4,067 research outputs found

    Multi-agent simulation: new approaches to exploring space-time dynamics in GIS

    Get PDF
    As part of the long term quest to develop more disaggregate, temporally dynamic models of spatial behaviour, micro-simulation has evolved to the point where the actions of many individuals can be computed. These multi-agent systems/simulation(MAS) models are a consequence of much better micro data, more powerful and user-friendly computer environments often based on parallel processing, and the generally recognised need in spatial science for modelling temporal process. In this paper, we develop a series of multi-agent models which operate in cellular space.These demonstrate the well-known principle that local action can give rise to global pattern but also how such pattern emerges as the consequence of positive feedback and learned behaviour. We first summarise the way cellular representation is important in adding new process functionality to GIS, and the way this is effected through ideas from cellular automata (CA) modelling. We then outline the key ideas of multi-agent simulation and this sets the scene for three applications to problems involving the use of agents to explore geographic space. We first illustrate how agents can be programmed to search route networks, finding shortest routes in adhoc as well as structured ways equivalent to the operation of the Bellman-Dijkstra algorithm. We then demonstrate how the agent-based approach can be used to simulate the dynamics of water flow, implying that such models can be used to effectively model the evolution of river systems. Finally we show how agents can detect the geometric properties of space, generating powerful results that are notpossible using conventional geometry, and we illustrate these ideas by computing the visual fields or isovists associated with different viewpoints within the Tate Gallery.Our forays into MAS are all based on developing reactive agent models with minimal interaction and we conclude with suggestions for how these models might incorporate cognition, planning, and stronger positive feedbacks between agents

    Key challenges in agent-based modelling for geo-spatial simulation

    Get PDF
    Agent-based modelling (ABM) is fast becoming the dominant paradigm in social simulation due primarily to a worldview that suggests that complex systems emerge from the bottom-up, are highly decentralised, and are composed of a multitude of heterogeneous objects called agents. These agents act with some purpose and their interaction, usually through time and space, generates emergent order, often at higher levels than those at which such agents operate. ABM however raises as many challenges as it seeks to resolve. It is the purpose of this paper to catalogue these challenges and to illustrate them using three somewhat different agent-based models applied to city systems. The seven challenges we pose involve: the purpose for which the model is built, the extent to which the model is rooted in independent theory, the extent to which the model can be replicated, the ways the model might be verified, calibrated and validated, the way model dynamics are represented in terms of agent interactions, the extent to which the model is operational, and the way the model can be communicated and shared with others. Once catalogued, we then illustrate these challenges with a pedestrian model for emergency evacuation in central London, a hypothetical model of residential segregation tuned to London data which elaborates the standard Schelling (1971) model, and an agent-based residential location built according to spatial interactions principles, calibrated to trip data for Greater London. The ambiguities posed by this new style of modelling are drawn out as conclusions

    Geospatial Narratives and their Spatio-Temporal Dynamics: Commonsense Reasoning for High-level Analyses in Geographic Information Systems

    Full text link
    The modelling, analysis, and visualisation of dynamic geospatial phenomena has been identified as a key developmental challenge for next-generation Geographic Information Systems (GIS). In this context, the envisaged paradigmatic extensions to contemporary foundational GIS technology raises fundamental questions concerning the ontological, formal representational, and (analytical) computational methods that would underlie their spatial information theoretic underpinnings. We present the conceptual overview and architecture for the development of high-level semantic and qualitative analytical capabilities for dynamic geospatial domains. Building on formal methods in the areas of commonsense reasoning, qualitative reasoning, spatial and temporal representation and reasoning, reasoning about actions and change, and computational models of narrative, we identify concrete theoretical and practical challenges that accrue in the context of formal reasoning about `space, events, actions, and change'. With this as a basis, and within the backdrop of an illustrated scenario involving the spatio-temporal dynamics of urban narratives, we address specific problems and solutions techniques chiefly involving `qualitative abstraction', `data integration and spatial consistency', and `practical geospatial abduction'. From a broad topical viewpoint, we propose that next-generation dynamic GIS technology demands a transdisciplinary scientific perspective that brings together Geography, Artificial Intelligence, and Cognitive Science. Keywords: artificial intelligence; cognitive systems; human-computer interaction; geographic information systems; spatio-temporal dynamics; computational models of narrative; geospatial analysis; geospatial modelling; ontology; qualitative spatial modelling and reasoning; spatial assistance systemsComment: ISPRS International Journal of Geo-Information (ISSN 2220-9964); Special Issue on: Geospatial Monitoring and Modelling of Environmental Change}. IJGI. Editor: Duccio Rocchini. (pre-print of article in press

    Ontology of core concept data types for answering geo-analytical questions

    Get PDF
    In geographic information systems (GIS), analysts answer questions by designing workflows that transform a certain type of data into a certain type of goal. Semantic data types help constrain the application of computational methods to those that are meaningful for such a goal. This prevents pointless computations and helps analysts design effective workflows. Yet, to date it remains unclear which types would be needed in order to ease geo-analytical tasks. The data types and formats used in GIS still allow for huge amounts of syntactically possible but nonsensical method applications. Core concepts of spatial information and related geo-semantic distinctions have been proposed as abstractions to help analysts formulate analytic questions and to compute appropriate answers over geodata of different formats. In essence, core concepts reflect particular interpretations of data which imply that certain transformations are possible. However, core concepts usually remain implicit when operating on geodata, since a concept can be represented in a variety of forms. A central question therefore is: Which semantic types would be needed to capture this variety and its implications for geospatial analysis? In this article, we propose an ontology design pattern of core concept data types that help answer geo-analytical questions. Based on a scenario to compute a liveability atlas for Amsterdam, we show that diverse kinds of geo-analytical questions can be answered by this pattern in terms of valid, automatically constructible GIS workflows using standard sources

    Key Concepts and Techniques in GIS

    Full text link

    Interactive visual exploration of a large spatio-temporal dataset: Reflections on a geovisualization mashup

    Get PDF
    Exploratory visual analysis is useful for the preliminary investigation of large structured, multifaceted spatio-temporal datasets. This process requires the selection and aggregation of records by time, space and attribute, the ability to transform data and the flexibility to apply appropriate visual encodings and interactions. We propose an approach inspired by geographical 'mashups' in which freely-available functionality and data are loosely but flexibly combined using de facto exchange standards. Our case study combines MySQL, PHP and the LandSerf GIS to allow Google Earth to be used for visual synthesis and interaction with encodings described in KML. This approach is applied to the exploration of a log of 1.42 million requests made of a mobile directory service. Novel combinations of interaction and visual encoding are developed including spatial 'tag clouds', 'tag maps', 'data dials' and multi-scale density surfaces. Four aspects of the approach are informally evaluated: the visual encodings employed, their success in the visual exploration of the clataset, the specific tools used and the 'rnashup' approach. Preliminary findings will be beneficial to others considering using mashups for visualization. The specific techniques developed may be more widely applied to offer insights into the structure of multifarious spatio-temporal data of the type explored here

    Environmental modelling in urban areas with Geographical Information System (GIS)

    Get PDF
    More accurate spatio-temporal predictions of urban environment are needed as a basis for assessing exposures as a part of environmental studies, and to inform urban protection policy and management. This paper is focused on modelling in the GIS to estimate air, water and soil pollution in urban areas. The basic environmental components are complemented by bio-monitoring, waste management and noise exposure. The models, which use data from long-time monitoring, are developed using correlation, regression and factor analysis; simulation of dynamic relation and spatio-temporal phenomena. Integration of a wide range of relatively independent factors enables more complex analysis of environment in urban areas. GIS, which can integrate a wide range of spatial and temporal data, is used for data management, input and output of data, visualization and development of programming modules that extend GIS with other statistical analysis and dynamic modelling. The analysis and models were built in ArcGIS with ArcObjects. In spite of the fact that the models are calibrated and tested by application in the urban areas of Prague, the structure of the GIS project is applicable on other similar areas. The fundamental part of the environmental models is focused on modelling of surface-water quality, soil pollution and their relation to human activities and air pollution. The models use data measured during decades, which are collected from manually and automatic pollution monitoring networks. The map layers are divided into a few classes that represent basic maps of urban areas in the scale 1:500, thematic maps, aerial photographs, monitoring networks, and outputs of environmental models. The spatio-temporal analysis and dynamic environmental models are accessible through the user interface of the GIS project

    Geospatial subsidence hazard modelling at Sterkfontein Caves

    Get PDF
    This paper covers a GIS1 approach to identifying hazardous areas at the Sterkfontein Caves. It makes a contribution to risk assessment of land with shallow caves underneath it. The aim of the study is to ensure public safety in a concentrated area frequently visited by the public and is part of a programme to identify appropriate digital technologies for mining. The geo-hazard subsidence model includes historic subsidence occurrances, terrain (water flow) and water accumulation. Water accumulating on the surface will percolate and reduce the strength of the soil mass, possibly inducing subsidence. Areas for further geotechnical investigation are identified, demonstrating that a GIS, geospatial reclassification tool has great potential for strengthening current risk assessment approaches in minin
    • …
    corecore