149,144 research outputs found

    Boosting insights in insurance tariff plans with tree-based machine learning methods

    Full text link
    Pricing actuaries typically operate within the framework of generalized linear models (GLMs). With the upswing of data analytics, our study puts focus on machine learning methods to develop full tariff plans built from both the frequency and severity of claims. We adapt the loss functions used in the algorithms such that the specific characteristics of insurance data are carefully incorporated: highly unbalanced count data with excess zeros and varying exposure on the frequency side combined with scarce, but potentially long-tailed data on the severity side. A key requirement is the need for transparent and interpretable pricing models which are easily explainable to all stakeholders. We therefore focus on machine learning with decision trees: starting from simple regression trees, we work towards more advanced ensembles such as random forests and boosted trees. We show how to choose the optimal tuning parameters for these models in an elaborate cross-validation scheme, we present visualization tools to obtain insights from the resulting models and the economic value of these new modeling approaches is evaluated. Boosted trees outperform the classical GLMs, allowing the insurer to form profitable portfolios and to guard against potential adverse risk selection

    The role of learning on industrial simulation design and analysis

    Full text link
    The capability of modeling real-world system operations has turned simulation into an indispensable problemsolving methodology for business system design and analysis. Today, simulation supports decisions ranging from sourcing to operations to finance, starting at the strategic level and proceeding towards tactical and operational levels of decision-making. In such a dynamic setting, the practice of simulation goes beyond being a static problem-solving exercise and requires integration with learning. This article discusses the role of learning in simulation design and analysis motivated by the needs of industrial problems and describes how selected tools of statistical learning can be utilized for this purpose

    Econometrics meets sentiment : an overview of methodology and applications

    Get PDF
    The advent of massive amounts of textual, audio, and visual data has spurred the development of econometric methodology to transform qualitative sentiment data into quantitative sentiment variables, and to use those variables in an econometric analysis of the relationships between sentiment and other variables. We survey this emerging research field and refer to it as sentometrics, which is a portmanteau of sentiment and econometrics. We provide a synthesis of the relevant methodological approaches, illustrate with empirical results, and discuss useful software

    The characteristics of the Computer Supported Collaborative Learning (CSCL) through Moodle: a view on students’ knowledge construction process

    Get PDF
    Computer Supported Collaborative Learning (CSCL) is based on the pedagogical process of observation where students will learn progressively through active group interaction. CSCL is an emerging branch of the learning sciences concerned with studying on how people can learn together with the help of computers. Thus, this research was conducted to measure the characteristics of the CSCL learning environment through Moodle that assists the process of students’ knowledge construction during the teaching and learning process. The CSCL learning environment is an educational learning system which develops to help the teachers and students in managing School Based Assessment (SBA) in selected secondary school in Malaysia. Samples involved two groups of students and two Technical and Vocational Education and Training (TVET) teachers from two different schools. A total of 61 students, who were taught using CSCL approach through Moodle, underwent the process of teaching and learning using their school computer laboratory. The finding shows that the characteristics of the CSCL learning approach that used in this learning environment for the first group are at a high level with overall mean of 4.17 and the second group at moderate level with overall mean of 3.62. The result proves that the characteristics of the CSCL learning environment help students to build their knowledge during teaching and learning process at the high level with an overall mean score of 3.87. The mean of these two groups may vary according to students’ background, as well as learning environment facilities. Although, CSCL leads to students’ self-development, improving learning quality, sharing knowledge and assisting students’ in the process of building their knowledge, implementation of CSCL must first considering the technology relevant facilities, especially computer laboratory and internet accessibility in school. The implication is that designing a good CSCL must also taking into account the targeted users’ cultural background and socioeconomic factor

    Proceedings from the Synthetic LBD International Seminar

    Get PDF
    On May 9, 2017, we hosted a seminar to discuss the conditions necessary to im- plement the SynLBD approach with interested parties, with the goal of providing a straightforward toolkit to implement the same procedure on other data. The proceed- ings summarize the discussions during the workshop

    Smoothing sparse and unevenly sampled curves using semiparametric mixed models: An application to online auctions

    Get PDF
    Functional data analysis can be challenging when the functional objects are sampled only very sparsely and unevenly. Most approaches rely on smoothing to recover the underlying functional object from the data which can be difficult if the data is irregularly distributed. In this paper we present a new approach that can overcome this challenge. The approach is based on the ideas of mixed models. Specifically, we propose a semiparametric mixed model with boosting to recover the functional object. While the model can handle sparse and unevenly distributed data, it also results in conceptually more meaningful functional objects. In particular, we motivate our method within the framework of eBay's online auctions. Online auctions produce monotonic increasing price curves that are often correlated across two auctions. The semiparametric mixed model accounts for this correlation in a parsimonious way. It also estimates the underlying increasing trend from the data without imposing model-constraints. Our application shows that the resulting functional objects are conceptually more appealing. Moreover, when used to forecast the outcome of an online auction, our approach also results in more accurate price predictions compared to standard approaches. We illustrate our model on a set of 183 closed auctions for Palm M515 personal digital assistants

    Model-driven Enterprise Systems Configuration

    Get PDF
    Enterprise Systems potentially lead to significant efficiency gains but require a well-conducted configuration process. A promising idea to manage and simplify the configuration process is based on the premise of using reference models for this task. Our paper continues along this idea and delivers a two-fold contribution: first, we present a generic process for the task of model-driven Enterprise Systems configuration including the steps of (a) Specification of configurable reference models, (b) Configuration of configurable reference models, (c) Transformation of configured reference models to regular build time models, (d) Deployment of the generated build time models, (e) Controlling of implementation models to provide input to the configuration, and (f) Consolidation of implementation models to provide input to reference model specification. We discuss inputs and outputs as well as the involvement of different roles and validation mechanisms. Second, we present an instantiation case of this generic process for Enterprise Systems configuration based on Configurable EPCs
    corecore