that are focused on
providing more optimised access to storage. Currently the majority of
secondary storage devices are connected through a Serial ATA (SATA)
interface, however, and accessed using the Advanced Host Controller
Interface (AHCI) standard, whose development was originally focused
on relatively slow mechanical hard disks, and is therefore not effi-
ciently implemented for high-speed storage [14]. While the move to
more efficient protocols relieves some of the software load associated
with fast access to storage, the effect may still be limited if storage
speeds continue to increase relative to other hardware, potentially
requiring a more fundamental change to the layers of a storage system
present in an operating system kernel, or split between software and
hardware.

On top of this, the use of large, high-speed persistent storage in
embedded systems is becoming increasingly both practical and neces-
sary, due to the lower power requirements and greater robustness of
solid state storage compared to mechanical media, and the handling
of large volumes of data that cannot reasonably be stored in volatile
system memory or embedded flash storage.

The increases in speed and consistency of storage access times
brought about by modern persistent storage technologies, combined
with the expanding storage demands of many embedded and real-
time applications provides the overall motivation for this research
examining more efficient, predictable and appropriate storage access
systems for real-time embedded systems.

The real-time implications of a more efficient and predictable stor-
age architecture motivate a stronger look into real-time properties of a
potential system, and not just any possible raw performance improve-
ments. This includes considering the priority and accountability of
a task that is performing storage operations, investigating ways that
time spent blocking on a storage operation can correctly be attributed
to a task, and considering any side-effects that storage operations may
have across multiple real-time tasks.

1.2 Research Motivation

The core motivation for this research is derived from the need to ad-
dress potential operating system shortcomings in accessing high-speed
storage devices in the context of real-time and embedded systems.
Currently, emerging high-speed storage technologies are pushing the
boundaries of software file system processing, with CPU require-
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ments being very high in order to saturate the fastest interfaces and
devices [12]. Similar issues are experienced by many large-scale data
systems, in areas where storage is by far the most intensive resource
in a system.

A potential lack of real-time predictability is combined with the
speed impact caused by the CPU pressure of high-speed storage,
as other processes running on a system have a high possibility of
impacting the speed of data storage, and the inherent complexity of
storage architectures causing the CPU load leads to access patterns
that are very difficult to predict. Predictability is essential in many
large-scale data applications, as a system often must be able to operate
at a guaranteed bandwidth in order to process and store incoming
data reliably.

One method that has potential to address these issues is hardware
acceleration – reducing the amount of the storage stack executing in
software by offloading a number of layers into dedicated hardware.
This may reduce the pressure on the CPU, allowing for increased
storage speeds to be properly utilised, and improving the predictability
of storage operations. A less dramatic approach is to simplify the
software side of the storage stack while retaining the same hardware
support, collapsing and removing a number of potentially unnecessary
layers on the path between applications and storage.

1.2.1 Storage for Embedded Systems

Recent advances in flash memory technology have caused the wide-
spread adoption of Solid-State Drives (SSDs), which offer far faster
storage access compared to mechanical hard drives, along with other
benefits such as lower energy consumption and more-uniform ac-
cess times. It is anticipated that over the next several years, further
advances in non-volatile memory technologies will accelerate the in-
creasing trend in storage device speeds, potentially allowing for large,
non-volatile memory devices that operate with similar performance to
volatile RAM. At a certain point, fast storage speeds, relative to CPU
and system memory speeds, will cause a critical change in the balance
of a system, requiring a significant reconsideration of an operating
system’s approach to storage access [12]. Additionally, mechanical
hard disk drives are fundamentally limited in their latency and In-
put/output Operations Per Second (IOPS) by physical constraints,
meaning even a high-end 15,000 RPM device can have a 2.7 ms seek
time and achieve just 210 IOPS [15], compared with latencies in the
order of microseconds and IOPS in the order of tens to hundreds
of thousands from SSDs [16, 17], which do not experience the same
inherent issues.

At present, this shift in the balance of system performance is begin-
ning to affect the embedded world, where processing and memory
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speeds are typically low due to constraints such as energy usage, size
and cost, but where fast solid-state storage still has the potential to
run at the same speed as in a more powerful system. For example,
an embedded system consisting of a slow, low-core-count CPU and
slowly-clocked memory connected to a high-end, desktop-grade SSD
has a far different balance between storage, memory and CPU than
is expected by the operating system design. While such a system
may run a general-purpose operating system such as Linux perfectly
adequately for many tasks, it may not be able to take advantage of the
full speed of the SSD using traditional methods of storage access in
the operating system.

Before fast solid-state storage was common, non-volatile storage
in an embedded system would often consist of slow flash memory,
due to the high energy consumption and low durability of faster
mechanical media, meaning the potential increase in secondary storage
speeds provided by SSDs is even greater in embedded systems than
many general-purpose systems. An increase in the general storage
requirements and expectations for systems, driven by fields such
as multimedia and ‘big data’ processing, have also accelerated the
adoption of fast solid-state storage in embedded systems.

1.2.2 Real-Time Storage Access

Many high-performance storage applications require consideration of
real-time constraints, due to external producers or consumers of data
running independently of the system storing it — if a storage system
cannot save or provide data at the required speed then critical inform-
ation may be lost or the system may malfunction. While solid-state
storage devices have far more consistent access times than mechanical
storage, making them more suitable for time-critical applications, if the
CPU of a system is proving to be a bottleneck in storage access times,
the ability to maintain a consistent speed of data access relies heavily
on CPU utilisation. Standard methods of accessing storage through a
general-purpose operating system kernel are also unlikely to consider
real-time requirements and the predictability of operations.

Stand-alone embedded systems that use storage devices create
motivation for efficient, real-time access to storage, for applications
such as logging sensor data and recording high-bandwidth video
streams [18], where information will be lost if it cannot reliably be
stored in a timely manner. Often, external data sources will have con-
straints on the speeds required for their storage, for example, with
the number of frames of video that must be stored each second, so
any method that can help to meet these requirements is desirable,
especially while taking into account other potential requirements of a
system, such as minimising energy usage.
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If CPU time can be removed as far as possible from the operation
of copying data to storage, the impact on this from other, non-storage
processes will be reduced, potentially increasing the predictability of
storage operations and making real-time guarantees more possible.
This could be achieved through methods such as hardware acceler-
ation, as well as simplification of the software storage stack. Explicit
modification of the storage stack to allow for real-time accountability
and to reduce variability would also make real-time storage access a
more reasonable task.

1.2.3 Large-Scale Data Systems

While not strictly an embedded systems issue, an ongoing problem in
computing is that of storing and processing large-scale or ‘big’ data –
sets of data that are too large to be processed by traditional methods.
For example, while a typical method of operating on data would be to
load files from a secondary storage device into main memory, perform
some process on these files, then save the result back to disk, the size
of large-scale data sets means this is not possible. Typically, data is
stored over many servers and streamed to applications in real-time as
it is produced or used, exhibiting some of the same requirements as
real-time embedded systems, such as high efficiency and predictability.

A prime example of a large-scale data problem is the results pro-
duced by CERN’s Large Hadron Collider, whose experiments yield
around 50-70 petabytes per year (over 1.5 gigabytes every second) to
be stored for later analysis, even after filtering out and discarding
99% of results data in real-time [19]. In order to store and retrieve
this amount of data at a practical speed specialist systems need to
be used, as traditional, general-purpose file systems and databases
create overheads and perform many operations in a manner that is not
efficient for such large data sets [20]. This heavy reliance on storage
leads to the storage architecture becoming a limiting factor in the
system, thanks to the disproportionate pressure it puts on other areas.

Due to their low power usage, high performance and high reliability,
embedded accelerators are increasingly being used to assist with large-
scale data applications [21]. Embedded systems often have limited
resources, especially in areas such as CPU speed, meaning hardware
cores implemented in programmable logic, rather than software im-
plementations of functionality, are used for many tasks. Currently,
direct access to storage from hardware accelerators is not widely im-
plemented, with most systems requiring a software file system to
service storage requests. This presents limitations in storage access
speeds, and removes some of the potential real-time predictability
of the accelerator, due to limited embedded CPU speeds throttling
operation [22].
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1.3 Historical Performance Trends

This section presents historical trends in multiple areas of computer
systems related to the research presented in this thesis, including
CPU and memory speeds, storage interface bandwidths, and pro-
grammable hardware capabilities, in order to contextualise current
discrepancies between high-speed storage and processing improve-
ments, and provide motivation for the research. Data was collected
from a number of sources to quantify improvements in various com-
puting resources over recent history, with a focus on their relationship
to storage technologies.

The following areas are identified to provide relevant data for com-
parison of the advancement of system components:

• Single- and multi-core CPU speed
• Volatile memory bandwidth
• General storage performance
• Storage device and interface bandwidths
• FPGA size and capabilities

Data is gathered from various sources, including books, online
collections of benchmarking data, product datasheets, and technical
standards. In some cases, the breadth and quality of readily available
data has proven too limited for thorough conclusions to be drawn,
with information from many benchmarks often not providing enough
context to be reliably useful. Data from published standards and lit-
erature is more useful in providing applicable information, however
this still provides limited context around how much of potential max-
imum values are used in real-world contexts, and disparities between
publication dates and when technologies are actually commonly in
use.

In general, results show trends that are to be expected, with all areas
showing reasonably steady improvement over time. The main results
worth noting arise from the progression of storage interfaces, whose
speeds are being increasingly driven by the capabilities of storage
devices, while single-core CPU speeds are failing to progress at rates
that were previously taken for granted. This difference between CPU
and storage speed growth provides a basic level of motivation for fur-
ther exploration of storage optimisation, as the traditional assumption
in operating systems design that CPU speeds far outperform storage
technologies is clearly beginning to break.

1.3.1 Analysis of Historical Trends

Figure 1.1 shows the ‘memory gap’, proposed by Hennessy and Pat-
terson [23] where CPU speeds and volatile memory have progressed at
quite different rates since the early days of mainstream computers in
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Figure 1.1: Relative single- and multi-core CPU, and memory performance
increases since 1980, adapted from [23]

Figure 1.2: CPU clock speeds over time, data from [24]
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Figure 1.3: Memory interface speed progression over time, data from [23,
25–28]

Figure 1.4: Storage interface speed progression, relative to 1980, data
from [29–34]
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1980, with CPU frequency improvements dwarfing those of SDRAM.
Since around 2005, however, single-core CPU speed scaling has stalled,
with more modern processors relying on parallel, multi-core architec-
tures for performance improvements.

The limits of CPU frequency scaling are reinforced by Figure 1.2,
which displays the real-world frequencies of various CPUs released
between the early 1970s and 2018 [24]. The point at which the upward
trend of CPU frequency speeds stopped can clearly be seen in the
plotted devices.

While not as sudden as CPU speed scaling shifts, Figure 1.3 shows
a general trend of memory speed increases slowing too, according
to various memory standards [23, 25–28], with each new interface
providing a smaller performance increase than the last, and being
released after a greater period of time.

In contrast to these trends, Figure 1.4 shows a far more constant
increase in maximum storage interface speeds over the last forty years,
according to various storage standards [29–34], suggesting that this
area is not suffering from the same limitations as CPU and memory
scaling. This strongly motivates a need to adjust the assumptions used
by software systems when accessing storage, not just in embedded
systems, in order to address the changing relative performance of
storage against the rest of a system.

Additional plots compiled using data collected from multiple sources
can be found in Appendix A, including CPU performance and core
counts, storage interface speeds, and FPGA device trends.

1.4 Research Hypothesis

Traditional methods of accessing high-speed storage are problematic
for real-time embedded systems, particularly due to their complexity,
potentially causing high CPU demands and large timing variability.
To this end, this thesis addresses the following hypothesis:

Reducing the complexity of the software storage stack in
real-time embedded systems results in more predictable
and efficient access to storage.

To expand on this, efficiency is defined as reducing the execution
time required for a given size of storage access, while predictability
covers both the variability of this execution time, and the ability to
predetermine and guarantee the control flow and pattern of a storage
access operation.

1.5 Structure and Contributions

The remainder of this thesis is structured as follows.
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Chapter 2 covers a wide range of related literature in the areas
touched by the thesis, as well as providing background on storage ac-
cess in real-time embedded systems, detailing any technologies used,
and suggesting models and metrics for the effective measurement
of results. The main technical contribution of this thesis begins in
Chapter 3, with a detailed analysis of storage systems in embedded
Linux, with a focus on efficiency and predictability when dealing with
large data sets. This is followed in Chapter 4 with the development
and discussion of a number of possible alternative storage stack im-
plementations, with the aim of improving the key identified metrics,
along with thorough evaluation in comparison to standard storage ac-
cess methods. Chapter 5 then proposes a number of future directions
for the work presented, including a proposal for a novel hardware
storage architecture design, based on the motivation and ideas in the
thesis and any limitations discovered, before finally concluding the
thesis.

1.5.1 Research Contributions

The following research contributions are offered by this thesis in
Chapters 2 to 4.

Chapter 2: Background and Related Work

Chapter 2 provides a comprehensive overview of literature related
to storage in real-time embedded systems, highlighting issues re-
lated to the area, outlining work that has been carried out to address
these issues, and identifying limitations of existing approaches to im-
provements. The chapter also provides a general background in areas
covered by the thesis, including the evolution of persistent storage,
operating systems, and hardware acceleration. A high-level model of
storage access is defined, categorising potential operations provided
by a typical storage stack into more general domains, along with a
series of metrics for consistent measurement of storage systems. Ideas
and analysis from background work and related literature inform and
motivate the remainder of the thesis.

Chapter 3: Problem Analysis

Chapter 3 provides a large amount of analysis on storage access in
Linux, specifically in how it relates to the predictability and efficiency
required for real-time and embedded systems. Initial profiling work
leads to a thorough benchmarking of standard and direct I/O access
to a number of storage devices in an embedded platform, examining
both the speed and CPU usage to give an indication of efficiency.
This is followed by the presentation of a custom hardware component
for low-overhead timing of software and hardware triggers, which is
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used to measure the variability of periodic storage accessed, as well
as accurate low-level profiling of storage access to expand on these
results. The results from this chapter serve to both inform on the
differences between current storage access methods in Linux, and to
further motivate the need for alternatives in order to improve results
based on the desired metrics.

Chapter 4: Alternative Storage Interfaces

Chapter 4 presents a number of alternative storage interfaces for Linux,
largely focussing on predictability and efficiency over unnecessary
convenience or complex features. CharIO, a kernel driver presenting
SSD storage as as character device, is presented and evaluated, show-
ing promise for simplifying the kernel storage stack. This is followed
by removing kernel interference to a greater level, through a port of
the UNVMe driver to the Zynq UltraScale+ embedded platform, and
a complete NVMe driver implementation running on a MicroBlaze
soft processor core separate to the main CPU.

Chapter 5: Future Work

Chapter 5 discusses a number of avenues for future work, including
a proposed design for a more ambitious restructuring of the storage
stack, using custom hardware components to create and manage a
simple memory-mapped interface for software to access storage.
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2
Background and Related Work

This chapter of the thesis covers relevant background information, and
discusses and reviews existing work in topics related to the research,
including the fields of operating systems, storage technologies, file
systems, and hardware acceleration.

2.1 Introduction

The areas of work related to this thesis cover a broad range of topics,
including research into operating systems design, storage technologies,
storage and device interfaces, file systems, hardware acceleration,
and the wider areas of real-time and embedded systems. Due to
the highly practical engineering side of these areas (and to some
extent, of the engineering doctorate), a number of sources outside of
traditional research articles must also be considered in order to gain a
full understanding of the state of the art.

The technical aspects of all the areas related to this thesis are in
some places quite distinct, leading to this chapter presenting a mixture
of literature review and a more technical introduction to background
topics for the thesis, and providing a contribution in both areas.

In order to effectively investigate the hypothesis of this thesis, the
concepts that apply to storage in real-time and embedded contexts
must be defined, along with suitable methods of measuring any im-
provements. To this end, Section 2.10 presents a high-level model
of storage that can be selectively applied to many systems, defining
common terms for use throughout the research. A comprehensive
set of metrics are also outlined in Section 2.11, describing how the
measurement of both predictability and efficiency, in terms of raw
performance and system utilisation, can be quantified.

2.2 Overview of Technologies

Various technologies have been investigated in the areas of storage
devices, interfaces, programmable hardware and operating systems,
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in order to determine their feasibility for use in this research project.
These technologies are outlined here in order to provide appropriate
background and context for the thesis, and to motivate their use for
the research.

2.2.1 Operating System Choice

In order to focus the research in a way that makes the implementation
of ideas possible, theoretical concepts are related to a main practical
target operating system. The Linux operating system is chosen as
a suitable target for implementation work in Chapters 3 and 4 for
several reasons.

Firstly, the Linux kernel, along with much of the software that builds
upon it, is free, open-source software, so its code is readily available
and modifiable for research purposes with no special access or licences
required.

Secondly, the Linux kernel supports a large range of architectures
and devices, ranging from large-scale high-performance computing
systems to low-powered embedded devices. This means a large range
of devices may be targeted through the same knowledge and with
common code; for example, the same basic kernel code (with the
exception of architecture-specific areas) will run on a small MicroBlaze
soft processor core on an Field-Programmable Gate Array (FPGA), an
embedded Arm processor, and a powerful x86-64 server.

Thirdly, real-time extensions to the Linux kernel are available if
required, so research into storage systems may be carried out on
Linux in a real-time context.

Finally, Linux is a very widely-adopted operating system that is
actively developed in many areas, with a large amount of support and
expertise available. Its wide-scale use also means that many device
drivers are available for it, allowing a large number of peripherals and
platforms, both old and new, to be used natively.

2.2.2 Hardware Acceleration

In order for an embedded application accelerator to perform file op-
erations entirely in hardware, it would require knowledge of the file
structure on the physical disk. To facilitate this, control of the file
system itself may be transferred to the accelerator, allowing it to have
complete control over the storage, or the file system could be dis-
carded entirely if it is not necessary for the application. The idea
of moving file system functionality into hardware has been invest-
igated to varying degrees in the past, through both simulation and
implementation, including for enabling direct storage access from
embedded devices [22, 35], to remove reliance on operating system
compatibility with the file system of removable storage [36], in efforts
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to improve performance of specific file system operations [37], and
in wider projects to enable operating system-like access to system
devices directly from FPGAs [38].

The potential of read and write speeds to be significantly improved
through hardware acceleration, particularly when using fast solid-
state storage, is shown by one hardware file system implementation,
achieving around double the speed of ext2 running on a server plat-
form, and up to a 16x speed-up compared to an embedded MicroBlaze
CPU [22]. A potential use for an accelerated file system is also briefly
discussed in the EU-funded JUNIPER project [39], for the assistance
of FPGA accelerators used in real-time big data applications.

As a comparison to this, an example of another software function
of an operating system that has greatly improved over time due to
increasingly advanced hardware accelerators is graphics processing.
Originally, the majority of computers performed all graphics pro-
cessing in software routines on the CPU, but as technology improved
and demand for better graphics performance increased, it was ne-
cessary to offload graphics functionality onto hardware accelerators,
beginning with more limited Application Specific Integrated Circuit
(ASIC)-based solutions, and developing into modern Graphics Pro-
cessing Units (GPUs), which include programmable architectures to
support a wide range of operations running alongside the CPU [40].
While storage tasks involve many aspects that are different to graphics
processing tasks, both are data- and computation-intensive processes,
and the increase in speeds of physical storage hardware and the in-
creasing demands placed on storage systems show some parallels to
the history of graphics processing, and may also benefit from a degree
of hardware acceleration.

2.2.3 Programmable Hardware and Systems

When developing an embedded system with the potential for hard-
ware acceleration, a key part of this is the hardware on which applica-
tions are run and accelerator cores are implemented. For a research
project, an FPGA is a good choice for developing hardware designs, as
they offer good functionality and performance, allow for a relatively
fast development cycle, and are readily available on development
boards with an array of auxiliary peripherals and Input/Output (I/O)
interfaces. Within this thesis, research focuses on FPGAs and tools
from Xilinx, however similar devices and software is available from
other manufacturers, such as Intel.

Xilinx Zynq System-on-Chips

The Zynq-7000 [41] and Zynq UltraScale+ [42] series of devices from
Xilinx offer FPGA programmable logic alongside multi-core Arm
microprocessors and a variety of supporting peripherals on a single
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System-on-Chip (SoC). These devices allow for a full Linux operating
system to be installed on a capable embedded processor, while being
closely attached to programmable logic that may be dynamically
reconfigured with hardware accelerators and interfaces. Interconnect
fabric between the processor cores and programmable logic allows the
Linux kernel to access custom coprocessors for hardware acceleration
as if they were built into the chip as standard components.

Using a Zynq-based system for experimentation allows for a wide
range of storage peripherals to be tested while having a tight coup-
ling with hardware accelerators. Development platforms are available,
such as the Avnet ZedBoard Mini-ITX development board [43] and
Xilinx ZCU102 [44], that allow for the connection of storage devices
over SATA, PCI Express (PCIe) and Universal Serial Bus (USB) inter-
faces. A set-up using a board like this allows for hardware cores to be
developed that interface secondary storage with a Linux kernel run-
ning on the Arm CPU, as well as additional logic for creating custom
supporting peripherals for experiments, accelerating aspects of the
storage stack, and bringing functionality into the hardware. The large
variety of interfaces allows for testing and benchmarking of different
storage devices in a controlled set-up, in order to measure the effect
this has on current file systems along with the solutions developed.
A number of high-speed networking interfaces are also available to
the Arm cores and programmable logic, allowing for potential set-ups
involving storing and retrieving streaming network data to and from
a storage device.

Soft Processor Cores

As an alternative to a mixed hard-CPU and soft-logic SoC platform,
a similar set-up using a large FPGA (such as a Xilinx Virtex-7 [45])
and one or multiple MicroBlaze soft processor cores programmed
onto the logic could achieve similar results, however the Arm cores
on the Zynq platforms allow for a much more capable Linux system
to be used, and the ability to fully reprogram the FPGA logic without
halting the operating system and other software.

Host Server with FPGA Accelerators

A further alternative to a SoC-based FPGA platform would be to use a
standard x86 server running a host operating system, which interfaces
with one or more FPGA boards using PCIe. Applications on the server
would then communicate directly with various accelerators through
this interface, however this moves further from the realm of embedded
systems that is most targeted by this thesis.
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2.2.4 Embedded FPGA Storage Interfaces

The two main physical interfaces used to connect secondary storage
to a modern computer system are SATA and PCIe, both of which
can be interfaced with an FPGA when appropriate hardware is used.
Some more recent embedded SoCs, such as the Zynq UltraScale+,
contain dedicated controller peripherals for SATA and PCIe. Altern-
ative interfaces such as Serial Attached SCSI (SAS) or SATA Express,
a more recent interface designed to operate as both SATA and PCIe
in a single form factor, can also be used to connect storage but are
less common and currently less well supported from FPGA designs.
Legacy parallel storage interfaces such as Parallel ATA (PATA) and
SCSI Parallel Interface (SPI) are not considered in this thesis, due to
their low speeds and limited support with modern hardware, despite
being simpler to operate.

While SATA is an interface explicitly designed for the connection of
storage devices, PCIe is more generic, requiring a secondary interface
for actual communication with a drive. This secondary interface may
be SATA, in either an AHCI or Redundant Array of Independent
Disks (RAID) configuration, a specialised standard such as NVMe, or
a proprietary system, and this may be controlled in either software or
hardware.

SATA Core Implementations

As a result of the high-speed serial transceivers available in many
modern FPGAs, it is possible to directly interface with SATA devices
from programmable logic through the use of a Host Bus Adapter
(HBA) IP core. This core is responsible for setting up and controlling
the transceivers, managing the encoding and decoding of data that is
sent over the physical interface, presenting a control interface to the
rest of the FPGA system, and often includes memory interfaces for
fast Direct Memory Access (DMA) transfer of data.

Several commercial SATA HBA cores are available for use on FP-
GAs [46–48], however these can be prohibitively expensive, and do not
offer the ability for heavy customisation as they are delivered as ‘black
box’ designs without underlying source code. Due to these restrictions,
there exists to some extent a number of free, open source alternatives
to these commercial cores. Two main open source SATA cores are
available: one developed in the Reconfigurable Computing Systems
Lab at the University of North Carolina at Charlotte (UNCC) [49];
and ‘Groundhog’, which has been jointly developed by researchers
at ETH Zürich, Microsoft Research and Xilinx [50]. Both these cores
offer SATA revision 2.0 connectivity to devices, running at 3 Gbit/s,
which has a potentially lower performance than the SATA revision 3.0
connectivity offered by most commercial cores, which runs at up to
6 Gbit/s. Additional, a further open source SATA core is based on the
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UNCC core [51], which targets older Virtex-4 FPGA family devices
and re-uses a large amount of the UNCC core code.

Xilinx also provide a guide on how a Linux system on a Virtex-4
FPGA-based embedded system might be used with a SATA disk using
a custom hardware design, along with possible uses for this such as
streaming high-speed data from a network interface to a disk [52].
Although the actual HBA IP used in the design is proprietary and
unavailable, the overall system shows a possible set-up with DMA and
high-speed serial transceivers that can be applied in a wider context.

The Xilinx UltraScale+ series of SoCs contain a hard SATA 3.1
peripheral [42], allowing SATA devices to be used from the Arm CPU
or FPGA logic without requiring a SATA HBA core to be implemented
in the FPGA logic.

PCI Express Implementations

PCIe implementations for FPGAs are far more common than SATA,
thanks to its usage as a more generic high-speed interconnect. For
example, Xilinx provide a free hardware core for many of their capable
FPGAs, including certain Zynq-7000 devices, allowing a simple link
between a PCIe device and main system memory buses. Beyond
simple, generic PCIe interfaces, several commercial IP cores exist
offering access to specific classes of PCIe devices from hardware, such
as network controllers or NVMe storage devices.

Similar to SATA, Xilinx UltraScale+ devices contain a hard PCIe
Gen2 peripheral [42], allowing PCIe devices to be used at this speed
without requiring a separate core to be implemented in FPGA logic.
The high-speed transceivers on these devices can additionally allow
up to PCIe Gen4 speeds, but utilising this requires a dedicated FPGA
core to manage the PCIe interface.

2.2.5 Development Tools and Processes

Various tools and programming languages are available for creating
IP cores to be implemented on FPGAs. For recent Xilinx devices, the
main tool for system development is the Vivado Design Suite [53]. This
suite of software allows for full system design, using either FPGA-
based devices, including with soft-core processors, or SoC devices with
integrated hard CPU cores alongside programmable logic. Software
for the system can be developed with the same tool flow by utilising
Xilinx SDK after hardware generation. SDK can be used to develop
and debug both bare metal and Linux applications, through Xilinx’s
PetaLinux distribution [54], running beside custom hardware.

Hardware cores may be written in a variety of languages, ranging
from low-level Hardware Description Languages (HDLs) to more
capable High-Level Synthesis (HLS) languages. Using a combination
of these is typically required for a complex design, alongside the use
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of standard IP blocks. Any parts of a design that are timing-critical or
interface with external devices generally require writing in an HDL,
such as VHDL or Verilog. These languages allow for the greatest level
of control over hardware, but at the cost of increased design difficulty
and code size.

At a higher level of abstraction, HLS languages, such as Vivado
HLS [55], provide translation from C, C++ or SystemC code down to IP
cores that may be added to an FPGA design. These higher-level tools
are useful for implementing complex functionality into accelerators,
as well as allowing the partial re-use of code from software projects.
These tools also facilitate rigorous development through the use of
simulation (both at the functional and hardware levels) as well as
providing static timing analysis for generated hardware.

Additional tools are available to automate aspects of the hard-
ware/software co-design process further, within specific scopes. The
Xilinx SDSoC development environment [56] has support for develop-
ment of C and C++ designs that may be trivially moved within the
tools for compilation targeting software or hardware on a Zynq-based
SoC, based on performance data generated from static analysis and
live code profiling. This process can potentially simplify the develop-
ment of an embedded application that utilises a hardware accelerator,
but gives less overall control over low-level functionality to the de-
veloper. A similar system is provided by the SDAccel development
environment [57]; these tools target a server host and accelerator board
connected over PCIe, selectively compiling OpenCL, C or C++ code for
the two platforms, in order to provide simple support for accelerators
in a high-performance computing environment.

2.3 Storage Access in Operating Systems

2.3.1 Storage in Linux

The design of Unix-based operating systems, such as Linux, is centred
around the file system, with pipes, network sockets and raw devices
appearing to the user in the same way as more-traditional files stored
on storage devices [58]. This means the file system stack is one of
the most important parts of the kernel when considering efficient
execution, as any I/O operations performed by an application will
make use of it. The stack includes related standard library functions
and system calls, the Virtual File System (VFS), concrete file systems
for physical storage devices, and interface and device drivers. The
extent of functionality provided by the storage system also affects
application areas other than raw performance, with features such as
journaling and error checking potentially affecting data integrity, and
high CPU usage also consuming large amounts of energy.
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Due to its modular structure and open source nature, the Linux
operating system supports many file systems, including those de-
veloped specifically for it, and more general systems that have been
ported to the OS. These file systems may be built as part of the kernel,
dynamically loaded as kernel modules at runtime, or executed as user
mode processes communicating with a ‘bridge’ file system interface
in the kernel [59].

In Linux, file systems are comprised of three major types: disk-based
file systems, used to access files on local storage media such as HDDs
and SSDs; network file systems, used to access files on remote servers
over a network connection; and special file systems, which give access
to virtual data structures internal to the kernel, rather than to files
stored on physical media [58].

The Linux Virtual File System

In Linux, the storage stack contains two levels of file systems: concrete
file systems and the VFS.

Concrete file systems define the actual structure of data on a device,
whether that is a disk, a remote networked server, or some other data
structure, as well as the operations that may be applied to it. Many
concrete file systems may be in use on a system at once, for example,
in order to access data stored on physically different storage devices.

At a higher level than concrete file systems, the VFS is a standard
interface presented to user-space applications running on the system.
It is a form of abstraction, allowing applications to interact with many
concrete file system types without being concerned with the under-
lying implementation differences [59]. For example, an application
may operate on a file from a remote server using an NFS file system
and a file from an internal disk formatted with an ext4 file system
using exactly the same library functions and system calls. Figure 2.1
shows a high-level view of the VFS and its interfaces to concrete file
systems and user-space applications via system calls and standard
library functions.

The Linux Common File Model

The Linux VFS operates by providing a ‘common file model’ – an ab-
straction of storage capable of representing all file systems supported
by the kernel, allowing a common set of operations to be available
for every file system [59]. The VFS interface attempts to provide a
complete set of file operations, including creation, deletion, reading,
writing, permission enforcement and access control, typically accessed
by applications through standard libraries, or directly via system calls.
Internally, the common file model stores information as a collection
of index node (inode), directory entry (dentry) and file objects, along
with the superblock, which stores the top level of data about a file
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Figure 2.1: Position of the Linux VFS as an interface between applications
and concrete file systems, adapted from [60]

system. With this model, directories in the file system are treated in
the same way as any other file node, with directory entries providing
hierarchical relationships between objects.

When an application opens a file, it will be given access to a file
object from the VFS, which references a particular directory entry
for the file, as well as including information such as its permissions
and the current seek offset. This directory entry then refers to either a
further directory entry, or an index node that references the file system
superblock and the actual data pages containing the file’s contents.
From an application’s perspective, the underlying structure of the
common file model is rarely important (assuming the VFS operates
as expected), however low-level details such as caching of directory
entries and index nodes can have some impact on performance [61].

While the common file model provides a sensible abstraction for
file systems to link to, it can also limit the efficiency of file systems
that follow different models, as they must translate their operations
to match those in the VFS. For example, the FAT file system archi-
tecture stores the location of files within directories as a special ‘file
allocation table’ structure, which differs from the common file model’s
method of treating directories as standard files containing lists of their
children. This means Unix-compatible directory files must be created
dynamically for the file system, and kept only in system memory
rather than permanently on the storage device [58]. The VFS also adds
a slight layer of inefficiency through the necessity of translating any
generic file system request into the specific function for that concrete
implementation.

Linux Storage Device Drivers

Once file operations have been routed through the VFS and the under-
lying file system, the kernel must access the physical storage media
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containing the data using lower-level device drivers. In Linux, devices
are accessible through ‘device files’, which use a special file system
connected through the VFS to the rest of the system. Most storage
devices are modelled as ‘block devices’, allowing a file system to spe-
cify that data from a file should be written to or read from a specific
‘block’ of storage – the basic operation of a file system is to map these
blocks to specific files, and to store data structures allowing for the
directory tree and file attributes to be saved [58].

This system limits the control a file system has over the disk itself,
due to the abstraction of storage hardware to a block device. At a
lower level, the device driver will typically implement a standard
interface to a controller module, such as AHCI, which will in turn
control a disk using a protocol such as SATA [62].

2.4 Storage Technologies and Interfaces

Recent advances in storage technologies are greatly reducing the hard-
ware overheads involved in accessing data from secondary storage,
resulting in smaller read and write latencies and increased band-
width [12, 63]. This reduction increases the pressure on the rest of the
storage stack considerably, as any latency from areas such as the file
system have a much higher effect in relative terms.

2.4.1 Storage Technologies

The performance and functionality of persistent storage technologies
has progressed rapidly in recent years, with an ever-increasing adop-
tion of SSD devices replacing slower and less power-efficient HDDs.
The major performance differences between HDD and SSD devices
come from their physical operation – with a magnetised mechanically
spinning disk versus wholly electronic integrated circuits. The ma-
jority of latency on a HDD comes from read/write head movement,
waiting for the platter to spin to the correct location, and the inher-
ently sequential nature of reading from a spinning medium. SSDs
address these issues, providing much lower access times, especially
for random patterns of reads and writes, with average I/O latencies
being in the order of 1000x lower [15, 16].

On top of the physical improvements to storage, advances in con-
troller technology has lead to more sophisticated functionality being
placed on devices themselves, allowing for potentially higher perform-
ance to be achieved. Traditionally, consumer-grade storage devices,
often using a PATA interface, provided no advanced functionality on
the device itself, with high-level devices offering a little more intelli-
gence through more advanced command sets, such as Small Computer
System Interface (SCSI); however, modern storage devices often in-
clude intelligent controllers that manage scheduling at the physical
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device level, as well as providing fast caches for frequently-accessed
data.

Because most operating system storage stacks were originally de-
signed in an era when relatively slow, basic HDDs were state-of-the-art,
they attempt to take advantage of the high access latencies and basic
operation of physical storage, causing potentially detrimental effects
when more-modern devices are used.

The majority of current generation SSDs use NAND-based flash
memory chips, which offer higher speeds than HDD storage, but
have inherent problems that may be addressed by other emerging
technologies [64]. Some alternative non-volatile memory technologies
are beginning to become available that improve performance further
over NAND flash, such as 3D XPoint memory [65]. Future non-volatile
memory technologies, including phase-change memory and spin-
transfer torque memory, are set to reduce storage latencies even further
while also adding byte-level access granularity, adding even more
pressure to ageing storage stack models [64].

2.4.2 Addressing Data

As well as lower access latencies, another change that new memory
technologies are bringing to secondary storage is in how data is
addressed. With traditional disk-based storage devices, as well as
other devices based on the same logical model, data is accessed in
blocks, typically consisting of 512 or 4,096 bytes corresponding to
a physical sector of a disk. New non-volatile storage technologies,
such as phase-change memory and other Byte-addressable Persistent
Random Access Memories (BPRAMs), give much finer-grained access
to data, allowing for file systems and other storage concepts to take
advantage of accesses that are more similar to typical volatile system
memory.

Research into utilising the possibilities of BPRAM’s addressability
in a storage system includes BPFS [11], a file system that is specifically
designed to exploit the ability to quickly write individual bytes of
data to a storage device. BPFS redefines a large amount of the storage
subsystem, reducing reliance on system memory for buffering and
caching data, as this can add overheads rather than performance
improvements when storage is fast and addressable at the byte level.
To achieve this, BPRAM is attached on the main memory bus and
addressed like any other system memory, instead of being connected
to an explicit storage interface, causing significant changes to the
architecture of the storage system, but allowing for potentially large
performance improvements for non-sequential accesses.
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2.4.3 Storage Interfaces

In order for storage devices to connect to the rest of a computer system,
they must conform to an interface that defines both their physical
connection and logical controller capabilities. Several interfaces types
are available, with the performance of each depending on both the
electrical connection and software complexity in kernel drivers.

Serial ATA and AHCI

The main interface used in the current generation of secondary storage
devices is Serial ATA (SATA), which allows for bandwidths of up to
1.5 Gbit/s, 3 Gbit/s or 6 Gbit/s in revisions 1.0, 2.0 and 3.0 of the
specification respectively [66]. The physical interface operates as a
set of two differential signal pairs, allowing for a single channel of
half-duplex serial transmission. SATA is typically paired with AHCI, a
controller interface that allows the operating system to use a standard
set of commands that are valid for many storage devices.

Because SATA and AHCI are based on the older PATA standard,
and the protocol and command set was originally designed for HDD
devices, they are not optimised for fast execution or efficiency with
high-speed NVM technologies. SATA includes features that are mainly
targeted at improving the performance of spinning disks, but have
more limited benefits in SSD devices. One example of this is Native
Command Queueing (NCQ), which allows a disk controller to reorder
requests so head movements can be optimised on a mechanical storage
medium [67].

It is also possible to interface with SATA devices using schemes
other than AHCI, which can give more control over the underlying
storage and lower overheads in kernel code. These interfaces include
direct connections to programmable hardware cores (such as those
discussed in Section 2.2), as well as RAID systems that use custom
drivers and hardware to increase the speed or reliability of storage.

Serial Attached SCSI

The Serial Attached SCSI (SAS) protocol is a higher-performance al-
ternative to SATA, generally used in enterprise or mission-critical
applications rather than consumer products. While it offers a more
capable physical interface than SATA, with up to 12 Gbit/s band-
width and full-duplex data transmission, SAS is still based upon the
older SCSI command set, which was originally designed for use with
relatively slow media. The standard is being actively updated and
developed, with the upcoming SAS-4 standard supporting 22.5 Gbit/s
data transfer speeds [68].



2.4 storage technologies and interfaces 41

PCI Express

Recently, many high-performance SSD devices are moving to using a
PCI Express (PCIe) interface for connection to a host system, due to
the high speeds available using multiple lanes of serial communica-
tion, and the increased flexibility when compared to storage-specific
interfaces such as SATA.

Because PCIe is a general-purpose interconnect, drivers and con-
trollers can be developed specifically to take advantage of the features
of high-speed storage technologies, bypassing the limitations of legacy
interfaces like ATA and SCSI. This means some manufacturers have
created custom interfaces for their storage products, while others have
extended existing standards, for example by adding multiple AHCI
chips to a single PCIe card. While these methods allow for a poten-
tially higher performance than using SATA or SAS, they are limited
by driver support and the implementation of the operating system
storage stack.

PCIe is also combined with SCSI or SATA respectively to create
the SCSI Express and SATA Express storage interfaces. SCSI Express
allows a SCSI device to be connected directly to a PCIe backplane,
whereas SATA Express is a composite interface, combining both a
SATA link and direct PCIe lanes in a single connector.

NVM Express

In an effort to combat standardisation and compatibility issues amongst
PCIe storage devices, the NVM Express (NVMe) standard was de-
veloped as an interface specifically for use with fast NVM storage
devices connected over PCIe [14]. Because of its specialised scope,
the standard contains features targeted for SSD access, rather than
backward compatibility or HDD-focused optimisations, while concen-
trating on providing low-latency access with little software overhead
and support for fast physical connections.

An additional benefit of the NVMe standard is the partial restruc-
turing of the storage stack in the Linux kernel implementation. Both
SAS and SATA storage drivers use additional layers of abstraction
(SCSI and ATA, respectively) as they share common features with
legacy protocols, whereas the NVMe driver interfaces directly with
both the block layer and VFS. The optimised driver stack can lead
to over a 50% reduction in software overhead compared to SAS on a
typical architecture, giving better I/O throughput for the same CPU
utilisation, and having the potential to support faster future storage
technologies without causing a software bottleneck [13]. NVMe also
removes many of the overheads introduced by storage controllers,
such as AHCI, as the storage device communicates directly with the
kernel driver [69].
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It is clear from benchmarks of NVMe SSD devices that they offer
higher performance than most other available interfaces, reducing the
latency caused by software overheads in the Linux kernel by over
50% when compared to SAS [13]. While these software overheads
have been reduced through restructuring and collapsing the layers of
hardware and interface drivers, this then causes increased pressure on
other, unchanged areas of the storage stack, including file systems and
the VFS. Therefore, focussing acceleration work on these additional
areas could potentially have a significant relative effect on storage
latency.

System Memory Bus

A further potential storage interface that is increasingly being investig-
ated for use with byte-addressable NVM is the main system memory
bus [11]. Connecting storage directly to this bus, alongside traditional
volatile DDR memory, would allow very fast access from the CPU
and other system devices, with storage being directly allocated into
the system’s memory map. This set-up requires a storage device to be
accessible at a smaller granularity than is typically available, however,
as memory buses are designed for byte-level rather than block-level
addressing and transfers.

2.5 Impact of the Software Storage Stack

In the past, the software storage stack has had limited impact on the
speed and efficiency of data access, as the major limitation has been
down to the slow, mechanical nature of HDDs.

With the current state of file systems and storage device drivers
in Linux, software contributes very little to the overall impact of
storage operations when using a traditional mechanical SATA HDDs,
accounting for around 0.3% of latency and 0.4% of energy usage
in a typical system [12]. While this is negligible for HDDs, as the
speed of storage devices increases and power consumption decreases,
the relative impact of software execution greatly increases. For high-
speed, low-power SSD technologies using more efficient interfaces
such as PCIe, the same absolute software overheads have a much
higher relative effect, accounting for up to 94.1% of latency and 98.8%
of energy consumption [12].

Traditionally, fixed overheads from software storage enhancements
such as Logical Volume Management (LVM) are virtually transparent
in terms of latency and energy usage on many systems, due to the
far larger baseline values from the hardware storage device than the
software, leading to their widespread use without much regard for
negative performance effects. However, as access latencies decrease
with modern fast storage devices, this balance can shift greatly, and
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the additional layer of block indirection created by using LVM can
have significant effects. For example, an increase in latency of 0.03%
and energy consumption of 0.04% caused by enabling LVM with a
HDD, causes an equivalent increase of 10.70% and 18.70% respectively
for a fast NVM-based SSD on the same Linux system [12]. While
LVM is optional in many systems, and may typically be avoided
in high-performance and embedded scenarios due to its overheads,
the extent of the difference in relative effect between slow and fast
storage demonstrates an inherent issue with traditional storage stack
assumptions.

One possible method to improve the performance and energy usage
of software supporting high-speed storage devices is to refactor and
simplify portions of the Linux storage stack. This could be achieved
by removing functionality that was designed specifically to improve
performance of HDDs but can cause lower performance when used
with SSDs, while also restructuring file systems and the levels of the
kernel that access devices [12].

One possibility when refactoring the storage stack would be to
alter the separation of functions between software and hardware, with
higher-level operations being output to devices from kernel drivers,
and more computation being carried out in the storage interface and
controller.

2.5.1 Kernel Design Overheads

The design of the VFS within the Linux kernel is optimised for slow
storage devices, making heavy use of caching and other policies that
generally favour increased software and memory usage over storage
device accesses. For example, the VFS caches recently-used directory
entries and index nodes, allowing for frequently used files to often be
opened without requiring disk reads to determine their location on the
physical medium. Additionally, actual file data is typically read from
and written to the page cache instead of directly to a disk, in order
to reduce the apparent file system latency from an application’s per-
spective. Modified data in the page cache can then be written to disk
during idle periods, when memory contention forces it, or manually
using the sync system call, allowing for multiple successive writes to
the same page of data to be written to the disk just once. While these
optimisations are sensible for the slow storage devices for which they
were designed, such as HDDs, as storage speeds increase toward those
of main system memory, the additional overheads in computation and
memory bandwidth involved in keeping comprehensive caches may
begin to have a detrimental effect on overall performance, especially
in environments with constrained resources [64].
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2.5.2 File System Overheads

As a key part of the software storage stack, one focus of research is in
quantifying the effects of file system overheads on emerging memory
technologies, such as NVM-based storage devices attached to the CPU
using fast memory buses.

In order to perform suitable benchmarking, one approach developed
a device to emulate high-speed memory technologies with a tunable
latency, allowing for possible future storage implementations to be
tested alongside current technologies [64]. Results from this work
show that for high-speed devices, access times for transfers with
small block sizes are considerably worse when a file system is used,
compared to when media is accessed as a raw block device [64]. This
is caused by the slow speed of software kernel routines and file system
functions running on a CPU. The overall performance of the storage
is also shown to be greatly influenced by its connection with the rest
of the system, with a Double Data Rate (DDR) interface having much
lower latencies than PCIe.

As well as basic file system operations, new approaches in areas
such as data integrity are also needed in order to exploit the increased
speeds of fast storage technologies. Current transaction-based systems,
used to ensure consistency following operations on data, are designed
around disk-based storage devices, which have slow write speeds and
benefit from sequential accesses.

Work on improving transaction mechanisms for fast storage includes
MARS [70], a system that uses ‘editable atomic writes’ to closely tie
a fast storage device with its transaction support. Portions of the
system are implemented in hardware alongside an SSD, reducing the
software overheads involved in logging and enforcing transactions,
and ultimately offering a reasonable speed improvement compared
to other transaction schemes used with the same storage device. The
concept of editable atomic writes was extended further for the Willow
user-programmable SSD [71], allowing them to be used as a feature
that can be optionally and dynamically programmed into storage
hardware, alongside other ‘SSD Apps’ also running on the storage
hardware itself.

2.5.3 Bypassing the Kernel

In order to reduce the overheads involved in accessing fast storage-
class memory technologies, work has been carried out to bypass the
kernel storage interface to allow certain applications direct access to
storage devices.

The Moneta Direct (Moneta-D) storage architecture [72] moves vir-
tualisation and protection policy enforcement out of the kernel and file
system, and into hardware built upon the Moneta SSD [73]. This al-



2.5 impact of the software storage stack 45

lows applications to safely interface with high-speed storage, while by-
passing the computation bottlenecks present in standard kernel-based
solutions, but still maintaining full POSIX compatibility. Moneta-D
eliminates most file system and operating system overheads, and
provides a significantly lower latency interface when compared to the
same storage device used with the standard operating system storage
stack. Benchmarks show the total reduction in write latency can reach
42% to 69%, depending on access size, with similar values for read
latency [72].

Aerie [74] is another, more recent file system architecture that also
has the ability to bypass the Linux VFS in an attempt to remove the
inefficiencies that it introduces to the storage stack. Two file systems
are implemented and tested on top of Aerie: PXFS, a full POSIX-
style file system; and FlatFS, a specialised, simple file system with
limited functionality. The aim of implementing the two file systems
is to show how both a POSIX-compliant file system and a special-
ised file system can take advantage of direct communication with an
application in different scenarios. The FlatFS implementation relates
to the idea of specialised, application-specific file systems discussed
in [75], demonstrating that a file system created for a specific use,
with no unnecessary general-purpose functionality, has the potential
to improve performance. The performance improvements achieved
with Aerie vary, with some scenarios achieving throughput improve-
ments of up to 109% compared to a standard in-kernel file system,
while others show little or no improvement [74]. Both PXFS and FlatFS
give the greatest improvements when workloads are matched to their
strengths, compared to those of the VFS, with FlatFS especially of-
fering a large improvement for applications that can benefit from its
simplified interface.

DevFS [76] is a further hardware-supported file system that aims
to reduce kernel overheads by moving file system functionality into
storage device hardware. User applications can directly access data
stored using DevFS through a standard POSIX interface with minimal
kernel involvement, while retaining the integrity, concurrency, crash
consistency and security guarantees of a standard kernel-level file
system, assuming the file system code running on the device itself is
trusted. As well as any potential performance improvements, moving
file system functionality onto storage hardware allows for additional
benefits, such as the ability for file system operations to be safely
completed by the device in the event of a system crash. An emulated
version of DevFS shows a possibility for doubling I/O throughput and
reducing RAM utilisation by a factor of 5 with certain benchmarks [76].

All of these systems demonstrate the inefficiencies of a traditional
storage stack when combined with high-speed storage technologies,
and show how bypassing the kernel and VFS, potentially with addi-
tional hardware support, is a viable and effective method of reducing
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latency in a storage system, as well as allowing for further features
and benefits.

2.5.4 Asynchronous I/O Stack

An alternative to bypassing the kernel for storage access is to attempt
to improve the operations being performed inside the kernel, taking
advantage of the low-level hardware access and elevated privileges
afforded by executing code at this level. One method that can im-
prove performance of storage stack operations running on the CPU
is processing them in parallel with hardware accesses, creating an
asynchronous I/O stack [63]. Several areas are identified that can be
performed in parallel with the storage device access, which are tradi-
tionally processed sequentially before or after the storage device has
performed the physical read or write of data. These include cache man-
agement, memory page allocation, DMA mapping and unmapping,
and processor context switching. In combination with a lighter-weight
block I/O layer, running these operations in parallel with storage
device operations can produce significant latency savings with low-
latency storage hardware – up to 33% for random reads and 31% for
random writes on synthetic FIO benchmarks, and a 11-44% reduction
in observed latency for real-world database benchmarks [63].

2.6 File System Functionality and Optimisation

Research into file systems generally has two main focuses. The first
is concerned with the overall functionality of a file system, enhan-
cing this through the introduction of features such as journaling and
copy-on-write, or examining how a file system can work in non-
standard situations, such as in a distributed system. The second is
about efficiency of file system operation, with focus on how a storage
system can potentially be improved for specific situations or device
types, through simplification, specialisation or radical changes to the
software/hardware stack.

These areas are not entirely exclusive, as new functionality may be
introduced with the aim of improving performance and increasing
efficiency, especially when focussing a file system for a certain purpose.

2.6.1 File System Functionality

The functionality of file systems is an active area of research, with aims
to increase the features available to applications further up the storage
stack, and to better address the changing state of storage devices on
which file systems are used. Some changes in functionality are more
fundamental than others, with some focussed on enhancing specific
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scenarios, such as real-time embedded systems or high-performance
computing applications, and others focussed on more general-purpose
improvements for a variety of computer systems.

Layered/Stackable File Systems

Layered or stackable file systems are a concept to allow functionality
to be incrementally developed into a full file system over time, or for
the creation of file systems that select several pre-created functions
and combine them into a single logical file system [77, 78]. Each layer
of the file system may extend functionality of the others, for example,
a cryptographic layer may be combined with standard read and write
operations in order to provide encryption of stored data on a file
system that would not otherwise support it.

An approach such as this may be useful for situations where a
standard monolithic file system is not entirely appropriate, such as in
an embedded device where resources are limited, or in a heterogen-
eous system where different parts of the file system could be executed
on different architectures, for example, partly on a CPU and partly on
hardware accelerators. Examples of applications developed from this
approach include a ‘redundant array of independent filesystems’ [79]
– an alternative to RAID that replicates or stripes data at the file level
instead of operating solely on lower-level blocks, allowing for more
intelligent optimisations to be made.

2.6.2 File System Optimisation

File system performance can be improved through a number of meth-
ods, covering both optimisation of functionality, and design decisions
that benefit certain workload patterns. Optimisation may cover mul-
tiple metrics, including raw I/O throughput, power usage and storage
device wear.

File System Specialisation

Many modern file systems contain a large number of features bey-
ond basic file operations, including encryption, journaling and access
control lists, which may not all be required by a large number of
applications [75]. It has been proposed that these ‘obese’ file systems
could be replaced by simpler, more specialised file systems that of-
fer better performance for the system they are targeted towards. For
example, a file system targeted for a mobile embedded device could
perhaps focus on energy efficiency and low resource usage, while a
file system targeted for a server containing critical data could focus
on redundancy and reliability, without concern for efficient disk space
or power usage.
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Following from this, matching applications to suitable file systems
and associated features on Linux has been found to potentially re-
duce CPU usage and power consumption in certain situations [80].
As file systems implement features in different ways, such as how
they distribute files across disk blocks and how files and directories
are indexed, basing the choice of file system and its configuration
options on the expected workload can make a significant difference to
performance.

Layered or stackable file systems [77] could be used as a method
for preventing file system obesity, as they allow for combining mul-
tiple basic file system features into a system that is tailored for its
specific workload. The overheads and complexities introduced in the
stacking architecture, however, may reduce potential performance
improvements.

VFS Optimisation

Due to its importance and high usage, the Linux VFS is a heavily
optimised part of the kernel, both in its code implementation and
its overall design. Despite this, some experimental work looks at
restructuring and reimplementing the VFS, alongside low-level file
system design changes, in order to offer more features specific to the
goals of an underlying concrete file system design. SpadFS [81, 82]
is a file system that may be used with either the standard Linux VFS
or its own custom implementation, Spad VFS. Combining Spad VFS
and SpadFS makes it possible for additional features to be added
to the storage stack that are not possible when using the general-
purpose VFS, such as optimisations for the storage of small files [82].
A restructured VFS can also offer features to other file systems that
would not be possible otherwise, such as delayed allocation and cross-
file readahead, that can allow for additional specialised operation [82].

Results show that using SpadFS alongside its partner VFS can result
in lower CPU usage, particularly in how it scales with storage speed,
with benchmarks showing up to 6x lower CPU utilisation than ext2
when writing files. [81]. However, when compared to running SpadFS
or certain other file systems with the Linux VFS, it does not always
offer higher performance or the best raw I/O throughput [82]. This
shows the complexity involved in the VFS layer, and how making
changes that benefit certain scenarios can also be detrimental for more
general-purpose usage patterns; for example, the SpadFS/SpadVFS
combination could be suitable for use in systems where low CPU
usage is more important than high speed, or where CPU bottlenecks
are the reason for speed limits.
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2.7 Special-purpose File Systems

File system features and optimisations can be focussed on improving
support for special-purpose applications, such as high-performance
distributed computing or real-time embedded systems. Special pur-
pose platforms can present specific problems that must be overcome,
as well as allowing for optimisations that may not be available with
more general-purpose systems.

2.7.1 Real-Time and Embedded File Systems

Real-time and embedded systems face two problems when dealing
with storage. Firstly, an embedded system will typically be constrained
by its available resources, such as CPU speed and memory capacity.
This can be impacted further by requiring quality-of-service guaran-
tees for other aspects of the system to be honoured, meaning a file
system cannot use arbitrary amounts of system resources. Secondly,
the real-time nature of a system requires that a certain level of predict-
ability of operation is provided – it must be known ahead of time at
least the worst-case timing of a data access, so system timing models
can be verified.

The resource constraints of an embedded system can be mitigated to
a certain extent using optimisation techniques – creating file systems
that are not overly complex in terms of features, or reliant on high-
performance hardware. Hardware acceleration is a method that can
potentially be used to take file system load away from shared resources
such as a CPU, and move it onto dedicated hardware instead, reducing
the potential of interference with other system processes [22].

The real-time nature of a storage system is a more difficult prob-
lem to address, especially when working with a complex operating
system. Due to the many interacting layers of the Linux storage stack,
combined with the extensive buffering of data in the kernel and the
abstractions provided by hardware interfaces, it is difficult to predict
or control exactly what a file operation will do in terms of physical
storage, and the timing of any operations. For example, once an ap-
plication completes a canonical write operation on a file, there is no
guarantee when the data will be actually written from memory to the
storage device, or even that it is written at all, in the case of another
process writing to the same data page or a system power failure occur-
ring. In Linux, it is possible to open files in ‘direct I/O’ mode, which
bypasses the page cache, transferring data directly from the disk into
the memory space of the application; this gives more control to the
application, but also increases its responsibility for the efficiency of
file operations and can slow down apparent execution time [58].

While features like direct I/O mode improve predictability to some
extent, underlying file systems and storage devices must also give tim-
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ing guarantees in order to be considered for real-time use. Solid-state
storage devices have the potential to offer higher timing predictability
than traditional hard disks, mainly due to the absence of mechan-
ical parts that inherently cause potential for variation in access times
compared to purely electronic circuits [83]. This allows for possible
worst-case storage access times to be kept much closer to best- and
average-case times, providing advantages for real-time analysis.

File systems research has touched on real-time usage, with much of
the work focussed on real-time scheduling of storage requests. Beyond
this, a full real-time file system has previously been developed for the
RT-Mach kernel [84]. While this work is relatively old and targets an
outdated operating system, concepts and motivation may be taken
from the implementation, which shows that real-time guarantees can
be achieved with a low throughput penalty. Advances in storage
technology that remove mechanical parts from the process may give
further use to this work, which found that the movement of HDD
heads was the largest obstacle to efficient predictability, although
conversely an increase in the complexity of storage device controllers
may add additional unpredictable aspects. In a more modern context,
real-time file systems may be deployed in embedded environments to
assist with the strict timing requirements of cyber-physical systems,
reducing jitter and increasing predictability through avoiding the
storage stack of a general-purpose operating system [85].

2.7.2 Real-Time I/O Scheduling

An area of Linux storage stack that has been investigated in depth to
provide increased predictability for real-time applications is the I/O
scheduler.

The Active Block I/O Scheduling System (ABISS) [86] is an exten-
sion to the Linux kernel’s storage subsystem that attempts to give
applications guaranteed I/O bandwidth when they request it, so a
high system load should not have such a negative effect on applic-
ations that request a constant level of I/O performance. ABISS also
allows for requests to be denied if they will violate the maximum avail-
able load of the storage system, warning applications of the violation
rather than simply failing to fulfil requests.

The Fahrrad real-time disk I/O scheduler is a further alternative
scheduler implemented for the Linux kernel [87], considering the re-
servation of storage resources in terms of utilisation, rather than the
the more standard measure of throughput. When considering utilisa-
tion compared to throughput, more closely aligned best, worst and
average-case values are common, allowing the scheduling algorithm
to better prioritise access to storage to achieve a less pessimistic overall
utilisation [87].
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Another method used to improve I/O scheduling is through meas-
uring disk latencies to provide more accurate estimation of the time
taken for requests to be serviced by physical storage devices [88],
compared to using pessimistic worst-case times or potentially inac-
curate statistical distributions. Due to the complexities of modern
storage device interfaces, which are implemented with logical block
numbers rather than a direct mapping to physical portions of a drive,
traditional disk request reordering algorithms may not produce the
expected effects. Measuring latency and building an image of a specific
drive’s characteristics from the results allows for good predictability of
performance across any device, improving the potential for real-time
guarantees to be accurately met.

2.7.3 Distributed File Systems

For applications that run in a distributed manner across many compute
nodes, it is desirable for file systems to also perform in a distributed
way so files can be accessed from multiple locations, and so large
amounts of data can be stored seamlessly across many physical disks.
Two examples of such file systems are the Hadoop Distributed File
System (HDFS) [89] and Lustre [90], both of which are designed to
operate across many servers in order to provide large amounts of
easily scalable storage, potentially in the order of petabytes, to large-
scale or high-performance computing applications.

Lustre uses separate servers for metadata and object storage, to
facilitate the distribution of file system data, and allows for full re-
dundancy of nodes in order to increase reliability and access times.
HDFS also operates in a generally distributed manner, but is more
closely tied to working with the rest of the Hadoop tools, and uses
‘data locality’ to keep data close to where it is used computation-
ally. Unlike Lustre, HDFS does not expose a fully POSIX-compliant
interface, making it less easy to operate with the Linux VFS.

Ideas from distributed file systems may be taken for use in smaller-
scale heterogeneous systems, such as separating metadata and storage
across hardware and software on an embedded device. These file
systems are also important due to their use in many large scale data
systems.

2.7.4 File Systems for Hybrid DRAM/NVRAM Memory

Specific storage memory technologies can benefit from specialist file
systems that are optimised and targeted towards their characteristics.
For example, byte-addressable non-volatile memory that is accessed on
the main memory bus, alongside traditional volatile system memory,
will have vastly different performance and access properties to a
block-addressable storage device.
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NOVA [91] is a file system that specifically targets hybrid memory
systems – those that contain both volatile and non-volatile memory
on the main system bus – reducing the storage overheads of file sys-
tems designed for more traditional storage media while continuing
to provide consistency guarantees. Through testing with an imple-
mentation of the file system in the Linux kernel, running on emulated
storage hardware, NOVA achieves 11.4x higher operations per second
than ext4 in data journal mode (which gives similar consistency guar-
antees) for a simulated file server workload [91]. Other workloads
show similar performance improvements compared to file systems
that are not optimised for this hardware set-up.

Another file system designed to take advantage of specific proper-
ties of NVRAM hybrid memory systems is DurableFS [92], which uses
the speed and granularity of byte-addressable storage to provide effi-
cient atomicity and durability guarantees for file system transactions.
Across a number of write-intensive benchmarks, DurableFS is slower
in transfer speed by between 9 and 11 percent compared to NOVA,
but provides firm guarantees that data has been flushed from caches
in the memory system and written to non-volatile storage, and that
transactions have completed fully and atomically [92]. This trade-off
in performance against data integrity may be worthwhile in many
domains, such as in an embedded system where a reliable power
supply may not always be guaranteed, or in a high-integrity system
where data durability is more important than raw storage speed.

2.8 Hardware Acceleration

For high-performance, computationally-intensive tasks, accelerating
functionality by offloading it to dedicated hardware is common prac-
tice. For example, most modern computers contain dedicated hard-
ware for graphics acceleration, and many file servers include hardware
RAID controllers to improve disk access times or provide redundancy
without requiring software running on a CPU.

More specialised hardware accelerators are often found in embed-
ded systems that have limited CPU speeds, or specific power or timing
requirements [93, 94]. This is due to the generally higher performance
available from hardware implementations of certain software routines,
as well as the availability of efficient devices such as FPGAs and ASICs
for these tasks.

High-performance computing applications can also be assisted by
specialised hardware, in order to increase speed and reduce power
consumption. This can be achieved through the use of hardware accel-
erators connected to a regular server set-up, for performing common
but computationally intensive tasks, such as regular expression match-
ing [95] or memory transfers [96].
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Embedded accelerators are also increasingly being investigated for
use in high-performance computing environments, due to their energy
efficiency when compared to traditional server hardware [21, 97]. CPU
usage when performing storage operations has also been identified
as an issue in server situations, using large amounts of energy com-
pared to storage devices themselves, and motivating research into how
storage systems can be made to be more efficient [64, 80].

2.8.1 Hardware-Accelerated File Systems

One method of potentially improving the performance of file systems
is to move them (or portions of them) from software running in
user space or a kernel, to hardware, bringing functionality closer to
peripherals that may be using storage, and allowing a file system to
take advantage of the features of dedicated logic such as reducing
CPU load. Research in this area is relatively limited, however a few
implementations of hardware file systems have been proposed or
developed to experiment with the possibilities of accelerating storage
at this level.

Active Storage

Before the era of modern high-speed, flash-based storage devices, there
was interest in examining the separation of software and hardware in
the storage stack, prompted by the increasing possibility of embedding
more functionality into hard disk controller logic [98, 99]. This ‘active
storage’ aimed to give more context to file operations performed by an
operating system from the disk’s point of view, potentially allowing for
intelligent data optimisations to be performed in hardware rather than
in a software file system [100]. Modern mainstream disk interfaces
implement some features similar to these, but with a smaller scope
and less context-awareness, such as NCQ introduced in revision 2.0 of
the SATA specification [67], which allows for out-of-order execution of
commands so a mechanical hard disk can optimise head movements.

While introducing additional features into the storage hardware
can be advantageous, it can also cause trade-offs with metrics such as
predictability and real-time performance. For example, in a system
where the storage device itself queues and reorders requests internally,
it can be much more difficult to control and predict the exact time at
which a request will be completed, likely increasing the separation of
best- and worst-case execution times.

HWFS

The most fully developed hardware file system implementation is
HWFS, which was created as part of a project to investigate high-
performance computing accelerators implemented on a cluster of
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FPGAs [101]. The aim of implementing the file system in hardware
was to allow accelerator cores running within the cluster to access
data from multiple mass storage devices, without relying on the use
of slow, embedded processors as an intermediary.

The basic operation of HWFS is based on the widely-used Unix File
System (UFS), but with much more limited and specialised function-
ality [22, 35]. As it is implemented entirely in hardware, and written
in a basic, low-level HDL, the file system functionality is limited, with
only open, read, write, delete and seek file operations supported. To
further remove reliance on software, HWFS is designed to interact
directly with a storage device using a purpose-made SATA 2 interface
FPGA core [49].

According to benchmarks carried out on the core, HWFS performs
better than an ext2 file system [102] running on x86 Linux when
reading from and writing to a fast SSD [22]. This performance im-
provement is particularly prominent when the hardware-accelerated
core is compared to an embedded, soft MicroBlaze processor, showing
over a 16 times performance improvement on some operations, despite
being run at a slower clock speed.

The large increase in speed between ext2 running on a MicroBlaze
and HWFS shows how the limited performance of embedded pro-
cessor cores can have a significant impact on file I/O access times, and
how it is possible to make improvements through hardware accelera-
tion on this kind of system.

Since these results were published, high-speed storage technologies
have moved on some way, with the faster SATA revision 3 and PCIe
interfaces becoming more common. While FPGA and CPU technology
has also progressed, the relative increase in storage access speeds has
outpaced this, so there is likely to be an even greater potential for
acceleration to give a considerable performance improvement with
more-modern hardware.

The constrained functionality of HWFS when compared to most
general-purpose file systems, such as the flat file organisation struc-
ture used instead of a directory hierarchy, make it unsuitable for
many applications, which is partly due to its design aims, but also
the complexity of implementing functionality in low-level hardware
description languages such as VHDL and Verilog. The use of HLS
languages and tools should allow for more advanced functionality to
be added to a hardware file system implementation, making it more
suitable for general-purpose computing, however the scope of the
file system should still remain focussed on its intended use to avoid
introducing unnecessary inefficiencies.

File System Access Accelerator

An alternative approach to file system acceleration is taken by File
system Access Accelerator (FAA) [37], which offloads just part of the
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file system, specifically directory search, to a hardware accelerator
core implemented on an FPGA. The idea behind the accelerator is
to reduce the latency involved with the translation of file names into
inode values by a Unix-style file system, by keeping a dedicated
cache of items in fast flash memory, and taking advantage of the
programmable logic’s ability to perform a vastly more parallel search
than a CPU. The accelerator subsystem is connected directly to the
host CPU via the Front-Side Bus (FSB), next to system memory, giving
the software kernel fast access to results from the core.

The addition of FAA to a file system would increase the overall
complexity of the storage stack, however full original file system
operations are retained, as the file system is still mostly operating
unmodified in software. While no implementation of the accelerator
system was produced, a high-level model of the timings involved
shows potential for reducing file system latency using this method.

File System on Chip

The idea of including an embedded file system on a storage device
is proposed by File System on Chip (FSOC) [36]. This project aimed
to move all file system functionality from the host computer to a
removable storage device, so the host requests high-level logical ‘file’
objects, rather than specific physical sectors from the device when it
is accessed. The interface to this is either implemented as a custom
kernel module driver on the host, or as a pseudo file system that
passes requests through to the hardware using an interface similar to
remote procedure calls.

The benefits that FSOC aims to achieve are focused mainly on
removable storage, allowing the file system to be tailored to low-speed
devices and for scenarios such as sudden power loss. One reason cited
for performing file system operations on the device is to avoid the
requirement of specific file system support on the host, however it
introduces the additional requirement that the kernel has support for
the custom hardware interface used. A benefit of this is allowing for
extra file system features such as encryption or compression to be
added transparently to a device’s file system, without any changes
being needed on the host.

Overall, evaluation of FSOC found it to perform faster than the
same file system design running on a host system with a low-powered
embedded CPU for certain high-load tasks [36], however results varied
greatly, mainly depending on the ratio of compute to I/O time in a
workload. While the specific characteristics of the embedded hardware
used will have a large effect on the absolute performance results of
such a system, the general trends of workload types affecting relative
performance remain relevant across a larger variety of systems.

While the focus of FSOC differs from ideas of accelerating high-
performance storage for large-scale data, similarities exist in the mo-
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tivation of reducing CPU load and utilising the parallel capabilities
of dedicated hardware for increased performance. The way that the
work presents models for the calculation of possible effectiveness of
the system, and abstracts metrics from the low-level programming
of the hardware, is a useful method to consider when carrying out
research into possible acceleration schemes.

Further Implementations

A further hardware file system is proposed and partially implemented
in [103], based on a simplified ext2 model. While the premise behind
the file system is described in detail, the actual implementation is
missing some core functionality required for it to be universally usable,
such as the ability to create and delete files. This demonstrates the
potential difficulties associated with implementing a complete file
system in hardware, with factors such as low-level HDLs and high
build times adding overheads into the development process.

2.8.2 Hardware-Accelerated Data Processing

As well as hardware acceleration of storage access itself, a hardware
acceleration approach may also be taken with other processes that
operate on stored data, such as compression, encoding and encryption,
allowing for applications to transparently access files in a representa-
tion that is different from the data on the actual storage media. This
acceleration may be placed at various points in the storage stack, either
before or after data is translated from logical files into physical block
addresses by the file system.

One use of accelerated data compression is for reducing the band-
width requirements of a large-scale distributed system, where a large
amount of data may be passed over a network between compute and
storage nodes. AltraHD [104] is an example of a hardware-accelerated
data processor that compresses files before writing them to disk or
sending them between nodes of an Apache Hadoop cluster. It is imple-
mented as a PCIe expansion card that intercepts data between HDFS
and a native file system, in order to provide fast compression and
decompression that does not affect the operation of other parts of the
system. The actual file system access is carried out through a standard
software interface, rather than bringing this into hardware alongside
the data processor.

Similar designs have been used for other data- and computation-
intensive applications such as real-time data encryption and decryp-
tion, with accelerator cards providing transparent access to storage
whose contents is encrypted [105].

While this model of acceleration offers the advantage of requiring
minimal modification to the original system, an area for research
would be into the combination of data manipulation and lower-level
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functionality like a file system into a single accelerator, potentially
allowing for further reductions in CPU overheads for large-scale data
processing and storage.

2.8.3 Operating System Acceleration

Beyond storage and data processing, the traditional hardware/soft-
ware split when managing low-level system tasks can be reconsidered
in other areas of an operating system. As an operating system performs
many functions on a computer, dealing with almost all interactions
between applications and hardware peripherals, it has the potential to
slow down operations and use large amounts of processing resources.
While operating system kernels are generally very heavily optimised
for efficiency, it may still be beneficial to go further in certain cases
and offload part of their functionality onto hardware accelerators. This
can also allow more streamlined access from other accelerator cores in
the system, giving them direct access to devices that would otherwise
require communication through software.

Memory Copy Acceleration

A common function performed by an operating system kernel is the
copying of data between different locations in memory. In Linux, when
accessing file systems and drivers implemented in the kernel from
a user-level process, data must be copied between areas of memory
assigned to each privilege level, often using the memcpy function [58].
As this can be a very I/O- and CPU-intensive task when used for
constructing large regions of memory as buffers for processes such
as network and storage accesses, memcpy has been demonstrated as
a bottleneck in the implementation of the Bluetooth standard in the
Linux kernel [106].

A hardware implementation of memcpy, created as a coprocessor
core on an FPGA, has been shown to significantly improve the per-
formance and reduce the CPU load of certain memory copy operations,
and in turn the operation of applications and drivers that depend on
it [96]. This shows an example of a situation where hardware accel-
eration can be feasible and beneficial for specific functionality within
an operating system, although it may not be generalisable to all plat-
forms and applications. Alternative optimisations may also be possible
through software changes, as well as hardware acceleration.

FPGA Operating Systems

An alternative approach to hardware acceleration of specific operating
system functionality is to treat an FPGA accelerator more like its
own computer system, adding an operating system into the logic that
can perform functionality on a per-FPGA level. One example of this
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is the Feniks FPGA operating system [38], developed to assist with
FPGA resource sharing in cloud computing environments. As well
as the advantage of reducing reliance on a system’s CPU for tasks
such as networking, storage access and memory management, the
inclusion of these functions on the FPGA itself allows it to operate
as a more independent unit, with multiple applications being able
to run separately on a single FPGA above the operating system, and
multiple FPGAs within a single physical system having the ability
to manage their own resources. The ideas of cloud computing are
further supported by the FPGA operating system instances being
able to communicate directly across a network, allowing accelerated
applications to be spread transparently between physically separated
nodes.

2.8.4 Accelerator-Aware Operating Systems

As an alternative to using a hardware file system or explicit oper-
ating system accelerators for allowing access to storage and devices
from other accelerator cores, the BORPH operating system [107] gives
hardware direct access to a traditional file system and other services
running within a software kernel, via a hardware system call inter-
face [108]. The idea of this is to keep the main operating system
compatible with standard Linux applications, while hardware access
to kernel operations is provided by additional system calls and exten-
ded functionality for operations such as initiating data transfers from
applications running as hardware modules. This allows hardware ac-
celerators to act far more like software processes (one of the key ideas
behind BORPH), with Unix pipelines used to stream data from one
process to another transparently, regardless of whether it is running
in software or hardware.

Results from this work show potential for extending software oper-
ating systems to allow more transparent interoperability with hard-
ware accelerator cores, including access to storage via a file system
hardware system call interface; however the large amount of I/O over-
head required may also cause an overall reduction in performance,
especially as the CPU must carry out all file system operations as well
as processing the specialised system calls. Due to this, a full hardware
file system may offer better results when maximising performance is
a key factor for storage operations, although this has other limitations
such as added complexity and reduced transparency.

2.9 Measuring Storage Performance

In order to effectively measure the performance of storage systems at
various levels, consideration must be given to relevant profiling and
benchmarking techniques and tools, and their appropriate applica-
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tion to experiments. While benchmarking allows performance to be
measured at a high level, with measurements showing potential best,
worst and average latencies, overall bandwidths, and the observation
of patterns within data access types, profiling exposes the low-level
operation of software and hardware, and is necessary to understand
the reasons behind specific benchmark results.

2.9.1 Storage System Profiling

Several tools exist for performing application and kernel profiling in
Linux. Generally, these tools monitor hardware performance counters
in the CPU, along with periodically interrupting code execution and
storing the current instruction pointer, in order to measure paths
through a program and to give an impression of the time spent within
each major function [58].

Several considerations must be made when performing profiling, in
order to capture useful data and interpret results correctly. As profiling
must intermittently interrupt a program’s execution to record data,
it can affect the performance of a system while it is active. Also, due
to execution only being sampled periodically, running a program
for a longer period or multiple times is required to gain an accurate
impression of where time is spent during execution, as more samples
will be taken covering a broader area.

Two major statistical profiling tools for Linux, which make use of
the kernel’s performance events subsystem, are perf [109] and OPro-
file [110], both of which provide similar features including support for
profiling user- and kernel-level code from a single process or a system-
wide perspective, and outputting call-graph information, annotated
source code, and various forms of report data [111]. Another popular
Linux performance analysis tool is gprof [112], which can generally be
used in a similar way, but cannot measure time spent in kernel mode,
so is not useful for measuring low-level system operation.

Besides these statistical profiling tools, the main alternative method
of profiling involves timing specific sections of code, such as indi-
vidual functions or loops (either manually or using automated tools),
and potentially associating this with a call graph of the application
generated using a similar method. Explicit profiling points must be in-
serted into the application, either before or during compilation, which
trigger profiling functions for recording timing information. This can
be achieved either through explicit software timing of events in source
code, using custom timing hardware, or using a tracing framework
such as DTrace [113]. Explicitly tracing an application’s execution
can have advantages over interrupt- or timer-based profiling tools, as
the results are guaranteed to cover every event that is set-up to be
measured, however this comes at the cost of requiring modifications
to an application’s source code or machine code, and a less consistent
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pattern of interference caused by measurement, which will happen
more sporadically.

A further method of profiling can be to statically analyse machine
code to calculate execution time estimates, however this is only feas-
ible and accurate for relatively simple programs that perform little
interaction with external systems and devices.

2.9.2 Benchmarking Performance

In order for profiling to be carried out effectively, and in order to
test any effects of modifications made to a system, a reasonable set
of measurements and benchmarks must be established. These can be
taken from standard storage benchmark sets, or developed specifically
for the task, based on potential uses of the work. While standard, well-
established benchmarks are useful for comparisons with other work,
they can vary significantly in quality and applicability, and certain
situations are too specialised for any options to apply adequately.

Three main categories of file system benchmarks are available:
macro-benchmarks, which use multiple file system operations to give
an overall impression of performance; micro-benchmarks, which test
a small set of specific operations; and trace-based benchmarks, which
emulate behaviour recorded from real-world systems [114]. In order to
gather a useful impression of a system, a combination of benchmarks
should be used, with appropriate functionality targeted for intended
applications, as well as more general benchmarks to ensure unexpected
impacts on other areas of a system are avoided.

Many standard file system benchmarking tests and applications
exist for use on Linux, however their quality, in terms of creating
reproducible results and reflecting real-world system usage, varies
greatly [115]. It is therefore necessary to use multiple tests in order to
increase confidence in the results of any file system acceleration work,
and to select these tests based on well-researched criteria.

A large amount of work exists on the complexities of file system
benchmarking, including studies of benchmarks typically used in re-
search [114], and the general desirable characteristics that benchmarks
should exhibit [115]. These characteristics include the accuracy of
results, the ability to repeat experiments and to reproduce results, and
the classification of a benchmark in terms of its specific performance
dimensions and the applicability of these to the desired metrics being
judged [115].

Specific tools also exist to assist in the generation and selection of
benchmarks, and for producing test suites with reproducible, realistic
results [116].

File system usage patterns vary greatly between different applic-
ations [116]. For example, a web server’s file system will typically
mostly deal with reads from a similar set of files, allowing for a large
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amount of caching to be performed efficiently; whereas a scientific
application that produces a large amount of data will typically require
continuous writing at a sustained bandwidth while the experiment
is running followed by reading from areas of interest at the highest
speed possible as data is analysed. For this reason, the use of suit-
able benchmarks is required in order to effectively evaluate a system
designed for certain usage patterns.

2.10 Modelling Storage Systems

Creating a standard high-level model of storage access is useful in
order to abstract away from the low-level details of implementation,
allowing the functionality and results taken from analysis and exper-
imentation to be demonstrated in a consistent manner. Abstracting
the storage system model gives a broader look at the interactions of
the various layers of the storage stack, which allows for a reasoned
analysis of its operation, while being useful for predicting the effects
that changes may have on a system.

Persistent storage access in many systems, from embedded devices
to large-scale cloud computing platforms, operates on a similar prin-
ciple – creating an abstract interface to the user and applications that
ultimately represents data stored on some underlying storage device.
Typically, data is indexed and accessed through a hierarchy of files
(although this is not always the case), which then map to a number of
fixed-size blocks on a physical device. This mapping can be managed
through multiple interacting layers, including file systems, various
operating system mechanisms, and processes on the storage device
itself. The layers involved in this abstraction often result in the use of
standard interfaces and interchangeable components at each level.

For the purpose of the work presented in this thesis, storage access
time is divided into three main domains: the application, the operating
system, and the storage device. While each of these areas contains
multiple different sub-processes depending on the system and context,
the high-level view is constant throughout. The general pattern of
access also remains constant through most systems, with applications
communicating in both directions with the storage device via the
operating system, however there are cases where the operating system
can set-up direct communication for applications ahead of time.

2.10.1 High-level storage stack model

Figure 2.2 shows a number of possible areas covered by each of
the major storage model domains, with time spent during a storage
operation progressing from left to right. Many operating systems
implement all the areas outlined in the model in some form, however
not all areas are required in order to create a viable storage stack.
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Figure 2.2: Potential areas of storage stack, grouped by high-level domain

2.11 Measuring Efficiency and Predictability

In order to provide meaningful measurement of the efficiency and
predictability of storage operations (two key criteria for real-time
embedded systems), a consistent set of metrics must be defined for
use throughout the analysis and evaluation work presented in this
thesis. These metrics are as follows:

• Read and write speeds
• I/O operation speeds
• CPU usage during transfers
• Number of device commands
• Number of device interrupts

In addition to values of these primary metrics, additional insight
can be gained through further analysis using higher-order metrics,
such as the following:

• Ratio of one metric to another (e.g. speed to CPU usage)
• Variation of values over time
• Distribution of values over time

The metrics are also related to areas of the high-level storage stack
model defined in Section 2.10. For example, certain metrics may apply
only to some areas of the storage stack, and may have to ignore the
effects of other areas in order to be usefully quantifiable.

One key requirement for real-time systems is the ability to calculate
bounds for execution time – for example, guaranteeing the worst case
amount of time taken (at least probabilistically) for a certain operation
to be executed. Within a complex system with many interacting parts,
such as a typical storage stack, providing timing bounds across an
entire operation can be difficult. This is especially the case when using
proprietary devices such as storage hardware, whose specifications
do not provide any kind of timing guarantees themselves, and whose
low-level functionality is beyond the control of the user or system
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creator. In such a case, it can be necessary to work around the areas of
a system that have unknown timing properties, providing guarantees
in areas that can be controlled, while highlighting areas that cannot.

Thorough statistical measurement of execution times can also assist
in generating timing characteristics of black-box systems (or subsys-
tems), which can be sufficient in many cases. Attributing these timings
to certain areas of the overall model, and correlating them with non-
timing measurements such as command and interrupt counts, can
provide further useful data on the overall predictability of a system.

In addition to the raw metrics, techniques such as execution profiling
can be used to identify in which areas time is spent during a transfer,
however performing these in an accurate and non-intrusive manner
can often be difficult.

2.11.1 Outline of metrics

read and write speeds Data transfer speeds when reading
and writing to storage can give a good indication of the overall per-
formance of a storage system, covering all layers, from an applica-
tion, through the kernel, to a hardware device. When comparing raw
speeds, the various parts of a system must be taken into account, as a
limit can often be due to a bottleneck caused by a single factor, such
as CPU or storage device speed. The nature of the specific data trans-
fer being measured must also be considered, as copying many small
blocks of data can have vastly different performance characteristics
to copying fewer large blocks. Transfer speed can be a good way of
measuring efficiency, assuming specific bottlenecks are understood
as well as predictability when considered over time. This metric is
typically expressed as the number of bytes transferred per second.

cpu usage during transfers CPU usage can show the general
efficiency of the software component of a storage transfer, with lower
CPU usage often correlating with higher performance. This can be
particularly relevant in embedded systems, where the CPU resources
available to storage tasks are often limited. Measuring CPU usage has
the issue of being capped at 100% – when a CPU is fully utilised,
simple results cannot be meaningfully compared as the resource is
saturated, however this information can still be useful when combined
with other metrics such as speed to give an indication of efficiency.
Other aspects of a system must be considered alongside raw CPU
usage values to keep them in an appropriate context, such as the CPU
architecture, number of available cores, memory and cache speeds,
and the characteristics of the storage device being used. This metric is
typically expressed as the percentage of time that a CPU is executing
code from a certain area of the system (and is not idle), during a given
sample period.
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number of device commands The number of individual com-
mands sent to a storage device during a transfer (and whether they
are directly caused by that transfer) can give a good indication of
overall software predictability, including all layers of the application
and operating system. This metric only gives an indication of consist-
ency in a single area, however, as the time and effort taken to set-up
and construct each command may vary considerably. The time taken
by storage hardware to complete each request may also vary, even if
requests are identical, however this is often beyond the control of the
rest of the system.

number of device interrupts The number of interrupts from a
storage device gives a similar measure of predictability to the number
of commands sent, and the two values are often heavily correlated,
however measuring interrupts shows a more direct indication of how
the device is affecting the system, rather than how the system is
interacting with the device. The difference in time between a command
and associated interrupt can also give an idea of both efficiency and
predictability. Additionally, for a real-time system, context-switching
to an interrupt service routine during execution of another task can
be a significant consideration, meaning the frequency and consistency
of interrupts is an important metric for predictability.

i/o operation speeds This metric is a more standardised way
of measuring the number of operations that a storage device can ser-
vice over a given period of time, effectively combining the number of
commands sent to a device and interrupts received from it, but often
specified at a higher level. Measuring the time taken for I/O opera-
tions to complete can give a strong indication of both efficiency and
predictability, when comparing different systems or when measuring
variation over time. The specific operations being performed must be
taken into account when using this metric. This metric is typically
expressed as the number of Input/output Operations Per Second, or
IOPS.

Higher-order metrics

ratio of one metric to another Combining two related
metrics into a single ratio can give more information about a system
than either individual number, while still retaining a single value for
comparison. For example, a ratio of speed to CPU usage combines the
two values to give a broader measure of transfer efficiency than either
individual value provides, showing an indication of how much CPU
effort it takes to transfer a given amount of data. While this can often
be more useful than using a component metric individually, it should
be taken in the context of its constituent parts in order to properly
evaluate values based on measured results.
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variation of values over time The variation in value of a
metric over time can give an indication of the predictability of a
system, independent of its raw performance. For example, this could
be used to differentiate two systems with similar long-term average
results but vastly different moment-to-moment performance profiles,
or to analyse how accurately the properties of a future transfer can
be predicted. Any conclusions drawn from this data should take into
account the specific source metrics and how they are measured over
time. This metric can be measured statistically using variance and
standard deviation values.

distribution of values over time Similar to the variation of
values over time, the distribution of these values and any temporal
patterns identified through their measurement can show useful in-
dications of predictability, as well as potentially helping to provide
explanations for individual observed measurements. This metric can
be particularly useful for events that happen instantaneously, such as
command submission and device interrupts, but can also be applied
to values measured across time.

2.11.2 Benchmarking metrics

In order to set requirements and measure quantitative results of work
in an appropriate context, and for the motivation of analysis and
development work, a number of potential applications are identified
for targeting. These involve a mixture of data-intensive embedded
and high-performance computing applications, chosen in order to
investigate a variety of scenarios that could benefit from improvements
to the storage stack. It is important for benchmarks to be (to an extent)
representative of real-world system use, but also not to entirely be
fitted too strongly to the targets of the work, so tests in general focus
on general patterns that could be applied to a large number of typical
application scenarios.

Beyond traditional performance-oriented benchmarking, measuring
the predictability of a system in a real-time context is a valuable
metric. While performance benchmarks may acknowledge variability
of results in their measurements, this may not be enough to properly
show the full extent of system predictability. In this regard, new
benchmarks are required that take into account the characteristics of a
real-time system, and measure results based on these.

2.12 Summary

In summary, there is a definite consensus in both academic literature
and industrial contexts that operating system storage stacks require
changes in order to fully take advantage of emerging high-speed
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storage technologies. Currently, a small amount practical work has
been carried out to address these issues, with some experimental
platforms being developed, as well as new interfaces such as NVMe
being introduced to standardise an efficient means of communicating
with high-speed solid-state storage. However, limited work has been
done to address some of the more fundamental areas of the storage
stack that are causing overheads in software, such as file systems
and the VFS, particularly in the context of real-time and embedded
domains.

The hardware acceleration of operating systems is a topic that
has been considered previously, with some work being carried out
on the acceleration of file systems and other areas of the storage
stack, however this has not been fully combined with the need for
predictability and efficiency required by real-time embedded systems.
The increasingly high relative software latencies caused by faster
storage motivates this further with a need to alleviate the additional
stress currently being put on CPUs, while modern programmable
hardware platforms and synthesis tools make the introduction of
accelerator cores into a system more practical than ever.

In order to effectively evaluate any further research into storage
systems, strong attention must be given to appropriate benchmarking
and profiling approaches, which should be informed by literature
and standards established within the community. The broad range
of technologies, both new and old, relevant to real-time systems,
embedded systems, operating systems and storage systems, must also
be understood and considered in order to contextualise and inform
future development of engineering and research outputs.



3
Analysis of Storage Operations in
Embedded Linux Systems

In order to potentially improve upon methods of accessing storage
within real-time embedded systems, it is necessary to thoroughly
understand and measure how storage access is currently performed
within a common general-purpose operating system. This chapter
provides an analysis of storage operations in GNU/Linux1, with a
focus on areas relevant to real-time embedded systems. The internals
of the operating system are examined both empirically and analytic-
ally in how they create a bridge between an application and various
storage devices, in order to both motivate and provide context for any
necessary improvements.

3.1 Introduction

Traditional models of storage systems, including the implementation
in the Linux kernel, assume the performance of storage devices to
be far slower than CPU and system memory speeds, encouraging
extensive caching and buffering over direct access to storage hardware.
In an embedded system, however, processing and memory resources
are limited while storage hardware and interfaces can potentially still
operate at full speed, causing this balance to shift, and leading to
the observation of performance bottlenecks caused by the operating
system software rather than the speed of storage devices themselves.
This increased relative time spent in software also emphasises any
timing variance caused by software routines, especially with faster
and more predictable storage devices, such as modern SSDs.

This chapter considers effects that the limited CPU and memory
speeds of an embedded system can have on a fast storage device – due
to the change in balance between relative speeds, the system cannot
be expected to perform in the same way as a typical computer, with
certain performance bottlenecks shifting away from storage hardware

1 Hereafter referred to as simply ‘Linux’, as this work focuses mainly on the operating
system kernel and less on any GNU project software running on top of it.
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limitations and into software operations. Performance and profiling
results are presented from high-speed storage devices attached to a
Linux-based embedded system, showing that the kernel’s standard
file I/O operations are inadequate for such a set-up, and that ‘direct
I/O’ may be preferable for certain situations. Examination of the
results identifies areas where potential improvements may be made in
order to reduce CPU load and increase maximum storage throughput.
The predictability of storage operations is also considered, through
observing and measuring the variability of their execution.

3.1.1 Chapter Outline

Initial results from profiling I/O operations are presented in Sec-
tion 3.3, demonstrating the complexity of the block storage and file
system layers in Linux. These are followed by a more detailed ana-
lysis though further benchmarking and profiling experiments on a
general-purpose server platform in Section 3.4, and an embedded
platform in Section 3.5, showing that storage operations experience
bottlenecks caused by CPU limitations rather than the speed of the
storage hardware when standard Linux file operations are used. Re-
moving reliance on the page cache (through direct I/O) is shown to
improve performance for large block sizes, especially on a fast SSD,
due to the reduction in the number of times data is copied in main
memory, however speeds are still ultimately limited by CPU capability.

Following this, the implementation of a custom timing and profiling
hardware component is outlined in Section 3.6, which is used for
further experimentation on low-level storage timing on an embedded
platform. Experiments focussing on the speed and variability of stor-
age operation timings in periodic tasks are presented in Section 3.7,
demonstrating the differences that file systems and storage access
methods can have on these metrics. Finally, results from low-level
storage operation profiling are presented in Section 3.8, showing in
greater detail the breakdown of where time is spent during various
methods of accessing storage.

Potential solutions presented in Section 3.10 suggest that restruc-
turing the storage stack to favour device accesses over memory and
CPU usage in this type of system, as well as more radical changes
such as the introduction of specific hardware acceleration for storage,
may reduce the negative effects of CPU limitations on storage speeds.
A number of these solutions are explored further in Chapter 4, or
discussed as potential future work in Chapter 5.

3.2 Background and Motivation

Traditionally, access to persistent storage has been orders of magnitude
slower than volatile system memory, especially when performing ran-
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Figure 3.1: Basic control flow of standard file operations in Linux

dom data accesses, due to the high latency and low bandwidth associ-
ated with the mechanical operation of hard disk drives, as well as the
constant increase in CPU and memory speeds over time. Despite the
deceleration of single-core CPU scaling in recent years (as discussed in
Section 1.3), the main bottleneck associated with accessing non-volatile
storage in a general-purpose system is still typically the storage device
itself.

3.2.1 Linux Storage Access

Linux (similar to many other operating systems) uses a number of
methods to reduce the impact that slow storage devices cause on
overall system performance, through its VFS, block layer and sched-
uler, and low-level device driver framework. Firstly, main memory is
heavily used to cache data between block device accesses, avoiding
unnecessary repeated reads of the same data from disk. This also helps
in the efficient operation of file systems, as structures describing the
position of files on a disk can be cached at an operating system level
for fast retrieval. Secondly, buffers are provided for data flowing to and
from persistent storage, which allow applications to spend less time
waiting on disk operations, as these can be performed asynchronously
by the operating system without the application necessarily waiting
for their completion. Finally, sophisticated scheduling and data layout
algorithms can be used to optimise the data that is written to a device,
taking advantage of idle CPU time caused by the system waiting for
I/O operations to complete. Figure 3.1 shows the basic control flow of
accessing a file in Linux, from a user-space application, through the
VFS, file system and block layer in the kernel, to the storage hardware
device.

The Linux attitude to storage access differs from some other, other-
wise quite similar, operating systems, such as FreeBSD, which treats
all storage devices as raw, uncached character devices, and whose
documentation describes the use of cached block devices in other
UNIX systems to be “almost unusable, or at least dangerously unreli-
able” [117].
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For most general-purpose Linux systems, these techniques can have
a large positive effect on the efficient use of storage – memory and
the CPU often far outperform the speed of a hard disk drive, so
any use of them to reduce disk accesses is desirable. However, this
relationship between CPU, memory and storage speeds does not
hold in all situations, and therefore these techniques may not always
provide a benefit to the performance of a system.

The limited resources of a typical embedded system can skew the
balance between storage and CPU speed, which can cause issues for a
number of embedded applications that require fast and reliable access
to storage. A number of examples exist where fast and reliable access
to storage is required by a Linux-based embedded system, which may
be limited by CPU or memory resources when standard file system
operations are used. These include applications that receive streaming
data over a high-speed interface that must be stored in real-time, such
as data being sent from sensors or video feeds, perhaps with interme-
diate processing being performed using hardware accelerators. Such
applications can be found in areas including autonomous vehicles,
where a large amount of data must be processed and stored reliably
and with real-time constraints.

3.2.2 Buffered I/O versus Direct I/O

The Linux storage model relies heavily on the buffering and caching of
data in system memory, typically requiring data to be copied multiple
times before it reaches its ultimate destination. The kernel provides
the ‘direct I/O’ file access method to reduce the amount of memory
activity involved in reading and writing data from a block device,
allowing data to be copied directly to and from an application’s
memory space without being transferred via the page cache. While
this allows applications more-direct access to storage devices, it can
also create restrictions and have a severe negative impact on storage
speeds if used incorrectly. In the past, there has been some resistance to
the direct I/O functionality of Linux [118], partly due to the benefits of
utilising the page cache that are removed with direct I/O, and the large
disparity between CPU/memory and storage speeds meaning there
were rarely any situations where the overhead of additional memory
copies was significant enough to cause a slowdown. However, when
storage is fast and the speed of copying data around memory is slow,
using direct I/O can have a significant performance improvement if
certain criteria are met.

Figure 3.2 shows the basic principles of standard and direct I/O,
with direct I/O bypassing the page cache and removing the need
to copy data from one area of memory to another between storage
devices and applications.
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A further method of accessing a block device in Linux is to bind
it to a ‘raw device’ node, creating a character device that bypasses
the block layer caches and buffers for zero-copy I/O. Raw devices are
generally considered to be superseded by the O_DIRECT file open flag,
which performs essentially the same function, and at one point were
considered for removal from the kernel [119], however later had their
deprecated status reversed [120].

3.2.3 Linux Storage Stack Complexity

Consider a basic Linux application that reads a stream of data from
a network interface and writes it to a continuous file on secondary
storage using standard file operations. Disregarding any other system
activity and additional operations performed by the file system, data
will typically be copied a minimum of four times on its path from
network to disk:

1. From the network device to a buffer in the kernel’s networking
subsystem

2. From the kernel buffer to the application’s memory space
3. From the application’s memory space to a kernel buffer
4. From the kernel buffer to the storage device itself

This process has little impact on overall throughput if either stor-
age or network speed is slow relative to main memory and CPU,
however as soon as this balance changes, any additional processing
and memory copying can have a severe impact. Techniques such as
DMA can help to reduce the CPU load related to copying data from
one memory location to another, however this relies on hardware
and driver support, and does not fully tackle the inefficiencies of
unnecessary memory copies.

One advantage of the kernel using its page cache to store a copy of
data is the ability to access that data at a later time without having to
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load it from secondary storage, however this will have no benefit if
data is solely being written to or read from a disk as part of a streaming
application, because by the time the data is needed a second time it is
likely that it has already been purged from the cache. Limited system
memory can also contribute to this effect, as cache sizes will be more
restricted.

3.2.4 Issues with Direct I/O

One of the main issues with direct I/O is the large overhead caused
when dealing with data in small block sizes. Even when using a fast
storage device, reading and writing small amounts of data is far slower
per byte than larger sizes, due to constant overheads in communication
and processing that do not scale with block size. Without kernel buffers
in place to help optimise disk accesses, applications that use small
block sizes will suffer greatly in storage speed when using direct I/O,
compared to when utilising the kernel’s data caching mechanisms,
which will queue requests to more efficiently access hardware. The
performance of accessing large block sizes on a storage device does not
suffer from this issue, however, so applications that either inherently
use large block sizes, or use their own caching mechanisms to emulate
large block accesses, can use direct I/O effectively where required.

A further issue with the implementation of direct I/O in the Linux
kernel is that it is not standardised, and is not part of the POSIX spe-
cification, so its behaviour and safety cannot necessarily be guaranteed
for all situations. The formal definition of the O_DIRECT flag for the
open system call is simply to “try to minimize cache effects of the I/O
to and from this file” [121], which may be interpreted differently (or
not at all) by various file systems and kernel versions.

3.3 Preliminary Profiling Tests

In order to identify areas of the Linux kernel that may cause latency
during file system operations, and to test the basic capabilities and lim-
itations of profiling tools, a preliminary investigation was conducted
into the operations involved in a basic file copy.

A simple C program was written in order to create profiling inform-
ation for a file copy operation, which involves repeatedly reading data
from a file into a buffer, 4 KiB2 at a time, then appending the contents
of this buffer into a new file. Source code for the test program can be
found in Appendix C.1.

2 Throughout this thesis, the units KiB, MiB and GiB are used to refer to 210, 220 and
230 bytes respectively, and KB, MB and GB are used for 103, 106 and 109 bytes.
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Figure 3.3: Full call graph of the file copy test – nodes represent functions
and edges represent calls

3.3.1 Experimental Set-Up

Experiments were performed on the server platform detailed in Ap-
pendix B.1 – containing an Intel Core 2 Quad Q9450 CPU at 2.66GHz,
4 GiB main memory, and running Debian Linux 7.6 with a custom-
built 3.17 kernel (with profiling support enabled and relevant file sys-
tems compiled into the kernel image instead of included as loadable
modules). The test application was compiled using EGLIBC version
2.13 and GCC version 4.7.2, with symbol information retained and
compile-time optimisation disabled (using GCC flags -g -O0).

3.3.2 Profiling Results

The copy program was run multiple times on a 2GiB file containing
random data, with all operating system caches being cleared between
runs. During execution, CPU cycle count in each function of the
program and operating system was monitored by the full-system
profiler, operf, part of the OProfile suite of tools [122]. The output
from the tools showed around 99% of execution time was spent in
kernel code (including file system code). A sample of the raw profiling
tool output can be seen in Appendix D.

Within the kernel, just over 10% of total execution time was spent in
the ‘copy_user_generic_string’ function, which is used to copy data to
and from user-space memory. This shows one potential inefficiency of
the traditional storage stack, as data read from storage must be copied
between kernel- and user-space memory for an application to use it.
As storage device speeds increase, and certain applications demand
increasingly large-scale data transfers, this could become a potential
bottleneck when dealing with storage.
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Figure 3.4: Limited call graph of the file copy test (with only nodes account-
ing for greater than 2% of total execution time shown)
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The call graph recorded during execution shows the overall com-
plexity of the storage stack within the kernel and system libraries.
Figure 3.3 shows the entire call graph of the file copy program, demon-
strating the extreme extent of the code that is actually executed, while
Figure 3.4 highlights how little of the executed code performs any
serious processing, displaying only the functions that are executed for
more than 2% of the total execution time3.

These initial results motivate a further, more-detailed investigation
of the operation of the Linux storage stack in order to examine these
complexities further, which is detailed in the remainder of this chapter.

3.4 Measuring Storage Performance

In order to examine the performance of storage devices within Linux at
a greater level of detail, and to identify potential bottlenecks present in
the Linux storage stack, a number of experiments were performed with
storage operations while collecting profiling and system performance
information. The first set of detailed experiments were performed
on the same standard server platform as the preliminary tests (see
Appendix B.1).

To provide a range of results, three storage devices were tested
with the system: a Western Digital Blue 500GB hard disk drive [123],
and an Intel SSD 535 240GB [124], both connected though a PCIe
StarTech SATA III RAID controller card [125]; and an Intel SSD 750

400GB [16] connected directly through PCIe. While both the RAID
controller card and Intel SSD 750 use the same PCIe interface for their
physical connection to the system, the RAID controller uses SATA
III to connect to the storage devices themselves, and AHCI for the
logical storage interface, whereas the Intel SSD 750 uses the more
recent NVMe standard.

Due to limitations of the PCIe controller on the server motherboard,
the speed of the SSD interface is limited to PCIe Gen. 2 x4 (from its nat-
ive Gen. 3 x4), reducing the theoretical maximum four-lane bandwidth
from 3940 MB/s to 2000 MB/s. While this is still significantly faster
than the 600 MB/s theoretical maximum of the SATA III interface used
by the HDD and SATA SSD, it means the SSD will never achieve its
advertised maximum capable speed of 2200 MB/s in this hardware
set-up, although this speed is likely to be calculated theoretically, and
unlikely to be reached in any practical situation.

3 These call graphs are not intended to be fully readable, and are just used as a visual
representation of call stack complexity.
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3.4.1 Read and Write Benchmarking

To determine an indication of the operating speeds of the storage
devices at various block sizes with minimal external overhead, the
Flexible I/O Tester (FIO) benchmarking utility [126] was used to per-
form basic sequential and random read and write tests. Sequential read
and write results from FIO were validated using the standard Linux
dd utility (using /dev/zero as a source file for writes and /dev/null as
a destination for reads), which demonstrated that the benchmarking
results closely matched the real-world tool. Both storage devices were
freshly formatted with an ext4 file system before each test, using the
default options to best reflect common usage (other than disabling
lazy inode table and journal initialisation).

For each block size, storage device and access type (sequential or
random), four tests were performed: reading from a file on the device,
writing to a file on the device, reading and writing with direct I/O
enabled. Each test was performed with and without the collection of
profiling data, so results could be gathered without any additional
overheads caused by these measurements.

For each benchmark, speed and resource usage data was recorded
for 20 GiB transfers, along with the variability across the duration
of the transfer. Storage devices, especially mechanical hard disks,
generally perform faster with sequential transfers than with random
accesses, and operating and file system overheads are also likely to
be greater for non-sequential access patterns, so recording data for
different access types and transfer block sizes is necessary to gain a
full understanding of performance.

3.4.2 Benchmark Performance Results

Read and write speeds generally correlate with what is expected
from the storage devices, with the HDD being slowest, followed by
the SATA SSD, then the NVMe SSD performing fastest, as shown in
Figures 3.5 and 3.6. Small block sizes decrease performance, especially
when writing, and for random accesses. Larger block sizes of random
accesses begin to align themselves with sequential access speeds, as
the sequential nature of the blocks outweigh the overheads of random
access. This effect begins with larger block sizes on the HDD than
those on the SSDs, showing how its random access performance differs
more significantly from sequential access. This is a broadly expected
result, due to the physical limitations of mechanical storage preventing
efficient random access to data, and solid-state storage operating in
a fundamentally different manner. An interesting observation of the
SATA SSD is the reduction in write speed as block sizes get large
(for those measured, 128MiB and above), suggesting that operating
system or device buffers are becoming overwhelmed, showing that
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Figure 3.5: Read speeds for HDD, SSD and NVMe SSD on the server platform
(x-axis log scale, error bars show standard deviation)
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Figure 3.6: Write speeds for HDD, SSD and NVMe SSD on the server plat-
form (x-axis log scale, error bars show standard deviation)
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increasingly large transfer block sizes do not necessarily mean higher
performance.

When direct I/O is enabled, speeds are generally higher when the
block size is sufficiently large to overcome the overheads involved,
such as increased communication with hardware due to the lack of
buffering and access-coalescing. 512 B and 4 KiB block sizes are signi-
ficantly slower than the standard write tests for sequential accesses,
as the kernel cannot cache data and write it to the device in larger
blocks, but this effect is reduced for random access.

Large block sizes show significant speed increases when using direct
I/O on the NVMe SSD, suggesting that the bottleneck in performance
encountered when performing standard I/O on this device is due to
inefficiencies in the operating system, rather than the storage device
itself. This contrasts with the HDD, where the storage device is clearly
almost always the performance bottleneck, as speeds change very little
with large block sizes or direct I/O. The large increase in potential
speed when using direct I/O on a fast storage device motivates further
investigation into this area, as software efficiency becomes increasingly
relevant in storage access performance, even in a relatively capable
computer system.

3.4.3 CPU Utilisation

The CPU utilisation measurements taken during the benchmarking
process give a further indication on the location of bottlenecks when
accessing storage, and are shown in Figures 3.7 and 3.8 (note that error
bars are not displayed in CPU measurements as FIO only reports the
average CPU usage measured across the entire length of a transfer).
Small block size sequential operations are clearly very inefficient for
the file system and block layer, showing high CPU usage despite a
slow transfer speed. The lower CPU utilisation than this for small
random transfers is likely due to the even slower transfer speeds.
There is a general trend in CPU utilisation increasing as random read
block size increases, in line with the faster performance of storage
devices, and therefore less time spent idle waiting for the device to
return data.

Direct I/O CPU utilisation is almost always less than the standard
I/O equivalent, however some counterexamples to this are seen in
various small block size transfers, highlighting why direct I/O is not
always a good choice for disk access, even when just considering CPU
usage and not speed.

3.4.4 Storage Access Efficiency

To obtain a better overall view of the CPU efficiency for accessing
storage, the speed per percentage unit of CPU utilisation can be used,
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Figure 3.7: Kernel CPU utilisation for HDD, SSD and NVMe SSD read oper-
ations on the server platform (x-axis log scale)
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Figure 3.8: Kernel CPU utilisation for HDD, SSD and NVMe SSD write
operations on the server platform (x-axis log scale)
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Figure 3.9: Read speed per percent of CPU utilisation for HDD, SSD and
NVMe SSD on the server platform (x-axis log scale, error bars
show speed standard deviation)



3.4 measuring storage performance 83

●
●

●

●

●

●

●

● ●

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

51
2B

4K
iB

51
2K

iB

1M
iB

16
M

iB

12
8M

iB

25
6M

iB

51
2M

iB
76

8M
iB

Block Size (Bytes)

A
ve

ra
ge

 S
pe

ed
 (

M
iB

/s
) 

/ K
er

ne
l C

P
U

 U
til

is
at

io
n 

(%
)

●

HDD Seq Write
HDD Seq Write Direct I/O
SSD Seq Write
SSD Seq Write Direct I/O
NVMe Seq Write
NVMe Seq Write Direct I/O

● ●

●

●

●

● ●

● ●

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

51
2B

4K
iB

51
2K

iB

1M
iB

16
M

iB

12
8M

iB

25
6M

iB

51
2M

iB
76

8M
iB

Block Size (Bytes)

A
ve

ra
ge

 S
pe

ed
 (

M
iB

/s
) 

/ K
er

ne
l C

P
U

 U
til

is
at

io
n 

(%
)

●

HDD Rand Write
HDD Rand Write Direct I/O
SSD Rand Write
SSD Rand Write Direct I/O
NVMe Rand Write
NVMe Rand Write Direct I/O

Figure 3.10: Write speed per percent of CPU utilisation for HDD, SSD and
NVMe SSD on the server platform (x-axis log scale, error bars
show speed standard deviation)
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giving an indication of the effort required to achieve a given transfer
speed. These results are shown in Figures 3.9 and 3.10, for the tests
detailed previously.

These plots clearly show the large increase in CPU efficiency offered
by direct I/O when transferring blocks of data as small as 512 KiB, as
well as the fairly constant CPU cost for standard ext4 I/O transfers,
varying very little with block size, storage interface or storage device
type. The general inefficiency of performing many small block size
transfers is also further highlighted.

Another trend clear in these plots is that the CPU efficiency of
transfers can decrease for large block sizes when using direct I/O.
This is likely due to the increased amount of buffer allocation and
DMA mapping being forced onto the kernel for the larger blocks,
while already being at an optimal speed for the device at lower block
sizes.

3.5 Embedded System Storage Performance

In order to examine the effects that a resource-constrained system
can have on the performance of storage devices, storage experiments
were repeated on an embedded platform, along with a number of
additional experiments to further test the embedded hardware.

3.5.1 Experimental Set-Up

Embedded experiments were carried out on an Avnet ZedBoard Mini-
ITX development board [43], communicating with storage devices
through its PCI Express connector and an AXI-to-PCIe bridge design
programmed on the FPGA. The ZedBoard Mini-ITX provides a Xilinx
Zynq-7000 system-on-chip, which combines a dual-core Arm Cortex-
A9 processor (with a variable clock, up to 800 MHz) with a large
amount of FPGA fabric, alongside 1 GiB of DDR3 RAM and many
other on-board peripherals. Experiments were run using Linux kernel
3.18 (based on the Xilinx 2015.2 branch). A detailed specification of
the experimental platform can be found in Appendix B.2.

3.5.2 Benchmark Performance Results

Figures 3.11 and 3.12 show the average sequential and random read
and write speeds for a number of block sizes when transferring data
to and from the storage devices.

The standard read and write speeds for all storage devices are
clearly slower in general than on the server platform, with the SSDs
also only performing slightly faster than the HDD for all block sizes
tested. While random access results are slower for the HDD than the
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Figure 3.11: Read speeds for HDD, SSD and NVMe SSD on the Zynq-7000

platform at 800 MHz (x-axis log scale, error bars show standard
deviation)
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Figure 3.12: Write speeds for HDD, SSD and NVMe SSD on the Zynq-7000

platform at 800 MHz (x-axis log scale, error bars show standard
deviation)
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SSDs, sequential speeds do not vary significantly between the different
storage types, with the two SSDs performing almost identically in
sequential reads, and the HDD only slightly slower than this. This
suggests that bottlenecks exist outside of the storage devices in the test
system, either caused by the CPU or system memory bandwidth, as it
is expected that the SSD should perform significantly faster than the
HDD in both read and write speed, and that the NVMe SSD should
perform better than the SATA device, as seen with the server platform.

The overheads of small block transfers are clearly visible, even in
sequential tests, with results significantly slower than small block
transfers on the server platform, suggesting that these are caused
(at least in part) by areas outside the limits of the storage devices
themselves. Maximum HDD speeds on the embedded platform are
almost identical to those on the server, however, suggesting that the
physical limits of the hardware are reached on both when using a
suitably large block size, unlike with the SSDs.

The consistently slightly higher speeds seen with the NVMe SSD
are likely to be caused by it using a more efficient logical interface
to communicate with the operating system, compared to the less-
efficient AHCI interface used by the SATA SSD and HDD. If the
storage operations are indeed experiencing a CPU bottleneck, then the
more efficient low-level drivers of NVMe would allow for this higher
speed.

Additional speed tests performed on a tmpfs RAM disk (through a
/dev/shm device) show far higher read and write performance than
all three non-volatile storage devices. This is expected behaviour, even
when bottlenecks exist outside of the storage devices themselves, as
the kernel optimises accesses to tmpfs file systems by avoiding the
page cache, thus giving a more direct route from application buffers
to the (virtual) storage device with fewer memory copy operations.

For the SSDs, maximum direct I/O speeds are almost double those
of standard I/O, however these are both still far lower than the rated
speeds of the device, and than the same tests performed on the server
platform. A further bottleneck appears to be encountered before the
16 MiB direct I/O block size on the NVMe SSD, and before 128 MiB
on the SATA SSD, suggesting that at this point the block size is large
enough to overcome any communication and driver overheads and
the earlier limitations experienced with non-direct I/O are once again
affecting speeds. This speed limit (at around 210 MiB/s read and
280 MiB/s write) also matches the write speed limit of the RAM disk
when using block sizes between 512 KiB and 16 MiB, suggesting that
both the SSD and RAM disk may be experiencing the same bottleneck
here.

There are several points on the plots that go against the general
trends of increasing block size improving performance – while these
do not affect the validity of the results or suggested conclusions, they
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are interesting to consider nonetheless. One example is the falling
speed of 16 MiB direct I/O SSD reads in Figure 3.11, which may be
caused by specific DMA buffer sizes being problematic for the kernel
to allocate, or interactions with the device driver or SSD hardware
controller. These results also correspond with a much greater standard
deviation, suggesting the decrease in performance is actually attribut-
able to a general increase in variability for that specific test. Results
for the 16 MiB block size across different CPU frequencies (available
in Figure E.4 in Appendix E.1) show a similar trend, suggesting the
anomaly is related to the specific block size rather than other factors.
A further unusual result is the low speed of 512 KiB HDD random
writes shown in Figure 3.12. Again, this result appears to be inherent
to this block size on this device, as the same pattern is present across
multiple experiments with various CPU frequencies (shown in Fig-
ure E.3 in Appendix E.1). Due to the HDD direct I/O result having a
higher speed than this, it can be assumed that this result is caused by
an interaction between the kernel and storage device.

3.5.3 CPU Utilisation

Figures 3.13 and 3.14 show the mean system CPU utilisation across
block sizes for each test, measured as the sum of the utilisation of each
of the two CPU cores (so 100% corresponds to utilisation equivalent
to that of an entire single core, and values between 100% and 200%
show some utilisation of a second core). In general, it can be seen that
a large amount of CPU time is spent in the kernel across the tests,
with all but HDD direct I/O using an entire CPU core of processing
for large block sizes, strongly suggesting that the bottlenecks implied
by the speed results are caused by inadequate processing power.

The low system CPU utilisation of the HDD direct I/O tests suggests
that the bottleneck may indeed be the disk itself, unlike the SSD tests,
which show more clear, consistent limits in their transfer speeds.

Peak CPU utilisation generally correlates with peak performance
on the SSD direct I/O tests, suggesting that speed bottlenecks are
caused by processing on the CPU, especially as this happens as one
core is completely saturated by the I/O operation. One clear example
of this is the SATA SSD direct I/O write tests, where speed increases
with block size until 128 MiB, and CPU utilisation also peaks here at
around 100%. Faster results from the server platform, using a faster
CPU, also suggest this correlation.

3.5.4 Storage Access Efficiency

The speed per percentage unit of CPU utilisation results are shown
in Figures 3.15 and 3.16, giving an indication of the effort required to
achieve a given transfer speed.
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Figure 3.13: Kernel CPU utilisation for HDD, SSD and NVMe SSD read
operations on the Zynq-7000 platform at 800 MHz (x-axis log
scale; y-axis is sum of per-core values, up to 200%)
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Figure 3.14: Kernel CPU utilisation for HDD, SSD and NVMe SSD write
operations on the Zynq-7000 platform at 800 MHz (x-axis log
scale; y-axis is sum of per-core values, up to 200%)
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Figure 3.15: Read speed per percent of CPU utilisation for HDD, SSD and
NVMe SSD on the Zynq-7000 platform at 800 MHz (x-axis log
scale, error bars show speed standard deviation)
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Figure 3.16: Write speed per percent of CPU utilisation for HDD, SSD and
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Similar to the server experiments, plots clearly show the large in-
crease in CPU efficiency offered by direct I/O when transferring blocks
of data as small as 512 KiB, but show standard I/O being more efficient
with lower block sizes. The CPU cost for standard ext4 I/O transfers is
fairly constant when compared to direct I/O, but varies more than on
the more cable server platform. The inefficiency of performing many
small block size transfers is also further highlighted, especially in the
random transfer results.

Like with the speed results, there are some results in the CPU data
that do not fit the general trend – for example, the unexpectedly low
CPU utilisation (and subsequently high efficiency) of large-block direct
I/O HDD transfers shown in Figures 3.13 to 3.15. The fact that this
efficient CPU usage is consistent across all experiments with these
block sizes on the HDD, but differs from the SATA SSD results, means
it is likely due to an interaction between the slow speed of the disk
combined with the efficiency of large block size transfers, potentially
with further improvements facilitated by the I/O scheduler. Note that
error bars are quite large for these outlying results, showing a larger
variation in speed across the transfers compared to the less efficient,
smaller block sizes.

3.5.5 System Profiling

To compliment the data collected by FIO, experiments were repeated
while using operf, enabling the execution time spent in each function
within the user application, kernel and associated libraries to be
measured. The impact on performance caused by profiling is kept to
a minimum through support from the CPU hardware and the kernel
performance events subsystem, however slight overheads are likely
while the profiler is running, potentially causing slower speeds and
slight differences in observed data.

Results from profiling show that for both standard read and write
tests, a large amount of CPU time is spent copying data between user
and kernel areas of memory. Figure 3.17 shows the percentage of total
execution time spent in the kernel functions __copy_to_user (for read)
and __copy_from_user (for write), used for copying data to and from
user space respectively. The direct I/O write tests spend no time in
these functions, but instead a large amount of time is spent flushing
the CPU data cache in the v7_flush_kern_dcache_area function.

Standard read, and both read and write direct I/O operations, which
rely on more immediate access to storage devices, additionally spend
a large amount of CPU time waiting for device locks to be released in
the _raw_spin_unlock_irq function.
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Figure 3.17: Proportion of time spent in memory copy functions for HDD
and NVMe SSD with each block size tested (x-axis log scale)

3.5.6 Varying CPU Frequency

To further examine the direct effects of CPU speed on storage band-
width in Linux, experiments were repeated on the embedded platform
using three different fixed CPU frequencies – 200 MHz, 400 MHz and
667 MHz. This work validates the idea that CPU speed has a signific-
ant and direct effect on storage speeds, as suggested by the original
embedded experiments (which use a fixed 800 MHz clock speed),
showing a clear relationship between CPU and storage speed scaling
for all storage devices.

Figures 3.18 and 3.19 show a summary of results from the repeated
experiments, with the main points indicating the mean speed across
block sizes, and the vertical bars indicating the maximum and min-
imum average speed values from the block sizes tested. It is clear
from these results that the faster solid-state storage devices are being
fully limited by the CPU, especially when using direct I/O, as their
maximum and mean speeds increase approximately linearly with
CPU frequency. In contract, for the slower HDD, the bottleneck of the
storage device itself can clearly be seen in the maximum speed of both
reads and writes at 400MHz and higher.

The minimum speed values for each device also show an increase
relative to the CPU frequency, however these are much smaller abso-
lute values than the change across maximums, leading to a far larger
absolute range of speeds as frequency increases (as demonstrated by
the long vertical bars).
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A further selection of specific block sizes at a range of frequencies
can be seen in Appendix E.1, showing well-defined examples of SSD
results scaling with CPU frequency, while HDD results are often
limited by the storage device itself.

3.6 Custom Low-overhead Profiling Component

While the timing measurement and profiling functionality of Linux
(using tools such as OProfile) gives a good impression of where time
is spent during application execution, both within user-space code
and the kernel, a more specialised, hardware-based profiling timer
component was developed to address the following requirements.

• Minimise CPU and memory overhead of measuring an event
• High-accuracy timing without relying on kernel timers
• Predictable and consistent overhead when an event is measured
• Simple to incorporate into tests and kernel code
• Ability to accurately measure hardware interrupts

This specification makes the timer far more suitable for taking meas-
urements in real-time systems than standard profiling methods, as
its use is minimally intrusive and relatively predictable. The minimal
CPU and memory overhead is also advantageous for embedded sys-
tems, where resources are typically limited. The addition of hardware
interrupt triggering allows for full software latency to be measured
when performing I/O operations, such as accessing a storage device.

The profiling timer component operates by ‘tagging’ an event when
software issues it a command, or when a specific hardware interrupt
occurs. Events are recorded to an internal Block RAM (BRAM) buffer,
and are comprised of a 32-bit tag value (or interrupt number) along
with the trigger time. Each timing event is recorded using two se-
quential 32-bit register writes to the component – one to set the event
tag and one to trigger the event. After an experiment is complete, all
timing events can be read back from the internal buffer at once, ensur-
ing measurements can be taken consistently and without interruption
during the test.

An example of a plot generated from the profiling timer component
output is shown in Figure 3.20. A number of software timing events
are shown from both user-space and kernel code, along with interrupts
recorded from within the FPGA fabric, sampled during a 4 KiB write
to an ext4 file system on an NVMe SSD.

3.6.1 Hardware Implementation

The FPGA hardware core was implemented and tested using Xilinx
Vivado HLS, allowing a high-level C++ specification of functionality
to be compiled down to cycle-accurate HDL code. The hardware
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Figure 3.20: Example output of the profiling timer – vertical lines and labels
show software events, arrows show interrupts; top section is a
zoom of 320-380 µs

presents a simple set of memory-mapped registers for control and
reading stored data, as well as a vector input for a timer counter value,
and an interrupt input for triggering timing events from hardware.
Source code for the Vivado HLS hardware components of the profiling
timer is available at [4].

The component is designed to be used in conjunction with a num-
ber of standard Xilinx peripherals to allow for design flexibility and
full control from software - Binary Counter IP cores to generate an
incrementing time value and to count raw interrupt events, various
glue logic (using Utility Vector Logic IP), and an AXI GPIO IP to enable
control from the CPU over the main peripheral AXI bus.

3.6.2 Software Implementation

A basic user-space library was developed to interface with the profiling
timer by accessing the registers to control timing, trigger events, and
read back stored events. To minimise the size and complexity of
implementation, this simply maps the Linux /dev/mem device using
the mmap system call, then reads and writes the appropriate physical
memory locations for the mapped registers. An example of the user-
space library for accessing functions of the profiling timer can be
found at [7].
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Modifications to the Linux kernel code allow events to be timed
within the kernel itself, also through a simple set of interface functions.
These are implemented using ioremap_nocache on the address space
of the timer to map it into virtual memory with no caching, followed
by iowrite32 calls for triggering events. To ensure measurements are
only taken when required, a custom system call is used to dynam-
ically enable and disable kernel event tagging globally. Full kernel
modifications for using the profiling timer can be found at [5].

3.7 Timing Periodic Storage Access

In order to gain a deeper insight into how the CPU bottlenecks identi-
fied previously might affect the performance and variability of storage
operations performed by a typical real-time task in an embedded
system, a set of experiments were performed using the custom profil-
ing timer component to measure low-level timings within the kernel.
The experiments consist of a task periodically performing a fixed-size
storage operation (either read or write), for various task priorities,
system loads and storage interfaces types. The effects of varying a
task’s period on the resulting timings of its storage operations were
also examined, in order to investigate how the frequency of a task
performing such operations can influence variability.

3.7.1 Experimental Set-Up

Experiments were performed using the same basic set-up as the em-
bedded experiments detailed in Section 3.5, but using a customised
Linux kernel based on version 4.1.15, with RT_PREEMPT patches, vari-
ous Xilinx patches for correct operation on the Zynq-7000 platform,
and additional code included to support the profiling timer and meas-
urement of VFS functions. The same Intel SSD 750 [16] NVMe SSD
was used for all experiments, as it offers fast storage that has the
greatest possibility of stressing other areas of the system.

Throughout the experiments, ‘high load’ was simulated by pushing
all CPUs to maximum utilisation though several separate processor-
intensive (but not memory- or disk-intensive) processes4 running at
real-time priority 0 (Linux priority 20, nice 0), ‘medium load’ used the
same method but only running a single secondary process so only a
single core was occupied, and ‘low load’ left the system in its default
idle state with only basic background tasks running. High priority is
achieved through setting the SCHED_FIFO priority of the test process
to real-time priority 10 (Linux priority 10, nice -10), while low priority
uses the default non-real-time system scheduling and priority.

4 Specifically, each ‘system load’ command was: nice -n 0 yes > /dev/null &
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Figure 3.21: Timing of periodic high-load, low-priority, synchronous block
device writes; dotted line shows task period

To simulate a periodic data streaming task transferring data to or
from a device buffer, data is read from the SSD and written to the
Zynq-7000’s On-Chip Memory (OCM), an area of fast SRAM on the
chip itself, or vice-versa. Each read or write operation transfers the
full 256 KiB of the OCM, via a buffer within the application.

3.7.2 Varying Task Period

An initial test was run to determine an appropriate task period for
further experiments, to ensure that storage operations had sufficient
time to complete, and to measure the effect that period can have on the
variability of operations. A low-priority periodic write to an NVMe
block device was performed 10,000 times on a system with high load,
at periods ranging from 5 ms to 25 ms, with total timing of the write
operation measured using the profiling timer component.

Box plots of these results can be seen in Figure 3.21, showing a large
number of outliers in quite distinctive bands, until the period is long
enough for all write operations to complete before the next firing of
the task, giving an observed worst-case response time less than the
period from 18 ms upwards. At around 15 ms, a critical percentage
of writes complete in less than the task period, freeing time in the
system between writes and causing the number of major outliers to
fall dramatically. The reversing of this effect for a 16 ms period is
likely to be caused by either uncontrolled variation in the system,
or scheduling effects caused by specific periods. The write time then
stabilises at 17 ms and above as the system slack time increases.
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3.7.3 Performance and Variability Results

To determine the timing variability of results in a more empirical
manner, specific areas identified during profiling were measured over
many runs of periodic storage tasks.

Based on the results from varying a likely worst-case storage task
period detailed in Section 3.7.2, tasks for this set of results were
run with a period of 25 ms to ensure minimal interference between
subsequent firings. Additional results collected with a 10 ms period
confirm the patterns observed with shorter periods previously, and so
show a much larger difference between the variability of faster and
slower storage operations (with response times less than or greater
than approximately 10 ms respectively). Full results from experiments
run with a 10 ms period are presented in Appendix E.2, with results
and discussion here restricted to the more stable 25 ms experiments.

As may be predicted, higher system load and lower task priority
generally increase timing variability as other processes on the sys-
tem cause more interference, however the extent that these affect the
storage task varies across access methods.

For both reads and writes, using direct I/O greatly reduces the
number of extreme timing results when accessing storage through a
plain block device, as shown by the outliers in Figure 3.22. Results
for an ext4 file system in Figure 3.23 show a similar pattern, although
there are more outliers remaining even when direct I/O is enabled,
likely due to the inherent complexity that the file system adds. While
direct I/O also improves both observed worst-case and average speed
when writing for both block device and file system accesses, the same
is not true for reading, with only the observed worst case being faster.

3.7.4 Asynchronous I/O Results

The default for disk I/O in Linux is to use asynchronous requests,
where transfers can be completed by the kernel after the system
call initiating the transfer in the user-space application has returned.
Results presented to this point force I/O requests to be serviced syn-
chronously, giving a more accurate (and theoretically more consistent)
measurement of the response time. If it is not necessary to enforce
transfers to be complete before the next firing of a task then asyn-
chronous I/O can be used, but this can cause consecutive requests to
queue up and affect future transfers.

To investigate differences between asynchronous and synchronous
I/O on a periodic storage access task, the same set of experiments was
performed without the O_SYNC flag specified on file open.

In general, median write speeds are faster than when using syn-
chronous transfers, and distribution of results is flatter, however there
are some more extreme outliers present when using ext4 with stand-
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Figure 3.23: Standard and direct I/O speeds for periodic ext4 file system
synchronous reads and writes, at low, medium and high load,
and low and high priority



104 analysis of storage operations in embedded linux systems

R
ea

d 
T

im
e 

(m
s)

2

3

4

5

6

block−async−ll−pri0

block−async−ml−pri0

block−async−hl−pri0

block−async−ll−pri10

block−async−ml−pri10

block−async−hl−pri10

block−async_direct−ll−pri0

block−async_direct−ml−pri0

block−async_direct−hl−pri0

block−async_direct−ll−pri10

block−async_direct−ml−pri10

block−async_direct−hl−pri10

W
rit

e 
T

im
e 

(m
s)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

block−async−ll−pri0

block−async−ml−pri0

block−async−hl−pri0

block−async−ll−pri10

block−async−ml−pri10

block−async−hl−pri10

block−async_direct−ll−pri0

block−async_direct−ml−pri0

block−async_direct−hl−pri0

block−async_direct−ll−pri10

block−async_direct−ml−pri10

block−async_direct−hl−pri10

Figure 3.24: Standard and direct I/O speeds for periodic block device asyn-
chronous reads and writes, at low, medium and high load, and
low and high priority
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Figure 3.25: Standard and direct I/O speeds for periodic ext4 file system
asynchronous reads and writes, at low, medium and high load,
and low and high priority
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ard I/O, even when running at a high priority. For both reads and
writes, the distribution of direct I/O results is much flatter when using
asynchronous transfers. This is likely due to any extreme variations in
disk access time being absorbed in the time between tasks firing, as
the average response time for complete requests is still far below the
period.

3.7.5 Linux Raw Device Results

For completeness, and since raw devices are not officially considered
deprecated in the Linux kernel [120], block device experiments were
repeated using the same device bound to a /dev/raw/rawN virtual
device.

Observed raw device results for all run types are shown in Ap-
pendix E.3, and show some variation from block device results. Most
noticeably, writes are generally faster and less variable than block
devices, even when using direct I/O, however there are still some
significant outliers across the results, especially with read timings.
Results vary more between different priorities than block device res-
ults, even with a low system load, and some high priority read results
are slower than their low priority counterparts.

While these results could be an indication that raw devices can
provide a better interface than block devices in some circumstances,
they also may simply highlight a greater issue with the difficulty of
drawing coherent conclusions from a set of storage benchmarks. Given
that raw devices are supposedly interchangeable with using direct
I/O on block devices, and both operate using the same methods at
a low level within the kernel, any differences between results may
just reinforce the inherent variability and unpredictability of storage
access in a Linux system, and of storage devices themselves. Also
note that while raw devices are essentially direct I/O block devices at
their core, raw devices themselves can be opened using the O_DIRECT

flag, giving a further option for accessing storage that theoretically
has no practical meaning, reinforcing ideas that the Linux direct I/O
implementation can be problematic [118].

3.8 Low-level Storage Access Profiling

While the timing results presented as box plots in Section 3.7 give an
idea of the overall performance and variability of repeated storage
accesses, they do not break down each request into where time is
spent, whether in the application, within the kernel, or waiting for
hardware. To this end, the custom profiling timer component (detailed
in Section 3.6) was used to measure the low-level timings of various-
sized read and write requests to file systems and plain block devices,
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while enabling and disabling asynchronous transfer and direct I/O
flags.

Key functions were identified and coalesced into higher-level areas
of interest (such as kernel time, storage device time, and interrupt
delays), in order to create timings appropriate for averaging across
many runs, giving a suitable set of results from which to draw com-
parisons.

3.8.1 Individual Profiling Results

A number of profiling tests were used to observe the different patterns
of accessing storage through different means (using a file system or
low-level block device, with and without direct I/O) as well as the
variability between different runs of the same task. These tests were
also used to determine appropriate points of measurement for future
timing tests, where a reliable number of appearances was needed in
order to perform variability analysis over many sets of timing results.

One key observation from these experiments is the difficulty in
predicting the exact pattern of low-level storage access for a specific
request, where repeated runs can have varying numbers of physical
storage device accesses, and follow different paths through the kernel
based on decisions made by the file system and block layer. This
is especially a problem for file system accesses, where additional
information about a file may need reading to find its physical location,
or extra writes may be required to update journals or save evicted
areas of cache.

The read profiling results in Figure 3.26 show that for the small
transfers of 4 KiB and 8 KiB, the majority of timing across all runs is
spent processing and copying data in the kernel, rather than waiting
for the storage device itself. While some variability comes from the
storage device, most noticeably in a few outliers, the majority of timing
differences between runs is clearly in software, especially when using
ext4 rather than the plain block device.

One observation from both the ext4 and block device results is
how a 4 KiB read when not using direct I/O actually reads the same
amount of data from the storage device as a 8 KiB read, but only copies
the first 4 KiB into the application’s memory. This is due to the block
device layer prefetching the next block of data from storage into the
page cache, which can increase throughput if this data is required, but
wastes time if it is not, and is difficult to predict from an application
due to the process being entirely within the kernel. Direct I/O results
do not exhibit this behaviour, so is a desirable option when exact
storage access behaviour is required.

The write profiling results in Figure 3.27 show a more major differ-
ence between ext4 file system and plain NVMe block device accesses
than when reading, with ext4 accessing the storage device multiple
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Figure 3.26: Profiling results for 20 runs each of 4 KiB and 8 KiB reads, with
and without direct I/O, from ext4 (top) and NVMe block device
(bottom)
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Figure 3.27: Profiling results for 20 runs each of 4 KiB and 8 KiB writes, with
and without direct I/O, to ext4 (top) and NVMe block device
(bottom)
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times after the main data write, and taking overall far longer to return
to the application from the system call as a result. Even more so than
with reads, the majority of time is spent in software rather than wait-
ing for the storage device, however the software overhead does not
change significantly when doubling the transfer size.

These small transfer size observations are further reflected when
performing 40 KiB and 80 KiB transfers, as shown in Figures 3.28

and 3.29, including prefetching when not using direct I/O, and more
time waiting for software than hardware. One 40 KiB ext4 write result
demonstrates how unpredictable storage operations can be, clearly
showing a long, unrelated storage device access preventing the main
write from taking place, possibly triggered by the requested operation,
before the data is eventually written to disk.

A further significant difference made by using direct I/O can be
seen in block device writes, where storage requests are made for the
entire block of data in a single transfer, compared to the interleaving
of transfers and software processing shown in the requests without
direct I/O. While there is significant variation in the time taken for
direct I/O requests to be processed, they are consistently faster and
simpler than when not used.

3.8.2 Probability Density Functions

Figures 3.30 to 3.33 show probability density functions, calculated
using kernel density estimation, of the total read or write times from
the data presented in the profiling plots, but across 1,000 runs per
experiment instead of just 20. These plots can be used to visualise
variation in the transfer times, along with identifying patterns and
outliers.

Most of the experiments show clear peaks in timing probability,
corresponding to areas where the majority of runs are placed. Ad-
ditionally, in many cases the probability distribution function shows
multiple peaks, demonstrating that the timings of transfers are likely
to be clustered around specific values rather than spread evenly or
normally distributed, but usually still with an ordered precedence of
probability.

A number of experiments also show clear outliers in their results,
with the most extreme of these happening when not using direct I/O.
These are potentially due to low-probability interactions with other
tasks running on the system, such as caches being flushed, or the
storage device taking longer to respond to a specific instance of an
operation.
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Figure 3.28: Profiling results for 20 runs each of 40 KiB and 80 KiB reads,
with and without direct I/O, from ext4 (top) and NVMe block
device (bottom)



112 analysis of storage operations in embedded linux systems

Time (µs)

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400

Kernel time Waiting for hardware Waiting for interrupt handler

40 KiB write
O_DIRECT
O_SYNC

ext4

40 KiB write
O_SYNC

ext4

80 KiB write
O_DIRECT
O_SYNC

ext4

80 KiB write
O_SYNC

ext4

Time (µs)

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400

Kernel time Waiting for hardware Waiting for interrupt handler

40 KiB write
O_DIRECT
O_SYNC

Block
device

40 KiB write
O_SYNC

Block
device

80 KiB write
O_DIRECT
O_SYNC

Block
device

80 KiB write
O_SYNC

Block
device

Figure 3.29: Profiling results for 20 runs each of 40 KiB and 80 KiB writes,
with and without direct I/O, to ext4 (top) and NVMe block
device (bottom)



3.8 low-level storage access profiling 113

140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035

4 KiB read, O_DIRECT | O_SYNC, ext4

Time (µs)

140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035

4 KiB read, O_SYNC, ext4

Time (µs)

140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035

8 KiB read, O_DIRECT | O_SYNC, ext4

Time (µs)

140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035

8 KiB read, O_SYNC, ext4

Time (µs)

140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

4 KiB read, O_DIRECT | O_SYNC, Block device

Time (µs)

140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

4 KiB read, O_SYNC, Block device

Time (µs)

140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

8 KiB read, O_DIRECT | O_SYNC, Block device

Time (µs)

140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

8 KiB read, O_SYNC, Block device

Time (µs)

Figure 3.30: Probability density function of 4 KiB and 8 KiB read timings,
with and without direct I/O, from ext4 (top) and NVMe block
device (bottom)
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Figure 3.31: Probability density function of 4 KiB and 8 KiB write timings,
with and without direct I/O, to ext4 (top) and NVMe block
device (bottom)
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Figure 3.32: Probability density function of 40 KiB and 80 KiB read timings,
with and without direct I/O, from ext4 (top) and NVMe block
device (bottom)
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Figure 3.33: Probability density function of 40 KiB and 80 KiB write timings,
with and without direct I/O, to ext4 (top) and NVMe block
device (bottom)
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3.8.3 Average Profiling Results

Figure 3.34 shows mean timings across 10,000 40 KiB and 80 KiB reads,
allowing general trends to be confirmed. This highlights the efficiency
of using direct I/O, and the prefetching performed by standard I/O.
Producing a similar average plot of write results is infeasible, due to
the unpredictable pattern of storage accesses associated with writing
using standard I/O.

3.9 Simulated Real-world Benchmarks

In order to provide context for the synthetic benchmarking results
presented in this chapter, a number of simulated real-world bench-
marks were performed on the NVMe SSD using Filebench [127], an
open-source framework for file system and storage benchmarking.
Each benchmark was run both with and without direct I/O, to demon-
strate situations where it can improve performance, and those that
might suffer from avoiding the page cache.

3.9.1 Filebench

Filebench defines its benchmarks in terms of workloads, which emu-
late real-world usage patterns of an application. Each workload is
defined using ‘filesets’, ‘flowops’, ‘processes’ and ‘threads’. A full
description of how Filebench operates can be found in [127].

Filesets create a set of files in a directory structure for the bench-
mark to operate on, which can be partially or entirely allocated and
committed to disk before the benchmark runs. File distribution and
sizes often follow a tuned random distribution in order to emulate a
real system.

Flowops represent actions that can be performed on files within a
fileset, such as opening, reading, writing or appending data, as well
as actions that are not specifically file-related, such as emulating CPU
consumption or idling processes. These operations form the main
work of the benchmark, attempting to emulate the actions that may
be performed by the real-world application being simulated.

Processes and threads provide a mechanism of chaining operations
in a manner that emulates real-world application flows, with each
thread containing a list of flowops, and each process containing one
or more threads. Each process and thread can optionally have a set
amount of memory assigned to it, and can be replicated a number of
times.
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3.9.2 Direct I/O with Filebench

Filebench includes basic support for direct I/O with flowops that allow
it (for example, open, create, read, write and append), causing the
O_DIRECT flag to be passed with the open syscall. However, Direct I/O
transfers in Linux require additional considerations, such as ensuring
file accesses are aligned to the block or sector size of the underlying
storage device, as whole blocks are copied directly to or from the
memory space of the requesting application. The Filebench source
code includes minimal considerations to allow this when using a
512 byte block size device, rounding I/O buffer allocations for direct
I/O transactions up to the next multiple of 512 bytes, however this
value is hard-coded, and there is no mechanism for enforcing that all
random-sized file allocations and accesses are also aligned.

In order to allow the use of 4 KiB block size devices with direct
I/O, three changes were made to the Filebench source used in these
benchmarks. Firstly, the hard-coded memory alignment of 512 bytes
was increased to 4 KiB, which uses more memory for all direct I/O
allocations, but aligns correctly for both block sizes. Secondly, the
‘appendfilerand’ flowop was modified to round its appended data
size up to a 4 KiB unit, in order to ensure all files maintain a size
that is a multiple of 4 KiB. Thirdly, a new custom random variable,
‘cvar-gamma-aligned’, was created, which operates in the same way as
the commonly used gamma distribution, but rounds all output values
to a set alignment, which in this case can be 4 KiB.

Using a combination of these three modifications, along with the
workload adjustments detailed below, direct I/O benchmarks can be
performed successfully on all devices with a block size that aligns
to 4 KiB. The changes made to the Filebench source code, which was
subsequently used for the benchmarks in this thesis, is available at
[10].

3.9.3 Benchmark Workloads

A number of benchmark workloads were created, each with and
without direct I/O enabled, to cover a variety of real-world comput-
ing applications. Each workload is based on a standard predefined
benchmark personality included with the Filebench source (described
at [128]), with customisations to appropriately fit the benchmark to
the size of the SSD and memory of the systems under test, along with
modifications to allow direct I/O to be used, as detailed below.

Between each benchmark run, all files are cleared and the operat-
ing system issues a trim command to the SSD in order to start the
benchmark from a known state. Additionally, the system page cache is
synced and cleared between fileset creation and the benchmark being
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run, in order to avoid unfairly starting the benchmark with the most
recently created files still in the cache, as recommended by [127].

Specific workload definitions are included in Appendix C.3.

Web server (webserver)

The predefined webserver workload emulates a basic web server by
spawning a number of threads, each opening and reading an entire
file. Additionally, a small write is performed periodically as if to a log
file. File sizes follow a gamma distribution with a fairly small average
of 16 KiB.

The following changes were made to the predefined webserver work-
load:

• Increased nfiles from 1,000 to 600,000 to increase dataset size
to over 8 GiB (double the size of system memory on the server
platform)

• Reduced nthreads from 100 to 50 to reduce total memory foot-
print to under 1 GiB (size of system memory on the Zynq-7000

platform), as each thread is allocated 10 MiB
• Direct I/O workload adds ‘directio’ option to openfile, readwhole-

file and appendfilerand flowops

File server (fileserver)

The predefined fileserver workload emulates a simple file server, with a
number of threads acting as virtual users who read, write, append and
delete files, then perform a stat operation on a file. Files are relatively
small at 128 KiB each.

The following changes were made to the predefined fileserver work-
load:

• Increased nfiles from 10,000 to 80,000 to increase dataset size
to over 8 GiB (double the size of system memory on the server
platform)

• Direct I/O workload changes filesize random distribution from
cvar-gamma to cvar-gamma-aligned with an alignment of 4 KiB

• Direct I/O workload adds ‘directio’ option to openfile, createfile,
readwholefile, writewholefile and appendfilerand flowops

Mail server (varmail)

The predefined varmail workload emulates a traditional UNIX mail
server, using /var/mail and one file per message. Emails are an av-
erage of 16 KiB each, with files being created, written and read to
emulate the receipt and reading of messages.

The following changes were made to the predefined varmail work-
load:
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• Increased nfiles from 1,000 to 600,000 to increase dataset size
to over 8 GiB (double the size of system memory on the server
platform)

• Direct I/O workload changes filesize random distribution from
cvar-gamma to cvar-gamma-aligned with an alignment of 4 KiB

• Direct I/O workload adds ‘directio’ option to openfile, createfile,
readwholefile and appendfilerand flowops

Video server (videoserver)

The predefined videoserver workload emulates an application serving
video files to clients, with two filesets – one with passive videos that
are slowly removed and replaced, and one with active videos that are
being ‘streamed’ to clients. Files are much larger than other workloads,
at 10 GiB each.

The following changes were made to the predefined videoserver
workload:

• Reduced numactivevids from 32 to 8 and numpassivevids from 194

to 28 to fit the dataset onto the SSD
• Direct I/O workload adds ‘directio’ option to createfile, read and

writewholefile flowops

Network file server (netsfs)

The predefined netsfs workload emulates a network file server, similar
to the fileserver workload but with a different distribution of file sizes
and accesses.

The following changes were made to the predefined netsfs workload:

• Increased nfiles from 100,000 to 400,000 to increase dataset size
to over 8 GiB (double the size of system memory on the server
platform)

• Direct I/O workload increases ‘round’ option of wrtiosize, rdiosize
and filesize variable random distributions from ‘1k’ to ‘4k’

• Direct I/O workload increases ‘min’ option of wrtiosize and
filesize variable random distributions from ‘1k’ to ‘4k’

• Direct I/O workload adds ‘directio’ option to openfile, readwhole-
file and appendfilerand flowops

Web proxy (webproxy)

The predefined webproxy workload emulates a basic web proxy server,
creating and writing small files, opening and reading files, and delet-
ing files, while occasionally appending to a log.

The following changes were made to the predefined webproxy work-
load:
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Table 3.1: Simulated real-world benchmark results on the server platform

I/O throughput (MiB/s) Average op latency (ms)

Benchmark Standard Direct I/O Standard Direct I/O

webserver 296.2 535.9 0.814 0.551

fileserver 337.9 984.4 3.375 1.239

varmail 80.5 108.2 0.708 0.657

videoserver 343.3 519.7 2.259 2.51

netsfs 2.7 3.4 0.014 0.091

webproxy 121.4 206.9 1.673 1.177

oltp 36.1 85.7 4.729 8.759

• Increased nfiles from 10,000 to 600,000 to increase dataset size
to over 8 GiB (double the size of system memory on the server
platform)

• Direct I/O workload adds ‘directio’ option to openfile, createfile,
readwholefile and appendfilerand flowops

Online transaction processing database (oltp)

The predefined oltp workload emulates an Online Transaction Pro-
cessing (OLTP) database, based on the Oracle9i I/O model. It spawns
threads that perform many small, asynchronous random reads and
writes, as well as performing larger synchronous writes to a log file.

The following changes were made to the predefined oltp workload:

• Increased nfiles from 10 to 1,000 to increase dataset size to over
8 GiB (double the size of system memory on the server platform)

• Removed ‘useism’ shared memory option from thread defini-
tions as it causes issues with Filebench on this system

• Direct I/O workload increases iosize from ‘2k’ to ‘4k’ to align it
with SSD blocks

• Direct I/O workload sets directio option to ‘1’, enabling it on read
and aiowrite flowops

3.9.4 Results

The above workloads were run for 1 hour each on an ext4 file system
created on the Intel SSD 750 Series 400 GB NVMe block device used
previously for synthetic benchmark experiments. Results were collec-
ted for both the server and Zynq-7000 platforms (see Appendices B.1
and B.2 for details).

Tables 3.1 and 3.2 show benchmark results for the server and Zynq-
7000 platforms respectively, with ‘I/O throughput’ showing the over-
all data throughput of all I/O flowops across the entire benchmark
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Table 3.2: Simulated real-world benchmark results on the Zynq-7000 platform

I/O throughput (MiB/s) Average op latency (ms)

Benchmark Standard Direct I/O Standard Direct I/O

webserver 32.8 16.8 3.994 15.666

fileserver 47.8 77.7 15.34 7.945

varmail 13.4 12.1 4.055 5.083

videoserver 124.1 195.3 8.241 4.981

netsfs 2.7 3.4 0.076 0.225

webproxy 9.2 7.3 32.111 27.255

oltp 3.3 5.7 1.333 14.576

runtime, and ‘average op latency’ showing the mean latency of flo-
wops in the benchmark. Full outputs from the Filebench benchmarks,
including per-operation breakdown of speeds and latencies, can be
found in Appendices D.3 and D.4.

While total throughput varies greatly with the nature of the bench-
marks, the server platform shows consistently higher speeds when
using direct I/O transfers. Despite this, in three of the seven bench-
marks standard I/O has a lower average operation latency, suggesting
that access times can be improved by using the page cache in certain
applications.

Throughput results on the Zynq-7000 platform are more mixed,
with only four of the seven benchmarks showing higher performance
when using direct I/O. These benchmarks are generally those that
have larger block sizes or large sequential transfers, such as videoserver,
which has the highest throughput by a large margin. The Zynq-7000

platform results also show consistently slower speeds and higher
latencies than the server results, which is expected due to its slower
CPU and smaller memory size.

Throughput of the netsfs benchmark is a special case as the overall
potential I/O bandwidth is artificially limited by the event generation
rate, leading to identical speeds between the two platforms as they
both reach this limit. Additionally. the difference between standard
and direct I/O benchmark throughput in this case is simply caused by
the fact that direct I/O has a larger minimum block size, causing more
data to be actually read into the application rather than disappearing
unused into the page cache.

For both platforms, comparison with synthetic benchmark results
suggest that higher I/O speeds may be possible in ideal circumstances,
with sequential transfers of very large block sizes, but overall this
confirms these results contribute to the idea that direct I/O can be a
valuable way to improve storage performance for a range of systems
and applications.
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3.10 Discussion and Future Work

The results presented in Sections 3.4 and 3.5 show that when CPU
resources are sufficiently constrained, there are clear bottlenecks in
storage operations in Linux, besides the access times of storage devices
themselves. In order to utilise the full potential of high-speed storage
devices in an embedded Linux environment, and to avoid their use
degrading the operation of other tasks running in the system, changes
must be made to the storage stack to optimise how they are accessed.
Additionally, the results presented in Sections 3.7 and 3.8 show that
predictability of timing and patterns of access to storage hardware
vary greatly between file systems, VFS function flags, and various
sizes of request.

3.10.1 Alternative Operating Systems

There are several potential solutions to the problems covered, ranging
from optimisations in existing software implementations to more
radical system architecture changes. While one solution could be to
avoid Linux entirely if efficient and highly predictable access to storage
is required, instead opting to use a dedicated real-time operating
system instead, such as FreeRTOS [129] or RTEMS [130], this is not
feasible in all scenarios. Linux offers a number of benefits over many
operating systems, such as a large software and support base, and
support for many hardware architectures and devices.

3.10.2 Potential File System and VFS Changes

It may be possible to reduce storage overheads through restructuring
the storage stack in Linux to better optimise it for high-speed stor-
age with lower CPU usage. Results from profiling may be used to
identify the areas of the storage stack that are performing particularly
inefficiently, or that are simply unnecessary for the required tasks,
however such optimisations would potentially require large changes
to the structure of the Linux kernel.

Results show that using direct I/O can give a major boost to per-
formance, especially when a storage device is sufficiently fast to take
advantage of this, but only if block sizes are above a reasonable
threshold for disk access operations as speeds are severely reduced
when block sizes are small.

Given its potential benefits, a reimplemented direct I/O-type system
could operate with the benefits of direct I/O for large block sizes,
but attempt to efficiently buffer storage device accesses when block
sizes are below a practical limit. This approach may be impractical
however, due to the definition of large and small block sizes being
very dependent on a specific system set-up, and using any generic
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values would cause the same issues as the current general-purpose
storage solutions.

Standardising direct I/O so its operation can be guaranteed across
file systems and kernel versions would also allow its usage to be more
widely accepted, however this is unlikely to ever happen, both due to
the potential number of fundamental changes required across many
layers of the kernel, and due to the high likelihood of resistance from
kernel maintainers.

3.10.3 Block Device Alternatives

A number of alternatives or changes to the Linux block layer could
improve performance and predictability for the system examined in
this chapter. For example, a BSD-like approach of removing cached
block devices entirely would solve any problems caused by buffering
data in the block layer, but this would also likely never be accepted
into the Linux kernel, especially as it is already possible to create raw
devices, albeit as second-class device nodes.

Other alternatives to the block layer include bypassing the kernel
entirely, and controlling storage devices from a user-space library.
Examples of this include the Micron UNVMe driver [131] and In-
tel SPDK [132], both of which mainly target low-overhead access to
data-centre storage, but similar principles could be applied to embed-
ded systems. While this method removes many layers of overheads
from the kernel, it does also add extra complexity into user-space
applications, and raises issues of security and resource sharing as
the privileged kernel layer is no longer in full control of the storage.
These user-space libraries also require an element of kernel support,
although this can be from more generic drivers for accessing hardware
device buses and memory spaces. Resource usage can also be higher,
especially with slower devices, due to the need to actively poll for the
completion of storage requests rather than using kernel-level interrupt
routines.

An additional option would be to access storage using a kernel
driver that continues to present storage through the standard VFS,
but as a character device instead of a block device, thus avoiding any
block-layer overheads on the data path. This approach is examined
further in Chapter 4, with the development of a Linux character device
for efficient and predictable storage access.

3.10.4 Hardware Acceleration

A further possible method of relieving CPU load during storage
operations would be to introduce hardware acceleration into a system,
in order to perform some of the tasks associated with the software
storage stack in hardware instead. These accelerators could range from
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simple direct memory access (DMA) units, used to perform expensive
memory copy operations without taking up CPU time, or more-
complex file-system-aware accelerators that access the storage device
directly, effectively shifting the hardware/software divide further up
the storage stack.

Introducing hardware that can access storage independently of the
CPU may give an advantage for applications that use large streams
of data, as more than just the storage device can be attached to the
hardware. For example, a hardware accelerator could directly receive
data from a hardware video encoder and write it straight to a file
on persistent storage, with little CPU intervention and no buffering
required in main system memory.

A hardware-accelerated storage approach is investigated further in
Chapter 4, with the aim of mapping storage directly into the system
memory map, and abstracting the loading and storing of low-level
storage blocks away from software, into an accelerator core on an
FPGA.

3.10.5 Future Analysis Work

As with any problem analysis work, there is always potential for
much deeper investigation into the operation of storage devices in
an embedded Linux environment, in order to fully understand the
bottlenecks involved across a greater number of platforms and use-
cases.

While the results presented in this chapter highlight some examples
of circumstances where storage speeds are heavily influenced by areas
other than storage devices themselves, they focus on relatively simple
tests compared to the full range of potential applications that rely on
accessing storage in Linux. Further experimentation would be required
with benchmarks based on a great number of real-world usage pat-
terns in order to fully gauge the scope of the issues highlighted here,
however the results presented, and the tools and methods provided,
give a solid foundation for any future work in the area.

As well as experimental work on existing implementations, practical
work to test the feasibility of the solutions suggested above is necessary
in order to properly improve on the current situation, and provide
further points for analysis. A number of these solutions are explored
in Chapter 4, drawing on the results in this chapter to provide a model
of storage, identifying areas that have issues and may be improved,
and giving a base on which to test implementations.

3.11 Conclusion

The analysis presented in this chapter highlights a number of prob-
lems with the current implementation of the Linux storage model
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when applied to embedded systems with fast storage, stemming from
the high levels of complexity shown in Section 3.3, providing a level of
motivation and justification for further investigation and an argument
for improvements to be made in this area. The results from exper-
iments in Sections 3.4 and 3.5 show that while CPU-based storage
bottlenecks are most visible on constrained embedded systems, im-
provements may also be necessary for more-capable systems to take
advantage of increasingly-fast storage devices, especially when high
CPU load and energy usage is a concern.

Timing and profiling results presented in Sections 3.7 and 3.8 show a
large variability in storage access times, which can be largely attributed
to software when using solid state storage in a resource-constrained
system. While using direct I/O and raw devices can reduce software
overheads, there are still fundamental decisions within the stand-
ard Linux storage stack that cause inefficiencies and make low-level
storage access patterns hard to predict.

Section 3.6 additionally presents details of a custom profiling hard-
ware component for FPGA-based systems, along with included user-
and kernel-space support libraries. This component allows for the
measurement of software and hardware triggers with high accuracy
and low overheads, facilitating the collection of results for this, and
future, work.

The results and analysis shown in this chapter directly motivate
and inform the further research on alternative methods of modelling
and accessing high-speed storage for more efficient and predictable
operation on embedded platforms, described in Chapter 4, as well as
developing ideas for future work detailed in Chapter 5.
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4
Alternative Storage Interfaces for
Embedded Linux Systems

While previous chapters have focussed on the analysis of current stor-
age access methods for real-time embedded systems, particularly with
a focus on embedded Linux, this chapter proposes and examines a
number of alternative interfaces for increasing both predictability and
efficiency. These include bypassing the current file system, VFS and
block layer of the Linux kernel entirely, instead creating a more direct
path to storage, with varying levels of kernel, software and hardware
involvement.

4.1 Introduction

In modern real-time embedded systems, the demand for access to large
amounts of persistent data is increasing, for example, for the storage
of modifiable data to prevent loss due to low power or malfunction,
or when the size of data exceeds that of main system memory. This
is supported by solid-state storage devices (for example, SSDs) that
offer improved speed, predictability, reliability, space efficiency and
energy efficiency compared to traditional mechanical storage media
(such as hard disk drives). However, a key challenge for operating
systems is to provide efficient and predictable access to persistent
storage. The usual approach is to provide file system abstractions,
with complex and inefficient supporting software within the operating
system. While support for file systems in real-time operating systems
such as FreeRTOS [129] and RTEMS [130] is improving, for embedded
Linux, provision of predictable, efficient access to storage remains an
open issue, despite improvements to Linux for real-time use [133].
This chapter firstly provides and evaluates the CharIO storage device
driver, which bypasses the file system and the Linux block layer to
provide increased timing predictability and improvements in perform-
ance. Following this, a user-space NVMe storage driver for embedded
systems is presented, which has been ported from existing work target-
ing non-embedded platforms, Finally, an NVMe driver for a dedicated

129
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MicroBlaze-based storage coprocessor is demonstrated, which allows
low-level storage operations to be carried out by dedicated hardware
instead of the main CPU.

In the majority of computer systems, persistent storage is accessed
via a file system and the block device layer of the operating system,
which maps a file name into a list of blocks on disk that are transferred
to and from main memory. While this approach offers the benefit of
abstraction over the storage, it is relatively complex and inefficient
as it provides many additional services (for example, checking data
integrity, enforcing file permissions and disk space quotas, file sharing
between processes, and file caching), as well as a non-specific interface
to many different storage device types [75, 80]. Elements of this ineffi-
ciency and lack of predictability are explored previously in Chapters 2

and 3, motivating the need to investigate alternatives.
For real-time embedded systems, timing predictability is a core

requirement, in order to guarantee all necessary deadlines in a system
can be met, as well as having sufficient performance to meet these
deadlines [134]. As demonstrated in Chapter 3, the standard Linux
storage stack provision does not lead to sufficiently predictable storage
access. A number of new approaches are therefore proposed, which
remove the complexity of the file system and block layer to provide
applications with fast, predictable access to persistent storage. Ideas
centre around bypassing the file system and block layer entirely,
thus removing a number of obstacles to loading and storing data,
such as caching, block operation scheduling, and the resolution of
files, albeit at the expense of conveniences such as a kernel-level file
hierarchy and system-wide data caching. A further extension is to
support physical memory addressing for storage commands from
user applications, bypassing additional levels of the Linux kernel,
such as virtual memory and cache management, and allowing the
direct transfer of stored data from addressable areas outside of main
memory, which may be useful in an embedded system. A potential
management interface is also proposed, using a simple user-space
file system, which can be used to load data for a specific task into a
storage buffer with minimal reliance on the operating system. The
idea of moving a greater amount of the storage stack into hardware
is also explored, replacing software routines running in or on top of
the main operating system with auxiliary processors and hardware
alternatives.

The remainder of the chapter is structured as follows. Section 4.2
introduces appropriate background and related work. Section 4.3
describes the CharIO storage interface, which is evaluated alongside
other storage access methods in Section 4.4. Section 4.5 proposes a
user-space alternative to CharIO, drawing on work from a wider open
source project. This then contributes to a MicroBlaze storage driver
presented in Section 4.7, which could be used as a storage coprocessor
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alongside a master CPU. Finally, conclusions and ideas for future work
are offered in Section 4.8.

4.2 Background and Related Work

In recent years, the evolution of persistent storage devices has out-
paced improvements in CPU speeds, leading to ever-increasing pres-
sure for efficiency in the way operating systems handle storage.
Whereas a typical hard-disk drive might leave software routines re-
sponsible for less than 1% of the latency and energy usage of storage
operations, this can increase to around 20% of latency and over 75%
of energy usage for solid-state storage devices, and even higher when
considering future non-volatile memory technologies [12]. This diver-
gence of hardware and software performance is even more apparent
in embedded systems, whose limited power and processing resources
throttle software even further.

A large amount of this energy usage and latency can be caused by
the file system, with modern file systems becoming ever more complex
in pursuit of high-level user features that may not be appropriate for
some systems [80]. These systems include those where efficiency is
particularly important, such as the embedded domain. This complex-
ity can also cause issues with timing consistency and predictability,
especially when the range of configuration options is so large [135],
and when pairings between file systems and storage device types can
have an extreme effect on how well each performs [136]. Alongside
suggestions to reduce the ‘obesity’ of file systems by tailoring them
to be more appropriate to the systems they serve [75], more-extreme
suggestions for improving storage performance include replacing op-
erating system support with a more efficient in-memory user-space
file system [137], or offloading file system functionality entirely into a
custom hardware accelerator core [101].

Accessing storage in Linux, and in most other operating systems,
involves several interacting layers of software, as shown in Figure 4.1.
Storage interfaces designed specifically for accessing high-speed solid-
state storage, such as NVMe, can offer efficiency improvements over
older options such as AHCI or PATA, but overall performance and
predictability is still limited by the rest of the storage stack. Storage
hardware will also perform its own operations on top of the software
stack, which are largely beyond the control of the operating system.
The limited control over the internal operation of storage hardware
is beginning to be addressed, with projects such as LightNVM (the
Linux Open-Channel SSD subsystem) [138] giving more control to
software applications and drivers, and allowing for more predictable
access latencies.

The interactions between these layers can be hard to predict, as they
are designed for fast best-case performance, rather than predictability
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Figure 4.1: Storage access layers in Linux

or simplicity. For example, the number of times that a single-block
read from an open ext4 file actually accesses the storage device is
variable: it could be once if the physical block is known, twice if extent
information has to be looked up first, or not at all if the block is already
cached by the operating system. Profiling results from Section 3.8 show
that the situation is even more unpredictable when writing to storage
devices, even when not using a file system. Additionally, control may
potentially be returned to the user application at any time before the
transfer is complete, if the storage request is processed asynchronously.
Linux provides a number of ways to simplify the layers between an
application and storage, such as ‘direct I/O’ and raw devices, both
of which bypass the kernel page cache, and opening block devices
directly with no file system. The effectiveness of these methods is
ultimately limited, however, due to their reliance on the kernel’s block
layer and associated scheduler, as well as the fundamental principles
of accessing files in Linux, as demonstrated in Chapter 3.

4.3 The CharIO Storage Interface

To investigate a simpler interface to storage from Linux that bypasses
file systems and the block layer, a driver was created that presents
the flat storage space of an NVMe SSD to user-space applications as a
basic, optimised character device, rather than a standard block device
and file system. Using a character device has the advantage of con-
forming to the standard UNIX model of device nodes being accessible
through the VFS, while removing complex block layer features such
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Figure 4.2: Storage access layers using CharIO driver

as the I/O scheduler, request queueing mechanisms, page cache, and
asynchronous requests. This therefore has the potential to improve
the efficiency and predictability of storage operations, as there is less
software complexity between an application and a storage device,
and the driver can be tuned to work in a more optimal manner for
real-time embedded systems.

Full source code for the CharIO Linux kernel module, accompanying
user-space library, and associated benchmarks and tests is available
at [6, 7].

4.3.1 High-level Overview

At a high level, the CharIO kernel module acts as a wrapper around a
modified version of the standard Linux NVMe device driver, creating
a /dev/chardiskX character device node1 instead of a /dev/nvmeXnY

block device node2 when an SSD is attached. This device node can then
be accessed from user-space applications, supporting the standard
open, close, read, write and seek system calls, and translating these
into commands sent directly to the underlying storage device. This is
shown in contrast to the standard Linux storage stack in Figure 4.2,
with the key differences (other than lack of explicit file system) being
the removal of the block layer and I/O scheduler by using a character
device instead of a block device in the VFS, and the unification of the
file interface and hardware device interfaces into a single module.

1 Where X is the number of the device.
2 Where X is the number of the device, and Y is the number of the NVMe namespace.
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For efficiency during a read or write, all data is directly transferred
by the storage hardware to or from buffers within the user-space
application, similar to how direct I/O transfers operate in the standard
block storage model. This means that data is not additionally copied
into a kernel-level buffer, saving both the CPU time that would be
used for the copy operation, and the memory overhead of requiring a
second instance of the same data. Removal of the intermediate buffer
does add the requirement that data to transfer must be aligned to
the block structure of the underlying storage device, however. For
example, if an SSD uses a 4 KiB block size for storage, the size of the
data to transfer must be a multiple of 4 KiB, and the data must be
aligned to a 4 KiB address in memory.

In order to maintain as much control over the storage operation as
possible, each transfer is completed both atomically and sequentially
within the kernel, with system calls blocking while data is transferred,
and control only being returned to the calling application after com-
pletion. This control flow helps to keep the accountability of storage
operations under the task that initiated the request, a property that
is essential for real-time applications, as operations cannot then be
completed asynchronously at an arbitrary later time and potentially
cause interference to other tasks.

While improving predictability and accountability for individual
storage operations, the lack of asynchronous transfers in CharIO is
a trade-off that has the potential to be detrimental to the overall I/O
performance of a system. This is due to the rest of the preemptive
multitasking operating system working in a largely asynchronous
manner, using kernel buffers and task-switching to utilise CPU time
and memory bandwidth more effectively. CharIO’s synchronous hand-
ling of I/O is necessary to provide the guarantee that data has been
fully transferred before the return of a read or write system call,
but leads to applications being blocked when they could potentially
continue to run while data is copied in the background. It may be
possible to create a compromise between these two approaches, al-
lowing a CharIO application to optionally specify asynchronous I/O,
and creating separate synchronisation points at which applications
will block until transfers are complete, however this is not currently
implemented.

4.3.2 Kernel Module Structure

Figure 4.3 shows an overview of the kernel module structure, with
the various paths from a user-space application down to the NVMe
SSD hardware. The main content of the module’s source code is split
across two C files. The first, chario.c, contains the main interfaces
for the module, including its initialisation and exit routines, sysfs
attributes used for triggering internal tests, and the main storage
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character device endpoints that are accessible through the VFS. The
second, nvme-core.c, is a modified version of the core NVMe driver
from Linux kernel v4.1.15, with additional functions added to support
CharIO operations, as well as changes to the ways in which memory
is allocated, and commands are created and submitted.

On module initialisation, the driver creates a character device in
/dev/ to act as the main interface to the storage device, as well as set-
ting up the hardware via calls into the NVMe driver. The initialisation
of the NVMe driver is almost identical to the standard kernel driver,
other than not creating storage block devices or the device controller
character device. In addition to the CharIO character device, an attrib-
ute item is created in /sys/chario/ to allow for an alternative method of
accessing internal driver information and triggering kernel-level tests
for debugging.

After initialisation, storage can be accessed through the character
device as if it was a single, fixed, flat file with the full size of the un-
derlying SSD, however I/O operations must be rounded and aligned
to the physical block size of the device (for example, 4 KiB).

4.3.3 Accessing Storage

Storage is accessed through the /dev/chardiskX character device,
using the following standard Linux VFS system calls, typically via
standard library wrapper functions in an application.

open/close system calls

File open and close functionality is currently handled entirely by
the VFS, with the CharIO driver registering file operations on open
and release (called at the last close of a file) purely for informational
purposes or future use.

read/write system calls

When a read is initiated on /dev/chardiskX from a user-space ap-
plication, control is passed through the VFS to the CharIO driver,
which then creates and sends requests on to the NVMe driver layer
for processing.

The first task performed by the read function is to split the transfer
into 4 MiB units, in order to remain compatible with existing NVMe
and kernel DMA functions used at lower levels. These transfers are
then processed one by one, beginning with the creation of a structure
describing the operation, detailing the command, the number of device
blocks to transfer, the starting block number, and the virtual address
of data in memory. This structure is then passed to the NVMe layer,
which performs the rest of the transfer.
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The NVMe driver layer first sets up the calling application’s data
memory for a DMA transfer by the SSD controller, by pinning the
necessary pages so they will remain available throughout the trans-
fer, translating virtual memory addresses to physical addresses, and
flushing or invalidating cache lines for the memory area. The transfer
is then broken down further into smaller data units based on the
maximum request size of the hardware device (for example, this is 32

blocks or 128 KiB on the Intel SSD 750 [16]). For each of these smaller
units in turn, an NVMe device command structure is created, which
is then submitted to the primary I/O queue of the storage device
by copying it to a predesignated area of memory and notifying the
device of its presence. The driver takes advantage of the hardware
command queues present on the storage device, sending each new
command immediately after the last, rather than waiting for it to
complete first. This reduces the time spent waiting for the device, as
further commands can be initialised while data is being transferred,
while also eliminating the need for software queues in the kernel.

The completion of each command is indicated by an interrupt from
the storage device, which is forwarded through the PCIe driver to the
CharIO NVMe layer. Once all commands have been serviced and all
data has been transferred, or if an error has occurred, control is passed
back up through the driver layers to the application that originally
made the system call, cleaning up any resources and releasing DMA
memory pages along the way.

Writing data to the storage device operates essentially the same as
reading, just with a different opcode passed in the NVMe command,
and the storage device controller performing DMA in the opposite
direction.

lseek system call

Seeking the device works the same as it would for any file or block
device, changing the file pointer of the currently opened device in-
stance to the specified offset, but with the caveat that the seek offset
must be aligned to the underlying block size of the storage device,
similar to reads and writes.

ioctl system call

As well as supporting any standard Linux character device ioctl
calls, two additional calls are defined – CHARIO_IOCTL_READ_PHYS and
CHARIO_IOCTL_WRITE_PHYS – allowing I/O transactions to be carried
out on physical instead of virtual memory addresses in the system,
which is potentially useful in an embedded environment, as described
below.



138 alternative storage interfaces for embedded linux systems

4.3.4 Addressing Physical Memory

As well as standard file read and write operations between the CharIO
character device and a buffer within an application, the driver supports
transferring data directly between an NVMe SSD and any arbitrary
physical memory address that is accessible to the device. This address
may be outside of the main system memory managed by the Linux
kernel, allowing for dedicated memory areas to be used as storage
buffers without the overheads of Linux memory management for every
transfer. In contrast, the standard Linux VFS read and write functions
operate using the virtual address space of the calling process, and do
not allow any I/O operations that bypass the page cache to access
addresses that are mapped outside of paged system memory.

In order to accept physically-addressed transfers, the CharIO device
node uses custom ioctl read and write commands that relay the address
and the transfer size to the kernel driver. The same character device
is opened and used as with all other CharIO operations, and the
standard seek functions are used to specify the starting block for the
transfer on the storage device.

Using the physical addressing mode means the kernel does not set
up or manage page mappings or cache lines for the memory region
being accessed, which can save significant processor time within the
lower levels of the kernel driver. This mechanism can also be used
to directly transfer data from physical addresses of other devices in
the system, such as a network controller, sensor interface, or shared
scratchpad memory, entirely avoiding copying data through main
memory for these operations.

While the overall CharIO kernel module is capable of running on a
variety of system architectures, physically-addressed transfers intro-
duce the restriction that PCIe-attached storage is on a cache-coherent
interconnect with the CPU, in order to maintain data consistency.
This may only be available in certain embedded systems, for example
using the Accelerator Coherency Port (ACP) interface on certain Arm
processors, such as that on the Zynq-7000 SoC. The storage device
must also have a direct view of the memory being used, which in
some systems could require setting up an IOMMU, or other memory
protection or translation unit, to allow this. One method of then map-
ping this external memory into Linux to be available to applications is
using the Userspace I/O (UIO) driver, which allows physical memory
regions to be defined for access through memory-mapped I/O on a
device file.

Allowing applications to specify arbitrary physical addresses for
data transfers clearly exposes potential security and safety risks for
a system, as any areas of memory could be stored onto the SSD, and
data from the SSD could be (accidentally or intentionally) forcibly
written to any area of memory. While in an embedded system this
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trade-off could be acceptable, as the software and hardware is likely to
be more tightly controlled than in a general-purpose computer system,
it could still be an issue if left unchecked. Potential solutions to this
could be limiting the ranges of allowed physical addresses within the
kernel driver (effectively how memory is managed in a general block
device), potentially with a more secure interface to configure this,
or placing hardware on the memory bus of the PCIe storage device,
such as an IOMMU or a simple address validator, to limit its access to
memory.

4.3.5 Potential Driver Enhancements

While a general proof-of-concept implementation of the CharIO driver
is complete, there are areas that could potentially be improved in order
to provide further efficiency gains, particularly regarding memory
set-up and management. For example, for every read or write call to
the module, the user-space pages of memory containing the buffer
for the transfer, along with the area of kernel memory containing the
NVMe command structure, are freshly set up for DMA. However,
as the module has full control over memory allocations, it would be
feasible to set up static DMA regions ahead of time and re-use them
across requests, further reducing the amount of unpredictable activity
involved in I/O operations. Modifications like this would, however,
reduce the flexibility of individual transfer buffer locations, and cause
a small amount more memory to be held active while the driver is
loaded, in addition to further departures from the standard Linux
kernel methods of handling memory.

4.3.6 User-space Library

In addition to accessing storage devices through CharIO directly using
a /dev/chardiskX device node, a simple user-space, file system-like
library has been developed, allowing a more-structured approach to
accessing storage. To maintain the ideals of simplicity, efficiency and
predictability from the CharIO kernel module, the library supports
associating contiguous areas of storage with basic file identifiers,
which can then be loaded, unloaded, or flushed to disk as required.

Internally, the library supports either standard read and write sys-
tem calls for accessing the character device node, or specifying a
physical memory address to use as a buffer location with the CharIO
ioctl commands. This allows for buffers outside of kernel-managed
memory to be used, such as sections of unmapped DDR RAM, or
specialised high-speed or predicable buffers.

While using the CharIO character device as a flat file through the
Linux VFS does not differ significantly from any other storage device,
the user-space library offers a more convenient initial method of
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providing some structure to the storage, while more sophisticated
functionality could then be built on top of this base.

4.4 Evaluation of CharIO

To evaluate the CharIO driver, an experimental platform was set-up
around an Avnet Zynq Mini-ITX development board [43]. This contains
a Xilinx Zynq-7000 system-on-chip with 1 GiB of DDR3 SDRAM.
The Zynq contains a dual-core 800 MHz Arm Cortex-A9 CPU [41],
connected to an FPGA-based PCIe interface via the Zynq’s Accelerator
Coherency Port, with the PCIe connected to an NVMe SSD (Intel SSD
750 [16]). The Linux kernel is deployed on the Arm cores – specifically
version 4.1.15-rt17, with PREEMPT_RT real-time patches [139] applied.
A detailed specification of the experimental platform, including a
diagram of system components and connectivity, can be found in
Appendix B.2, and is the same base embedded platform used for
analysis work in Chapter 3.

The custom profiling timer component described in Section 3.6,
allowing high-accuracy, unobtrusive timing of events from the FPGA
logic, was used to measure software and hardware execution times
during CharIO’s operation. The profiling timer ‘tags’ an event when
software issues a write to a register in the peripheral, or when a
specific hardware interrupt occurs, recording the time that the event
happened. The only interference when collecting timing information
is two 32-bit register writes to the core for each event tag. Events
can then be read back from an FPGA buffer after the experiment is
complete, ensuring measurements can be achieved consistently and
without interruption (unlike with software timing functions). Kernel
modifications allow events to be timed within kernel code, with these
profiling points dynamically controlled through system calls.

4.4.1 Profiling CharIO Operations

A series of experiments were performed to examine how the low-
level implementations of existing file systems and the block layer
perform in the Linux kernel, and how this compares to the simpler
alternative of CharIO. To measure this, simple periodic file read and
write operations were performed from user-space, in a process set up
with a real-time priority on an idle system. During the tests, the timing
of key points in the data transfer was measured using the profiling
timer component.

CharIO was tested against an ext4 file system (set-up using default
parameters), as well as the block device created by the standard NVMe
driver for the SSD. The ext4 and NVMe block device transfers were
run using the O_SYNC flag set (ensuring the write operation blocks
until data has been physically written to underlying hardware), and
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both with and without the O_DIRECT flag set (enabling and disabling
‘direct I/O’ transfers). CharIO was tested both as a standard character
device, and in its physically-addressed mode. Physically-addressed
transfers were configured to use a buffer in the same physical DDR
memory as Linux, but outside of the Linux system’s virtual memory
space, whose size was artificially limited using the device tree.

The results displayed in Figure 4.4 show the mean times across
10,000 experimental runs, taken when performing sequential read
operations with transfer sizes of 40 KiB and 80 KiB. Timing measure-
ments are plotted for when: the system call is entered (‘read’ or ‘ioctl’),
the I/O command is submitted to the SSD (‘nvme_submit_iod-rd’ or
‘chario-cmd-submitted’), the hardware interrupt is triggered (‘inter-
rupt’), the kernel begins handling the interrupt, and the user-space
application is resumed (‘userspace’). The results for ext4 and block
device transfers are the same as those from Figure 3.34 in Section 3.8,
which are now additionally compared to CharIO.

The results show that CharIO spends less time performing compu-
tation in the kernel than ext4 or the block device, both before and after
data is transferred. Overall transfer speeds remain relatively similar
to direct I/O, and total latency is slightly improved against the other
methods on the larger transfer. For all CharIO results, time is shifted
more into an increased response period from the SSD, which may be
due to the driver, such as how it submits commands, or simply due
to external factors, such as memory or storage response time fluctu-
ations. A shift of processing time from software to hardware can still
be beneficial however, as it suggests a lower overall CPU utilisation.
There is a further significant reduction measured in software time
when using the physical addressing mode, due to the lack of kernel-
level memory management required both before and after the transfer.
This suggests that simplifying storage operations further through re-
ducing the memory management overhead of transfers is potentially
a very positive direction for development when considering software
efficiency.

In addition to performing less work in the kernel, CharIO is far
more predictable in how it interacts with the storage device compared
to ext4 or the NVMe block device node. The CharIO driver produces a
consistent, calculable number of device operations for every high-level
command, based solely on the number of blocks read or written. In
contrast, for large transfer sizes, the number of low-level commands
involved in completing an ext4 or block device operation can be ex-
tremely unpredictable, even when using direct I/O. Figures 4.5 and 4.6
show the distribution of the number of PCIe interrupts (analogous
to the total number of device operations) counted using the profiling
timer hardware across 1,000 read and write operations of 512 MiB
each, for block device, ext4, and CharIO. While reading, the num-
ber of interrupts does not vary greatly, with the highest range being



142 alternative storage interfaces for embedded linux systems

T
im

e
 (µ

s
)

0
2
0

6
0

1
0
0

1
4
0

1
8
0

2
2
0

2
6
0

3
0
0

3
4
0

3
8
0

4
2
0

4
6
0

5
0
0

5
4
0

5
8
0

6
2
0

6
6
0

7
0
0

7
4
0

7
8
0

8
2
0

8
6
0

9
0
0

9
4
0

9
8
0

1
0
2
0

io
c
tlc

h
a

rio
−

c
m

d
−

s
u

b
m

itte
d

in
te

rru
p

t
u

s
e

rs
p

a
c
e

re
a

d
c
h

a
rio

−
c
m

d
−

s
u

b
m

itte
d

in
te

rru
p

t
u

s
e

rs
p

a
c
e

re
a

d
n
v
m

e
_

s
u

b
m

it_
io

d
−

rd
in

te
rru

p
t

u
s
e

rs
p

a
c
e

re
a

d
n
v
m

e
_

s
u

b
m

it_
io

d
−

rd
in

te
rru

p
t

u
s
e

rs
p

a
c
e

re
a

d
n
v
m

e
_

s
u

b
m

it_
io

d
−

rd
in

te
rru

p
t

u
s
e

rs
p

a
c
e

re
a

d
n
v
m

e
_

s
u

b
m

it_
io

d
−

rd
in

te
rru

p
t

u
s
e

rs
p

a
c
e

io
c
tlc

h
a

rio
−

c
m

d
−

s
u

b
m

itte
d

in
te

rru
p

t
u

s
e

rs
p

a
c
e

re
a

d
c
h

a
rio

−
c
m

d
−

s
u

b
m

itte
d

in
te

rru
p

t
u

s
e

rs
p

a
c
e

re
a

d
n
v
m

e
_

s
u

b
m

it_
io

d
−

rd
in

te
rru

p
t

u
s
e

rs
p

a
c
e

re
a

d
n
v
m

e
_

s
u

b
m

it_
io

d
−

rd
in

te
rru

p
t

u
s
e

rs
p

a
c
e

re
a

d
n
v
m

e
_

s
u

b
m

it_
io

d
−

rd
in

te
rru

p
t

u
s
e

rs
p

a
c
e

re
a

d
n
v
m

e
_

s
u

b
m

it_
io

d
−

rd
in

te
rru

p
t

u
s
e

rs
p

a
c
e

4
0

K
iB

C
h

a
rIO

 (p
h
y
s
.)

4
0

K
iB

C
h

a
rIO

4
0

K
iB

B
lo

c
k
 (d

ire
c
t)

4
0

K
iB

B
lo

c
k

4
0

K
iB

e
x
t4

 (d
ire

c
t)

4
0

K
iB

e
x
t4

8
0

K
iB

C
h

a
rIO

 (p
h
y
s
.)

8
0

K
iB

C
h

a
rIO

8
0

K
iB

B
lo

c
k
 (d

ire
c
t)

8
0

K
iB

B
lo

c
k

8
0

K
iB

e
x
t4

 (d
ire

c
t)

8
0

K
iB

e
x
t4

  O
p
e
ra

tin
g
 s

y
s
te

m
 tim

e
  W

a
itin

g
 fo

r S
S

D
  W

a
itin

g
 fo

r in
te

rru
p
t h

a
n
d
le

r

Figure
4.

4:O
perating

system
and

hardw
are

latency
m

easured
for

4
0K

iB
and

8
0K

iB
reads

from
ext

4,block
device

and
C

harIO
storage



4.4 evaluation of chario 143

Block read
O_SYNC

Block read
O_SYNC | O_DIRECT

ext4 read
O_SYNC

ext4 read
O_SYNC | O_DIRECT

CharIO read

4091

4092

4093

4094

4095

4096

4097

4098

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●

●●●●

●●

●

●

●●

●

●●●●●●●●●●

N
um

be
r 

of
 In

te
rr

up
ts

Figure 4.5: Box plot of interrupt counts across 1,000 512 MiB reads
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Figure 4.6: Box plots of interrupt counts across 1,000 512 MiB writes. Bot-
tom plot shows the same data but with O_SYNC block device
removed, so more detail can be seen across the other four types.
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5, but CharIO is the only method that can guarantee a completely
predictable number of operations (4,096 transfers of 128 KiB each).
Interrupt count variability was found to be far more exaggerated when
writing, due to effects of the file system, block scheduler, and other
hidden kernel-level storage management. Standard I/O block device
writes give the most unpredictable results, generating many smaller
transfers to the disk compared to the other methods. Direct I/O shows
an improvement in predictability when writing, but results still show
a significant difference in the number of interrupts recorded over the
runs. This behaviour means calculating meaningful average results
for a write equivalent of Figure 4.4 is practically impossible, as access
patterns and the number of commands sent to the SSD vary so greatly.

Figures 4.7 and 4.8 provide probability density functions of overall
transfer time across 1,000 reads and writes from the CharIO device, for
various transfer sizes, and using both standard I/O and physically-
addressed transfers to a dedicated area of memory. These show similar
patterns to those in Section 3.8, with distinct landscapes of peaks and
troughs. Physically addressed results generally present slightly tighter
distributions, however this is limited by the unpredictability of the
SSD hardware itself, and the PCIe and memory interconnects between
the CPU and storage.

4.4.2 Evaluating CharIO Performance

The basic read and write performance of the CharIO driver was
evaluated by measuring transfer speed and CPU usage compared to
an ext4 file system and an NVMe block device node operating through
both standard and direct I/O on the same storage device.

The dd utility was used to perform 100GiB sequential transfers, with
/dev/zero used as a low-overhead source of data for disk writes, and
data read from the disk being discarded to /dev/null. During I/O
operations, kernel CPU usage was periodically sampled using dstat

to give an indication of the system load caused by the different storage
interfaces. As the specific block size of a transfer can have a large
effect when bypassing the page cache (as demonstrated in Chapter 3),
a range of block sizes were tested.

Results from these experiments are shown in Table 4.1, including
a ratio of speed/CPU usage, to give an indication of I/O operation
efficiency. CPU usage is shown as a single-core percentage, with
200% indicating full utilisation of both cores in the system. From
these results, CharIO shows the highest speeds for larger block sizes
(for those tested over 4KiB), and uses the least kernel CPU time
for all transfers. For 4KiB block-size transfers, CharIO outperforms
both ext4 and block device direct I/O speeds, and is also faster than
standard I/O on the block device when writing. This highlights how
the complexity and inefficiencies in file systems and the Linux block
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Figure 4.7: Probability density function of 8 KiB, 4 KiB, 80 KiB and 40 KiB
read timings, with and without physical addressing, from CharIO
device
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I/O layer can have a considerable impact on storage performance in
an embedded system due to high CPU usage.

4.5 User-space NVMe Driver for Embedded Linux

An alternative method of accessing a storage device in Linux is to
create an entirely custom storage device driver, thus fully avoiding the
VFS, exposing low-level hardware functionality to applications instead
of file operations, and going one step further than CharIO’s method
of simplifying the kernel-level storage path. Creating such a custom
driver deviates more significantly from the standard Linux storage
model, but in doing so allows for a greater level of customisation and
control.

4.5.1 User-space Storage Driver

While a custom storage driver could be constructed entirely in kernel
code, using system calls to interface with applications, implementa-
tion could also be in user-space library code, with the kernel simply
facilitating raw access to the buses and memory space of a storage
device. One example of such a driver is UNVMe [131], an open-source
user-space NVMe driver created by Micron Technology, built on top
of Linux’s Virtual Function I/O (VFIO) system, and using the Virtu-
alization Technology for Directed I/O (VT-d) feature of certain Intel
CPUs for access to a PCIe storage device via a supported system’s
IOMMU. An associated proof-of-concept user-space file system, User
Space Nameless Filesystem (UNFS) [140], additionally provides a basic
higher-level file interface above UNVMe’s custom API.

The original design of UNVMe focusses on high-performance ac-
cess to storage in a data centre-type environment, relying on specific
virtualisation extensions to Intel’s x86 architecture to access hardware,
as well as an IOMMU in the system to safely remap PCIe device
memory into a process’s address space. While the basic idea of ac-
cessing a storage device directly from a user-space driver, and thus
removing the kernel storage stack, could be desirable in the domain
of embedded and real-time systems, the specific set-up of UNVMe is
incompatible with many embedded architectures, where x86 CPUs
with virtualisation extensions and IOMMUs are not common. To this
end, Embedded UNVMe has been developed for this thesis by modi-
fying the existing UNVMe codebase to remove its reliance on x86

hardware virtualisation and IOMMU support, allowing its use on a
wider variety of system architectures.

Embedded UNVMe initially targets Linux running on the ARM64

CPUs of the Xilinx Zynq UltraScale+ MPSoC architecture [42], in order
to evaluate and test the feasibility of running a user-space NVMe
driver in a relatively powerful and modern embedded context. Full
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source code for the Embedded UNVMe driver, with support for the
Zynq UltraScale+ platform, is available online at [8].

4.5.2 Porting UNVMe to the Zynq UltraScale+

The Zynq UltraScale+ MPSoC architecture is similar to the Zynq-7000

platform described previously in this thesis, but with a quad-core
Arm Cortex-A53 64-bit CPU replacing the dual-core Cortex-A9, a
larger array of auxiliary peripherals and interfaces, and a greater
amount of FPGA logic attached. Full details of the Zynq UltraScale+
platform, and the Xilinx ZCU102 development board [44] used for
implementation work, can be found in Appendix B.3.

The first step in porting the driver away from x86 was removing
all architecture-specific inline assembly instructions from the code,
such as timing events using the Time Stamp Counter (TSC) register.
These register-level timing functions were replaced with generic Linux
clock functions from the C time library (time.h), specifically, reading
the system’s CLOCK_MONOTONIC_RAW value using the clock_gettime

function. This has a slight overhead compared to using CPU-specific
timers, however this is insignificant for its uses within the UNVMe
code, and still provides a monotonically increasing time value, while
being compatible with a much greater number of systems.

Secondly, due to the lack of Intel VT-d and an IOMMU, an altern-
ative way to access raw system memory from user-space is required
for the driver to operate. The NVMe protocol uses an area of memory
shared by the CPU and storage hardware for communication, primar-
ily through the CPU creating command queue data structures which
are subsequently read by the storage device using DMA, and the stor-
age device writing the status of transfers back into a completion queue
structure. Alongside this, access to PCIe configuration memory is re-
quired by the driver for setting-up the storage controller, and agreeing
upon the parameters and location used for the shared memory space.

While the Linux VFIO driver can still be used in ‘No-IOMMU‘
mode to configure PCIe devices when an IOMMU is not present in the
system, this removes the ability for user-space programs to negotiate
the mapping of arbitrary memory areas, such as that required for the
NVMe communication data structures. Therefore, VFIO continues to
be used as a safe and convenient way to configure the PCIe interface of
the NVMe device, but an alternative is needed for accessing memory.
For this, the Linux Userspace I/O (UIO) system was employed, which
allows an area of memory to be mapped though a device file (for
example, /dev/uio0), with the kernel simply creating the virtual-
to-physical address map and managing caches to allow for DMA
operations. This memory area is configured using a basic loadable
kernel module, which may be configured either with a fixed location
as a platform device, or using an entry in the system’s device tree
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Figure 4.9: Architecture of the Embedded UNVMe driver

to both reserve the memory and assign it to the custom UIO driver
simultaneously. The user-space driver can then allocate space for
transfers and create command queues in this reserved memory area
with virtual addressing, while being aware of the physical memory
mappings to use with the storage device commands. An example of
both a platform device and a device tree UIO driver for use with
Embedded UNVMe are available online at [8].

4.5.3 Embedded UNVMe Driver Operation

A high-level overview of the Embedded UNVMe driver architecture,
showing its application interfaces and route to communicating with a
storage device via the Linux kernel, is shown in Figure 4.9.

The Embedded UNVMe library can be built either as a static library
to be copied into an application at compile-time, or as a dynamically-
linked shared object library that can be referenced at runtime. The
main interface into the driver is then accessed directly through a
number of functions defined in the library, all executing in user-space
other than low-level memory-mapping and PCIe control operations.
This is in contrast to a kernel-level storage driver, which must be
installed as a separate loadable kernel module (or compiled into the
kernel binary itself), then interfaced through system calls.
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Storage is primarily accessed through high-level functions defined
in unvme.h, allowing opening and closing devices, allocating and
freeing memory, reading and writing data, and submitting generic or
vendor-specific commands to the storage device. Commands can either
be submitted synchronously or asynchronously, with synchronous
commands blocking until the completion of the associated operation,
and asynchronous commands returning immediately after submis-
sion, then relying on later library calls in the application to poll the
operation status and access any returned data. In addition to these
high-level functions, the driver’s internal lower-level NVMe functions
can be used directly from an application, allowing more complete
control over features such as memory management and command
queueing. As well as the C interface and sample code, a Python wrap-
per is provided as an example of allowing straightforward access to
the storage driver from a higher-level scripting language.

On initialising an NVMe storage device from an Embedded UNVMe
application, the PCIe device is deregistered from the kernel’s NVMe
driver (if appropriate), and set-up for use with the user-space driver
by registering it as a vfio-noiommu device. An appropriate UIO driver
must also be loaded in order for an area of shared physical memory
to be directly accessible from the user-space application. Once a UIO
driver has been loaded, and the PCIe device has been bound to the
VFIO driver, calling the unvme_open library function from within an
application will configure the storage device for UNVMe, and create
the necessary data structures in the shared memory for commands
and transfers. From this point, memory blocks can be allocated for
transfers within the shared space accessed through UIO, and data
can be read from or written to the storage device. More advanced
functionality can be also be achieved, such as creating commands that
operate similar to the physically-addressed transfers of CharIO.

4.5.4 Embedded UNVMe Driver Limitations

One major limitation of the Embedded UNVMe driver, compared
to an in-kernel storage driver, or even traditional UNVMe using an
IOMMU, is the lack of system-level memory protection. While any
standard NVMe hardware device still has the potential to read or write
data from any physical address using DMA (assuming an IOMMU is
not used), a kernel-level storage driver can at least provide privileged
software protection against this, sanitising addresses before issuing
commands to a device, and preventing an application accessing for-
bidden areas.

Access to full system memory by the NVMe device (and therefore
by the Embedded UNVMe application) has implications in both se-
curity and system integrity. In terms of security, it gives the potential
for one application to read or modify the memory of another, or even
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of the operating system itself, an ability that is usually prevented
by the kernel’s management of virtual memory. Regarding system
integrity, an application may intentionally or unintentionally corrupt
areas of memory that it would not normally have access to, via the
NVMe device, potentially causing issues for any software running on
the system. Within the area of real-time embedded systems, memory
protection can be especially important in mixed-criticality systems,
where tasks of different criticalities may have different levels of ac-
cess to memory, and strict separation of memory is an important
consideration.

The practical implications of this lack of memory protection are
limited, however, as an appropriately privileged application could po-
tentially read memory in a more direct manner anyway (for example,
using /dev/mem) and an embedded system is often operated as a more
controlled environment than a general purpose computer in terms of
software. It may also be possible to prevent rogue memory transfers
by restricting access on the memory bus used by the PCIe hardware
to specific address ranges, either through configuration of that bus
in the SoC hardware, or through additional hardware programmed
into the FPGA fabric to monitor and control the bus activity, such
as that used between components in the PHANTOM project FPGA
architecture [141].

A further limitation of a fully user-space driver is a lack of access
to kernel-level interrupt routines, meaning the completion status of a
command is polled though reading the head of the completion queue
in memory. While this is not necessarily as efficient as interrupt-driven
I/O, it does remove an element of unpredictability associated with
the high-priority, pre-emptive nature of interrupt routines which may
be undesirable in a real-time system. It is possible to set up interrupt
handling through the VFIO or UIO kernel drivers, by registering
a callback function with an ioctl or monitoring the UIO device file
respectively, but these push more work and control into the kernel
and away from the library, and complicate the implementation of the
driver.

4.6 Evaluation of Embedded UNVMe

The Zynq UltraScale+ Embedded UNVMe implementation was tested
using the Intel SSD 750 [16] used in previous experiments, in order to
compare its raw performance to a standard NVMe block device.

4.6.1 Basic Full-disk Read/Write Performance

As a basic test of storage throughput, the entire 400 GB SSD was read
from and written to sequentially, both as a standard NVMe block
device using the GNU dd utility, and through the Embedded UNVMe
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Table 4.2: Sequential transfer speeds for NVMe block device (with and
without direct I/O) and Embedded UNVMe on Zynq UltraScale+

Interface (block size) Read (MiB/s) Write (MiB/s)

Block device (128 KiB) 798.21 646.46

Block device (512 MiB) 730.21 514.08

Block device direct I/O (128 KiB) 803.31 690.80

Block device direct I/O (512 MiB) 1377.78 763.61

Embedded UNVMe (128 KiB) 1444.34 1004.58

driver. For UNVMe, each individual transfer is 128 KiB, as this is the
maximum size of any single I/O command sent to the SSD used for
the test. For the block device, block sizes of both 128 KiB and 512 MiB
were tested, in order to provide both a direct comparison and an
extreme example where the kernel has access to a large block of data
respectively. The code used for benchmarking using UNVMe can be
seen in Appendix C.2, which also serves as an example of how to use
the library for basic I/O operations.

Results from this benchmarking are presented in Table 4.2, showing
the UNVMe driver performing significantly faster than the block
device. Direct I/O on the block device is faster than standard I/O,
likely due to reduced memory copy overheads from not using the page
cache. This is especially apparent with the larger block size transfers,
which greatly improves the speed of direct I/O, but reduces the speed
of standard I/O. Using a very large block size reduces the overall
overhead caused by context-switching into the kernel for every storage
operation considerably, as well as increasing the efficiency of setting
up areas of memory for DMA transfers, but for standard I/O this
probably also overwhelms the page cache, leading to the slowdown.
These trade-offs do not require consideration for Embedded UNVMe,
however, as its storage operations are performed entirely in user-space
code, and its operating memory is mapped and reserved ahead of
time through the UIO system.

4.6.2 Benchmarking Embedded UNVMe with FIO

Further benchmarking tests were performed using FIO [126], to com-
pare sequential and random read and write performance of the Em-
bedded UNVMe driver to an NVMe block device in more depth,
while using multiple threads and taking advantage of NVMe hard-
ware queues. The UNVMe library provides an FIO ioengine plug-in,
which was used for these tests, along with the Linux libaio engine for
asynchronous block device transfers.
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Table 4.3: Random transfer speeds for NVMe direct I/O block device and
UNVMe driver on Zynq UltraScale+

Per-thread CPU usage (%)

Driver/operation Speed (MiB/s) User System Total

NVMe block read 744 8.57 16.40 24.97

UNVMe read 1415 24.99 0 24.99

NVMe block write 559 6.70 12.30 19.00

UNVMe write 445 24.98 0 24.98

Initial FIO Benchmarks

A limited initial test was performed using the the default FIO bench-
mark tests distributed with UNVMe source code, measuring speed
and CPU utilisation while performing random transfers across 16

threads and 32 hardware queues, with a 4 KiB block size, and running
for 120 seconds each. A summary of the results of these tests is shown
in Table 4.3.

Despite the multithreaded and multi-queue nature of these bench-
marks, the small block size and random I/O pattern reduces perform-
ance compared to the basic sequential tests. While the direct I/O block
device results still show an improvement over their standard I/O
sequential equivalents, block device read speed is affected far more
than UNVMe. UNVMe writes suffer most significantly in these bench-
marks, where speeds fall behind those of the block device, likely due
to the UNVMe driver performing writes in an entirely synchronous
manner, unlike the block layer scheduler.

Each test fully utilises the four CPU cores on the platform (with the
sum of the 16 threads totalling 400% usage), except for the block device
write, which leaves almost an entire core free. The high CPU utilisation
of UNVMe is partly due to it actively polling for the completion of
each I/O operation. In a real application, this time could potentially
be yielded to the scheduler, or used for other processing tasks within
the application. The UNVMe driver CPU usage is also entirely in
user-space, whereas the block device is split between user-space and
the kernel at around a 1:2 ratio. This attribute of UNVMe may be
desirable in a real-time system, as pushing CPU time into user-space
can aid with task resource usage accountability, and the pre-emption
of user-space code is far more trivial than the kernel.

Detailed FIO Benchmarks

Following these tests, a more thorough investigation into the per-
formance of Embedded UNVMe on the Zynq UltraScale+ platform
was performed, with measurements taken for multiple block sizes
of random and sequential read and write operations, similar to the
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Figure 4.10: Read speeds for NVMe block device and UNVMe on Zynq
UltraScale+ platform (x-axis log scale, error bars show standard
deviation)
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Figure 4.11: Write speeds for NVMe block device and UNVMe on Zynq
UltraScale+ platform (x-axis log scale, error bars show standard
deviation)
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Figure 4.12: Kernel and user CPU utilisation for NVMe block device and
UNVMe read operations on Zynq UltraScale+ platform; solid
line shows kernel, dashed line shows user (x-axis log scale)
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Figure 4.13: Kernel and user CPU utilisation for NVMe block device and
UNVMe write operations on Zynq UltraScale+ platform; solid
line shows kernel, dashed line shows user (x-axis log scale)
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Figure 4.14: Read speed per percent of CPU utilisation for NVMe block
device and UNVMe on Zynq UltraScale+ platform (x-axis log
scale, error bars show standard deviation)



160 alternative storage interfaces for embedded linux systems

0

10

20

30

40

50

60

70

80

90

4K
iB

8K
iB

16
K

iB

32
K

iB

64
K

iB

12
8K

iB

25
6K

iB

51
2K

iB

1M
iB

2M
iB

4M
iB

8M
iB

16
M

iB

32
M

iB

Block Size (Bytes)

A
ve

ra
ge

 B
an

dw
id

th
 (

M
iB

/s
) 

/ T
ot

al
 C

P
U

 U
til

is
at

io
n 

(%
)

Block Seq Write
Block Direct I/O Seq Write
UNVMe Seq Write

0

10

20

30

40

50

60

70

80

90

4K
iB

8K
iB

16
K

iB

32
K

iB

64
K

iB

12
8K

iB

25
6K

iB

51
2K

iB

1M
iB

2M
iB

4M
iB

8M
iB

16
M

iB

32
M

iB

Block Size (Bytes)

A
ve

ra
ge

 B
an

dw
id

th
 (

M
iB

/s
) 

/ T
ot

al
 C

P
U

 U
til

is
at

io
n 

(%
)

Block Rand Write
Block Direct I/O Rand Write
UNVMe Rand Write

Figure 4.15: Write speed per percent of CPU utilisation for NVMe block
device and UNVMe on Zynq UltraScale+ platform (x-axis log
scale, error bars show standard deviation)
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experiments presented previously in Sections 3.4 and 3.5. Additionally,
block device transfers were run with and without direct I/O, in order
to provide more insight and data for comparison. In order to create a
thorough high-performance stress-test of the I/O system, but with a
level of parallelism appropriate for the platform, tests were run with
an I/O queue depth of 4 and using 4 threads of activity (across the
4 CPU cores). Due to the set amount of shared memory reserved for
the Embedded UNVMe driver, and the pre-allocation of I/O memory
buffers, the maximum size of all transfer blocks and associated device
queues cannot exceed 1 GiB, limiting any power-of-two transfers to
32 MiB when using 4x4 queues. Minimum block size is limited to
4 KiB, as this is the hardware sector size used by the SSD device.

Figure 4.10 shows the average per-thread read bandwidth of the
transfers for each pattern, block size, and device, with overall band-
width being four times this. UNVMe and direct I/O block device
transfers perform very similarly, with both sequential and random ac-
cess patterns, increasing in speed until around 128 KiB (the maximum
data size that can be transferred with a single NVMe command on
the SSD being tested), and holding relatively steady after this point.
There are two key differences observed between these two interfaces,
however: firstly, UNVMe performs slightly better at smaller block
sizes, likely due to the reduced overheads of not requiring a context
switch into the kernel for every operation; and secondly, the variabil-
ity of block device transfers, shown by the standard deviation, is far
higher, especially for large block sizes, likely caused by the overheads
of allocating transfer memory on the fly.

For sequential reads, the standard I/O block transfers perform
much better for all block sizes, albeit with large standard deviations at
smaller block sizes. This can probably be explained by the Linux libaio
interface handling the sequential, asynchronous, cached transfers from
multiple threads in a much more intelligent manner than the more
rigid direct I/O and UNVMe transfers, allowing creative scheduling of
requests, and potentially the re-use of data if it is present in the page
cache when a second thread requests it. Performance peaks at 32 KiB,
then reduces dramatically until levelling out above 512 KiB, suggesting
that above this point the page cache is becoming less effective for the
specific benchmark operations being performed, perhaps because there
is less possibility for data to be reused, and that more pages must be
purged and reallocated before each transfer. Random reads are very
different, however, with the standard I/O block device performing
consistently significantly worse than the other access methods. This
suggests that any advantages in using the asynchronous I/O scheduler
and page cache can be greatly reduced when dealing with more
random access patterns.

Figure 4.11 shows the same per-thread bandwidth results, but for
write tests. Sequential write results show very similar patterns to
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sequential read, but with an overall slower speed for direct I/O and
UNVMe, and much larger standard deviations, particularly for stand-
ard I/O block device transfers. The very large standard deviations for
standard I/O block transfers are accompanied by the possibility of
large outliers, although this still performs significantly better than dir-
ect I/O or UNVMe, likely due to the specific benchmarks taking good
advantage of the page cache and libaio scheduler for multiple threads.
Both UNVMe and direct I/O perform more consistently across all
block sizes, but the drop for small block sizes is much more significant
for the block device. Random write results are almost identical (within
noise) for all three storage access methods, and perform relatively
consistently and slowly across all block sizes, suggesting that the stor-
age device itself may be more of a bottleneck here than any software
involved in accessing it.

The CPU performance results shown in Figures 4.12 and 4.13 largely
demonstrate what would be expected in these benchmark scenarios,
based on results presented previously in this chapter and in Sec-
tion 4.4. For example, standard I/O transfers generally use more CPU
time than direct I/O, CPU utilisation generally reduces as block size
increases (other than for certain standard I/O tests), and the majority
of block device CPU time is spent in the kernel. It would be expected
that UNVMe uses an entire core per thread of user CPU time, while
using no kernel CPU time, due to performing all of its processing in
user-space, and to constantly polling for the completion of commands
in any potential idle time during these benchmarks, which is indeed
the case for the majority of results, however in all tests, there is a large
shift in user to kernel CPU time for UNVMe at 16 MiB and 32 MiB
block sizes. As the UNVMe driver does not explicitly perform any
computation in the kernel, this shift must be due to a side-effect of
the storage operations, possibly related to the scheduling of multiple
threads of simultaneous I/O, or processes internal to the UIO or VFIO
kernel drivers. A more in-depth profiling of UNVMe and kernel code
could provide further insight into the specific cause of this behaviour
if required.

Figures 4.14 and 4.15 show an indication of the efficiency of the
storage operations, represented as the average speed obtained per
percent of total CPU utilisation, for each I/O thread. UNVMe results
are largely irrelevant, as the driver will use 100% CPU in these experi-
ments regardless of its actual efficiency, thanks to actively polling for
command completion. It would be possible to measure the proportion
of wait and busy processing time separately through modifying the
UVNMe driver, but this is outside the scope of FIO. The standard I/O
block device performs relatively consistently across all block sizes in
all experiments, with a slight efficiency drop below around 32 KiB,
and a slight increase at 32 MiB for random writes. In contrast, the
efficiency of all direct I/O block device results scale largely with block
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size, with small reductions in CPU usage at 16 MiB and 32 MiB being
amplified in the efficiency measure. This increase in efficiency with
block size is probably mostly due to the number of context switches
and separate memory allocations reducing as block sizes get larger,
which is enforced by the rigid operation of direct I/O in the kernel.

4.7 NVMe Coprocessor for Embedded Systems

Due to the tight coupling of CPUs and FPGA logic in the Zynq UltraS-
cale+ MPSoC, it is possible to offload software functionality from the
hard CPU cores onto dedicated hardware or soft coprocessor cores,
while still retaining the same view of system memory and peripherals.
These peripherals include the PCIe controller of the SoC, therefore
giving the potential of direct access to an NVMe SSD from the FPGA.
Through taking advantage of this, a Xilinx MicroBlaze soft processor
core [142] has been implemented in FPGA logic alongside Linux on
the Arm cores, in order to run NVMe commands independently of the
main CPU, thus acting as a dedicated storage controller coprocessor.
A full overview of the system architecture of this design, including a
block diagram describing the connectivity of the MicroBlaze with the
Zynq processing system, can be found in Appendix B.3.

In order to control the storage device from the FPGA hardware,
and independently to the main CPU, Linux running on the Arm cores
must relinquish direct control of the NVMe device and PCIe controller.
The most straightforward way to achieve this is to remove the PCIe
definition from the system’s device tree, meaning the Linux kernel has
no knowledge of its presence at all when it boots, leaving it free to be
configured by another part of the system. Another possible approach
could be to use the hot-plugging potential of PCIe to dynamically
transition control of the storage hardware between Linux and the
FPGA, however this would likely require modifications to Linux kernel
drivers in order for it to operate in a stable manner.

Alongside this, the MicroBlaze software must have the ability to
control both PCIe and NVMe interfaces at a low level. This is achieved
through bare-metal code running on the MicroBlaze, based on the
Embedded UNVMe driver, accompanied by a basic driver to set up
the Zynq UltraScale+ MPSoC PCIe peripheral. A thorough series of
tests were also written to check the operation of the storage interface,
with results compared against known correct values from UNVMe on
Linux, as well as benchmarks to provide basic performance metrics.
Full source code for the MicroBlaze NVMe driver, including a custom
driver for controlling the Zynq UltraScale+ PCIe controller peripheral,
is available online at [9].
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Figure 4.16: Architecture of the MicroBlaze NVMe driver

4.7.1 MicroBlaze NVMe Driver Implementation

While the bare-metal MicroBlaze NVMe driver is based on the Em-
bedded UNVMe Linux driver (which in turn is based on the original
UNVMe driver for Intel x86 systems), there are several major differ-
ences between the two, largely stemming from the lack of operating
system, but also due to some architecture differences. In general, re-
moving the operating system simplifies the layers required for an
application to access storage, something that is quite desirable for a
real-time embedded system, but this also puts additional requirements
into the driver itself, and causes some changes to its structure. An
overview of the software architecture of the MicroBlaze NVMe driver
is shown in Figure 4.16, which highlights both its similarities and
differences to Embedded UNVMe.

The major modifications compared to Embedded UNVMe are de-
tailed below, the culmination of which is a stand-alone executable (or
library) that can fully configure and interact with an NVMe SSD over
PCIe, relying only on the Xilinx-provided C standard library, and with
a predictable, static memory footprint.

PCIe Device Configuration

The Linux Embedded UNVMe library relies on existing PCIe support
from the kernel, which removes the need for it to manually set up
the PCIe bridge or storage device hardware at a low level. It therefore
only interacts with the PCIe hardware through the VFIO driver, which
provides a relatively high-level interface into the kernel’s view of PCIe
devices. On the MicroBlaze, however, no existing driver framework
is available for accessing the PCIe peripheral of the Zynq UltraScale+
MPSoC, or for configuring an NVMe device attached to it, so a basic
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custom driver was written for this purpose. Firstly, this driver must set
up the SoC’s built-in PCIe peripheral hardware as a root port bridge, in
order to enable a downstream NVMe storage device to access the bus.
Appropriate memory apertures must also be configured, for allowing
software to communicate with the NVMe device using a static area
of shared memory attached to an AXI bus. Once the PCIe bridge
is set up, the NVMe device is configured using the PCIe Enhanced
Configuration Access Mechanism (ECAM), which also allows further
changes to the configuration of the device by the NVMe driver as
required at runtime, using simple memory-mapped registers.

Memory Access and Allocation

As there is no operating system running to manage memory access
and allocation on the MicroBlaze, this must be entirely handled by
the driver itself (beyond what is available in the C standard library).
Memory access is generally simpler on the MicroBlaze than the Arm
CPU, as it avoids complicated cache mechanisms and MMU trans-
lations (although a basic MMU is optionally available for use with
a MicroBlaze if needed for memory protection or translation). All
memory access and operations that were previously managed by the
Linux kernel for the Embedded UNVMe driver are reimplemented in
the driver itself, including allocating areas of shared memory for com-
mand structures, queues and transfer buffers, and managing DMA
access between areas of the system.

Beyond the basic memory system changes allowing MicroBlaze
code to access the SSD, further changes were made to the driver
in order to remove any areas using dynamic memory allocation.
While this limits the flexibility of the driver slightly, it also gives strict
bounds, configurable at compile time, on the amount of memory
that can be used, removing unpredictability in both overall memory
usage and execution time variability caused by runtime memory
allocations. This lack of runtime flexibility is also unlikely to be an
issue in an embedded context, where strict allocation of memory
between subsystems at design-time is often desirable rather than
limiting.

A further advantage to using static areas of memory with a low-
level microcontroller implementation is the ability to use areas outside
of main system memory for buffering data and interacting with the
storage device, such as scratchpad memories or physically separate
DDR interfaces, further removing potential interference with the rest
of the system when performing storage operations.

4.7.2 Evaluating NVMe on MicroBlaze

In order to evaluate the NVMe MicroBlaze driver, an appropriate
hardware design was created for the Zynq UltraScale+ MPSoC sys-
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Table 4.4: Sequential transfer speeds for Arm Embedded UNVMe driver and
MicroBlaze NVMe driver on Zynq UltraScale+

Storage interface Read (MiB/s) Write (MiB/s)

Embedded UNVMe (Arm) 1444 1004

MicroBlaze NVMe 1442 1007

tem [42], once again running on a ZCU102 development board [44],
and tests and supporting code reimplemented to fit the bare-metal,
single executable code model. Further details of the platform set-up
can be found in Appendix B.3.

The same basic full-disk sequential read and write benchmarks were
run as with Embedded UNVMe, but using the MicroBlaze NVMe
driver. These benchmarks were chosen to give a good indication of
driver performance, relative to running the closest equivalent tests in
Linux.

Performance results are shown in Table 4.4, with the MicroBlaze
driver performing almost identically to Embedded UNVMe running
on the Arm cores. This result shows essentially equivalent performance
between the two drivers, despite the MicroBlaze being a fairly limited
soft core processor running at 100 MHz, while Embedded UNVMe
is running on a comparatively capable quad-core CPU running at
1.2 GHz.

While some overheads will be caused by Linux in the UNVMe
benchmarks, these are clearly negligible, or at least comparable to
overheads from the slower processing speed of the MicroBlaze, and
both storage access methods appear to fully utilise the available storage
device and PCIe bus. The major difference in terms of overall system
performance is that the MicroBlaze driver is having far less of a
performance impact on the Linux system, using no Linux-aware CPU
resources, and only potentially affecting available memory bandwidth
on the DDR interface, whereas UNVMe uses up to a full CPU core
during transfers.

Given the similarities between the performance of a full-disk write
on Embedded UNVMe and the MicroBlaze NVMe driver, it can be
assumed that similar performance would be experienced across the
full set of more detailed FIO benchmarks run in Linux. Additionally,
the idea of a ‘block size’ is less relevant to the lower-level MicroBlaze
driver as it is in Linux, at least beyond the 128 KiB limit of a single
NVMe command, as all memory is static and preallocated, and there
is only a single thread of execution.
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4.7.3 Coprocessor Trade-offs

The use of a coprocessor for accessing storage in an embedded system
(and more generally, the use of any coprocessor) has advantages and
disadvantages compared to other methods of achieving the same task.
In many aspects, a programmable coprocessor sits between a fully-
software solution and a dedicated hardware solution in terms of both
positives and negatives.

There are two main advantages of using a coprocessor compared
to a standard software solution to this problem: firstly, it reduces
pressure on the main CPU caused by storage operations that can
now be offloaded; and secondly, it allows the creation of a higher-
level interface for storage access, such as that described in Section 5.2
potentially simplifying the main CPU software. Together, these points
can allow for performance improvements across the system, although
potentially not with the level of efficiency of a dedicated hardware
component or modifications to the storage device itself.

A coprocessor implemented as described in this chapter is far easier
to program and maintain than a dedicated piece of hardware for
achieving the same task, as writing and modifying code running on
the MicroBlaze is far more flexible than creating Register-Transfer
Level (RTL) hardware components, even on an FPGA. For example,
while the FPGA logic of the Zynq SoC can be reprogrammed dynam-
ically while Linux is running, the hardware design must be created
and synthesized on a relatively powerful external machine, which
is a complicated and time-consuming process, whereas MicroBlaze
software can be recompiled and programmed directly on the Zynq
itself. However, cross-compiling code for a separate microcontroller is
still often more effort than creating software that runs as an applica-
tion, library or kernel driver on the main CPU, which would be the
standard method for interfacing with a storage device.

In terms of overall system architecture, a coprocessor and a ded-
icated hardware component have similar requirements, with both
needing auxiliary hardware that is tightly-coupled with the main
CPU. For example, both options could feasibly be implemented using
an FPGA-based SoC with shared memory available between program-
mable logic and a main CPU. Both options add increased complexity
into a system from hardware and architectural perspectives, however
the complexity of software and operating system drivers running on
the main CPU may be reduced as a result of offloading tasks.

4.7.4 Further Storage Coprocessor Possibilities

While the MicroBlaze storage driver offers a good trade-off between
the flexibility of software and embedded performance through the use
of the FPGA fabric, a further direction for the NVMe driver could be
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to offload functionality into a dedicated hardware core. The lack of
dynamic memory allocation in the MicroBlaze code makes it a good
candidate for translation to hardware through a high-level synthesis
language, such as Vivado HLS [55], although this step is by no means
trivial. A mixed hardware/software system is also a potential com-
promise solution, moving some of the more static, timing-critical parts
of software into a hardware IP core, while retaining the flexibility of
software for other areas.

The creation of a storage coprocessor also raises questions of how
it might integrate into the rest of a system, both in terms of software
control from Linux applications, and overall architecture design. Ideas
related to this are explored as future work in Section 5.2.

4.8 Conclusions and Future Work

Efficient access to persistent storage is an important issue for embed-
ded and real-time systems, in which processing resources are limited,
and guarantees about timing predictability are as important as data
throughput. The storage architectures of modern operating systems
involve many complex interactions, which can perform well in many
general-purpose scenarios, but more straightforward methods to ac-
cess to storage can be preferable in many real-time and embedded
contexts, as well as other areas of computing where minimising CPU
usage is important. This chapter presents three such approaches, ran-
ging from kernel-level modifications, to a user-space library, and a
more hardware-oriented storage architecture. A summary of these
three approaches is presented in Table 4.5, giving a broad comparison
of features, and suggesting advantages and disadvantages of each.

CharIO, the interface proposed for bypassing a number of the com-
plexities associated with operating system storage management, shows
promise in improving the performance and predictability of accessing
storage in embedded Linux, while still presenting storage through the
traditional VFS. While these improvements come at the cost of some
conveniences and features offered by traditional file systems, these
features may not be required for many real-time and embedded tasks,
where a simpler method of accessing storage can be more appropriate.

The results measured from porting the UNVMe driver to an embed-
ded platform show additional promise in low-overhead, predictable
access to high-speed storage in such devices, through removing many
of the complexities introduced by the Linux kernel’s storage stack.
Shifting the processing burden of storage access to a separate cop-
rocessor shows the potential for such an architecture to be useful in
an embedded context, while benchmark results demonstrate that a
simplified and highly bounded storage driver can perform well at a
limited clock speed, even with fast storage hardware.
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4.8.1 Future Work

As well as further analysis work, and expanding the functionality
and compatibility of the CharIO, Embedded UNVMe and MicroBlaze
NVMe drivers to different platforms and devices, one major area
for future work is to better integrate the interfaces presented in this
chapter into complete applications. While a flat presentation of a
storage device is adequate or preferential for some applications, such
as database engines, which may prefer the possibility of constructing
their own file hierarchies (or equivalent) on top of a simple storage
space, widespread adoption of alternative storage access methods is
unlikely without a sufficiently accessible interface.

Section 5.2 presents a design that builds on the storage copro-
cessor concept in this chapter to demonstrate how it could fit into a
more complete overhaul of high-speed storage access in an embedded
system, while filling the gap between current block-based storage
devices and potential future byte-addressable non-volatile memory
technologies. A further area for future work is the implementation of
this proposed hardware storage architecture design, drawing on the
implementation work detailed in this chapter to assist with this.



5
Conclusions and Future Work

This chapter provides a summary of the work contained in this thesis,
outlining specific contributions and addressing the thesis hypothesis,
while evaluating the thesis as a whole. This is followed by a discussion
of future work leading from the ideas in this thesis, and an overall
conclusion.

5.1 Summary and Contributions

This thesis explores the issues related to accessing high-speed storage
in a real-time embedded system, providing measurement and analysis
of current storage methods in this context, and proposing alternatives
in order to provide improvements in the area.

5.1.1 Summary of Contributions

The following main contributions are offered in each chapter of the
thesis.

Chapter 1: Introduction

As well as introducing and motivating the research in this thesis,
Chapter 1 presents historical trends in multiple related areas of com-
puter systems, including CPU and memory speeds, storage interface
bandwidths, and programmable hardware capabilities, in order to
contextualise current discrepancies between high-speed storage and
processing improvements.

Chapter 2: Background and Related Work

Chapter 2 provides a comprehensive overview of literature related
to storage in real-time embedded systems, highlighting issues re-
lated to the area, outlining work that has been carried out to address
these issues, and identifying limitations of existing approaches to im-
provements. The chapter also provides a general background in areas
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covered by the thesis, including the evolution of persistent storage,
operating systems, and hardware acceleration. A high-level model of
storage access is defined, categorising potential operations provided
by a typical storage stack into more general domains, along with a
series of metrics for consistent measurement of storage systems. Ideas
and analysis from background work and related literature inform and
motivate the remainder of the thesis.

Chapter 3: Problem Analysis

Chapter 3 provides a large amount of analysis on storage access in
Linux, specifically in how it relates to the predictability and efficiency
required for real-time and embedded systems. Initial profiling work
leads to a thorough benchmarking of standard and direct I/O access
to a number of storage devices in an embedded platform, examining
both the speed and CPU usage to give an indication of efficiency.
This is followed by the presentation of a custom hardware component
for low-overhead timing of software and hardware triggers, which
is used to measure the variability of periodic storage access, as well
as accurate low-level profiling of storage access to expand on these
results. The results from this chapter serve to both inform on the
differences between current storage access methods in Linux, and to
further motivate the need for alternatives in order to improve results
based on the desired metrics.

Chapter 4: Alternative Storage Interfaces

Chapter 4 presents a number of alternative storage interfaces for Linux,
largely focussing on predictability and efficiency over unnecessary
convenience or complex features. CharIO, a kernel driver presenting
SSD storage as as character device, is presented and evaluated, show-
ing promise for simplifying the kernel storage stack. This is followed
by removing kernel interference to a greater level, through a port of
the UNVMe driver to the Zynq UltraScale+ embedded platform, and
a complete NVMe driver implementation running on a MicroBlaze
soft processor core separate to the main CPU.

Chapter 5: Future Work

As well as concluding the thesis, Chapter 5 discusses multiple dir-
ections for future work, including a design for a more ambitious
restructuring of the storage stack. This proposed hardware storage
architecture presents the idea of creating a simple memory-mapped
interface for software to access storage, using custom hardware com-
ponents to manage this mapping.
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5.1.2 Thesis Summary

In summary, the thesis addresses the research hypothesis proposed
in Section 1.4 in several ways, confirming that a reduction in the
complexity of the software storage stack can indeed result in more
predictable and efficient access to storage. Chapters 3 and 4 show
through detailed analysis and measurement of both existing and novel
storage interfaces that this is the case.

5.2 Hardware Storage Architecture Design

One avenue of future work following from the ideas presented in
Chapter 4 is a fundamental change to how storage fits into a system at
a logical hardware level, and how it is accessed by applications and the
operating system. This change could help to remove the bottlenecks
and unpredictability inherent in current persistent storage models
by replacing the file system model of accessing a block device with
a memory-mapped approach. While vaguely similar in concept to
how data can be accessed as memory-mapped files in Linux currently,
more fundamental architecture changes could push this abstraction
to the CPU’s physical view of memory, rather than simply mapping
a kernel buffer into an application’s process space. An intermediate
hardware level would be required to provide translation between
memory-mapped files and storage itself, allowing for transparent
access to a process’s data when paired with sufficient operating system
support. This section outlines a design for such a storage interface,
and discusses its potential merits and shortfalls.

Techniques such as this are likely to become increasingly of interest,
as storage technologies are becoming addressable at a finer level and
accessible with lower latencies, and as more system architectures are
able to address large memory spaces with high flexibility. For example,
the proposed system is similar to the ‘shared address space’ model
presented in [143], however with SSD block storage instead of byte-
addressable NVRAM. More integrated solutions for addressing non-
volatile memory on the system’s main memory bus are emerging, such
as Non-Volatile Dual In-line Memory Modules (NVDIMMs) [144, 145],
which allows for a more direct replacement of main memory with non-
volatile storage. Most current NVRAM implementations still achieve a
byte-addressable granularity through a combination of NAND flash
storage and volatile byte-addressable memory, however [144].

5.2.1 Mapping Storage into Memory

Currently, most system architectures make a clear distinction between
main volatile system memory and non-volatile secondary storage
devices, modelling the latter as separate devices that must be accessed
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Operating System

Memory Controller

Storage
Device(s)

CPU Memory Space

Memory-Mapped I/O

DDR Other 
Peripherals

Persistent
Storage

Figure 5.1: High-level view of persistent storage as a first-class member of a
system’s memory map

at a block level by copying data to and from main memory as it is used.
An alternative to this could be to directly map files from a storage
device as areas in the standard virtual memory map of a process,
removing the need to use explicit read and write system calls to access
data.

While the current concept of memory-mapped files in Linux (using
the mmap system call) relies on the kernel page cache and standard
block layer below this, the proposed system would bypass the kernel
block layer and storage device drivers entirely, creating a simpler
file-to-memory mapping at a lower level in the memory hierarchy, as
shown in Figure 5.1.

When considering mapping storage directly into the memory space
of a system, the size of the addressable region must be taken into
account. For a 64-bit architecture, the potential memory space is so
large that a storage device could feasibly be mapped entirely into a
memory region, and addressed as such. While many embedded sys-
tems operate with a 32-bit address space, limiting the maximum size
of a memory region to 4 GiB, or a virtual implementation of a 64-bit
address space that is physically limited to a smaller number of address
lines (such as 40-bit), a general trend amongst systems is for address
spaces to be growing (for example, compare the Xilinx Zynq-7000 [41]
with the newer Zynq UltraScale+ [42] SoCs). However, as an address
space has a potential to be far smaller than the requirements for per-
sistent storage memory, this must be considered if implementing this
type of mapping, potentially using a paging scheme to bring storage
into scope only as it is used, and to continually remap the addressable
region as necessary. Any additional memory mapped peripherals in a
system must also be taken into account, further limiting the potential
contiguous free space in a small address map.

To create an effective mapping from a plain CPU memory region into
addressable storage, a Storage Memory Management Unit (SMMU) is
proposed. Such a peripheral could be added as an additional layer in
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Figure 5.2: Proposed hardware storage architecture design

the memory hierarchy, translating CPU-physical but storage-virtual
addresses into storage-physical addresses, which refer to specific
blocks of data on a storage device.

5.2.2 Hardware Support

The proposed architecture changes require a higher level of hardware
support than is currently necessary for storage in a typical system, in
order to translate memory requests to storage devices accesses, and
potentially to accelerate further storage operations.

On top of the translation functions of the SMMU, file system and
storage management operations can optionally be placed in either
hardware or software, creating a mapping from some concept of
‘files’ to blocks or areas on the storage device. While a hardware im-
plementation could offer performance benefits and allow for more
optimisations to be performed at a lower level, this type of functional-
ity is challenging to create and less flexible than a software alternative.
The use of embedded soft processor cores can offer a reasonable
compromise in this area, as demonstrated in Section 4.7.

The memory available to hardware components for buffering data
as storage requests are serviced is another consideration for such a
system. As block storage devices are inherently addressed by block
number rather than absolute address, there must always be a buffer
available to hold a block if it is to be accessed in a byte-addressable
manner. Many development platforms have additional memory that
could be used to this effect, such as secondary DDR RAM, SRAM
scratchpad memories, or more-limited block RAMs within FPGA logic.



176 conclusions and future work

To achieve the above, the architecture shown in Figure 5.2 is pro-
posed, with the SMMU comprising a storage manager for overall
control, a translation unit to provide address translation functionality,
and a storage interface, including buffers and caches as required by
any block-level storage device below. As the SMMU is at a lower
level in the memory hierarchy than the main system MMU, addresses
coming from the CPU are in its physical domain, but are still virtual
in terms of storage. These are then translated to storage-physical ad-
dresses by the translation unit, based on the current system context as
decided by the storage manager, before being passed to the storage
interface for requests to be serviced.

5.2.3 Operating System Support

In order for files to be addressable through a memory interface, a
certain level of operating system support is required. The extent of
changes needed at the operating system level involves, at a minimum,
modifications being made to storage and memory management in
order for devices to be accessed effectively. In order for storage to
be accessible securely in a multi-process environment, the operating
system must inform the storage manager of the current system state,
so translation tables for a specific process and files can be loaded if
necessary.

5.2.4 Hardware Device Acceleration

With appropriate low-level hardware support, the memory-mapping
of storage devices may go further than being limited to the oper-
ating system’s perspective, allowing other system devices to access
storage via the memory-mapped interface through DMA. This could
potentially allow for devices such as network controllers to send
packets directly into persistent storage, even adding intermediate
hardware-accelerators for processing data, while being controlled by
an operating system treating both volatile and non-volatile memory
as a single resource.

5.2.5 Hardware Architecture Implementation

The major challenge of this area of future work is an implementation
of the proposed storage architecture design, allowing for it to be
thoroughly evaluated and further refined through experimentation.
Such an implementation could feasibly be performed on the same
platform as the storage coprocessor experiments in Chapter 4, and
also reuse the MicroBlaze NVMe driver as a method to access storage
hardware.
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5.3 Other Future Work

There are a number of areas of future work identified by the thesis,
some raised from limitations of the work presented, and some as a
progression of ideas or addressing questions raised by the research.

In general, the work presented in this thesis, particularly the analysis
work in Chapter 3, motivates a large amount of future investigation
into the simplification of storage systems. The results from detailed
benchmarking and profiling, along with the examination of back-
ground literature and general storage trends, show that established
methods of accessing storage devices through operating systems are by
no means optimal, especially when considering systems that require
high levels of predictability, accountability, and efficiency.

5.3.1 Further Problem Analysis Work

While the problem analysis work presented in Chapter 3 is compre-
hensive in some respects, more work could be carried out in many
areas to extend and validate its conclusions. For example, the work
focuses on a single embedded platform and (for some experiments)
a single server platform, which gives only a basic indication of how
the results might apply in each of these domains. While the platforms
were chosen to be representative of a typical system, and are detailed
comprehensively in Appendix B, testing on a larger variety of plat-
forms, and with a larger number of different storage devices, would
give a much more comprehensive view from which to evaluate and
draw conclusions.

Additionally, the results presented in Chapter 3 only apply to the
Linux operating system, and more specifically to the exact versions
in use during the experiments. While there are many common ideas
shared between most mainstream operating system, and the pro-
gression of major features between subsequent releases of the Linux
kernel is often quite slow and measured, full conclusions about the
state of storage in Linux, or in operating systems in general, cannot
be constructed without a much larger and longer-term analysis ef-
fort. However, the results presented are still completely valid, with
this caveat, and are definitely strong enough to provide motivation
for further research and (hopefully) eventual practical changes to be
made.

Another limitation of the analysis work presented is the lack of ‘real-
world’ benchmarking, however this definition can cover such a large
number of use cases and patterns that contrived but representative
benchmarks, and the presentation of higher-level concepts, can be
much more useful as a foundation for research. It is therefore left as
future work for specific real-world tests to be found and validated,
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building upon the analysis work in this thesis, and likely experiencing
similar conclusions.

5.3.2 Storage Interface Improvements

For the alternative storage interfaces presented in Chapter 4, further
analysis and evaluation work similar to that mentioned for Chapter 3

would give greater weight to their proposal, as well as directing
areas where potential improvements could be made. As well as this,
implementations of the drivers themselves could be greatly expanded
and optimised in multiple areas, bringing them from proof-of-concept
research work to something that could be used in a wider context.
For example, the current CharIO driver is heavily tied to NVMe
storage, but a more general concept could be applied to other storage
hardware. Further work on expanding the basic user-space library
would also allow for the potential of more widespread adoption.

5.3.3 Future Platforms and Technologies

Another cause of future work, and one that is largely out of the
control of this thesis, is the ever-progressing landscape of technologies
related to storage, embedded system, and computers in general. While
experimental work presented uses a number of current technologies,
such as NVMe SSDs, modern Arm SoCs, and large FPGAs, these are
likely to change fairly rapidly over the coming years. For example,
the Zynq UltraScale+ platform ultimately used in Chapter 4 was first
announced in February 2014 [146], around four months after the start
of this EngD, with actual practical hardware and development boards
not available until nearly three years after this date. Similarly, there
have been nearly 400,000 individual commits to the mainline Linux
kernel in the five years from September 2013 (v3.12-rc3) to September
2018 (v4.19-rc4), demonstrating the speed at which operating system
development progresses, and potentially having significant effects
on the results of experiments. In such a rapidly progressing area,
technology development is continually outpacing research, to the
extent that future work can always be performed using more up-to-
date hardware and software.

One area that has the greatest potential to disrupt storage architec-
tures in coming years is the availability of cheap, fast, byte-addressable
non-volatile RAM, which could ultimately replace block-based storage
devices entirely. The current state of the art in this area is pushing
towards NVDIMM devices connected to the main memory bus of
general-purpose computers [144], allowing both for traditional uses of
RAM to become non-volatile, and for finer-grained access to data stor-
age. Commercial offerings typically currently mask more traditional
flash storage behind large volatile memory caches, but advancements
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in non-volatile memory technologies mean these could be replaced by
fully NVRAM devices soon [145]. While these storage technologies
may cause some of the analysis in this thesis to become obsolete, the
general ideas motivating the need to restructure the storage architec-
tures of operating systems will be stronger than ever.

5.4 Conclusion

This thesis has demonstrated a number of issues in general-purpose
storage architectures when applied to real-time embedded systems,
particularity in the efficiency and predictability of accessing high-
speed storage devices in an embedded Linux system. Detailed problem
analysis work motivates research in this area, highlighting a number
of problems with current implementations, while making suggestions
for how best to deal with these. Based on this analysis, a number of al-
ternative storage access methods are proposed for real-time embedded
systems. These include both user-space and hardware-based storage
drivers, and CharIO, a Linux kernel module that exposes storage as
a character device, avoiding the complexities of the block layer and
traditional file systems, and allowing more powerful access to memory
through physical addressing.
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A
Historical Trends

This appendix contains additional data to compliment that presented
in Section 1.3.

A.1 General CPU Trends

Data for the following plots was sourced from [24].

Figure A.1: CPU Dhrystone MIPS over time
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Figure A.2: CPU core counts over time
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A.2 Storage Interface Trends

Data for the following plot was sourced from [29–34].

Figure A.3: Storage interface speed progression over time
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A.3 FPGA Trends

Data for the following plots was sourced from [147–154].

Figure A.4: FPGA transistor count progression over time

Figure A.5: FPGA programmable logic size progression over time
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A.4 Hennessy-Patterson CPU Trends

Data for the following plot was sourced from [23].

Figure A.6: Relative CPU performance increase since 1978
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B
Experimental Platforms

B.1 x86-64 Server Platform

For a number of experiments in Chapters 3 and 4, an x86-64 server
platform was used for initial investigations, and to gain an impression
of performance on a standard Linux computer, as opposed to an
embedded platform.

B.1.1 Technical specifications

CPU Intel Core 2 Quad Q9450 [155]

– 4 cores at 2.66 GHz
– 32 KiB L1 instruction and data caches (per core)
– 12 MiB L2 cache (2×6 MiB shared)

Memory 4 GiB DDR3 SDRAM
PCI Express Gen. 2 (5 GT/s), x16
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Figure B.2: System architecture of the Zynq-7000 SoC test set-up

B.1.2 Server Platform Memory Performance

Figure B.1 shows the memory performance of the server platform for
different transfer sizes. The effect of the L1 and L2 caches can clearly
be seen at 32 KiB and 6 MiB.

B.2 Zynq-7000 SoC Platform

For the majority of technical and experimental work carried out in
Chapters 3 and 4, an Avnet Mini-ITX development board [43] was
used, with a Xilinx Zynq-7000 SoC [41]. Figure B.2 shows the overall
system connectivity from the Xilinx Vivado Design Suite, with the
Zynq processing system, PCIe controller, profiling timers, and BRAMs.

B.2.1 Technical specifications

SoC Xilinx XC7Z100-2FFG900

CPU Arm Cortex-A9

– 2 cores at up to 800 MHz
– 32 KiB L1 instruction and data caches (per core)
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– 512 KiB L2 cache (shared)

PS Memory 1 GiB DDR3 SDRAM
PL Memory 1 GiB DDR3 SDRAM
PCI Express Gen. 2 (5 GT/s), x4 (through PL)

B.2.2 Zynq-7000 Platform Memory Performance

The CPU side (processing system) of the Zynq-7000, along with the
DDR3 SDRAM present on the Mini-ITX board, has the following
memory characteristics.

L1 cache (per-core)

• 4-way set-associative
• 32 byte cache lines
• 64-bit interfaces
• Cache replacement policy: pseudo round-robin or pseudo-random
• 32 KiB Data

– Write-back/write-allocate only
– Physically indexed and physically tagged
– Non-blocking (four outstanding reads and four outstanding

writes)

• 32 KiB Instruction

– Virtually indexed and physically tagged

L2 cache (shared)

• Based on Arm PL310

• 512 KiB
• 8-way set-associative
• 32 byte cache lines
• Physically addressed and physically tagged
• Supports write-through and write-back
• Supports read allocate, write allocate, or read and write allocate.

Figure B.3 shows the memory performance of the Zynq-7000 plat-
form for different transfer sizes. The effect of the L1 and L2 caches
can clearly be seen at 32 KiB and 512 KiB.

For reads, the L1 and L2 caches appear to have a significant effect
on read speeds. Random accesses are far slower than sequential in L1,
but random is faster than sequential in L2 and DDR. For writes, the L1

cache does not appear to have much effect on sequential writes, but L2

does. Sequential writes are significantly faster than reads after transfer
sizes exceed the L1 cache, and continue to outperform random writes
when L2 size is also exceeded.
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Figure B.3: Memory performance of Zynq Mini-ITX development board

B.3 Zynq UltraScale+ MPSoC Platform

For the remainder of technical and experimental work carried out in
Chapter 4, including work on porting UNVMe to embedded systems,
NVMe access from a MicroBlaze soft processor core, and a platform
upon which to use as a base for a potential hardware storage archi-
tecture design, a Xilinx ZCU102 evaluation kit [44] was used, with a
Xilinx Zynq UltraScale+ MPSoC [42]. Figure B.4 shows the overall sys-
tem connectivity from the Xilinx Vivado Design Suite, with the Zynq
processing system, MicroBlaze soft-core processor, and secondary
DDR memory interface.

B.3.1 Technical specifications

SoC Xilinx XCZU9EG-2FFVB1156

APU Arm Cortex-A53

– 4 cores at up to 1.2 GHz
– 32 KiB L1 instruction and data caches (per core)
– 1 MiB L2 cache (shared)

RTPU Arm Cortex-R5

– 2 cores at up to 600 MHz
– 32 KiB L1 instruction and data caches (per core)

PS Memory 4 GiB DDR4 SDRAM
PL Memory 512 MiB DDR4 SDRAM
PCI Express Gen. 2 (5 GT/s), x4 (from PS)
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B.4 Additional Hardware

B.4.1 Storage Devices and Controllers

The following storage devices and controllers were used for the ex-
periments detailed in Chapters 3 and 4.

• StarTech 4-Port RAID Controller (PCIe Gen. 2 x2 to SATA III) [125]
• Western Digital Blue HDD 500GB (SATA III) [123]
• Intel SSD 535 Series 240GB (SATA III) [124]
• Intel SSD 750 Series 400GB (NVMe over PCIe Gen. 3 x4) [16]



C
Source Code Listings

C.1 File Copy for Profiling

copy.c

#include <fcntl.h>

int main(int argc, char *argv[]) {

int inf;

int outf;

int len;

char buf[4096];

if (argc < 3)

return 1;

inf = open(argv[1], O_RDONLY, 0);

outf = open(argv[2], O_WRONLY | O_CREAT | O_TRUNC, 0600);

do {

len = read(inf, buf, 4096);

write(outf, buf, len);

} while (len);

close(outf);

close(inf);

return 0;

}

195
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C.2 UNVMe Full-disk Read/Write Benchmark

unvme-benchmark.c

#include <stdio.h>

#include <string.h>

#include <time.h>

#include "unvme.h"

void read_benchmark() {

printf("\r\nRead benchmark running\r\n");

void *buf;

const unvme_ns_t *ns;

struct timespec start, end;

double time, bps;

u64 blocks = 0x5d27215;

u64 blocks_per_io;

u64 size, size_per_io;

ns = unvme_openq("01:00.0", 1, 1024);

blocks_per_io = ns->maxbpio * ns->maxiopq;

size = ns->blocksize * blocks;

size_per_io = ns->blocksize * blocks_per_io;

buf = unvme_alloc(ns, size_per_io);

clock_gettime(CLOCK_MONOTONIC_RAW, &start);

for (int i = 0; i < blocks; i += blocks_per_io) {

if (i + blocks_per_io <= blocks)

unvme_read(ns, 0, buf, i, blocks_per_io);

else

unvme_read(ns, 0, buf, i, blocks - i);

}

clock_gettime(CLOCK_MONOTONIC_RAW, &end);

time = (double)((end.tv_sec * 1000000000LL + end.tv_nsec) -

(start.tv_sec * 1000000000LL + start.tv_nsec)) /

1000000000.0;

bps = size / time / (1024.0 * 1024.0);

printf("Reading %llu bytes took %.3lf seconds - "

"%.3lf MiB/s\r\n", size, time, bps);

unvme_free(ns, buf);

unvme_close(ns);

printf("\r\nRead benchmark done.\r\n");

}
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void write_benchmark() {

printf("\r\nWrite benchmark running\r\n");

void *buf;

const unvme_ns_t *ns;

struct timespec start, end;

double time, bps;

u64 blocks = 0x5d27215;

u64 blocks_per_io;

u64 size, size_per_io;

ns = unvme_openq("01:00.0", 1, 1024);

blocks_per_io = ns->maxbpio * ns->maxiopq;

size = ns->blocksize * blocks;

size_per_io = ns->blocksize * blocks_per_io;

buf = unvme_alloc(ns, size_per_io);

clock_gettime(CLOCK_MONOTONIC_RAW, &start);

for (int i = 0; i < blocks; i += blocks_per_io) {

if (i + blocks_per_io <= blocks)

unvme_write(ns, 0, buf, i, blocks_per_io);

else

unvme_write(ns, 0, buf, i, blocks - i);

}

clock_gettime(CLOCK_MONOTONIC_RAW, &end);

time = (double)((end.tv_sec * 1000000000LL + end.tv_nsec) -

(start.tv_sec * 1000000000LL + start.tv_nsec)) /

1000000000.0;

bps = size / time / (1024.0 * 1024.0);

printf("Writing %llu bytes took %.3lf seconds - "

"%.3lf MiB/s\r\n", size, time, bps);

unvme_free(ns, buf);

unvme_close(ns);

printf("\r\nWrite benchmark done.\r\n");

}

int main() {

read_benchmark();

write_benchmark();

return 0;

}
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C.3 Filebench Benchmark Workloads

Information about the Filebench Workload Model Language (WML)
can be found at [156]. The original predefined workload sources
(including licence information), on which the following are based, can
be found online with the Filebench source code at [10].

C.3.1 Web server (webserver.f )

set $runtime=3600

set $dir=/mnt/nvme

set $nfiles=600000

set $meandirwidth=20

set $filesize=cvar(type=cvar-gamma-aligned,parameters=mean:16384;gamma

:1.5;align:4096)

set $nthreads=50

set $iosize=1m

set $meanappendsize=16k

define fileset name=bigfileset,path=$dir,size=$filesize,entries=$nfiles,

dirwidth=$meandirwidth,prealloc=100,readonly

define fileset name=logfiles,path=$dir,size=$filesize,entries=1,dirwidth=

$meandirwidth,prealloc

define process name=filereader,instances=1

{

thread name=filereaderthread,memsize=10m,instances=$nthreads

{

flowop openfile name=openfile1,filesetname=bigfileset,fd=1

flowop readwholefile name=readfile1,fd=1,iosize=$iosize

flowop closefile name=closefile1,fd=1

flowop openfile name=openfile2,filesetname=bigfileset,fd=1

flowop readwholefile name=readfile2,fd=1,iosize=$iosize

flowop closefile name=closefile2,fd=1

flowop openfile name=openfile3,filesetname=bigfileset,fd=1

flowop readwholefile name=readfile3,fd=1,iosize=$iosize

flowop closefile name=closefile3,fd=1

flowop openfile name=openfile4,filesetname=bigfileset,fd=1

flowop readwholefile name=readfile4,fd=1,iosize=$iosize

flowop closefile name=closefile4,fd=1

flowop openfile name=openfile5,filesetname=bigfileset,fd=1

flowop readwholefile name=readfile5,fd=1,iosize=$iosize

flowop closefile name=closefile5,fd=1

flowop openfile name=openfile6,filesetname=bigfileset,fd=1

flowop readwholefile name=readfile6,fd=1,iosize=$iosize

flowop closefile name=closefile6,fd=1

flowop openfile name=openfile7,filesetname=bigfileset,fd=1

flowop readwholefile name=readfile7,fd=1,iosize=$iosize

flowop closefile name=closefile7,fd=1

flowop openfile name=openfile8,filesetname=bigfileset,fd=1

flowop readwholefile name=readfile8,fd=1,iosize=$iosize

flowop closefile name=closefile8,fd=1

flowop openfile name=openfile9,filesetname=bigfileset,fd=1



C.3 filebench benchmark workloads 199

flowop readwholefile name=readfile9,fd=1,iosize=$iosize

flowop closefile name=closefile9,fd=1

flowop openfile name=openfile10,filesetname=bigfileset,fd=1

flowop readwholefile name=readfile10,fd=1,iosize=$iosize

flowop closefile name=closefile10,fd=1

flowop appendfilerand name=appendlog,filesetname=logfiles,iosize=

$meanappendsize,fd=2

}

}

echo "Web-server Version 3.1 personality successfully loaded"

echo "Working directory: $dir"

echo "Removing old files..."

system "rm -rf $dir/*"

system "sync"

echo "Trimming SSD..."

system "fstrim -v $dir"

echo "Creating filesets..."

create files

echo "Dropping system caches..."

system "sync"

system "echo 3 > /proc/sys/vm/drop_caches"

echo "Running benchmark for $runtime seconds..."

run $runtime

C.3.2 Web server direct I/O (webserver-direct.f )

set $runtime=3600

set $dir=/mnt/nvme

set $nfiles=600000

set $meandirwidth=20

set $filesize=cvar(type=cvar-gamma,parameters=mean:16384;gamma:1.5)

set $nthreads=50

set $iosize=1m

set $meanappendsize=16k

define fileset name=bigfileset,path=$dir,size=$filesize,entries=$nfiles,

dirwidth=$meandirwidth,prealloc=100,readonly

define fileset name=logfiles,path=$dir,size=$filesize,entries=1,dirwidth=

$meandirwidth,prealloc

define process name=filereader,instances=1

{

thread name=filereaderthread,memsize=10m,instances=$nthreads

{

flowop openfile name=openfile1,filesetname=bigfileset,fd=1,directio

flowop readwholefile name=readfile1,fd=1,iosize=$iosize,directio

flowop closefile name=closefile1,fd=1

flowop openfile name=openfile2,filesetname=bigfileset,fd=1,directio

flowop readwholefile name=readfile2,fd=1,iosize=$iosize,directio

flowop closefile name=closefile2,fd=1

flowop openfile name=openfile3,filesetname=bigfileset,fd=1,directio

flowop readwholefile name=readfile3,fd=1,iosize=$iosize,directio
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flowop closefile name=closefile3,fd=1

flowop openfile name=openfile4,filesetname=bigfileset,fd=1,directio

flowop readwholefile name=readfile4,fd=1,iosize=$iosize,directio

flowop closefile name=closefile4,fd=1

flowop openfile name=openfile5,filesetname=bigfileset,fd=1,directio

flowop readwholefile name=readfile5,fd=1,iosize=$iosize,directio

flowop closefile name=closefile5,fd=1

flowop openfile name=openfile6,filesetname=bigfileset,fd=1,directio

flowop readwholefile name=readfile6,fd=1,iosize=$iosize,directio

flowop closefile name=closefile6,fd=1

flowop openfile name=openfile7,filesetname=bigfileset,fd=1,directio

flowop readwholefile name=readfile7,fd=1,iosize=$iosize,directio

flowop closefile name=closefile7,fd=1

flowop openfile name=openfile8,filesetname=bigfileset,fd=1,directio

flowop readwholefile name=readfile8,fd=1,iosize=$iosize,directio

flowop closefile name=closefile8,fd=1

flowop openfile name=openfile9,filesetname=bigfileset,fd=1,directio

flowop readwholefile name=readfile9,fd=1,iosize=$iosize,directio

flowop closefile name=closefile9,fd=1

flowop openfile name=openfile10,filesetname=bigfileset,fd=1,directio

flowop readwholefile name=readfile10,fd=1,iosize=$iosize,directio

flowop closefile name=closefile10,fd=1

flowop appendfilerand name=appendlog,filesetname=logfiles,iosize=

$meanappendsize,fd=2,directio

}

}

echo "Web-server Direct I/O Version 3.1 personality successfully loaded"

echo "Working directory: $dir"

echo "Removing old files..."

system "rm -rf $dir/*"

system "sync"

echo "Trimming SSD..."

system "fstrim -v $dir"

echo "Creating filesets..."

create files

echo "Dropping system caches..."

system "sync"

system "echo 3 > /proc/sys/vm/drop_caches"

echo "Running benchmark for $runtime seconds..."

run $runtime

C.3.3 File server (fileserver.f )

set $runtime=3600

set $dir=/mnt/nvme

set $nfiles=80000

set $meandirwidth=20

set $filesize=cvar(type=cvar-gamma,parameters=mean:131072;gamma:1.5)

set $nthreads=50

set $iosize=1m

set $meanappendsize=16k
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define fileset name=bigfileset,path=$dir,size=$filesize,entries=$nfiles,

dirwidth=$meandirwidth,prealloc=80

define process name=filereader,instances=1

{

thread name=filereaderthread,memsize=10m,instances=$nthreads

{

flowop createfile name=createfile1,filesetname=bigfileset,fd=1

flowop writewholefile name=wrtfile1,srcfd=1,fd=1,iosize=$iosize

flowop closefile name=closefile1,fd=1

flowop openfile name=openfile1,filesetname=bigfileset,fd=1

flowop appendfilerand name=appendfilerand1,iosize=$meanappendsize,fd

=1

flowop closefile name=closefile2,fd=1

flowop openfile name=openfile2,filesetname=bigfileset,fd=1

flowop readwholefile name=readfile1,fd=1,iosize=$iosize

flowop closefile name=closefile3,fd=1

flowop deletefile name=deletefile1,filesetname=bigfileset

flowop statfile name=statfile1,filesetname=bigfileset

}

}

echo "File-server Version 3.0 personality successfully loaded"

echo "Working directory: $dir"

echo "Removing old files..."

system "rm -rf $dir/*"

system "sync"

echo "Trimming SSD..."

system "fstrim -v $dir"

echo "Creating filesets..."

create files

echo "Dropping system caches..."

system "sync"

system "echo 3 > /proc/sys/vm/drop_caches"

echo "Running benchmark for $runtime seconds..."

run $runtime

C.3.4 File server direct I/O (fileserver-direct.f )

set $runtime=3600

set $dir=/mnt/nvme

set $nfiles=80000

set $meandirwidth=20

set $filesize=cvar(type=cvar-gamma-aligned,parameters=mean:131072;gamma

:1.5;align:4096)

set $nthreads=50

set $iosize=1m

set $meanappendsize=16k

define fileset name=bigfileset,path=$dir,size=$filesize,entries=$nfiles,

dirwidth=$meandirwidth,prealloc=80

define process name=filereader,instances=1
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{

thread name=filereaderthread,memsize=10m,instances=$nthreads

{

flowop createfile name=createfile1,filesetname=bigfileset,fd=1,

directio

flowop writewholefile name=wrtfile1,srcfd=1,fd=1,iosize=$iosize,

directio

flowop closefile name=closefile1,fd=1

flowop openfile name=openfile1,filesetname=bigfileset,fd=1,directio

flowop appendfilerand name=appendfilerand1,iosize=$meanappendsize,fd

=1,directio

flowop closefile name=closefile2,fd=1

flowop openfile name=openfile2,filesetname=bigfileset,fd=1,directio

flowop readwholefile name=readfile1,fd=1,iosize=$iosize,directio

flowop closefile name=closefile3,fd=1

flowop deletefile name=deletefile1,filesetname=bigfileset

flowop statfile name=statfile1,filesetname=bigfileset

}

}

echo "File-server Direct I/O Version 3.0 personality successfully loaded

"

echo "Working directory: $dir"

echo "Removing old files..."

system "rm -rf $dir/*"

system "sync"

echo "Trimming SSD..."

system "fstrim -v $dir"

echo "Creating filesets..."

create files

echo "Dropping system caches..."

system "sync"

system "echo 3 > /proc/sys/vm/drop_caches"

echo "Running benchmark for $runtime seconds..."

run $runtime

C.3.5 Mail server (varmail.f )

set $runtime=3600

set $dir=/mnt/nvme

set $nfiles=600000

set $meandirwidth=1000000

set $filesize=cvar(type=cvar-gamma,parameters=mean:16384;gamma:1.5)

set $nthreads=16

set $iosize=1m

set $meanappendsize=16k

define fileset name=bigfileset,path=$dir,size=$filesize,entries=$nfiles,

dirwidth=$meandirwidth,prealloc=80

define process name=filereader,instances=1

{

thread name=filereaderthread,memsize=10m,instances=$nthreads
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{

flowop deletefile name=deletefile1,filesetname=bigfileset

flowop createfile name=createfile2,filesetname=bigfileset,fd=1

flowop appendfilerand name=appendfilerand2,iosize=$meanappendsize,fd

=1

flowop fsync name=fsyncfile2,fd=1

flowop closefile name=closefile2,fd=1

flowop openfile name=openfile3,filesetname=bigfileset,fd=1

flowop readwholefile name=readfile3,fd=1,iosize=$iosize

flowop appendfilerand name=appendfilerand3,iosize=$meanappendsize,fd

=1

flowop fsync name=fsyncfile3,fd=1

flowop closefile name=closefile3,fd=1

flowop openfile name=openfile4,filesetname=bigfileset,fd=1

flowop readwholefile name=readfile4,fd=1,iosize=$iosize

flowop closefile name=closefile4,fd=1

}

}

echo "Varmail Version 3.0 personality successfully loaded"

echo "Working directory: $dir"

echo "Removing old files..."

system "rm -rf $dir/*"

system "sync"

echo "Trimming SSD..."

system "fstrim -v $dir"

echo "Creating filesets..."

create files

echo "Dropping system caches..."

system "sync"

system "echo 3 > /proc/sys/vm/drop_caches"

echo "Running benchmark for $runtime seconds..."

run $runtime

C.3.6 Mail server direct I/O (varmail-direct.f )

set $runtime=3600

set $dir=/mnt/nvme

set $nfiles=600000

set $meandirwidth=1000000

set $filesize=cvar(type=cvar-gamma-aligned,parameters=mean:16384;gamma

:1.5;align:4096)

set $nthreads=16

set $iosize=1m

set $meanappendsize=16k

define fileset name=bigfileset,path=$dir,size=$filesize,entries=$nfiles,

dirwidth=$meandirwidth,prealloc=80

define process name=filereader,instances=1

{

thread name=filereaderthread,memsize=10m,instances=$nthreads

{



204 source code listings

flowop deletefile name=deletefile1,filesetname=bigfileset

flowop createfile name=createfile2,filesetname=bigfileset,fd=1,

directio

flowop appendfilerand name=appendfilerand2,iosize=$meanappendsize,fd

=1,directio

flowop fsync name=fsyncfile2,fd=1

flowop closefile name=closefile2,fd=1

flowop openfile name=openfile3,filesetname=bigfileset,fd=1,directio

flowop readwholefile name=readfile3,fd=1,iosize=$iosize,directio

flowop appendfilerand name=appendfilerand3,iosize=$meanappendsize,fd

=1,directio

flowop fsync name=fsyncfile3,fd=1

flowop closefile name=closefile3,fd=1

flowop openfile name=openfile4,filesetname=bigfileset,fd=1,directio

flowop readwholefile name=readfile4,fd=1,iosize=$iosize,directio

flowop closefile name=closefile4,fd=1

}

}

echo "Varmail Direct I/O Version 3.0 personality successfully loaded"

echo "Working directory: $dir"

echo "Removing old files..."

system "rm -rf $dir/*"

system "sync"

echo "Trimming SSD..."

system "fstrim -v $dir"

echo "Creating filesets..."

create files

echo "Dropping system caches..."

system "sync"

system "echo 3 > /proc/sys/vm/drop_caches"

echo "Running benchmark for $runtime seconds..."

run $runtime

C.3.7 Video server (videoserver.f )

set $runtime=3600

set $dir=/mnt/nvme

set $eventrate=96

set $filesize=10g

set $nthreads=48

set $numactivevids=8

set $numpassivevids=28

set $reuseit=false

set $readiosize=256k

set $writeiosize=1m

set $passvidsname=passivevids

set $actvidsname=activevids

set $repintval=10

eventgen rate=$eventrate
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define fileset name=$actvidsname,path=$dir,size=$filesize,entries=

$numactivevids,dirwidth=4,prealloc,paralloc,reuse=$reuseit

define fileset name=$passvidsname,path=$dir,size=$filesize,entries=

$numpassivevids,dirwidth=20,prealloc=50,paralloc,reuse=$reuseit

define process name=vidwriter,instances=1

{

thread name=vidwriter,memsize=10m,instances=1

{

flowop deletefile name=vidremover,filesetname=$passvidsname

flowop createfile name=wrtopen,filesetname=$passvidsname,fd=1

flowop writewholefile name=newvid,iosize=$writeiosize,fd=1,srcfd=1

flowop closefile name=wrtclose, fd=1

flowop delay name=replaceinterval, value=$repintval

}

}

define process name=vidreaders,instances=1

{

thread name=vidreaders,memsize=10m,instances=$nthreads

{

flowop read name=vidreader,filesetname=$actvidsname,iosize=

$readiosize

flowop bwlimit name=serverlimit, target=vidreader

}

}

echo "Video Server Version 3.0 personality successfully loaded"

echo "Working directory: $dir"

echo "Removing old files..."

system "rm -rf $dir/*"

system "sync"

echo "Trimming SSD..."

system "fstrim -v $dir"

echo "Creating filesets..."

create files

echo "Dropping system caches..."

system "sync"

system "echo 3 > /proc/sys/vm/drop_caches"

echo "Running benchmark for $runtime seconds..."

run $runtime

C.3.8 Video server direct I/O (videoserver-direct.f )

set $runtime=3600

set $dir=/mnt/nvme

set $eventrate=96

set $filesize=10g

set $nthreads=48

set $numactivevids=8

set $numpassivevids=28

set $reuseit=false
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set $readiosize=256k

set $writeiosize=1m

set $passvidsname=passivevids

set $actvidsname=activevids

set $repintval=10

eventgen rate=$eventrate

define fileset name=$actvidsname,path=$dir,size=$filesize,entries=

$numactivevids,dirwidth=4,prealloc,paralloc,reuse=$reuseit

define fileset name=$passvidsname,path=$dir,size=$filesize,entries=

$numpassivevids,dirwidth=20,prealloc=50,paralloc,reuse=$reuseit

define process name=vidwriter,instances=1

{

thread name=vidwriter,memsize=10m,instances=1

{

flowop deletefile name=vidremover,filesetname=$passvidsname

flowop createfile name=wrtopen,filesetname=$passvidsname,fd=1,

directio

flowop writewholefile name=newvid,iosize=$writeiosize,fd=1,srcfd=1,

directio

flowop closefile name=wrtclose, fd=1

flowop delay name=replaceinterval, value=$repintval

}

}

define process name=vidreaders,instances=1

{

thread name=vidreaders,memsize=10m,instances=$nthreads

{

flowop read name=vidreader,filesetname=$actvidsname,iosize=

$readiosize,directio

flowop bwlimit name=serverlimit, target=vidreader

}

}

echo "Video Server Direct I/O Version 3.0 personality successfully

loaded"

echo "Working directory: $dir"

echo "Removing old files..."

system "rm -rf $dir/*"

system "sync"

echo "Trimming SSD..."

system "fstrim -v $dir"

echo "Creating filesets..."

create files

echo "Dropping system caches..."

system "sync"

system "echo 3 > /proc/sys/vm/drop_caches"

echo "Running benchmark for $runtime seconds..."

run $runtime
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C.3.9 Network file server (netsfs.f )

set $runtime=3600

set $dir=/mnt/nvme

set $eventrate=10

set $meandirwidth=20

set $nthreads=1

set $nfiles=400000

set $sync=false

eventgen rate=$eventrate

set $wrtiosize = randvar(type=tabular, min=1k, round=1k, randtable =

{{ 0, 1k, 7k},

{50, 9k, 15k},

{14, 17k, 23k},

{14, 33k, 39k},

{12, 65k, 71k},

{10, 129k, 135k}

})

set $rdiosize = randvar(type=tabular, min=8k, round=1k, randtable =

{{85, 8k, 8k},

{ 8, 17k, 23k},

{ 4, 33k, 39k},

{ 2, 65k, 71k},

{ 1, 129k, 135k}

})

set $filesize = randvar(type=tabular, min=1k, round=1k, randtable =

{{33, 1k, 1k},

{21, 1k, 3k},

{13, 3k, 5k},

{10, 5k, 11k},

{08, 11k, 21k},

{05, 21k, 43k},

{04, 43k, 85k},

{03, 85k, 171k},

{02, 171k, 341k},

{01, 341k, 1707k}

})

set $fileidx = randvar(type=gamma, min=0, gamma=100)

define fileset name=bigfileset,path=$dir,size=$filesize,entries=$nfiles,

dirwidth=$meandirwidth,prealloc=60

define flowop name=rmw

{

flowop openfile name=openfile1,filesetname=bigfileset,indexed=$fileidx,

fd=1

flowop readwholefile name=readfile1,iosize=$rdiosize,fd=1

flowop createfile name=newfile2,filesetname=bigfileset,indexed=$fileidx

,fd=2
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flowop writewholefile name=writefile2,fd=2,iosize=$wrtiosize,srcfd=1

flowop closefile name=closefile1,fd=1

flowop closefile name=closefile2,fd=2

flowop deletefile name=deletefile1,fd=1

}

define flowop name=launch

{

flowop openfile name=openfile3,filesetname=bigfileset,indexed=$fileidx,

fd=3

flowop readwholefile name=readfile3,iosize=$rdiosize,fd=3

flowop openfile name=openfile4,filesetname=bigfileset,indexed=$fileidx,

fd=4

flowop readwholefile name=readfile4,iosize=$rdiosize,fd=4

flowop closefile name=closefile3,fd=3

flowop openfile name=openfile5,filesetname=bigfileset,indexed=$fileidx,

fd=5

flowop readwholefile name=readfile5,iosize=$rdiosize,fd=5

flowop closefile name=closefile4,fd=4

flowop closefile name=closefile5,fd=5

}

define flowop name=appnd

{

flowop openfile name=openfile6,filesetname=bigfileset,indexed=$fileidx,

fd=6

flowop appendfilerand name=appendfilerand6,iosize=$wrtiosize,fd=6

flowop closefile name=closefile6,fd=6

}

define process name=netclient,instances=1

{

thread name=fileuser,memsize=10m,instances=$nthreads

{

flowop launch name=launch1, iters=1

flowop rmw name=rmw1, iters=6

flowop appnd name=appnd1, iters=3

flowop statfile name=statfile1,filesetname=bigfileset,indexed=

$fileidx

flowop eventlimit name=ratecontrol

}

}

echo "NetworkFileServer Version 1.0 personality successfully loaded"

echo "Working directory: $dir"

echo "Removing old files..."

system "rm -rf $dir/*"

system "sync"

echo "Trimming SSD..."

system "fstrim -v $dir"

echo "Creating filesets..."

create files

echo "Dropping system caches..."

system "sync"

system "echo 3 > /proc/sys/vm/drop_caches"



C.3 filebench benchmark workloads 209

echo "Running benchmark for $runtime seconds..."

run $runtime

C.3.10 Network file server direct I/O (netsfs-direct.f )

set $runtime=3600

set $dir=/mnt/nvme

set $eventrate=10

set $meandirwidth=20

set $nthreads=1

set $nfiles=400000

set $sync=false

eventgen rate=$eventrate

set $wrtiosize = randvar(type=tabular, min=4k, round=4k, randtable =

{{ 0, 1k, 7k},

{50, 9k, 15k},

{14, 17k, 23k},

{14, 33k, 39k},

{12, 65k, 71k},

{10, 129k, 135k}

})

set $rdiosize = randvar(type=tabular, min=8k, round=4k, randtable =

{{85, 8k, 8k},

{ 8, 17k, 23k},

{ 4, 33k, 39k},

{ 2, 65k, 71k},

{ 1, 129k, 135k}

})

set $filesize = randvar(type=tabular, min=4k, round=4k, randtable =

{{33, 1k, 1k},

{21, 1k, 3k},

{13, 3k, 5k},

{10, 5k, 11k},

{08, 11k, 21k},

{05, 21k, 43k},

{04, 43k, 85k},

{03, 85k, 171k},

{02, 171k, 341k},

{01, 341k, 1707k}

})

set $fileidx = randvar(type=gamma, min=0, gamma=100)

define fileset name=bigfileset,path=$dir,size=$filesize,entries=$nfiles,

dirwidth=$meandirwidth,prealloc=60

define flowop name=rmw

{

flowop openfile name=openfile1,filesetname=bigfileset,indexed=$fileidx,

fd=1

flowop readwholefile name=readfile1,iosize=$rdiosize,fd=1
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flowop createfile name=newfile2,filesetname=bigfileset,indexed=$fileidx

,fd=2

flowop writewholefile name=writefile2,fd=2,iosize=$wrtiosize,srcfd=1

flowop closefile name=closefile1,fd=1

flowop closefile name=closefile2,fd=2

flowop deletefile name=deletefile1,fd=1

}

define flowop name=launch

{

flowop openfile name=openfile3,filesetname=bigfileset,indexed=$fileidx,

fd=3,directio

flowop readwholefile name=readfile3,iosize=$rdiosize,fd=3,directio

flowop openfile name=openfile4,filesetname=bigfileset,indexed=$fileidx,

fd=4,directio

flowop readwholefile name=readfile4,iosize=$rdiosize,fd=4,directio

flowop closefile name=closefile3,fd=3

flowop openfile name=openfile5,filesetname=bigfileset,indexed=$fileidx,

fd=5,directio

flowop readwholefile name=readfile5,iosize=$rdiosize,fd=5,directio

flowop closefile name=closefile4,fd=4

flowop closefile name=closefile5,fd=5

}

define flowop name=appnd

{

flowop openfile name=openfile6,filesetname=bigfileset,indexed=$fileidx,

fd=6,directio

flowop appendfilerand name=appendfilerand6,iosize=$wrtiosize,fd=6,

directio

flowop closefile name=closefile6,fd=6

}

define process name=netclient,instances=1

{

thread name=fileuser,memsize=10m,instances=$nthreads

{

flowop launch name=launch1, iters=1

flowop rmw name=rmw1, iters=6,directio

flowop appnd name=appnd1, iters=3,directio

flowop statfile name=statfile1,filesetname=bigfileset,indexed=

$fileidx

flowop eventlimit name=ratecontrol

}

}

echo "NetworkFileServer Version 1.0 personality successfully loaded"

echo "Working directory: $dir"

echo "Removing old files..."

system "rm -rf $dir/*"

system "sync"

echo "Trimming SSD..."

system "fstrim -v $dir"

echo "Creating filesets..."

create files

echo "Dropping system caches..."
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system "sync"

system "echo 3 > /proc/sys/vm/drop_caches"

echo "Running benchmark for $runtime seconds..."

run $runtime

C.3.11 Web proxy (webproxy.f )

set $runtime=3600

set $dir=/mnt/nvme

set $nfiles=600000

set $meandirwidth=1000000

set $meanfilesize=16k

set $nthreads=80

set $meaniosize=16k

set $iosize=1m

define fileset name=bigfileset,path=$dir,size=$meanfilesize,entries=

$nfiles,dirwidth=$meandirwidth,prealloc=80

define process name=proxycache,instances=1

{

thread name=proxycache,memsize=10m,instances=$nthreads

{

flowop deletefile name=deletefile1,filesetname=bigfileset

flowop createfile name=createfile1,filesetname=bigfileset,fd=1

flowop appendfilerand name=appendfilerand1,iosize=$meaniosize,fd=1

flowop closefile name=closefile1,fd=1

flowop openfile name=openfile2,filesetname=bigfileset,fd=1

flowop readwholefile name=readfile2,fd=1,iosize=$iosize

flowop closefile name=closefile2,fd=1

flowop openfile name=openfile3,filesetname=bigfileset,fd=1

flowop readwholefile name=readfile3,fd=1,iosize=$iosize

flowop closefile name=closefile3,fd=1

flowop openfile name=openfile4,filesetname=bigfileset,fd=1

flowop readwholefile name=readfile4,fd=1,iosize=$iosize

flowop closefile name=closefile4,fd=1

flowop openfile name=openfile5,filesetname=bigfileset,fd=1

flowop readwholefile name=readfile5,fd=1,iosize=$iosize

flowop closefile name=closefile5,fd=1

flowop openfile name=openfile6,filesetname=bigfileset,fd=1

flowop readwholefile name=readfile6,fd=1,iosize=$iosize

flowop closefile name=closefile6,fd=1

flowop opslimit name=limit

}

}

echo "Web proxy-server Version 3.0 personality successfully loaded"

echo "Working directory: $dir"

echo "Removing old files..."

system "rm -rf $dir/*"

system "sync"

echo "Trimming SSD..."

system "fstrim -v $dir"
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echo "Creating filesets..."

create files

echo "Dropping system caches..."

system "sync"

system "echo 3 > /proc/sys/vm/drop_caches"

echo "Running benchmark for $runtime seconds..."

run $runtime

C.3.12 Web proxy direct I/O (webproxy-direct.f )

set $runtime=3600

set $dir=/mnt/nvme

set $nfiles=600000

set $meandirwidth=1000000

set $meanfilesize=16k

set $nthreads=80

set $meaniosize=16k

set $iosize=1m

define fileset name=bigfileset,path=$dir,size=$meanfilesize,entries=

$nfiles,dirwidth=$meandirwidth,prealloc=80

define process name=proxycache,instances=1

{

thread name=proxycache,memsize=10m,instances=$nthreads

{

flowop deletefile name=deletefile1,filesetname=bigfileset

flowop createfile name=createfile1,filesetname=bigfileset,fd=1,

directio

flowop appendfilerand name=appendfilerand1,iosize=$meaniosize,fd=1,

directio

flowop closefile name=closefile1,fd=1

flowop openfile name=openfile2,filesetname=bigfileset,fd=1,directio

flowop readwholefile name=readfile2,fd=1,iosize=$iosize,directio

flowop closefile name=closefile2,fd=1

flowop openfile name=openfile3,filesetname=bigfileset,fd=1,directio

flowop readwholefile name=readfile3,fd=1,iosize=$iosize,directio

flowop closefile name=closefile3,fd=1

flowop openfile name=openfile4,filesetname=bigfileset,fd=1,directio

flowop readwholefile name=readfile4,fd=1,iosize=$iosize,directio

flowop closefile name=closefile4,fd=1

flowop openfile name=openfile5,filesetname=bigfileset,fd=1,directio

flowop readwholefile name=readfile5,fd=1,iosize=$iosize,directio

flowop closefile name=closefile5,fd=1

flowop openfile name=openfile6,filesetname=bigfileset,fd=1,directio

flowop readwholefile name=readfile6,fd=1,iosize=$iosize,directio

flowop closefile name=closefile6,fd=1

flowop opslimit name=limit

}

}

echo "Web proxy-server Direct I/O Version 3.0 personality successfully

loaded"
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echo "Working directory: $dir"

echo "Removing old files..."

system "rm -rf $dir/*"

system "sync"

echo "Trimming SSD..."

system "fstrim -v $dir"

echo "Creating filesets..."

create files

echo "Dropping system caches..."

system "sync"

system "echo 3 > /proc/sys/vm/drop_caches"

echo "Running benchmark for $runtime seconds..."

run $runtime

C.3.13 OLTP database (oltp.f )

set $runtime=3600

set $dir=/mnt/nvme

set $eventrate=0

set $iosize=2k

set $nshadows=200

set $ndbwriters=10

set $usermode=200000

set $filesize=10m

set $memperthread=1m

set $workingset=0

set $logfilesize=10m

set $nfiles=1000

set $nlogfiles=1

set $directio=0

eventgen rate = $eventrate

# Define a datafile and logfile

define fileset name=datafiles,path=$dir,size=$filesize,entries=$nfiles,

dirwidth=1024,prealloc=100,reuse

define fileset name=logfile,path=$dir,size=$logfilesize,entries=

$nlogfiles,dirwidth=1024,prealloc=100,reuse

define process name=lgwr,instances=1

{

thread name=lgwr,memsize=$memperthread

{

flowop aiowrite name=lg-write,filesetname=logfile,

iosize=256k,random,directio=$directio,dsync

flowop aiowait name=lg-aiowait

flowop semblock name=lg-block,value=3200,highwater=1000

}

}

# Define database writer processes

define process name=dbwr,instances=$ndbwriters

{

thread name=dbwr,memsize=$memperthread
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{

flowop aiowrite name=dbwrite-a,filesetname=datafiles,

iosize=$iosize,workingset=$workingset,random,iters=100,opennext,

directio=$directio,dsync

flowop hog name=dbwr-hog,value=10000

flowop semblock name=dbwr-block,value=1000,highwater=2000

flowop aiowait name=dbwr-aiowait

}

}

define process name=shadow,instances=$nshadows

{

thread name=shadow,memsize=$memperthread

{

flowop read name=shadowread,filesetname=datafiles,

iosize=$iosize,workingset=$workingset,random,opennext,directio=

$directio

flowop hog name=shadowhog,value=$usermode

flowop sempost name=shadow-post-lg,value=1,target=lg-block,blocking

flowop sempost name=shadow-post-dbwr,value=1,target=dbwr-block,

blocking

flowop eventlimit name=random-rate

}

}

echo "OLTP Version 3.0 personality successfully loaded"

echo "Working directory: $dir"

echo "Removing old files..."

system "rm -rf $dir/*"

system "sync"

echo "Trimming SSD..."

system "fstrim -v $dir"

echo "Creating filesets..."

create files

echo "Dropping system caches..."

system "sync"

system "echo 3 > /proc/sys/vm/drop_caches"

echo "Running benchmark for $runtime seconds..."

run $runtime

C.3.14 OLTP database direct I/O (oltp-direct.f )

set $runtime=3600

set $dir=/mnt/nvme

set $eventrate=0

set $iosize=4k

set $nshadows=200

set $ndbwriters=10

set $usermode=200000

set $filesize=10m

set $memperthread=1m

set $workingset=0

set $logfilesize=10m
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set $nfiles=1000

set $nlogfiles=1

set $directio=1

eventgen rate = $eventrate

# Define a datafile and logfile

define fileset name=datafiles,path=$dir,size=$filesize,entries=$nfiles,

dirwidth=1024,prealloc=100,reuse

define fileset name=logfile,path=$dir,size=$logfilesize,entries=

$nlogfiles,dirwidth=1024,prealloc=100,reuse

define process name=lgwr,instances=1

{

thread name=lgwr,memsize=$memperthread

{

flowop aiowrite name=lg-write,filesetname=logfile,

iosize=256k,random,directio=$directio,dsync

flowop aiowait name=lg-aiowait

flowop semblock name=lg-block,value=3200,highwater=1000

}

}

# Define database writer processes

define process name=dbwr,instances=$ndbwriters

{

thread name=dbwr,memsize=$memperthread

{

flowop aiowrite name=dbwrite-a,filesetname=datafiles,

iosize=$iosize,workingset=$workingset,random,iters=100,opennext,

directio=$directio,dsync

flowop hog name=dbwr-hog,value=10000

flowop semblock name=dbwr-block,value=1000,highwater=2000

flowop aiowait name=dbwr-aiowait

}

}

define process name=shadow,instances=$nshadows

{

thread name=shadow,memsize=$memperthread

{

flowop read name=shadowread,filesetname=datafiles,

iosize=$iosize,workingset=$workingset,random,opennext,directio=

$directio

flowop hog name=shadowhog,value=$usermode

flowop sempost name=shadow-post-lg,value=1,target=lg-block,blocking

flowop sempost name=shadow-post-dbwr,value=1,target=dbwr-block,

blocking

flowop eventlimit name=random-rate

}

}

echo "OLTP Direct I/O Version 3.0 personality successfully loaded"

echo "Working directory: $dir"

echo "Removing old files..."

system "rm -rf $dir/*"
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system "sync"

echo "Trimming SSD..."

system "fstrim -v $dir"

echo "Creating filesets..."

create files

echo "Dropping system caches..."

system "sync"

system "echo 3 > /proc/sys/vm/drop_caches"

echo "Running benchmark for $runtime seconds..."

run $runtime



D
Experimental Data

D.1 Sample Output of opreport

CPU: Core 2, speed 2664 MHz (estimated)

Counted CPU_CLK_UNHALTED events (Clock cycles when not halted)

with a unit mask of 0x00 (Unhalted core cycles) count 1000000

CPU_CLK_UNHALT...|

samples| %|

------------------

19014 100.000 copy

CPU_CLK_UNHALT...|

samples| %|

------------------

18845 99.1112 kallsyms

118 0.6206 libc-2.13.so

51 0.2682 copy

217
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D.2 Sample Per-symbol Output of opreport

CPU: Core 2, speed 2664 MHz (estimated)

Counted CPU_CLK_UNHALTED events (Clock cycles when not halted)

with a unit mask of 0x00 (Unhalted core cycles) count 1000000

samples % image name symbol name

1991 10.4729 kallsyms copy_user_generic_string

449 2.3618 kallsyms get_page_from_freelist

298 1.5675 kallsyms ext4_mark_iloc_dirty

284 1.4939 kallsyms do_raw_spin_lock

228 1.1993 kallsyms ext4_da_get_block_prep

227 1.1940 kallsyms kmem_cache_alloc

214 1.1257 kallsyms start_this_handle

203 1.0678 kallsyms ext4_ext_find_extent

173 0.9100 kallsyms ext4_ext_map_blocks

163 0.8574 kallsyms ext4_da_write_end

161 0.8469 kallsyms __radix_tree_lookup

155 0.8153 kallsyms generic_perform_write

153 0.8048 kallsyms generic_file_read_iter

148 0.7785 kallsyms ____cache_alloc

148 0.7785 kallsyms ext4_file_write_iter

146 0.7680 kallsyms __kmalloc

143 0.7522 kallsyms __alloc_pages_nodemask

143 0.7522 kallsyms arch_local_irq_save

137 0.7206 kallsyms add_to_page_cache_lru

136 0.7154 kallsyms put_page_testzero

135 0.7101 kallsyms __block_write_begin

133 0.6996 kallsyms jbd2_journal_stop

132 0.6943 kallsyms __add_to_page_cache_locked

124 0.6523 kallsyms ext4_da_write_begin

123 0.6470 kallsyms test_and_set_bit

116 0.6102 kallsyms do_get_write_access

115 0.6049 kallsyms __find_get_block

114 0.5997 kallsyms alloc_pages_current

109 0.5734 kallsyms __cache_free.isra.42

108 0.5681 kallsyms test_and_set_bit

107 0.5628 kallsyms mark_page_accessed

105 0.5523 kallsyms fsnotify

103 0.5418 kallsyms ext4_es_insert_extent

102 0.5365 kallsyms __wake_up_bit

102 0.5365 kallsyms pagecache_get_page

102 0.5365 kallsyms vfs_write

101 0.5313 kallsyms __rmqueue

101 0.5313 kallsyms copy_page_to_iter

100 0.5260 kallsyms __ext4_handle_dirty_metadata

98 0.5155 kallsyms ext4_get_inode_flags

97 0.5102 kallsyms jbd_unlock_bh_journal_head

96 0.5050 kallsyms zone_dirty_ok

91 0.4787 kallsyms ext4_es_lookup_extent

90 0.4734 kallsyms __inc_zone_state

89 0.4682 kallsyms _raw_spin_lock_irqsave

** OUTPUT TRUNCATED TO ONE PAGE **
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D.3 Server Platform Filebench Outputs

The following show raw outputs from Filebench benchmarks on the
server platform. Information about the performance metrics collected
by Filebench during benchmarking can be found at [157].

D.3.1 webserver.f server output

Filebench Version 1.5-alpha3+4kdirect

0.000: Allocated 173MB of shared memory

0.043: Web-server Version 3.1 personality successfully loaded

31.717: Populating and pre-allocating filesets

31.717: logfiles populated: 1 files, avg. dir. width = 20, avg. dir.

depth = 0.0, 0 leafdirs, 0.002MB total size

31.717: Removing logfiles tree (if exists)

31.719: Pre-allocating directories in logfiles tree

31.719: Pre-allocating files in logfiles tree

32.454: bigfileset populated: 600000 files, avg. dir. width = 20, avg.

dir. depth = 4.4, 0 leafdirs, 9392.595MB total size

32.454: Removing bigfileset tree (if exists)

32.456: Pre-allocating directories in bigfileset tree

34.135: Pre-allocating files in bigfileset tree

125.829: Waiting for pre-allocation to finish (in case of a parallel pre-

allocation)

125.829: Population and pre-allocation of filesets completed

125.850: Dropping system caches...

129.261: Running benchmark for 3600 seconds...

129.261: Attempting to create fileset more than once, ignoring

129.326: Starting 1 filereader instances

130.763: Running...

3732.233: Run took 3600 seconds...

3732.507: Per-Operation Breakdown

appendlog 6489742ops 1802ops/s 14.1mb/s 0.543ms/op

[0.008ms - 100.792ms]

closefile10 6489693ops 1802ops/s 0.0mb/s 0.011ms/op

[0.001ms - 40.197ms]

readfile10 6489696ops 1802ops/s 28.2mb/s 1.928ms/op

[0.009ms - 192.337ms]

openfile10 6489696ops 1802ops/s 0.0mb/s 0.426ms/op

[0.013ms - 643.764ms]

closefile9 6489696ops 1802ops/s 0.0mb/s 0.011ms/op

[0.001ms - 33.124ms]

readfile9 6489699ops 1802ops/s 28.2mb/s 1.925ms/op

[0.011ms - 193.451ms]

openfile9 6489699ops 1802ops/s 0.0mb/s 0.427ms/op

[0.014ms - 482.260ms]

closefile8 6489699ops 1802ops/s 0.0mb/s 0.011ms/op

[0.001ms - 39.594ms]

readfile8 6489706ops 1802ops/s 28.2mb/s 1.924ms/op

[0.011ms - 192.419ms]

openfile8 6489706ops 1802ops/s 0.0mb/s 0.427ms/op

[0.013ms - 639.902ms]

closefile7 6489707ops 1802ops/s 0.0mb/s 0.011ms/op

[0.001ms - 29.160ms]
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readfile7 6489713ops 1802ops/s 28.2mb/s 1.926ms/op

[0.010ms - 191.726ms]

openfile7 6489714ops 1802ops/s 0.0mb/s 0.428ms/op

[0.014ms - 640.048ms]

closefile6 6489714ops 1802ops/s 0.0mb/s 0.011ms/op

[0.001ms - 30.061ms]

readfile6 6489720ops 1802ops/s 28.2mb/s 1.926ms/op

[0.009ms - 192.347ms]

openfile6 6489720ops 1802ops/s 0.0mb/s 0.426ms/op

[0.014ms - 642.626ms]

closefile5 6489720ops 1802ops/s 0.0mb/s 0.011ms/op

[0.001ms - 39.608ms]

readfile5 6489722ops 1802ops/s 28.2mb/s 1.927ms/op

[0.011ms - 192.221ms]

openfile5 6489722ops 1802ops/s 0.0mb/s 0.427ms/op

[0.014ms - 641.259ms]

closefile4 6489722ops 1802ops/s 0.0mb/s 0.011ms/op

[0.001ms - 37.758ms]

readfile4 6489728ops 1802ops/s 28.2mb/s 1.927ms/op

[0.014ms - 193.954ms]

openfile4 6489728ops 1802ops/s 0.0mb/s 0.430ms/op

[0.013ms - 639.098ms]

closefile3 6489728ops 1802ops/s 0.0mb/s 0.011ms/op

[0.001ms - 44.112ms]

readfile3 6489730ops 1802ops/s 28.2mb/s 1.933ms/op

[0.016ms - 129.260ms]

openfile3 6489730ops 1802ops/s 0.0mb/s 0.431ms/op

[0.014ms - 481.341ms]

closefile2 6489730ops 1802ops/s 0.0mb/s 0.011ms/op

[0.001ms - 64.431ms]

readfile2 6489736ops 1802ops/s 28.2mb/s 1.945ms/op

[0.013ms - 128.485ms]

openfile2 6489736ops 1802ops/s 0.0mb/s 0.474ms/op

[0.014ms - 638.071ms]

closefile1 6489736ops 1802ops/s 0.0mb/s 0.011ms/op

[0.001ms - 32.726ms]

readfile1 6489741ops 1802ops/s 28.2mb/s 2.869ms/op

[0.011ms - 133.200ms]

openfile1 6489741ops 1802ops/s 0.0mb/s 0.457ms/op

[0.015ms - 641.684ms]

3732.507: IO Summary: 201181270 ops 55860.493 ops/s 18020/1802 rd/wr

296.2mb/s 0.814ms/op

3732.507: Shutting down processes

D.3.2 webserver-direct.f server output

Filebench Version 1.5-alpha3+4kdirect

0.000: Allocated 173MB of shared memory

0.043: Web-server Direct I/O Version 3.1 personality successfully loaded

27.731: Populating and pre-allocating filesets

27.747: logfiles populated: 1 files, avg. dir. width = 20, avg. dir.

depth = 0.0, 0 leafdirs, 0.004MB total size

27.748: Removing logfiles tree (if exists)

27.749: Pre-allocating directories in logfiles tree

27.750: Pre-allocating files in logfiles tree
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28.492: bigfileset populated: 600000 files, avg. dir. width = 20, avg.

dir. depth = 4.4, 0 leafdirs, 10577.414MB total size

28.492: Removing bigfileset tree (if exists)

28.495: Pre-allocating directories in bigfileset tree

30.370: Pre-allocating files in bigfileset tree

118.235: Waiting for pre-allocation to finish (in case of a parallel pre-

allocation)

118.235: Population and pre-allocation of filesets completed

118.517: Dropping system caches...

121.897: Running benchmark for 3600 seconds...

121.897: Attempting to create fileset more than once, ignoring

121.994: Starting 1 filereader instances

123.399: Running...

3723.812: Run took 3600 seconds...

3723.835: Per-Operation Breakdown

appendlog 10370291ops 2880ops/s 28.1mb/s 10.584ms/op

[0.001ms - 120.167ms]

closefile10 10370247ops 2880ops/s 0.0mb/s 0.007ms/op

[0.001ms - 22.888ms]

readfile10 10370250ops 2880ops/s 50.8mb/s 0.581ms/op

[0.061ms - 103.927ms]

openfile10 10370250ops 2880ops/s 0.0mb/s 0.046ms/op

[0.006ms - 36.834ms]

closefile9 10370250ops 2880ops/s 0.0mb/s 0.007ms/op

[0.001ms - 20.992ms]

readfile9 10370250ops 2880ops/s 50.8mb/s 0.581ms/op

[0.063ms - 104.357ms]

openfile9 10370250ops 2880ops/s 0.0mb/s 0.046ms/op

[0.006ms - 52.891ms]

closefile8 10370250ops 2880ops/s 0.0mb/s 0.007ms/op

[0.001ms - 27.536ms]

readfile8 10370252ops 2880ops/s 50.8mb/s 0.584ms/op

[0.065ms - 98.445ms]

openfile8 10370252ops 2880ops/s 0.0mb/s 0.046ms/op

[0.006ms - 35.737ms]

closefile7 10370252ops 2880ops/s 0.0mb/s 0.007ms/op

[0.001ms - 29.979ms]

readfile7 10370255ops 2880ops/s 50.8mb/s 0.588ms/op

[0.070ms - 100.028ms]

openfile7 10370255ops 2880ops/s 0.0mb/s 0.045ms/op

[0.005ms - 209.950ms]

closefile6 10370255ops 2880ops/s 0.0mb/s 0.006ms/op

[0.001ms - 24.265ms]

readfile6 10370257ops 2880ops/s 50.8mb/s 0.593ms/op

[0.068ms - 91.493ms]

openfile6 10370257ops 2880ops/s 0.0mb/s 0.045ms/op

[0.005ms - 70.446ms]

closefile5 10370257ops 2880ops/s 0.0mb/s 0.006ms/op

[0.001ms - 33.317ms]

readfile5 10370260ops 2880ops/s 50.8mb/s 0.600ms/op

[0.064ms - 100.044ms]

openfile5 10370260ops 2880ops/s 0.0mb/s 0.045ms/op

[0.005ms - 35.700ms]

closefile4 10370260ops 2880ops/s 0.0mb/s 0.006ms/op

[0.001ms - 20.098ms]

readfile4 10370263ops 2880ops/s 50.8mb/s 0.608ms/op

[0.063ms - 99.061ms]
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openfile4 10370263ops 2880ops/s 0.0mb/s 0.044ms/op

[0.005ms - 31.318ms]

closefile3 10370263ops 2880ops/s 0.0mb/s 0.006ms/op

[0.001ms - 36.098ms]

readfile3 10370267ops 2880ops/s 50.8mb/s 0.616ms/op

[0.066ms - 107.105ms]

openfile3 10370267ops 2880ops/s 0.0mb/s 0.043ms/op

[0.005ms - 37.426ms]

closefile2 10370267ops 2880ops/s 0.0mb/s 0.006ms/op

[0.001ms - 23.628ms]

readfile2 10370268ops 2880ops/s 50.8mb/s 0.622ms/op

[0.059ms - 107.488ms]

openfile2 10370268ops 2880ops/s 0.0mb/s 0.042ms/op

[0.006ms - 32.403ms]

closefile1 10370268ops 2880ops/s 0.0mb/s 0.006ms/op

[0.001ms - 28.647ms]

readfile1 10370271ops 2880ops/s 50.8mb/s 0.614ms/op

[0.058ms - 104.452ms]

openfile1 10370272ops 2880ops/s 0.0mb/s 0.043ms/op

[0.006ms - 70.409ms]

3723.835: IO Summary: 321478047 ops 89289.493 ops/s 28803/2880 rd/wr

535.9mb/s 0.551ms/op

3723.836: Shutting down processes

D.3.3 fileserver.f server output

Filebench Version 1.5-alpha3+4kdirect

0.000: Allocated 173MB of shared memory

0.074: File-server Version 3.0 personality successfully loaded

4.642: Populating and pre-allocating filesets

4.743: bigfileset populated: 80000 files, avg. dir. width = 20, avg. dir.

depth = 3.8, 0 leafdirs, 10019.570MB total size

4.743: Removing bigfileset tree (if exists)

4.745: Pre-allocating directories in bigfileset tree

4.974: Pre-allocating files in bigfileset tree

33.264: Waiting for pre-allocation to finish (in case of a parallel pre-

allocation)

33.264: Population and pre-allocation of filesets completed

33.291: Dropping system caches...

34.750: Running benchmark for 3600 seconds...

34.750: Attempting to create fileset more than once, ignoring

34.808: Starting 1 filereader instances

36.283: Running...

3639.730: Run took 3600 seconds...

3640.041: Per-Operation Breakdown

statfile1 4574542ops 1269ops/s 0.0mb/s 0.271ms/op

[0.003ms - 228.039ms]

deletefile1 4574544ops 1269ops/s 0.0mb/s 2.180ms/op

[0.047ms - 304.056ms]

closefile3 4574544ops 1269ops/s 0.0mb/s 0.016ms/op

[0.001ms - 181.023ms]

readfile1 4574550ops 1269ops/s 168.9mb/s 7.473ms/op

[0.004ms - 377.563ms]

openfile2 4574551ops 1269ops/s 0.0mb/s 1.243ms/op

[0.006ms - 321.771ms]
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closefile2 4574551ops 1269ops/s 0.0mb/s 0.017ms/op

[0.001ms - 147.937ms]

appendfilerand1 4574556ops 1269ops/s 9.9mb/s 11.223ms/op

[0.001ms - 342.287ms]

openfile1 4574558ops 1269ops/s 0.0mb/s 1.111ms/op

[0.007ms - 287.942ms]

closefile1 4574558ops 1269ops/s 0.0mb/s 0.037ms/op

[0.001ms - 208.366ms]

wrtfile1 4574562ops 1269ops/s 159.0mb/s 7.995ms/op

[0.016ms - 532.528ms]

createfile1 4574591ops 1269ops/s 0.0mb/s 5.563ms/op

[0.023ms - 302.553ms]

3640.041: IO Summary: 50320107 ops 13964.296 ops/s 1269/2539 rd/wr 337.9

mb/s 3.375ms/op

3640.041: Shutting down processes

D.3.4 fileserver-direct.f server output

Filebench Version 1.5-alpha3+4kdirect

0.000: Allocated 173MB of shared memory

0.016: File-server Direct I/O Version 3.0 personality successfully loaded

0.873: Populating and pre-allocating filesets

0.970: bigfileset populated: 80000 files, avg. dir. width = 20, avg. dir.

depth = 3.8, 0 leafdirs, 10175.633MB total size

0.970: Removing bigfileset tree (if exists)

0.972: Pre-allocating directories in bigfileset tree

1.148: Pre-allocating files in bigfileset tree

30.130: Waiting for pre-allocation to finish (in case of a parallel pre-

allocation)

30.130: Population and pre-allocation of filesets completed

30.142: Dropping system caches...

31.877: Running benchmark for 3600 seconds...

31.877: Attempting to create fileset more than once, ignoring

31.941: Starting 1 filereader instances

33.393: Running...

3633.768: Run took 3600 seconds...

3633.771: Per-Operation Breakdown

statfile1 12934693ops 3593ops/s 0.0mb/s 0.017ms/op

[0.003ms - 75.618ms]

deletefile1 12934693ops 3593ops/s 0.0mb/s 0.529ms/op

[0.036ms - 215.739ms]

closefile3 12934693ops 3593ops/s 0.0mb/s 0.007ms/op

[0.001ms - 44.845ms]

readfile1 12934698ops 3593ops/s 492.1mb/s 2.807ms/op

[0.075ms - 181.678ms]

openfile2 12934700ops 3593ops/s 0.0mb/s 0.037ms/op

[0.005ms - 148.913ms]

closefile2 12934700ops 3593ops/s 0.0mb/s 0.016ms/op

[0.001ms - 65.702ms]

appendfilerand1 12934709ops 3593ops/s 35.1mb/s 3.381ms/op

[0.001ms - 204.475ms]

openfile1 12934711ops 3593ops/s 0.0mb/s 0.039ms/op

[0.005ms - 154.798ms]

closefile1 12934711ops 3593ops/s 0.0mb/s 0.016ms/op

[0.001ms - 71.245ms]
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wrtfile1 12934733ops 3593ops/s 457.2mb/s 6.303ms/op

[0.044ms - 238.459ms]

createfile1 12934741ops 3593ops/s 0.0mb/s 0.478ms/op

[0.021ms - 175.765ms]

3633.771: IO Summary: 142281782 ops 39518.611 ops/s 3593/7185 rd/wr 984.4

mb/s 1.239ms/op

3633.771: Shutting down processes

D.3.5 varmail.f server output

Filebench Version 1.5-alpha3+4kdirect

0.000: Allocated 173MB of shared memory

0.026: Varmail Version 3.0 personality successfully loaded

30.946: Populating and pre-allocating filesets

31.911: bigfileset populated: 600000 files, avg. dir. width = 1000000,

avg. dir. depth = 1.0, 0 leafdirs, 9386.366MB total size

31.911: Removing bigfileset tree (if exists)

31.914: Pre-allocating directories in bigfileset tree

31.914: Pre-allocating files in bigfileset tree

102.633: Waiting for pre-allocation to finish (in case of a parallel pre-

allocation)

102.633: Population and pre-allocation of filesets completed

102.848: Dropping system caches...

106.644: Running benchmark for 3600 seconds...

106.644: Attempting to create fileset more than once, ignoring

106.667: Starting 1 filereader instances

108.083: Running...

3708.575: Run took 3600 seconds...

3708.575: Per-Operation Breakdown

closefile4 6222236ops 1728ops/s 0.0mb/s 0.008ms/op

[0.001ms - 16.703ms]

readfile4 6222237ops 1728ops/s 26.8mb/s 0.916ms/op

[0.006ms - 41.143ms]

openfile4 6222237ops 1728ops/s 0.0mb/s 1.388ms/op

[0.012ms - 183.896ms]

closefile3 6222239ops 1728ops/s 0.0mb/s 0.008ms/op

[0.001ms - 12.455ms]

fsyncfile3 6222242ops 1728ops/s 0.0mb/s 0.765ms/op

[0.003ms - 28.652ms]

appendfilerand3 6222243ops 1728ops/s 13.5mb/s 0.322ms/op

[0.012ms - 29.161ms]

readfile3 6222244ops 1728ops/s 26.8mb/s 0.923ms/op

[0.006ms - 33.103ms]

openfile3 6222246ops 1728ops/s 0.0mb/s 1.401ms/op

[0.012ms - 146.864ms]

closefile2 6222248ops 1728ops/s 0.0mb/s 0.008ms/op

[0.001ms - 16.088ms]

fsyncfile2 6222248ops 1728ops/s 0.0mb/s 0.797ms/op

[0.007ms - 32.091ms]

appendfilerand2 6222249ops 1728ops/s 13.5mb/s 0.248ms/op

[0.001ms - 24.459ms]

createfile2 6222249ops 1728ops/s 0.0mb/s 0.855ms/op

[0.028ms - 184.398ms]

deletefile1 6222251ops 1728ops/s 0.0mb/s 1.567ms/op

[0.046ms - 37.894ms]
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3708.575: IO Summary: 80889169 ops 22466.147 ops/s 3456/3456 rd/wr 80.5

mb/s 0.708ms/op

3708.575: Shutting down processes

D.3.6 varmail-direct.f server output

Filebench Version 1.5-alpha3+4kdirect

0.000: Allocated 173MB of shared memory

0.068: Varmail Direct I/O Version 3.0 personality successfully loaded

1.830: Populating and pre-allocating filesets

2.745: bigfileset populated: 600000 files, avg. dir. width = 1000000, avg

. dir. depth = 1.0, 0 leafdirs, 10571.594MB total size

2.745: Removing bigfileset tree (if exists)

2.747: Pre-allocating directories in bigfileset tree

2.748: Pre-allocating files in bigfileset tree

69.753: Waiting for pre-allocation to finish (in case of a parallel pre-

allocation)

69.753: Population and pre-allocation of filesets completed

69.769: Dropping system caches...

73.456: Running benchmark for 3600 seconds...

73.456: Attempting to create fileset more than once, ignoring

73.496: Starting 1 filereader instances

74.928: Running...

3675.355: Run took 3600 seconds...

3675.356: Per-Operation Breakdown

closefile4 6708969ops 1863ops/s 0.0mb/s 0.006ms/op

[0.001ms - 10.197ms]

readfile4 6708970ops 1863ops/s 35.9mb/s 0.926ms/op

[0.002ms - 41.578ms]

openfile4 6708970ops 1863ops/s 0.0mb/s 0.054ms/op

[0.005ms - 178.252ms]

closefile3 6708970ops 1863ops/s 0.0mb/s 0.008ms/op

[0.001ms - 5.140ms]

fsyncfile3 6708970ops 1863ops/s 0.0mb/s 0.532ms/op

[0.002ms - 30.254ms]

appendfilerand3 6708972ops 1863ops/s 18.2mb/s 0.764ms/op

[0.001ms - 74.166ms]

readfile3 6708973ops 1863ops/s 35.9mb/s 0.933ms/op

[0.002ms - 35.119ms]

openfile3 6708973ops 1863ops/s 0.0mb/s 0.053ms/op

[0.005ms - 179.635ms]

closefile2 6708973ops 1863ops/s 0.0mb/s 0.007ms/op

[0.001ms - 20.403ms]

fsyncfile2 6708974ops 1863ops/s 0.0mb/s 0.545ms/op

[0.002ms - 27.980ms]

appendfilerand2 6708975ops 1863ops/s 18.2mb/s 0.742ms/op

[0.047ms - 46.853ms]

createfile2 6708977ops 1863ops/s 0.0mb/s 1.696ms/op

[0.027ms - 178.953ms]

deletefile1 6708982ops 1863ops/s 0.0mb/s 2.276ms/op

[0.044ms - 56.369ms]

3675.356: IO Summary: 87216648 ops 24223.974 ops/s 3727/3727 rd/wr 108.2

mb/s 0.657ms/op

3675.356: Shutting down processes
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D.3.7 videoserver.f server output

Filebench Version 1.5-alpha3+4kdirect

0.000: Allocated 173MB of shared memory

0.036: Video Server Version 3.0 personality successfully loaded

3.455: Populating and pre-allocating filesets

3.455: passivevids populated: 28 files, avg. dir. width = 20, avg. dir.

depth = 1.1, 0 leafdirs, 286720.000MB total size

3.455: Removing passivevids tree (if exists)

3.457: Pre-allocating directories in passivevids tree

3.458: Pre-allocating files in passivevids tree

3.463: activevids populated: 8 files, avg. dir. width = 4, avg. dir.

depth = 1.5, 0 leafdirs, 81920.000MB total size

3.463: Removing activevids tree (if exists)

3.473: Pre-allocating directories in activevids tree

3.474: Pre-allocating files in activevids tree

707.311: Waiting for pre-allocation to finish (in case of a parallel pre-

allocation)

722.534: Population and pre-allocation of filesets completed

722.547: Dropping system caches...

724.822: Running benchmark for 3600 seconds...

724.823: Attempting to create fileset more than once, ignoring

724.882: Starting 1 vidreaders instances

724.948: Starting 1 vidwriter instances

726.287: Running...

4326.638: Run took 3600 seconds...

4326.915: Per-Operation Breakdown

serverlimit 1381120ops 384ops/s 0.0mb/s 124.961ms/op

[0.001ms - 5033.931ms]

vidreader 1381264ops 384ops/s 95.9mb/s 0.281ms/op

[0.020ms - 235.589ms]

replaceinterval 86ops 0ops/s 0.0mb/s 10000.083ms/op

[10000.070ms - 10000.101ms]

wrtclose 87ops 0ops/s 0.0mb/s 0.009ms/op [0.008ms

- 0.015ms]

newvid 87ops 0ops/s 247.4mb/s 31398.621ms/op

[29949.600ms - 34653.190ms]

wrtopen 87ops 0ops/s 0.0mb/s 0.112ms/op [0.054ms

- 0.227ms]

vidremover 87ops 0ops/s 0.0mb/s 22.202ms/op [7.357ms

- 457.466ms]

4326.915: IO Summary: 1381612 ops 383.740 ops/s 384/0 rd/wr 343.3mb/s

2.259ms/op

4326.915: Shutting down processes

D.3.8 videoserver-direct.f server output

Filebench Version 1.5-alpha3+4kdirect

0.000: Allocated 173MB of shared memory

0.046: Video Server Direct I/O Version 3.0 personality successfully

loaded

33.208: Populating and pre-allocating filesets

33.209: passivevids populated: 28 files, avg. dir. width = 20, avg. dir.

depth = 1.1, 0 leafdirs, 286720.000MB total size
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33.209: Removing passivevids tree (if exists)

33.211: Pre-allocating directories in passivevids tree

33.211: Pre-allocating files in passivevids tree

33.218: activevids populated: 8 files, avg. dir. width = 4, avg. dir.

depth = 1.5, 0 leafdirs, 81920.000MB total size

33.218: Removing activevids tree (if exists)

33.262: Pre-allocating directories in activevids tree

33.263: Pre-allocating files in activevids tree

738.542: Waiting for pre-allocation to finish (in case of a parallel pre-

allocation)

755.479: Population and pre-allocation of filesets completed

755.499: Dropping system caches...

757.482: Running benchmark for 3600 seconds...

757.482: Attempting to create fileset more than once, ignoring

757.543: Starting 1 vidreaders instances

757.583: Starting 1 vidwriter instances

758.980: Running...

4359.227: Run took 3600 seconds...

4359.227: Per-Operation Breakdown

serverlimit 1381480ops 384ops/s 0.0mb/s 124.759ms/op

[0.001ms - 4993.666ms]

vidreader 1381624ops 384ops/s 95.9mb/s 0.979ms/op

[0.023ms - 36.742ms]

replaceinterval 148ops 0ops/s 0.0mb/s 10000.076ms/op

[10000.064ms - 10000.111ms]

wrtclose 149ops 0ops/s 0.0mb/s 0.006ms/op [0.004

ms - 0.022ms]

newvid 149ops 0ops/s 423.8mb/s 14201.828ms/op

[12393.277ms - 28669.766ms]

wrtopen 149ops 0ops/s 0.0mb/s 0.049ms/op [0.037

ms - 0.139ms]

vidremover 149ops 0ops/s 0.0mb/s 5.365ms/op [0.909

ms - 338.713ms]

4359.227: IO Summary: 1382220 ops 383.924 ops/s 384/0 rd/wr 519.7mb/s

2.510ms/op

4359.227: Shutting down processes

D.3.9 netsfs.f server output

Filebench Version 1.5-alpha3+4kdirect

0.000: Allocated 173MB of shared memory

0.039: NetworkFileServer Version 1.0 personality successfully loaded

15.086: Populating and pre-allocating filesets

15.501: bigfileset populated: 400000 files, avg. dir. width = 20, avg.

dir. depth = 4.3, 0 leafdirs, 10391.271MB total size

15.501: Removing bigfileset tree (if exists)

15.504: Pre-allocating directories in bigfileset tree

16.712: Pre-allocating files in bigfileset tree

57.736: Waiting for pre-allocation to finish (in case of a parallel pre-

allocation)

57.736: Population and pre-allocation of filesets completed

57.744: Dropping system caches...

60.643: Running benchmark for 3600 seconds...

60.643: Attempting to create fileset more than once, ignoring

60.680: Starting 1 netclient instances

62.034: Running...
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3662.275: Run took 3600 seconds...

3662.275: Per-Operation Breakdown

ratecontrol 35990ops 10ops/s 0.0mb/s 99.107ms/op

[0.000ms - 994.281ms]

statfile1 35991ops 10ops/s 0.0mb/s 0.003ms/op

[0.002ms - 0.067ms]

appnd1.closefile6 107973ops 30ops/s 0.0mb/s 0.002ms/op

[0.001ms - 0.057ms]

appnd1.appendfilerand6 107973ops 30ops/s 0.5mb/s 0.053ms/op

[0.006ms - 0.915ms]

appnd1.openfile6 107973ops 30ops/s 0.0mb/s 0.006ms/op

[0.004ms - 0.299ms]

appnd1 0ops 0ops/s 0.0mb/s 0.000ms/op [0.000ms

- 0.000ms]

rmw1.deletefile1 215946ops 60ops/s 0.0mb/s 0.037ms/op

[0.025ms - 0.248ms]

rmw1.closefile2 215946ops 60ops/s 0.0mb/s 0.001ms/op

[0.001ms - 0.034ms]

rmw1.closefile1 215946ops 60ops/s 0.0mb/s 0.002ms/op

[0.001ms - 0.059ms]

rmw1.writefile2 215946ops 60ops/s 0.1mb/s 0.016ms/op

[0.011ms - 0.085ms]

rmw1.newfile2 215946ops 60ops/s 0.0mb/s 0.027ms/op

[0.019ms - 0.389ms]

rmw1.readfile1 215946ops 60ops/s 0.6mb/s 0.006ms/op

[0.002ms - 0.149ms]

rmw1.openfile1 215946ops 60ops/s 0.0mb/s 0.007ms/op

[0.004ms - 0.638ms]

rmw1 0ops 0ops/s 0.0mb/s 0.000ms/op [0.000ms

- 0.000ms]

launch1.closefile5 35991ops 10ops/s 0.0mb/s 0.001ms/op

[0.000ms - 0.060ms]

launch1.closefile4 35991ops 10ops/s 0.0mb/s 0.001ms/op

[0.001ms - 0.047ms]

launch1.readfile5 35991ops 10ops/s 0.5mb/s 0.016ms/op

[0.002ms - 0.122ms]

launch1.openfile5 35991ops 10ops/s 0.0mb/s 0.006ms/op

[0.004ms - 0.335ms]

launch1.closefile3 35991ops 10ops/s 0.0mb/s 0.002ms/op

[0.001ms - 0.035ms]

launch1.readfile4 35991ops 10ops/s 0.5mb/s 0.016ms/op

[0.002ms - 0.120ms]

launch1.openfile4 35991ops 10ops/s 0.0mb/s 0.006ms/op

[0.004ms - 0.379ms]

launch1.readfile3 35991ops 10ops/s 0.5mb/s 0.021ms/op

[0.002ms - 0.140ms]

launch1.openfile3 35991ops 10ops/s 0.0mb/s 0.006ms/op

[0.003ms - 1.469ms]

launch1 0ops 0ops/s 0.0mb/s 0.000ms/op [0.000ms

- 0.000ms]

3662.275: IO Summary: 2195451 ops 609.808 ops/s 90/90 rd/wr 2.7mb/s

0.014ms/op

3662.275: Shutting down processes

D.3.10 netsfs-direct.f server output
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Filebench Version 1.5-alpha3+4kdirect

0.000: Allocated 173MB of shared memory

0.054: NetworkFileServer Version 1.0 personality successfully loaded

6.624: Populating and pre-allocating filesets

6.975: bigfileset populated: 400000 files, avg. dir. width = 20, avg. dir

. depth = 4.3, 0 leafdirs, 10359.824MB total size

6.975: Removing bigfileset tree (if exists)

6.978: Pre-allocating directories in bigfileset tree

8.205: Pre-allocating files in bigfileset tree

49.393: Waiting for pre-allocation to finish (in case of a parallel pre-

allocation)

49.393: Population and pre-allocation of filesets completed

49.488: Dropping system caches...

51.868: Running benchmark for 3600 seconds...

51.868: Attempting to create fileset more than once, ignoring

51.868: Starting 1 netclient instances

53.366: Running...

3653.626: Run took 3600 seconds...

3653.627: Per-Operation Breakdown

ratecontrol 36000ops 10ops/s 0.0mb/s 94.380ms/op

[0.000ms - 967.792ms]

statfile1 36001ops 10ops/s 0.0mb/s 0.004ms/op

[0.002ms - 0.066ms]

appnd1.closefile6 108003ops 30ops/s 0.0mb/s 0.002ms/op

[0.001ms - 0.040ms]

appnd1.appendfilerand6 108003ops 30ops/s 0.6mb/s 0.073ms/op

[0.046ms - 0.260ms]

appnd1.openfile6 108003ops 30ops/s 0.0mb/s 0.007ms/op

[0.004ms - 0.404ms]

appnd1 0ops 0ops/s 0.0mb/s 0.000ms/op [0.000ms

- 0.000ms]

rmw1.deletefile1 216006ops 60ops/s 0.0mb/s 0.039ms/op

[0.026ms - 0.205ms]

rmw1.closefile2 216006ops 60ops/s 0.0mb/s 0.001ms/op

[0.001ms - 0.062ms]

rmw1.closefile1 216006ops 60ops/s 0.0mb/s 0.002ms/op

[0.001ms - 0.060ms]

rmw1.writefile2 216006ops 60ops/s 0.2mb/s 0.015ms/op

[0.011ms - 0.115ms]

rmw1.newfile2 216006ops 60ops/s 0.0mb/s 0.026ms/op

[0.020ms - 0.923ms]

rmw1.readfile1 216006ops 60ops/s 0.8mb/s 0.086ms/op

[0.005ms - 3.954ms]

rmw1.openfile1 216006ops 60ops/s 0.0mb/s 0.006ms/op

[0.005ms - 0.334ms]

rmw1 0ops 0ops/s 0.0mb/s 0.000ms/op [0.000ms

- 0.000ms]

launch1.closefile5 36001ops 10ops/s 0.0mb/s 0.002ms/op

[0.001ms - 0.044ms]

launch1.closefile4 36001ops 10ops/s 0.0mb/s 0.002ms/op

[0.001ms - 0.030ms]

launch1.readfile5 36001ops 10ops/s 0.6mb/s 0.759ms/op

[0.046ms - 5.662ms]

launch1.openfile5 36001ops 10ops/s 0.0mb/s 0.007ms/op

[0.005ms - 0.342ms]

launch1.closefile3 36001ops 10ops/s 0.0mb/s 0.002ms/op

[0.001ms - 0.049ms]
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launch1.readfile4 36001ops 10ops/s 0.6mb/s 0.815ms/op

[0.046ms - 6.460ms]

launch1.openfile4 36001ops 10ops/s 0.0mb/s 0.007ms/op

[0.005ms - 0.344ms]

launch1.readfile3 36001ops 10ops/s 0.6mb/s 2.642ms/op

[0.053ms - 11.963ms]

launch1.openfile3 36001ops 10ops/s 0.0mb/s 0.006ms/op

[0.004ms - 1.372ms]

launch1 0ops 0ops/s 0.0mb/s 0.000ms/op [0.000ms

- 0.000ms]

3653.627: IO Summary: 2196061 ops 609.974 ops/s 90/90 rd/wr 3.4mb/s

0.091ms/op

3653.627: Shutting down processes

D.3.11 webproxy.f server output

Filebench Version 1.5-alpha3+4kdirect

0.000: Allocated 173MB of shared memory

0.029: Web proxy-server Version 3.0 personality successfully loaded

26.326: Populating and pre-allocating filesets

26.908: bigfileset populated: 600000 files, avg. dir. width = 1000000,

avg. dir. depth = 1.0, 0 leafdirs, 9375.000MB total size

26.908: Removing bigfileset tree (if exists)

26.910: Pre-allocating directories in bigfileset tree

26.910: Pre-allocating files in bigfileset tree

92.598: Waiting for pre-allocation to finish (in case of a parallel pre-

allocation)

92.598: Population and pre-allocation of filesets completed

92.626: Dropping system caches...

95.792: Running benchmark for 3600 seconds...

95.792: Attempting to create fileset more than once, ignoring

95.829: Starting 1 proxycache instances

97.257: Running...

3698.417: Run took 3600 seconds...

3698.532: Per-Operation Breakdown

limit 0ops 0ops/s 0.0mb/s 0.000ms/op [0.000ms

- 0.000ms]

closefile6 8929335ops 2480ops/s 0.0mb/s 0.013ms/op

[0.001ms - 99.737ms]

readfile6 8929336ops 2480ops/s 20.4mb/s 0.652ms/op

[0.002ms - 175.368ms]

openfile6 8929348ops 2480ops/s 0.0mb/s 4.601ms/op

[0.004ms - 544.030ms]

closefile5 8929348ops 2480ops/s 0.0mb/s 0.013ms/op

[0.001ms - 119.813ms]

readfile5 8929349ops 2480ops/s 20.4mb/s 0.662ms/op

[0.002ms - 182.361ms]

openfile5 8929360ops 2480ops/s 0.0mb/s 4.596ms/op

[0.004ms - 566.784ms]

closefile4 8929360ops 2480ops/s 0.0mb/s 0.013ms/op

[0.001ms - 101.470ms]

readfile4 8929360ops 2480ops/s 20.4mb/s 0.682ms/op

[0.002ms - 158.664ms]

openfile4 8929375ops 2480ops/s 0.0mb/s 4.581ms/op

[0.004ms - 588.822ms]
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closefile3 8929375ops 2480ops/s 0.0mb/s 0.014ms/op

[0.001ms - 136.947ms]

readfile3 8929376ops 2480ops/s 20.4mb/s 0.730ms/op

[0.002ms - 177.120ms]

openfile3 8929392ops 2480ops/s 0.0mb/s 4.657ms/op

[0.004ms - 564.877ms]

closefile2 8929392ops 2480ops/s 0.0mb/s 0.013ms/op

[0.001ms - 117.591ms]

readfile2 8929392ops 2480ops/s 20.4mb/s 1.106ms/op

[0.002ms - 188.108ms]

openfile2 8929396ops 2480ops/s 0.0mb/s 1.806ms/op

[0.005ms - 540.326ms]

closefile1 8929396ops 2480ops/s 0.0mb/s 0.009ms/op

[0.001ms - 105.800ms]

appendfilerand1 8929396ops 2480ops/s 19.4mb/s 0.137ms/op

[0.001ms - 162.062ms]

createfile1 8929401ops 2480ops/s 0.0mb/s 2.321ms/op

[0.026ms - 545.293ms]

deletefile1 8929410ops 2480ops/s 0.0mb/s 5.178ms/op

[0.038ms - 266.720ms]

3698.532: IO Summary: 169658097 ops 47111.642 ops/s 12398/2480 rd/wr

121.4mb/s 1.673ms/op

3698.532: Shutting down processes

D.3.12 webproxy-direct.f server output

Filebench Version 1.5-alpha3+4kdirect

0.000: Allocated 173MB of shared memory

0.035: Web proxy-server Direct I/O Version 3.0 personality successfully

loaded

6.027: Populating and pre-allocating filesets

6.631: bigfileset populated: 600000 files, avg. dir. width = 1000000, avg

. dir. depth = 1.0, 0 leafdirs, 9375.000MB total size

6.631: Removing bigfileset tree (if exists)

6.633: Pre-allocating directories in bigfileset tree

6.634: Pre-allocating files in bigfileset tree

71.151: Waiting for pre-allocation to finish (in case of a parallel pre-

allocation)

71.151: Population and pre-allocation of filesets completed

71.236: Dropping system caches...

74.561: Running benchmark for 3600 seconds...

74.561: Attempting to create fileset more than once, ignoring

74.605: Starting 1 proxycache instances

76.067: Running...

3676.562: Run took 3600 seconds...

3676.589: Per-Operation Breakdown

limit 0ops 0ops/s 0.0mb/s 0.000ms/op [0.000ms

- 0.000ms]

closefile6 12470878ops 3464ops/s 0.0mb/s 0.013ms/op

[0.001ms - 119.612ms]

readfile6 12470880ops 3464ops/s 34.6mb/s 0.875ms/op

[0.002ms - 200.958ms]

openfile6 12470881ops 3464ops/s 0.0mb/s 0.089ms/op

[0.004ms - 345.564ms]

closefile5 12470881ops 3464ops/s 0.0mb/s 0.013ms/op

[0.001ms - 141.140ms]
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readfile5 12470884ops 3464ops/s 34.6mb/s 0.876ms/op

[0.002ms - 221.768ms]

openfile5 12470884ops 3464ops/s 0.0mb/s 0.089ms/op

[0.004ms - 319.335ms]

closefile4 12470885ops 3464ops/s 0.0mb/s 0.013ms/op

[0.001ms - 141.617ms]

readfile4 12470887ops 3464ops/s 34.6mb/s 0.882ms/op

[0.002ms - 213.123ms]

openfile4 12470889ops 3464ops/s 0.0mb/s 0.089ms/op

[0.004ms - 293.359ms]

closefile3 12470889ops 3464ops/s 0.0mb/s 0.012ms/op

[0.001ms - 132.189ms]

readfile3 12470890ops 3464ops/s 34.6mb/s 0.895ms/op

[0.001ms - 240.804ms]

openfile3 12470892ops 3464ops/s 0.0mb/s 0.088ms/op

[0.004ms - 365.192ms]

closefile2 12470894ops 3464ops/s 0.0mb/s 0.012ms/op

[0.001ms - 141.000ms]

readfile2 12470897ops 3464ops/s 34.6mb/s 0.990ms/op

[0.002ms - 211.230ms]

openfile2 12470898ops 3464ops/s 0.0mb/s 0.083ms/op

[0.005ms - 308.532ms]

closefile1 12470898ops 3464ops/s 0.0mb/s 0.011ms/op

[0.001ms - 156.520ms]

appendfilerand1 12470902ops 3464ops/s 33.8mb/s 1.971ms/op

[0.001ms - 413.090ms]

createfile1 12470917ops 3464ops/s 0.0mb/s 4.189ms/op

[0.026ms - 531.148ms]

deletefile1 12470784ops 3464ops/s 0.0mb/s 11.181ms/op

[0.035ms - 408.332ms]

3676.589: IO Summary: 236946810 ops 65809.575 ops/s 17318/3464 rd/wr

206.9mb/s 1.177ms/op

3676.589: Shutting down processes

D.3.13 oltp.f server output

Filebench Version 1.5-alpha3+4kdirect

0.000: Allocated 173MB of shared memory

0.174: OLTP Version 3.0 personality successfully loaded

2.197: Populating and pre-allocating filesets

2.235: logfile populated: 1 files, avg. dir. width = 1024, avg. dir.

depth = 0.0, 0 leafdirs, 10.000MB total size

2.235: Removing logfile tree (if exists)

2.237: Pre-allocating directories in logfile tree

2.237: Pre-allocating files in logfile tree

2.260: datafiles populated: 1000 files, avg. dir. width = 1024, avg. dir.

depth = 1.0, 0 leafdirs, 10000.000MB total size

2.260: Removing datafiles tree (if exists)

2.262: Pre-allocating directories in datafiles tree

2.262: Pre-allocating files in datafiles tree

27.390: Waiting for pre-allocation to finish (in case of a parallel pre-

allocation)

27.390: Population and pre-allocation of filesets completed

27.403: Dropping system caches...

28.812: Running benchmark for 3600 seconds...

28.812: Attempting to create fileset more than once, ignoring
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28.851: Starting 200 shadow instances

28.966: Starting 10 dbwr instances

28.972: Starting 1 lgwr instances

30.539: Running...

3644.615: Run took 3600 seconds...

3653.763: Per-Operation Breakdown

random-rate 0ops 0ops/s 0.0mb/s 0.000ms/op [0.000ms

- 0.000ms]

shadow-post-dbwr 32772947ops 9068ops/s 0.0mb/s 11.050ms/op

[0.006ms - 734.869ms]

shadow-post-lg 32772956ops 9068ops/s 0.0mb/s 0.039ms/op

[0.001ms - 815.069ms]

shadowhog 32772994ops 9068ops/s 0.0mb/s 1.554ms/op

[0.150ms - 907.004ms]

shadowread 32798635ops 9075ops/s 17.7mb/s 9.387ms/op

[0.001ms - 1737.397ms]

dbwr-aiowait 327720ops 91ops/s 0.0mb/s 9.244ms/op

[0.001ms - 687.413ms]

dbwr-block 327727ops 91ops/s 0.0mb/s 91.007ms/op

[0.001ms - 610.922ms]

dbwr-hog 327727ops 91ops/s 0.0mb/s 0.065ms/op

[0.007ms - 235.675ms]

dbwrite-a 32773980ops 9068ops/s 17.7mb/s 0.025ms/op

[0.000ms - 304.879ms]

lg-block 10241ops 3ops/s 0.0mb/s 352.800ms/op

[103.666ms - 1025.298ms]

lg-aiowait 10242ops 3ops/s 0.0mb/s 0.001ms/op

[0.001ms - 2.008ms]

lg-write 10243ops 3ops/s 0.7mb/s 0.043ms/op

[0.001ms - 76.668ms]

3653.763: IO Summary: 65920820 ops 18239.825 ops/s 9075/9071 rd/wr 36.1

mb/s 4.729ms/op

3653.773: Shutting down processes

D.3.14 oltp-direct.f server output

Filebench Version 1.5-alpha3+4kdirect

0.000: Allocated 173MB of shared memory

0.013: OLTP Direct I/O Version 3.0 personality successfully loaded

1.337: Populating and pre-allocating filesets

1.353: logfile populated: 1 files, avg. dir. width = 1024, avg. dir.

depth = 0.0, 0 leafdirs, 10.000MB total size

1.353: Removing logfile tree (if exists)

1.354: Pre-allocating directories in logfile tree

1.355: Pre-allocating files in logfile tree

1.377: datafiles populated: 1000 files, avg. dir. width = 1024, avg. dir.

depth = 1.0, 0 leafdirs, 10000.000MB total size

1.377: Removing datafiles tree (if exists)

1.379: Pre-allocating directories in datafiles tree

1.379: Pre-allocating files in datafiles tree

28.320: Waiting for pre-allocation to finish (in case of a parallel pre-

allocation)

28.321: Population and pre-allocation of filesets completed

28.339: Dropping system caches...

29.609: Running benchmark for 3600 seconds...

29.609: Attempting to create fileset more than once, ignoring
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29.668: Starting 200 shadow instances

29.815: Starting 10 dbwr instances

29.818: Starting 1 lgwr instances

31.260: Running...

3631.703: Run took 3600 seconds...

3636.942: Per-Operation Breakdown

random-rate 0ops 0ops/s 0.0mb/s 0.000ms/op [0.000ms

- 0.000ms]

shadow-post-dbwr 39112104ops 10863ops/s 0.0mb/s 0.196ms/op

[0.009ms - 1871.941ms]

shadow-post-lg 39112105ops 10863ops/s 0.0mb/s 0.017ms/op

[0.001ms - 313.872ms]

shadowhog 39112125ops 10863ops/s 0.0mb/s 0.574ms/op

[0.150ms - 567.456ms]

shadowread 39137902ops 10870ops/s 42.4mb/s 17.595ms/op

[0.004ms - 850.445ms]

dbwr-aiowait 391120ops 109ops/s 0.0mb/s 0.009ms/op

[0.001ms - 87.714ms]

dbwr-block 391120ops 109ops/s 0.0mb/s 90.593ms/op

[0.001ms - 1902.611ms]

dbwr-hog 391130ops 109ops/s 0.0mb/s 0.025ms/op

[0.007ms - 34.140ms]

dbwrite-a 39114280ops 10863ops/s 42.4mb/s 0.010ms/op

[0.000ms - 496.369ms]

lg-block 12222ops 3ops/s 0.0mb/s 294.544ms/op

[187.306ms - 2045.680ms]

lg-aiowait 12223ops 3ops/s 0.0mb/s 0.000ms/op

[0.000ms - 0.162ms]

lg-write 12224ops 3ops/s 0.8mb/s 0.013ms/op

[0.001ms - 28.804ms]

3636.943: IO Summary: 78667749 ops 21848.935 ops/s 10870/10867 rd/wr

85.7mb/s 8.759ms/op

3636.943: Shutting down processes
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D.4 Zynq-7000 Platform Filebench Outputs

The following show raw outputs from Filebench benchmarks on the
Zynq-7000 platform. Information about the performance metrics col-
lected by Filebench during benchmarking can be found at [157].

D.4.1 webserver.f Zynq output

Filebench Version 1.5-alpha3+4kdirect

0.000: Allocated 133MB of shared memory

0.051: Web-server Version 3.1 personality successfully loaded

165.144: Populating and pre-allocating filesets

165.146: logfiles populated: 1 files, avg. dir. width = 20, avg. dir.

depth = 0.0, 0 leafdirs, 0.002MB total size

165.146: Removing logfiles tree (if exists)

165.161: Pre-allocating directories in logfiles tree

165.163: Pre-allocating files in logfiles tree

170.994: bigfileset populated: 600000 files, avg. dir. width = 20, avg.

dir. depth = 4.4, 0 leafdirs, 9392.595MB total size

170.994: Removing bigfileset tree (if exists)

171.008: Pre-allocating directories in bigfileset tree

182.315: Pre-allocating files in bigfileset tree

964.032: Waiting for pre-allocation to finish (in case of a parallel pre-

allocation)

964.032: Population and pre-allocation of filesets completed

964.102: Dropping system caches...

967.743: Running benchmark for 3600 seconds...

967.744: Attempting to create fileset more than once, ignoring

967.836: Starting 1 filereader instances

970.391: Running...

4571.147: Run took 3600 seconds...

4571.791: Per-Operation Breakdown

appendlog 719177ops 200ops/s 1.6mb/s 2.258ms/op

[0.001ms - 291.721ms]

closefile10 719127ops 200ops/s 0.0mb/s 0.121ms/op

[0.007ms - 102.459ms]

readfile10 719127ops 200ops/s 3.1mb/s 1.812ms/op

[0.052ms - 320.452ms]

openfile10 719131ops 200ops/s 0.0mb/s 10.034ms/op

[0.092ms - 236.751ms]

closefile9 719135ops 200ops/s 0.0mb/s 0.122ms/op

[0.008ms - 260.299ms]

readfile9 719136ops 200ops/s 3.1mb/s 1.820ms/op

[0.042ms - 344.725ms]

openfile9 719137ops 200ops/s 0.0mb/s 10.039ms/op

[0.082ms - 359.705ms]

closefile8 719138ops 200ops/s 0.0mb/s 0.122ms/op

[0.008ms - 109.057ms]

readfile8 719138ops 200ops/s 3.1mb/s 1.828ms/op

[0.047ms - 372.241ms]

openfile8 719142ops 200ops/s 0.0mb/s 10.060ms/op

[0.085ms - 341.668ms]

closefile7 719142ops 200ops/s 0.0mb/s 0.124ms/op

[0.008ms - 102.426ms]
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readfile7 719142ops 200ops/s 3.1mb/s 1.826ms/op

[0.054ms - 350.941ms]

openfile7 719146ops 200ops/s 0.0mb/s 10.060ms/op

[0.090ms - 393.948ms]

closefile6 719146ops 200ops/s 0.0mb/s 0.125ms/op

[0.007ms - 103.117ms]

readfile6 719146ops 200ops/s 3.1mb/s 1.836ms/op

[0.043ms - 385.350ms]

openfile6 719151ops 200ops/s 0.0mb/s 10.090ms/op

[0.091ms - 345.379ms]

closefile5 719151ops 200ops/s 0.0mb/s 0.125ms/op

[0.007ms - 113.420ms]

readfile5 719151ops 200ops/s 3.1mb/s 1.833ms/op

[0.213ms - 400.240ms]

openfile5 719152ops 200ops/s 0.0mb/s 10.084ms/op

[0.088ms - 362.332ms]

closefile4 719153ops 200ops/s 0.0mb/s 0.125ms/op

[0.008ms - 114.230ms]

readfile4 719154ops 200ops/s 3.1mb/s 1.850ms/op

[0.044ms - 378.009ms]

openfile4 719160ops 200ops/s 0.0mb/s 10.145ms/op

[0.088ms - 237.855ms]

closefile3 719161ops 200ops/s 0.0mb/s 0.125ms/op

[0.007ms - 116.818ms]

readfile3 719163ops 200ops/s 3.1mb/s 1.849ms/op

[0.227ms - 311.343ms]

openfile3 719166ops 200ops/s 0.0mb/s 10.193ms/op

[0.088ms - 316.456ms]

closefile2 719169ops 200ops/s 0.0mb/s 0.127ms/op

[0.007ms - 112.648ms]

readfile2 719169ops 200ops/s 3.1mb/s 1.857ms/op

[0.043ms - 381.955ms]

openfile2 719171ops 200ops/s 0.0mb/s 10.409ms/op

[0.090ms - 332.945ms]

closefile1 719172ops 200ops/s 0.0mb/s 0.135ms/op

[0.007ms - 108.097ms]

readfile1 719172ops 200ops/s 3.1mb/s 1.926ms/op

[0.040ms - 333.504ms]

openfile1 719177ops 200ops/s 0.0mb/s 10.742ms/op

[0.089ms - 320.039ms]

4571.791: IO Summary: 22293702 ops 6191.228 ops/s 1997/200 rd/wr 32.8mb/

s 3.994ms/op

4571.791: Shutting down processes

D.4.2 webserver-direct.f Zynq output

Filebench Version 1.5-alpha3+4kdirect

0.000: Allocated 133MB of shared memory

0.037: Web-server Direct I/O Version 3.1 personality successfully loaded

149.450: Populating and pre-allocating filesets

149.517: logfiles populated: 1 files, avg. dir. width = 20, avg. dir.

depth = 0.0, 0 leafdirs, 0.004MB total size

149.517: Removing logfiles tree (if exists)

149.532: Pre-allocating directories in logfiles tree

149.533: Pre-allocating files in logfiles tree
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155.603: bigfileset populated: 600000 files, avg. dir. width = 20, avg.

dir. depth = 4.4, 0 leafdirs, 10577.414MB total size

155.603: Removing bigfileset tree (if exists)

155.618: Pre-allocating directories in bigfileset tree

168.000: Pre-allocating files in bigfileset tree

957.712: Waiting for pre-allocation to finish (in case of a parallel pre-

allocation)

957.714: Population and pre-allocation of filesets completed

957.792: Dropping system caches...

961.448: Running benchmark for 3600 seconds...

961.449: Attempting to create fileset more than once, ignoring

961.593: Starting 1 filereader instances

963.492: Running...

4564.079: Run took 3600 seconds...

4564.623: Per-Operation Breakdown

appendlog 325802ops 90ops/s 0.9mb/s 236.832ms/op

[0.001ms - 512.378ms]

closefile10 325754ops 90ops/s 0.0mb/s 0.046ms/op

[0.008ms - 90.847ms]

readfile10 325758ops 90ops/s 1.6mb/s 24.489ms/op

[1.523ms - 211.093ms]

openfile10 325758ops 90ops/s 0.0mb/s 0.615ms/op

[0.088ms - 147.742ms]

closefile9 325758ops 90ops/s 0.0mb/s 0.043ms/op

[0.009ms - 44.079ms]

readfile9 325759ops 90ops/s 1.6mb/s 24.296ms/op

[1.564ms - 189.662ms]

openfile9 325759ops 90ops/s 0.0mb/s 0.616ms/op

[0.086ms - 233.239ms]

closefile8 325759ops 90ops/s 0.0mb/s 0.040ms/op

[0.008ms - 71.803ms]

readfile8 325762ops 90ops/s 1.6mb/s 24.332ms/op

[1.440ms - 216.914ms]

openfile8 325762ops 90ops/s 0.0mb/s 0.605ms/op

[0.088ms - 195.162ms]

closefile7 325762ops 90ops/s 0.0mb/s 0.036ms/op

[0.008ms - 25.369ms]

readfile7 325765ops 90ops/s 1.6mb/s 24.165ms/op

[1.497ms - 194.801ms]

openfile7 325765ops 90ops/s 0.0mb/s 0.621ms/op

[0.087ms - 152.622ms]

closefile6 325765ops 90ops/s 0.0mb/s 0.035ms/op

[0.008ms - 80.719ms]

readfile6 325765ops 90ops/s 1.6mb/s 24.253ms/op

[1.336ms - 177.146ms]

openfile6 325766ops 90ops/s 0.0mb/s 0.610ms/op

[0.085ms - 153.066ms]

closefile5 325766ops 90ops/s 0.0mb/s 0.031ms/op

[0.008ms - 19.090ms]

readfile5 325769ops 90ops/s 1.6mb/s 24.180ms/op

[1.141ms - 184.123ms]

openfile5 325770ops 90ops/s 0.0mb/s 0.635ms/op

[0.087ms - 151.682ms]

closefile4 325770ops 90ops/s 0.0mb/s 0.030ms/op

[0.008ms - 29.301ms]

readfile4 325773ops 90ops/s 1.6mb/s 24.258ms/op

[1.419ms - 259.298ms]
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openfile4 325773ops 90ops/s 0.0mb/s 0.620ms/op

[0.089ms - 185.917ms]

closefile3 325773ops 90ops/s 0.0mb/s 0.027ms/op

[0.008ms - 24.811ms]

readfile3 325774ops 90ops/s 1.6mb/s 23.959ms/op

[1.229ms - 244.397ms]

openfile3 325774ops 90ops/s 0.0mb/s 0.667ms/op

[0.088ms - 176.462ms]

closefile2 325774ops 90ops/s 0.0mb/s 0.026ms/op

[0.008ms - 23.382ms]

readfile2 325777ops 90ops/s 1.6mb/s 24.471ms/op

[1.463ms - 166.902ms]

openfile2 325777ops 90ops/s 0.0mb/s 0.631ms/op

[0.085ms - 189.338ms]

closefile1 325777ops 90ops/s 0.0mb/s 0.024ms/op

[0.008ms - 32.390ms]

readfile1 325780ops 90ops/s 1.6mb/s 23.601ms/op

[1.291ms - 202.117ms]

openfile1 325780ops 90ops/s 0.0mb/s 0.819ms/op

[0.090ms - 173.200ms]

4564.623: IO Summary: 10098826 ops 2804.774 ops/s 905/90 rd/wr 16.8mb/s

15.666ms/op

4564.623: Shutting down processes

D.4.3 fileserver.f Zynq output

Filebench Version 1.5-alpha3+4kdirect

0.000: Allocated 133MB of shared memory

0.017: File-server Version 3.0 personality successfully loaded

18.140: Populating and pre-allocating filesets

18.812: bigfileset populated: 80000 files, avg. dir. width = 20, avg. dir

. depth = 3.8, 0 leafdirs, 10019.570MB total size

18.812: Removing bigfileset tree (if exists)

18.826: Pre-allocating directories in bigfileset tree

19.870: Pre-allocating files in bigfileset tree

175.321: Waiting for pre-allocation to finish (in case of a parallel pre-

allocation)

175.321: Population and pre-allocation of filesets completed

175.341: Dropping system caches...

177.330: Running benchmark for 3600 seconds...

177.330: Attempting to create fileset more than once, ignoring

177.378: Starting 1 filereader instances

178.874: Running...

3779.937: Run took 3600 seconds...

3780.101: Per-Operation Breakdown

statfile1 649229ops 180ops/s 0.0mb/s 4.446ms/op

[0.017ms - 278.144ms]

deletefile1 649234ops 180ops/s 0.0mb/s 7.469ms/op

[0.223ms - 285.294ms]

closefile3 649234ops 180ops/s 0.0mb/s 0.299ms/op

[0.009ms - 247.082ms]

readfile1 649242ops 180ops/s 23.8mb/s 10.394ms/op

[0.243ms - 800.115ms]

openfile2 649244ops 180ops/s 0.0mb/s 10.586ms/op

[0.043ms - 298.897ms]
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closefile2 649247ops 180ops/s 0.0mb/s 0.264ms/op

[0.008ms - 136.319ms]

appendfilerand1 649252ops 180ops/s 1.4mb/s 18.289ms/op

[0.001ms - 974.933ms]

openfile1 649256ops 180ops/s 0.0mb/s 11.991ms/op

[0.041ms - 372.531ms]

closefile1 649257ops 180ops/s 0.0mb/s 0.369ms/op

[0.008ms - 256.224ms]

wrtfile1 649266ops 180ops/s 22.6mb/s 96.870ms/op

[0.085ms - 3158.208ms]

createfile1 649275ops 180ops/s 0.0mb/s 7.764ms/op

[0.159ms - 321.064ms]

3780.102: IO Summary: 7141736 ops 1983.231 ops/s 180/361 rd/wr 47.8mb/s

15.340ms/op

3780.103: Shutting down processes

D.4.4 fileserver-direct.f Zynq output

Filebench Version 1.5-alpha3+4kdirect

0.000: Allocated 133MB of shared memory

0.087: File-server Direct I/O Version 3.0 personality successfully loaded

41.577: Populating and pre-allocating filesets

42.332: bigfileset populated: 80000 files, avg. dir. width = 20, avg. dir

. depth = 3.8, 0 leafdirs, 10175.633MB total size

42.332: Removing bigfileset tree (if exists)

42.347: Pre-allocating directories in bigfileset tree

43.401: Pre-allocating files in bigfileset tree

199.844: Waiting for pre-allocation to finish (in case of a parallel pre-

allocation)

199.845: Population and pre-allocation of filesets completed

199.866: Dropping system caches...

201.844: Running benchmark for 3600 seconds...

201.844: Attempting to create fileset more than once, ignoring

201.983: Starting 1 filereader instances

203.802: Running...

3804.670: Run took 3600 seconds...

3804.727: Per-Operation Breakdown

statfile1 1021327ops 284ops/s 0.0mb/s 0.105ms/op

[0.018ms - 205.571ms]

deletefile1 1021330ops 284ops/s 0.0mb/s 1.047ms/op

[0.199ms - 540.199ms]

closefile3 1021332ops 284ops/s 0.0mb/s 0.063ms/op

[0.008ms - 220.346ms]

readfile1 1021336ops 284ops/s 38.8mb/s 38.947ms/op

[1.311ms - 449.529ms]

openfile2 1021339ops 284ops/s 0.0mb/s 3.023ms/op

[0.036ms - 259.390ms]

closefile2 1021349ops 284ops/s 0.0mb/s 0.081ms/op

[0.008ms - 154.359ms]

appendfilerand1 1021355ops 284ops/s 2.8mb/s 17.700ms/op

[0.001ms - 553.886ms]

openfile1 1021357ops 284ops/s 0.0mb/s 2.935ms/op

[0.037ms - 317.778ms]

closefile1 1021363ops 284ops/s 0.0mb/s 0.088ms/op

[0.008ms - 173.202ms]
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wrtfile1 1021368ops 284ops/s 36.1mb/s 19.627ms/op

[0.386ms - 907.520ms]

createfile1 1021377ops 284ops/s 0.0mb/s 3.775ms/op

[0.141ms - 316.922ms]

3804.727: IO Summary: 11234833 ops 3120.036 ops/s 284/567 rd/wr 77.7mb/s

7.945ms/op

3804.727: Shutting down processes

D.4.5 varmail.f Zynq output

Filebench Version 1.5-alpha3+4kdirect

0.000: Allocated 133MB of shared memory

0.298: Varmail Version 3.0 personality successfully loaded

169.632: Populating and pre-allocating filesets

175.896: bigfileset populated: 600000 files, avg. dir. width = 1000000,

avg. dir. depth = 1.0, 0 leafdirs, 9386.366MB total size

175.896: Removing bigfileset tree (if exists)

175.910: Pre-allocating directories in bigfileset tree

175.911: Pre-allocating files in bigfileset tree

748.826: Waiting for pre-allocation to finish (in case of a parallel pre-

allocation)

748.827: Population and pre-allocation of filesets completed

748.907: Dropping system caches...

752.589: Running benchmark for 3600 seconds...

752.589: Attempting to create fileset more than once, ignoring

752.715: Starting 1 filereader instances

754.574: Running...

4355.370: Run took 3600 seconds...

4355.471: Per-Operation Breakdown

closefile4 1058630ops 294ops/s 0.0mb/s 0.060ms/op

[0.009ms - 26.741ms]

readfile4 1058630ops 294ops/s 4.4mb/s 1.871ms/op

[0.037ms - 97.251ms]

openfile4 1058633ops 294ops/s 0.0mb/s 5.233ms/op

[0.096ms - 163.245ms]

closefile3 1058633ops 294ops/s 0.0mb/s 0.069ms/op

[0.009ms - 89.910ms]

fsyncfile3 1058636ops 294ops/s 0.0mb/s 11.648ms/op

[0.018ms - 96.541ms]

appendfilerand3 1058638ops 294ops/s 2.3mb/s 1.102ms/op

[0.001ms - 48.877ms]

readfile3 1058640ops 294ops/s 4.4mb/s 1.985ms/op

[0.033ms - 86.061ms]

openfile3 1058643ops 294ops/s 0.0mb/s 5.237ms/op

[0.099ms - 168.195ms]

closefile2 1058643ops 294ops/s 0.0mb/s 0.077ms/op

[0.009ms - 56.629ms]

fsyncfile2 1058643ops 294ops/s 0.0mb/s 11.695ms/op

[0.834ms - 85.658ms]

appendfilerand2 1058643ops 294ops/s 2.3mb/s 0.923ms/op

[0.001ms - 62.824ms]

createfile2 1058643ops 294ops/s 0.0mb/s 6.217ms/op

[0.163ms - 163.535ms]

deletefile1 1058646ops 294ops/s 0.0mb/s 6.596ms/op

[0.248ms - 111.562ms]
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4355.471: IO Summary: 13762301 ops 3822.017 ops/s 588/588 rd/wr 13.4mb/s

4.055ms/op

4355.472: Shutting down processes

D.4.6 varmail-direct.f Zynq output

Filebench Version 1.5-alpha3+4kdirect

0.000: Allocated 133MB of shared memory

0.043: Varmail Direct I/O Version 3.0 personality successfully loaded

3.423: Populating and pre-allocating filesets

9.370: bigfileset populated: 600000 files, avg. dir. width = 1000000, avg

. dir. depth = 1.0, 0 leafdirs, 10571.594MB total size

9.370: Removing bigfileset tree (if exists)

9.385: Pre-allocating directories in bigfileset tree

9.386: Pre-allocating files in bigfileset tree

579.708: Waiting for pre-allocation to finish (in case of a parallel pre-

allocation)

579.709: Population and pre-allocation of filesets completed

579.739: Dropping system caches...

583.468: Running benchmark for 3600 seconds...

583.468: Attempting to create fileset more than once, ignoring

583.581: Starting 1 filereader instances

585.572: Running...

4186.319: Run took 3600 seconds...

4186.538: Per-Operation Breakdown

closefile4 797500ops 221ops/s 0.0mb/s 0.066ms/op

[0.010ms - 43.654ms]

readfile4 797500ops 221ops/s 3.9mb/s 12.102ms/op

[0.674ms - 131.383ms]

openfile4 797501ops 221ops/s 0.0mb/s 2.469ms/op

[0.076ms - 128.719ms]

closefile3 797501ops 221ops/s 0.0mb/s 0.049ms/op

[0.008ms - 51.076ms]

fsyncfile3 797502ops 221ops/s 0.0mb/s 7.448ms/op

[0.011ms - 117.516ms]

appendfilerand3 797505ops 221ops/s 2.2mb/s 7.738ms/op

[0.001ms - 139.764ms]

readfile3 797508ops 221ops/s 3.9mb/s 12.434ms/op

[0.927ms - 103.688ms]

openfile3 797510ops 221ops/s 0.0mb/s 2.528ms/op

[0.075ms - 122.642ms]

closefile2 797510ops 221ops/s 0.0mb/s 0.054ms/op

[0.008ms - 50.458ms]

fsyncfile2 797511ops 221ops/s 0.0mb/s 7.733ms/op

[0.012ms - 124.796ms]

appendfilerand2 797512ops 221ops/s 2.2mb/s 6.866ms/op

[0.001ms - 100.229ms]

createfile2 797516ops 221ops/s 0.0mb/s 3.263ms/op

[0.168ms - 177.171ms]

deletefile1 797516ops 221ops/s 0.0mb/s 3.326ms/op

[0.222ms - 86.478ms]

4186.538: IO Summary: 10367592 ops 2879.212 ops/s 443/443 rd/wr 12.1mb/s

5.083ms/op

4186.538: Shutting down processes
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D.4.7 videoserver.f Zynq output

Filebench Version 1.5-alpha3+4kdirect

0.000: Allocated 133MB of shared memory

0.028: Video Server Version 3.0 personality successfully loaded

5.464: Populating and pre-allocating filesets

5.465: passivevids populated: 28 files, avg. dir. width = 20, avg. dir.

depth = 1.1, 0 leafdirs, 286720.000MB total size

5.466: Removing passivevids tree (if exists)

5.480: Pre-allocating directories in passivevids tree

5.482: Pre-allocating files in passivevids tree

5.500: activevids populated: 8 files, avg. dir. width = 4, avg. dir.

depth = 1.5, 0 leafdirs, 81920.000MB total size

5.501: Removing activevids tree (if exists)

5.539: Pre-allocating directories in activevids tree

5.546: Pre-allocating files in activevids tree

2529.270: Waiting for pre-allocation to finish (in case of a parallel pre

-allocation)

2530.791: Population and pre-allocation of filesets completed

2530.855: Dropping system caches...

2532.995: Running benchmark for 3600 seconds...

2532.995: Attempting to create fileset more than once, ignoring

2533.086: Starting 1 vidreaders instances

2533.118: Starting 1 vidwriter instances

2534.975: Running...

6135.898: Run took 3600 seconds...

6136.149: Per-Operation Breakdown

serverlimit 1377604ops 383ops/s 0.0mb/s 123.624ms/op

[0.001ms - 9973.772ms]

vidreader 1377748ops 383ops/s 95.6mb/s 5.845ms/op

[0.521ms - 281.093ms]

replaceinterval 10ops 0ops/s 0.0mb/s 10002.136ms/op

[10000.253ms - 10017.513ms]

wrtclose 10ops 0ops/s 0.0mb/s 16.386ms/op [0.018ms

- 163.659ms]

newvid 10ops 0ops/s 28.4mb/s 329394.482ms/op

[212547.965ms - 377270.444ms]

wrtopen 11ops 0ops/s 0.0mb/s 0.623ms/op [0.207ms

- 1.395ms]

vidremover 11ops 0ops/s 0.0mb/s 666.753ms/op [431.492

ms - 814.425ms]

6136.149: IO Summary: 1377790 ops 382.614 ops/s 383/0 rd/wr 124.1mb/s

8.241ms/op

6136.149: Shutting down processes

D.4.8 videoserver-direct.f Zynq output

Filebench Version 1.5-alpha3+4kdirect

0.000: Allocated 133MB of shared memory

0.074: Video Server Direct I/O Version 3.0 personality successfully

loaded

170.621: Populating and pre-allocating filesets

170.685: passivevids populated: 28 files, avg. dir. width = 20, avg. dir.

depth = 1.1, 0 leafdirs, 286720.000MB total size
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170.685: Removing passivevids tree (if exists)

170.700: Pre-allocating directories in passivevids tree

170.701: Pre-allocating files in passivevids tree

170.729: activevids populated: 8 files, avg. dir. width = 4, avg. dir.

depth = 1.5, 0 leafdirs, 81920.000MB total size

170.730: Removing activevids tree (if exists)

170.763: Pre-allocating directories in activevids tree

170.770: Pre-allocating files in activevids tree

2797.199: Waiting for pre-allocation to finish (in case of a parallel pre

-allocation)

2799.229: Population and pre-allocation of filesets completed

2799.293: Dropping system caches...

2801.497: Running benchmark for 3600 seconds...

2801.497: Attempting to create fileset more than once, ignoring

2801.582: Starting 1 vidreaders instances

2801.618: Starting 1 vidwriter instances

2803.215: Running...

6403.970: Run took 3600 seconds...

6403.973: Per-Operation Breakdown

serverlimit 1379477ops 383ops/s 0.0mb/s 124.265ms/op

[0.001ms - 9848.245ms]

vidreader 1379620ops 383ops/s 95.8mb/s 2.678ms/op

[1.191ms - 154.055ms]

replaceinterval 35ops 0ops/s 0.0mb/s 10000.130ms/op

[10000.098ms - 10000.724ms]

wrtclose 35ops 0ops/s 0.0mb/s 0.020ms/op [0.016ms

- 0.032ms]

newvid 35ops 0ops/s 99.5mb/s 90753.528ms/op

[82972.013ms - 97714.076ms]

wrtopen 36ops 0ops/s 0.0mb/s 0.306ms/op [0.154ms

- 1.561ms]

vidremover 36ops 0ops/s 0.0mb/s 53.626ms/op [3.361ms

- 730.381ms]

6403.973: IO Summary: 1379762 ops 383.187 ops/s 383/0 rd/wr 195.3mb/s

4.981ms/op

6403.974: Shutting down processes

D.4.9 netsfs.f Zynq output

Filebench Version 1.5-alpha3+4kdirect

0.000: Allocated 133MB of shared memory

0.024: NetworkFileServer Version 1.0 personality successfully loaded

73.931: Populating and pre-allocating filesets

75.859: bigfileset populated: 400000 files, avg. dir. width = 20, avg.

dir. depth = 4.3, 0 leafdirs, 10391.271MB total size

75.859: Removing bigfileset tree (if exists)

75.873: Pre-allocating directories in bigfileset tree

82.138: Pre-allocating files in bigfileset tree

445.954: Waiting for pre-allocation to finish (in case of a parallel pre-

allocation)

445.954: Population and pre-allocation of filesets completed

445.977: Dropping system caches...

448.990: Running benchmark for 3600 seconds...

448.990: Attempting to create fileset more than once, ignoring

449.076: Starting 1 netclient instances

450.908: Running...
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4051.255: Run took 3600 seconds...

4051.256: Per-Operation Breakdown

ratecontrol 35990ops 10ops/s 0.0mb/s 94.580ms/op

[0.001ms - 1035.751ms]

statfile1 35991ops 10ops/s 0.0mb/s 0.021ms/op

[0.015ms - 0.186ms]

appnd1.closefile6 107973ops 30ops/s 0.0mb/s 0.011ms/op

[0.007ms - 0.199ms]

appnd1.appendfilerand6 107973ops 30ops/s 0.5mb/s 0.254ms/op

[0.001ms - 2.582ms]

appnd1.openfile6 107973ops 30ops/s 0.0mb/s 0.042ms/op

[0.030ms - 2.983ms]

appnd1 0ops 0ops/s 0.0mb/s 0.000ms/op [0.000ms

- 0.000ms]

rmw1.deletefile1 215946ops 60ops/s 0.0mb/s 0.176ms/op

[0.147ms - 3.490ms]

rmw1.closefile2 215946ops 60ops/s 0.0mb/s 0.005ms/op

[0.003ms - 0.607ms]

rmw1.closefile1 215946ops 60ops/s 0.0mb/s 0.012ms/op

[0.009ms - 0.293ms]

rmw1.writefile2 215946ops 60ops/s 0.1mb/s 0.088ms/op

[0.080ms - 0.675ms]

rmw1.newfile2 215946ops 60ops/s 0.0mb/s 0.152ms/op

[0.134ms - 8.296ms]

rmw1.readfile1 215946ops 60ops/s 0.6mb/s 0.045ms/op

[0.017ms - 1.214ms]

rmw1.openfile1 215946ops 60ops/s 0.0mb/s 0.042ms/op

[0.030ms - 0.385ms]

rmw1 0ops 0ops/s 0.0mb/s 0.000ms/op [0.000ms

- 0.000ms]

launch1.closefile5 35991ops 10ops/s 0.0mb/s 0.005ms/op

[0.003ms - 0.198ms]

launch1.closefile4 35991ops 10ops/s 0.0mb/s 0.010ms/op

[0.007ms - 0.188ms]

launch1.readfile5 35991ops 10ops/s 0.5mb/s 0.142ms/op

[0.017ms - 0.934ms]

launch1.openfile5 35991ops 10ops/s 0.0mb/s 0.042ms/op

[0.030ms - 2.234ms]

launch1.closefile3 35991ops 10ops/s 0.0mb/s 0.011ms/op

[0.008ms - 0.188ms]

launch1.readfile4 35991ops 10ops/s 0.5mb/s 0.144ms/op

[0.016ms - 1.018ms]

launch1.openfile4 35991ops 10ops/s 0.0mb/s 0.044ms/op

[0.031ms - 2.570ms]

launch1.readfile3 35991ops 10ops/s 0.5mb/s 0.170ms/op

[0.019ms - 1.623ms]

launch1.openfile3 35991ops 10ops/s 0.0mb/s 0.037ms/op

[0.029ms - 7.752ms]

launch1 0ops 0ops/s 0.0mb/s 0.000ms/op [0.000ms

- 0.000ms]

4051.256: IO Summary: 2195451 ops 609.789 ops/s 90/90 rd/wr 2.7mb/s

0.076ms/op

4051.256: Shutting down processes

D.4.10 netsfs-direct.f Zynq output
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Filebench Version 1.5-alpha3+4kdirect

0.000: Allocated 133MB of shared memory

0.116: NetworkFileServer Version 1.0 personality successfully loaded

22.714: Populating and pre-allocating filesets

24.630: bigfileset populated: 400000 files, avg. dir. width = 20, avg.

dir. depth = 4.3, 0 leafdirs, 10359.824MB total size

24.631: Removing bigfileset tree (if exists)

24.645: Pre-allocating directories in bigfileset tree

31.169: Pre-allocating files in bigfileset tree

392.725: Waiting for pre-allocation to finish (in case of a parallel pre-

allocation)

392.725: Population and pre-allocation of filesets completed

392.747: Dropping system caches...

396.074: Running benchmark for 3600 seconds...

396.074: Attempting to create fileset more than once, ignoring

396.176: Starting 1 netclient instances

397.639: Running...

3998.011: Run took 3600 seconds...

3998.013: Per-Operation Breakdown

ratecontrol 35985ops 10ops/s 0.0mb/s 85.487ms/op

[0.002ms - 937.406ms]

statfile1 35985ops 10ops/s 0.0mb/s 0.020ms/op

[0.016ms - 0.348ms]

appnd1.closefile6 107955ops 30ops/s 0.0mb/s 0.012ms/op

[0.008ms - 0.190ms]

appnd1.appendfilerand6 107955ops 30ops/s 0.6mb/s 0.450ms/op

[0.001ms - 4.497ms]

appnd1.openfile6 107955ops 30ops/s 0.0mb/s 0.042ms/op

[0.030ms - 2.486ms]

appnd1 0ops 0ops/s 0.0mb/s 0.000ms/op [0.000ms

- 0.000ms]

rmw1.deletefile1 215911ops 60ops/s 0.0mb/s 0.194ms/op

[0.157ms - 1.015ms]

rmw1.closefile2 215912ops 60ops/s 0.0mb/s 0.005ms/op

[0.003ms - 0.568ms]

rmw1.closefile1 215912ops 60ops/s 0.0mb/s 0.013ms/op

[0.009ms - 0.225ms]

rmw1.writefile2 215912ops 60ops/s 0.2mb/s 0.090ms/op

[0.080ms - 0.871ms]

rmw1.newfile2 215912ops 60ops/s 0.0mb/s 0.156ms/op

[0.138ms - 1.036ms]

rmw1.readfile1 215912ops 60ops/s 0.8mb/s 0.228ms/op

[0.046ms - 7.658ms]

rmw1.openfile1 215912ops 60ops/s 0.0mb/s 0.042ms/op

[0.035ms - 2.961ms]

rmw1 0ops 0ops/s 0.0mb/s 0.000ms/op [0.000ms

- 0.000ms]

launch1.closefile5 35986ops 10ops/s 0.0mb/s 0.012ms/op

[0.004ms - 0.215ms]

launch1.closefile4 35986ops 10ops/s 0.0mb/s 0.012ms/op

[0.009ms - 0.165ms]

launch1.readfile5 35986ops 10ops/s 0.6mb/s 1.803ms/op

[0.206ms - 9.888ms]

launch1.openfile5 35986ops 10ops/s 0.0mb/s 0.042ms/op

[0.036ms - 2.873ms]

launch1.closefile3 35986ops 10ops/s 0.0mb/s 0.012ms/op

[0.009ms - 0.189ms]
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launch1.readfile4 35986ops 10ops/s 0.6mb/s 1.850ms/op

[0.223ms - 11.478ms]

launch1.openfile4 35986ops 10ops/s 0.0mb/s 0.045ms/op

[0.039ms - 2.348ms]

launch1.readfile3 35986ops 10ops/s 0.6mb/s 3.992ms/op

[0.230ms - 13.763ms]

launch1.openfile3 35986ops 10ops/s 0.0mb/s 0.037ms/op

[0.029ms - 9.443ms]

launch1 0ops 0ops/s 0.0mb/s 0.000ms/op [0.000ms

- 0.000ms]

3998.013: IO Summary: 2195107 ops 609.689 ops/s 90/90 rd/wr 3.4mb/s

0.225ms/op

3998.013: Shutting down processes

D.4.11 webproxy.f Zynq output

Filebench Version 1.5-alpha3+4kdirect

0.000: Allocated 133MB of shared memory

0.038: Web proxy-server Version 3.0 personality successfully loaded

149.233: Populating and pre-allocating filesets

152.747: bigfileset populated: 600000 files, avg. dir. width = 1000000,

avg. dir. depth = 1.0, 0 leafdirs, 9375.000MB total size

152.748: Removing bigfileset tree (if exists)

152.762: Pre-allocating directories in bigfileset tree

152.763: Pre-allocating files in bigfileset tree

697.886: Waiting for pre-allocation to finish (in case of a parallel pre-

allocation)

697.886: Population and pre-allocation of filesets completed

697.909: Dropping system caches...

701.583: Running benchmark for 3600 seconds...

701.583: Attempting to create fileset more than once, ignoring

701.735: Starting 1 proxycache instances

704.565: Running...

4305.433: Run took 3600 seconds...

4306.972: Per-Operation Breakdown

limit 0ops 0ops/s 0.0mb/s 0.000ms/op [0.000ms

- 0.000ms]

closefile6 459359ops 128ops/s 0.0mb/s 0.085ms/op

[0.009ms - 294.265ms]

readfile6 459359ops 128ops/s 1.6mb/s 1.588ms/op

[0.046ms - 4611.980ms]

openfile6 459366ops 128ops/s 0.0mb/s 86.825ms/op

[0.034ms - 5217.863ms]

closefile5 459367ops 128ops/s 0.0mb/s 0.088ms/op

[0.009ms - 138.276ms]

readfile5 459367ops 128ops/s 1.6mb/s 1.584ms/op

[0.027ms - 386.483ms]

openfile5 459382ops 128ops/s 0.0mb/s 87.734ms/op

[0.033ms - 5459.838ms]

closefile4 459382ops 128ops/s 0.0mb/s 0.084ms/op

[0.008ms - 99.945ms]

readfile4 459382ops 128ops/s 1.6mb/s 1.619ms/op

[0.040ms - 331.575ms]

openfile4 459398ops 128ops/s 0.0mb/s 87.291ms/op

[0.033ms - 5161.888ms]
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closefile3 459398ops 128ops/s 0.0mb/s 0.087ms/op

[0.008ms - 99.435ms]

readfile3 459398ops 128ops/s 1.6mb/s 1.646ms/op

[0.039ms - 4691.849ms]

openfile3 459414ops 128ops/s 0.0mb/s 85.768ms/op

[0.033ms - 5200.237ms]

closefile2 459414ops 128ops/s 0.0mb/s 0.089ms/op

[0.009ms - 119.728ms]

readfile2 459414ops 128ops/s 1.6mb/s 1.611ms/op

[0.036ms - 3391.758ms]

openfile2 459422ops 128ops/s 0.0mb/s 83.323ms/op

[0.037ms - 5237.164ms]

closefile1 459422ops 128ops/s 0.0mb/s 0.060ms/op

[0.008ms - 263.612ms]

appendfilerand1 459423ops 128ops/s 1.0mb/s 5.506ms/op

[0.001ms - 4953.901ms]

createfile1 459429ops 128ops/s 0.0mb/s 83.385ms/op

[0.224ms - 5221.517ms]

deletefile1 459439ops 128ops/s 0.0mb/s 81.732ms/op

[0.280ms - 2110.336ms]

4306.972: IO Summary: 8728535 ops 2423.366 ops/s 638/128 rd/wr 9.2mb/s

32.111ms/op

4306.972: Shutting down processes

D.4.12 webproxy-direct.f Zynq output

Filebench Version 1.5-alpha3+4kdirect

0.000: Allocated 133MB of shared memory

0.754: Web proxy-server Direct I/O Version 3.0 personality successfully

loaded

7.558: Populating and pre-allocating filesets

10.955: bigfileset populated: 600000 files, avg. dir. width = 1000000,

avg. dir. depth = 1.0, 0 leafdirs, 9375.000MB total size

10.955: Removing bigfileset tree (if exists)

10.969: Pre-allocating directories in bigfileset tree

10.970: Pre-allocating files in bigfileset tree

558.584: Waiting for pre-allocation to finish (in case of a parallel pre-

allocation)

558.584: Population and pre-allocation of filesets completed

558.607: Dropping system caches...

562.349: Running benchmark for 3600 seconds...

562.349: Attempting to create fileset more than once, ignoring

562.474: Starting 1 proxycache instances

564.989: Running...

4165.835: Run took 3600 seconds...

4166.511: Per-Operation Breakdown

limit 0ops 0ops/s 0.0mb/s 0.000ms/op [0.000ms

- 0.000ms]

closefile6 331853ops 92ops/s 0.0mb/s 0.227ms/op

[0.009ms - 214.566ms]

readfile6 331854ops 92ops/s 1.3mb/s 41.954ms/op

[1.100ms - 358.073ms]

openfile6 331860ops 92ops/s 0.0mb/s 43.176ms/op

[0.036ms - 1122.635ms]

closefile5 331863ops 92ops/s 0.0mb/s 0.223ms/op

[0.009ms - 155.138ms]
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readfile5 331864ops 92ops/s 1.3mb/s 41.982ms/op

[1.114ms - 360.820ms]

openfile5 331870ops 92ops/s 0.0mb/s 43.155ms/op

[0.037ms - 1076.310ms]

closefile4 331875ops 92ops/s 0.0mb/s 0.217ms/op

[0.009ms - 152.931ms]

readfile4 331875ops 92ops/s 1.3mb/s 41.903ms/op

[1.083ms - 350.737ms]

openfile4 331883ops 92ops/s 0.0mb/s 43.145ms/op

[0.038ms - 981.753ms]

closefile3 331891ops 92ops/s 0.0mb/s 0.220ms/op

[0.009ms - 158.653ms]

readfile3 331893ops 92ops/s 1.3mb/s 41.703ms/op

[1.078ms - 353.147ms]

openfile3 331903ops 92ops/s 0.0mb/s 42.641ms/op

[0.040ms - 968.972ms]

closefile2 331907ops 92ops/s 0.0mb/s 0.216ms/op

[0.009ms - 175.705ms]

readfile2 331907ops 92ops/s 1.3mb/s 41.978ms/op

[1.123ms - 484.395ms]

openfile2 331914ops 92ops/s 0.0mb/s 44.107ms/op

[0.037ms - 1295.449ms]

closefile1 331918ops 92ops/s 0.0mb/s 0.199ms/op

[0.009ms - 270.207ms]

appendfilerand1 331918ops 92ops/s 0.9mb/s 20.583ms/op

[0.001ms - 311.496ms]

createfile1 331923ops 92ops/s 0.0mb/s 44.515ms/op

[0.169ms - 1144.994ms]

deletefile1 331920ops 92ops/s 0.0mb/s 25.695ms/op

[0.242ms - 532.063ms]

4166.511: IO Summary: 6305891 ops 1751.174 ops/s 461/92 rd/wr 7.3mb/s

27.255ms/op

4166.511: Shutting down processes

D.4.13 oltp.f Zynq output

Filebench Version 1.5-alpha3+4kdirect

0.000: Allocated 133MB of shared memory

0.031: OLTP Version 3.0 personality successfully loaded

2.932: Populating and pre-allocating filesets

2.933: logfile populated: 1 files, avg. dir. width = 1024, avg. dir.

depth = 0.0, 0 leafdirs, 10.000MB total size

2.933: Removing logfile tree (if exists)

2.955: Pre-allocating directories in logfile tree

2.956: Pre-allocating files in logfile tree

3.060: datafiles populated: 1000 files, avg. dir. width = 1024, avg. dir.

depth = 1.0, 0 leafdirs, 10000.000MB total size

3.060: Removing datafiles tree (if exists)

3.074: Pre-allocating directories in datafiles tree

3.075: Pre-allocating files in datafiles tree

149.848: Waiting for pre-allocation to finish (in case of a parallel pre-

allocation)

149.848: Population and pre-allocation of filesets completed

149.870: Dropping system caches...

151.746: Running benchmark for 3600 seconds...

151.746: Attempting to create fileset more than once, ignoring
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151.761: Starting 200 shadow instances

154.713: Starting 10 dbwr instances

154.967: Starting 1 lgwr instances

156.021: Running...

3765.932: Run took 3600 seconds...

3766.585: Per-Operation Breakdown

random-rate 0ops 0ops/s 0.0mb/s 0.000ms/op [0.000ms

- 0.000ms]

shadow-post-dbwr 3016383ops 836ops/s 0.0mb/s 121.158ms/op

[0.205ms - 5994.334ms]

shadow-post-lg 3016461ops 836ops/s 0.0mb/s 104.515ms/op

[0.025ms - 1939.787ms]

shadowhog 3016464ops 836ops/s 0.0mb/s 9.912ms/op

[1.250ms - 1186.068ms]

shadowread 3042076ops 843ops/s 1.6mb/s 2.593ms/op

[0.008ms - 1095.134ms]

dbwr-aiowait 30160ops 8ops/s 0.0mb/s 1.877ms/op

[0.014ms - 1232.898ms]

dbwr-block 30160ops 8ops/s 0.0mb/s 1182.394ms/op

[0.019ms - 1477.072ms]

dbwr-hog 30170ops 8ops/s 0.0mb/s 0.472ms/op

[0.063ms - 157.480ms]

dbwrite-a 3018280ops 836ops/s 1.6mb/s 0.058ms/op

[0.001ms - 415.538ms]

lg-block 942ops 0ops/s 0.0mb/s 3825.274ms/op

[3242.285ms - 4472.041ms]

lg-aiowait 943ops 0ops/s 0.0mb/s 0.009ms/op [0.001

ms - 4.000ms]

lg-write 944ops 0ops/s 0.1mb/s 0.420ms/op [0.071

ms - 48.875ms]

3766.586: IO Summary: 6092403 ops 1687.628 ops/s 843/836 rd/wr 3.3mb/s

1.333ms/op

3766.586: Shutting down processes

D.4.14 oltp-direct.f Zynq output

Filebench Version 1.5-alpha3+4kdirect

0.000: Allocated 133MB of shared memory

0.019: OLTP Direct I/O Version 3.0 personality successfully loaded

75.056: Populating and pre-allocating filesets

75.057: logfile populated: 1 files, avg. dir. width = 1024, avg. dir.

depth = 0.0, 0 leafdirs, 10.000MB total size

75.057: Removing logfile tree (if exists)

75.071: Pre-allocating directories in logfile tree

75.072: Pre-allocating files in logfile tree

75.177: datafiles populated: 1000 files, avg. dir. width = 1024, avg. dir

. depth = 1.0, 0 leafdirs, 10000.000MB total size

75.177: Removing datafiles tree (if exists)

75.191: Pre-allocating directories in datafiles tree

75.193: Pre-allocating files in datafiles tree

222.988: Waiting for pre-allocation to finish (in case of a parallel pre-

allocation)

222.988: Population and pre-allocation of filesets completed

222.998: Dropping system caches...

224.883: Running benchmark for 3600 seconds...

224.883: Attempting to create fileset more than once, ignoring
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224.974: Starting 200 shadow instances

227.920: Starting 10 dbwr instances

227.949: Starting 1 lgwr instances

229.275: Running...

3832.419: Run took 3600 seconds...

3833.584: Per-Operation Breakdown

random-rate 0ops 0ops/s 0.0mb/s 0.000ms/op [0.000ms

- 0.000ms]

shadow-post-dbwr 2587485ops 718ops/s 0.0mb/s 103.565ms/op

[0.207ms - 2521.263ms]

shadow-post-lg 2587637ops 718ops/s 0.0mb/s 123.268ms/op

[0.009ms - 2408.915ms]

shadowhog 2587655ops 718ops/s 0.0mb/s 27.212ms/op

[1.250ms - 1171.647ms]

shadowread 2613271ops 725ops/s 2.8mb/s 23.453ms/op

[0.035ms - 1742.368ms]

dbwr-aiowait 25868ops 7ops/s 0.0mb/s 553.218ms/op

[0.019ms - 3399.225ms]

dbwr-block 25869ops 7ops/s 0.0mb/s 726.232ms/op

[0.014ms - 2400.455ms]

dbwr-hog 25878ops 7ops/s 0.0mb/s 1.173ms/op

[0.063ms - 912.013ms]

dbwrite-a 2589080ops 719ops/s 2.8mb/s 0.244ms/op

[0.001ms - 1126.217ms]

lg-block 808ops 0ops/s 0.0mb/s 4452.388ms/op

[3213.371ms - 7219.245ms]

lg-aiowait 809ops 0ops/s 0.0mb/s 0.003ms/op [0.001

ms - 0.905ms]

lg-write 810ops 0ops/s 0.1mb/s 0.208ms/op [0.072

ms - 17.916ms]

3833.584: IO Summary: 5229838 ops 1451.466 ops/s 725/719 rd/wr 5.7mb/s

14.576ms/op

3833.584: Shutting down processes



E
Additional Plots

E.1 Chapter 3 – Selected Zynq-7000 Platform CPU
Frequency Scaling Results

●

● ● ●

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

200 400 667 800

CPU Frequency (MHz)

A
ve

ra
ge

 S
pe

ed
 fo

r 
25

6M
iB

 B
lo

ck
 S

iz
e 

(M
iB

/s
)

●

HDD Seq Write
HDD Seq Write Direct I/O
SSD Seq Write
SSD Seq Write Direct I/O
NVMe Seq Write
NVMe Seq Write Direct I/O

Figure E.1: Write speeds for HDD, SSD and NVMe SSD on the Zynq-7000

platform for 256 MiB block size at different frequencies (error
bars show standard deviation)
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Figure E.2: Read speeds for HDD, SSD and NVMe SSD on the Zynq-7000

platform for 512 KiB block size at different frequencies (error bars
show standard deviation)
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Figure E.3: Write speeds for HDD, SSD and NVMe SSD on the Zynq-7000

platform for 512 KiB block size at different frequencies (error bars
show standard deviation)
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E.2 Chapter 3 – 10ms Periodic Task Results
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