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Abstract: In geographic information systems (GIS), analysts answer questions by designing
workflows that transform a certain type of data into a certain type of goal. Semantic data
types help constrain the application of computational methods to those that are meaningful
for such a goal. This prevents pointless computations and helps analysts design effective
workflows. Yet, to date it remains unclear which types would be needed in order to ease
geo-analytical tasks. The data types and formats used in GIS still allow for huge amounts
of syntactically possible but nonsensical method applications. Core concepts of spatial in-
formation and related geo-semantic distinctions have been proposed as abstractions to help
analysts formulate analytic questions and to compute appropriate answers over geodata of
different formats. In essence, core concepts reflect particular interpretations of data which
imply that certain transformations are possible. However, core concepts usually remain im-
plicit when operating on geodata, since a concept can be represented in a variety of forms.
A central question therefore is: Which semantic types would be needed to capture this
variety and its implications for geospatial analysis? In this article, we propose an ontology
design pattern of core concept data types that help answer geo-analytical questions. Based
on a scenario to compute a liveability atlas for Amsterdam, we show that diverse kinds of
geo-analytical questions can be answered by this pattern in terms of valid, automatically
constructible GIS workflows using standard sources.

Keywords: core concepts of spatial information, semantic data types, operational signa-
tures, GIS workflow synthesis, geo-analytical question answering
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1 Introduction

It is still common for geospatial analysts to capture their tasks in the language of their
favorite tools, such as QGIS, ArcGIS, or R [51]. Within the languages of such a software,
however, it remains very hard to distinguish essential pieces of knowledge needed to solve
these analytic tasks from mere software artifacts and data formats. Suppose our task is to
assess the liveability of Amsterdam. In this case, it is irrelevant whether the data is given
in the form of a shapefile with vector polygons or in the form of raster cells. What we need
to know is whether the data represents spatially homogeneous values of landuse or rather
statistical summaries of population numbers, since only the former can be combined in
overlay operations (Fig. 1a) to assess a city’s liveability, while the latter requires different
kinds of operations, such as areal interpolation [20], cf. Fig. 1b.

(a) Vector overlay method.
(b) Simple areal interpolation method. Image
by kind permission of Michael Goodchild.

Figure 1: Methods for spatially combining polygon data. Which one is applicable for
analysing a given polygon data set?

It would tremendously improve the analytic process if we could augment data with this
kind of knowledge, instead of trying to decipher a script or interpret software formats and
textual data descriptions [36, 39]. Eventually, this may allow us to translate geo-analytical
questions into data sources and software tools [54] to automate the synthesis of answers1.

Some progress has recently been made by incorporating semantic types2 into scripting
languages such as R3. Still, it remains unclear which types of spatial information would
need to be distinguished in principle for geo-analytical purposes. Core concepts of spa-
tial information were introduced by [44] as a simple conceptual and computational inter-
face to geographical information system (GIS). They include4 field (quality surface measur-
able everywhere on a metric space), object (spatially bounded discrete entity with quali-
ties), event (temporally bounded discrete entity with qualities) and network (quantified re-

1Note the difference to ordinary question-answering (QA) systems, which are usually understood in terms of
translations to queries on factoid knowledge bases [5]

2With the term semantic type, we mean a data type or a function type specified in a Semantic Web taxonomy
or ontology.

3cf. chapter 6 in https://r-spatial.org/book for the incorporation of geo-analytical attribute types in R, see
also [60]

4http://spatial.ucsb.edu/core-concepts-of-spatial-information/
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lation between objects), which capture spatial information contents in an implementation-
independent manner. Core concepts can be used both for formulating spatial questions [63]
as well as for generating answers [45] on a higher abstraction level. Furthermore, they
capture the provenance of spatial information [55] and determine the applicability of geo-
analytic tools [59], e.g., in GIS workflows [53] and for geo-analytical question-answering
(QA) with corresponding task descriptions [54].

However, although core concepts play an important role in determining geo-analytic
tasks, they are primarily artefacts of human interpretation and measurement, and as such,
do not necessarily pertain to any formal characteristics of data. Though an analyst will
frequently use these concepts when interpreting and manipulating geodata, in doing so,
interpretations remain largely unnoticed and may even be ambiguous. For example, when
using point vector data from noise measurements, it might be implicitly assumed that the
points represent a finite sample from a spatial noise field, and not a sample of locations of
objects emitting noise. Yet, the data type itself does not tell us and might be interpreted
in both ways. It is therefore essential not to confuse core concepts with the data types that
represent them: A field lies in the eye of the beholder and is considered to be defined ev-
erywhere on its domain. Yet, there are many ways to represent such a field by the finite
means of a computer, spanning both vector and raster formats [55] (cf. Sect. 5). And vice
versa, a given data set might be interpreted in various ways, which has consequences for
its usefulness. It is therefore crucial to find out about the different ways geodata can be
interpreted in terms of core concepts, and how this can be made explicit in a semantic type
system. This would allow us to add the missing conceptual detail in current data descrip-
tions, in order to assess whether geo-analytical questions are answerable using given GIS
methods, by synthesizing them into executable workflows.

In this article, we formalize the diversity of ways how core concepts can be represented
with common geodata types5, and how they can be transformed to enable the answering
of geo-analytical questions in terms of automated workflows. First, we create a concep-
tual layered metadata model for signatures of common GIS operations. At the highest
abstraction level, the model is based on human-understandable core concepts. At lower
levels, core concepts are reified into combinations of machine-operable geodata and at-
tribute types. Second, we demonstrate with a working prototype how this type system,
in the form of a lightweight ontology, enables the automatic synthesis of GIS workflows
answering geo-analytical questions from given data and tool sources. To the best of our
knowledge, this has so far not been subject of any systematic investigation and testing. The
contributions of this article are threefold:

• A systematic investigation of data type representations of core concepts of spatial
information

• A Web Ontology Language (OWL) design pattern that can be used for annotating
and reasoning over GIS tools and their data sources with basic distinctions relevant
for geo-analytics. Note that geodata retrieval is, however, not in scope.

• A novel way of formalizing and answering geo-analytical questions through auto-
mated workflow synthesis

In addition, the article addresses also GIS practicioners and teachers interested in a system-
atic account of analytic tasks and GIS workflow design.

5With the term geodata type, we denote data types that are currently implemented in GIS.
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In the following, we first introduce a design and evaluation scenario in Sect. 2 which
contains simple but common examples for geo-analytical questions and corresponding
datasets. We then review previous work on conceptualizing GIS, workflow synthesis, and
geo-analytical problem solving (Sect. 3). We then introduce semantic distinctions relevant
to answering questions in terms of workflows, including core concepts, geometric types of
layers for representing these core concepts, as well as levels of measurement (Sect. 4). Using
OWL class definitions, semantic distinctions are combined into an ontology design pattern
which is used to add semantic type signatures to common GIS operations and data sources
for workflow synthesis (Sect. 5). We finally (Sect. 6) demonstrate how the geo-analytical
questions from the scenario can be expressed in a workflow synthesis language. Using a
prototype we test how well our type signatures enable us to synthesize answers in terms
of valid GIS workflows.

2 How livable is Amsterdam for elderly people?

We start with typical geo-analytical questions that can be handled within a GIS. Our sce-
nario focuses on assessing the liveability of neighborhoods for elderly people. It was taken
from a GIS course at Amsterdam University6 involving openly available data from the City
of Amsterdam7. The task is to assess liveability of postcode areas (PC4) within Ams-
terdam in terms of different urban environmental factors that make the area liveable for
elderly people:

1. Since elderly people make use of particular kinds of sport facilities (such as for Pé-
tanque), what is the amount of such facilities within each PC4 area? Sport facilities
are given as point vector data with facility type as attribute.

2. Since elderly people may want to meet with their peers, what is the rate of elderly
living in PC4 areas? Data is given on the “Buurt” (neighborhood) level as a vector
polygon map by the central Bureau voor de Statistiek (CBS)8, see Fig. 2a.

3. Since elderly people prefer parks in their neighbourhood which allow them to take a
walk: What is the accessibility of green in PC4 neighborhoods? Data is given in terms
of a landuse vector data set9, see Fig. 2b.

4. Since older people are sensitive to noise, what is the average noise pollution in PC4
neighborhoods? Data is given in terms of a contour vector map with polygons denot-
ing noise intervals, see Fig. 2c.

These questions are used as competency questions for ontology design and validation.
Competency questions are widely used for two purposes in ontology engineering [26, 37],
in a way similar to software engineering. First, competency questions state application
requirements. If the ontology is designed based on competency questions, then it may be
capable of answering equivalent kinds of questions in the application domain. Second,
for the purpose of validation, the ontology is queried with competency questions to verify
whether valid answers are indeed in scope. Answers may be computed in different ways,
e.g., based on inference or based on data queries. In our case, note that (1) answers to

6https://www.vu.nl/en/study-guide/2018-2019/minor/l-r/national-geo-information/?view=module&
origin=51311992x50721889&id=50855870

7https://maps.amsterdam.nl/open geodata/
8https://www.cbs.nl/nl-nl/dossier/nederland-regionaal/wijk-en-buurtstatistieken
9https://maps.amsterdam.nl/open geodata/?k=152
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(a) CBS Buurt statistics, showing the percentage of persons over 65 in neighborhoods.

(b) Landuse map (Grondgebruikskaart) of the Amsterdam Municipality.

(c) Noise map of the Amsterdam Municipality, with intervals given in dB.

Figure 2: Map data sources used to assess liveability, cf. https://maps.amsterdam.nl/
open geodata/ and https://cbsinuwbuurt.nl/.
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Figure 3: Liveability map showing average distance to green areas in Amsterdam within
PC4 areas.

our questions need to be given indirectly. That is, not in terms of answers from a knowl-
edge base, but rather in terms of analytic workflows which generate a map that contains
a valid answer. The required outcome of the analysis might look similar to the map in
Fig. 3, a choropleth map with liveability measured per PC4 area. We need to test our on-
tology therefore in terms of its inherent capability of picking a workflow which would provide
a valid answer10. In addition, note that (2) the selection of suitable datasets for the task, or
the modeling of domain knowledge (e.g., about urban noise or sport facilities) are out of
scope11.

Though our validation is limited in both the number of questions, as well as in the
amount of synthesized workflows per question that are analyzed, our set of questions actu-
ally covers a wide range of typical GIS applications which go beyond the livability scenario
used as illustration. Though the geodata types of sources look homogeneous (polygon vec-
tor data with some numeric attribute or label), they actually require very different analytic
workflows to generate useful answers. This includes, e.g., vector operations such as spatial
join and areal interpolation, in order to aggregate different kinds of vector data sources, as
well as different raster operations like zonal and local map algebra, in order to aggregate
distance information. The questions we chose thus really stand for a diverse set of more
general spatial analysis problems. Below, we will explain how the included data sources
actually reflect very different core concepts, and thus ask for correspondingly different
treatments requiring a significant level of GIS expertise. We will illustrate that the standard
geodata types Vector and Raster [29] are insufficient for this purpose. In what follows, we
investigate which concepts would allow us to pick the right kind of workflow.

10This task was called indirect question-answering in [58].
11For these tasks, we believe that lightweight ontologies, as used in this article, are less suitable.
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3 Preliminary work on programmatically solving geo-
analytical tasks

The general task briefly sketched by the example above has precursors in the field of Geo-
graphic Information Science (GIScience) and corresponding computer languages, as well as
in workflow synthesis and QA. In GIScience, authors have proposed earlier to use semantic
concepts of geoinformation in order to support tool and data selection for geographic prob-
lem solving. For example, O’Brian and Gahegan [50] suggested to use backward chaining
on an operational rule set in order to identify tool sources starting from a goal concept.
This work was based on earlier suggestions of functional taxonomies of GIS operations [2].
However, several major problems remained, namely to decide about an ontology for GIS
tool and data description, about composition procedures that capture geo-analytic con-
straints, as well as to handle question-based interfaces.

The problem of generalizing GIS transformations in terms of semantic concepts was
addressed by Gahegan in [23] from the perspective of remote sensing, suggesting an early
approach closely related to our work. Camara and others have suggested functional type
systems for GIS operations [12, 13] from the perspective of fields and objects. Cova and
Goodchild suggested a model integrating the two concepts in [18].

The problem reappeared in a slightly different form in Web service chaining and geo-
processing [1,49,64] and is open to the present day [38]. Similar to Component-based Soft-
ware Engineering (CBSD, [35]) and service composition in Service Oriented Architecture
(SOA, [19]), a component or a service implements a particular functionality, requires a par-
ticular input, and produces a specific output. Components are then combined to produce
working software, and multiple services can be composed to create a new service. Auto-
mated discovery and chaining of components or services require knowing their interfaces,
i.e., their input and output data types. In a similar way, we aim to automate the manual
effort of composing GIS operations implemented in existing software.

An abstract data type (ADT) is a somewhat related concept. It is an abstraction of a type
of data in terms of behavior, i.e., in the sense of the operations applicable to the data [47].
ADTs might be implemented in different ways and can be arranged in hierarchies, such
that subtypes inherit the behavior of supertypes. This is done in order to constrain the
behavior of geospatial operations in a particular computational environment. There have
been efforts to conceptualize GIS notions in such a way, especially for querying spatial
databases [31, 32]. For example, [31] proposed a typed model of a geometric database fo-
cusing on geometric objects and their attributes. While these types still lack semantics at
the level of core concepts, examples of spatial concepts such as moving objects and trajec-
tories were recently developed in a comparable manner [32, 33]. While we consider such
type specifications a useful source for our work, our focus is less implementation centric,
since we need to annotate sources across many implementations.

The related workflow composition problem is still a substantial challenge for informa-
tion science [28] and plays a central role also in any geospatial information infrastruc-
ture [48]. Workflow synthesis has recently been approached using loose programming
techniques [46], which provides a way of loosely specifying workflows using semantic
type hierarchies that are used as constraints on workflow generation (cf. Sect. 6). This new
technique was recently applied to the GIS domain [1, 40, 41].

The problem of appropriate interfaces for geo-analytic problems was approached in
terms of conversational GIS [11], and recently addressed also in the context of QA systems
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on geographic information [14, 65]. We believe workflow composition is a design task re-
quiring the thorough conceptual basis of spatial questions at its core [63], and vice versa,
workflow synthesis is essential to geographic QA. In a rather fundamental sense, work-
flows answer geo-analytical questions. This also motivates a novel way of looking at QA in
more indirect terms [58], namely as the task of finding ways to transform data into valid
answers, as opposed to simply querying over data. We call this problem geo-analytical QA.
It forms the context of our article, in which we suggest a semantic basis for a corresponding
type system.

4 Semantic distinctions needed for geospatial analysis

In this section, we review semantic distinctions relevant for geospatial analysis, namely
how geometric layer types can represent core concepts of spatial information in terms
of their attributes on different levels of measurement. We discuss the implications for
geospatial analysis and suggest a lightweight formalization in the Web Ontology Language
(OWL)12, as a basis for the data type pattern13 composed in Sect. 5. We use the Description
Logic (DL) notation for OWL. A primer for the DL notation can be found in [43].

4.1 Types in a lightweight ontology

To capture the semantic distinctions and hierarchical dependencies of geospatial opera-
tions, we will make use of DL classes. This gives us a way to easily define new types from
existing types in terms of class unions and intersections, resulting in a data taxonomy (a
directed acyclic graph of subsumptions, inheriting the applicability constraints from super-
concepts). It also allows us to capture arbitrary combinations of different semantic dimen-
sions, such as geometric layer types and the core concepts they represent. For example, the
ways how spatial interpolation methods are bound to the different combinations of vector
or raster data with the field concept.

The semantic types proposed in this paper are metadata models specific to the GIS do-
main, yet they can be used across many implementations. In fact, in contrast to ADT’s, our
types are not meant to be implemented. Rather, they are supposed to be used for annotating
methods in existing software implementations, in order to improve their reuse, much like
lightweight ontologies [6,39]. For the same reason, our formalization lacks any specifics of the
underlying concepts. We will discuss below some of the ontological implications of core
concepts that are essential for understanding the operational constraints that are imposed
on types. Yet, our ontology captures just the semantic distinctions needed for constraining
geo-analytical tasks, without giving any formal account of these tasks or capturing general
knowledge about the concepts. Correspondingly, the reasoning capabilities of OWL are
used here only to constrain workflow construction via subsumption relations, as described
in Sect. 6. Thus, our validation is not in terms of inferential power of the ontology with re-
spect to the concepts, but in terms of generative power and quality of workflow synthesis.

12 http://www.w3.org/TR/owl2-syntax/
13ccd: http://geographicknowledge.de/vocab/CoreConceptData.ttl
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4.2 Core concepts vs. geodata types

Core concepts of spatial information were proposed by [44, 45] as generic interfaces to GIS
in the sense of conceptual “lenses” through which the environment can be studied. Though
they have been used in the sense of ADTs, they are considered results of human cognition
and interpretation residing in an analyst’s head, and thus should not be understood as
data types or formats. We summarize the most important ideas in the following. Kuhn
distinguishes one base concept (location) and two quality concepts (granularity and accuracy)
from the following content concepts, on which we focus in this article:

• Fields: Are understood as particular kinds of functions [13, 24, 55] whose domain are
locations which allow for distance assessments, and whose range may be any kind of
quality. As quality values are separated by spatial distance, one can study change of
a field as a function of spatial distance. Fields also offer the possibility of determining
quality values at arbitrary locations in their domain [60]. Missing quality values can
therefore be estimated by interpolation. Fields change in time, in the sense that the
field function as a whole is only a snapshot [55] of a spatio-temporal field which
changes from one moment to the next. In contrast to objects, fields do not change
their locations. This concept is closely related to the notion of a field in physics [21].
Prime examples are temperature fields.

• Objects: Are understood in terms of functions from time to locations and qualities.
Objects are prototypical examples of “endurants” [24], so they can change their loca-
tion and quality in each time moment while remaining their identity. Ontologically,
objects are distinct from fields and events in the sense that they have an identity and
that they are fully localized in each moment of their existence, even if this location
may be fuzzy. In this way objects give rise to trajectories, which are functions from
time to location, and time series, which are functions from time to quality [55]. We
consider geographic places as particular kinds of objects [57]. So places are not con-
sidered locations, but are rather localizable themselves. We also assume that objects
include both, bona fide (perceivable) and fiat (conventional) boundaries.

• Events: are understood as entities that, besides having identity and having qualities
like objects, happen during some temporal interval. Events thus correspond to partic-
ular kinds of “occurrents” or “perdurants”14. They usually have a start and an end,
thus allowing us to determine duration, and they might have objects, fields or spatial
networks as participants. In GIS, we usually assume in addition that events are local-
izable similar to objects15. Though this might not be true for all kinds of events, it is
usually the case for events in GIS. Prime examples are earth quakes, having a time, a
location as well as a magnitude.

• Networks: Are understood as functions from pairs of objects to some quality. In this
way, networks are able to measure a relationship between these objects. In contrast to
relations in logic or to graphs, the relationship is quantified and inheres in the objects,
e.g., in terms of an amount of flow. Networks in our sense are, e.g., commuter flow
matrices or traffic links in a road network. Regarding time, network functions can be
considered similar to endurants, i.e., they can change their quality in time.

14Galton [25] suggests that events correspond to historical time, while there is also an experiential time without
temporal boundaries, which he calls ”process”. We follow Kuhn [44] here, suggesting that processes may play a
minor role in GIS.

15Other authors hold that events are only localizable via their participating objects [27].
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Since core concepts have these properties, certain kinds of operations are naturally applied
to them. For example, since fields are total functions on a metric space, their quality can be
probed at every location and every distance within that space, while object qualities cannot.
Objects, on the other hand, can be counted, have spatial parts (mereology) and neighbors
(topology) [16], and furthermore give rise to sizes and closeness. Events can be ordered
in time, e.g. by Allen’s relations [3]. Finally, since networks are relations between objects,
they can always be projected to sets of objects by fixing some source or destination.

Due to limited space, we adopted in this article a standard static view on core concept
data types, though core concepts can also be used for spatio-temporal analysis [55]. Note
that all core concepts (not only events) inherently have a temporal dimension as indicated
above. Furthermore, while events and networks are important examples of core concepts,
in this article we focused only on fields and objects for the same reason. Note also that,
while the original purpose of Kuhn’s core concepts was (re-) designing a novel interface for
GIS, our focus here is on improving the (re-) usability and accessibility of existing tools and
data sources. This is based on the following argument: When analysts use a GIS on a geo-
data source, they implicitly interpret not only their analytical goal, but also the data source
as well as the GIS tool in a way that is best captured by some core concept transformation.
For example, analysts might interpret a given vector file in terms of a field representation,
and search for tools that can handle such field representations with the goal of aggregating
the field into a new quality of an object. Since some of the operational constraints of core
concepts are retained in this interpretation, analysts are able to select appropriate tools for
their purpose. For example, only field representations allow point interpolations [60]. This
is what makes core concepts so important for compiling GIS workflows and for answering
questions.

Note, however, that core concepts and data types are very different beasts: the former
is an interpretation of an analyst, the latter is a data artefact that represents concepts in a
rather indirect manner16. This also means analysts can switch perspective on a data type,
and thus we should expect a large freedom in choosing a data type to represent a certain
core concept, leading to a variety of combinations that are actually used in practice and
need to be taken into account. We agree with [17] that objects and fields play autonomous
roles in the geographic information process, apart from any data structures that might rep-
resent them. Therefore any approach that reduces the former to the latter misses the point.
Still, data types are needed for programming workflows and geometric layers are funda-
mental to represent the geometry of core concepts. This conflict in abstraction might be
the reason why general taxonomies of GIS functions apparently have been so hard to de-
vise. Some authors have proposed conceptual or even formal models of fields [12] and
objects [33] and their relation [18] in GIS. However, we see a lack of distinction between
concepts and data types running across these works (cf. [44]).

In the following, we investigate how different geometric layer types and types of at-
tributes are able to capture information about core concepts.

4.3 Geometric layer types for representing core concepts

While a layer is a fundamental concept for every GIS to compare and combine information
based on spatial coincidence, we are used to distinguishing layers (as well as entire GIS)

16In particular, we suggest that mathematical properties of core concepts are not retained in corresponding
types, in the sense that any remaining similarity is not isomorphic.
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Figure 4: A concept hierarchy of layer types in the CCD ontology, based on geometric
characteristics of layers. Arrows denote rdfs:subClassOf triples. Note that OWL classes are
not mutually exclusive (if not stated otherwise). So a region data set can, e.g., also be a
vector data set. See Sect. 4.3.

according to the most prominent geodata types raster or vector. The latter are subject to
famous methodological debates [9, 17] and relevant for computational efficiency consider-
ations (such as runlength encoding and spatial indexing) [29]. Still, dividing analysis into
raster and vector is often extraneous, not only because there exist trivial translations from
raster to vector formats which retain raster principles17 and vice versa, but also because
ignoring these types is often important for geographic analysis. For example, in order to
select data for noise pollution assessment in a city, it is less relevant whether noise levels
are expressed in vector (contours) or raster format.

We therefore suggest to focus our data types on the geometric properties of layers instead,
drawing a distinction between layers that are Tessellations or not, as well as between point,
line or region datasets. A tessellation is a tiling of the plane into regions which are jointly
covering the plane and mutually non-overlapping [8]. Examples are irregular tessellations,
such as Choropleths, TINs and Voronoi tilings, as well as tilings with regular polygons,
such as regular squares. Tessellations enable us to describe an area without any gaps and
without redundancy, and thus to represent the core concept field, as we will argue below. In
addition, tessellations have an extent in the sense of a finite area that is fully covered, which
is essential for GIS processing. If we reorder geodata layers according to these principles,
we obtain a type hierarchy where what we normally call raster cell data is a subtype of
region data (see Fig.4), since the former reflects the special case of a tiling with squares18.

17For example, the highest resolution level of the official statistics of the Dutch Centraal Bureau voor de
statistiek (CBS) are CBS “vierkant” vectors (http://www.cbsinuwbuurt.nl/#vierkant500m aantal inwoners 2017),
which is nothing else than a raster in vector format.

18In this article, we consider raster layers to consist of cells, which are squared regions. There is also a raster
format that cannot be considered a tessellation because it represents cell centre or cell corner points, as implied by
GDAL’s ’AREA_OR_POINT’ flag in GeoTIFFs (https://gdal.org/drivers/raster/gtiff.html) or NetCDF’s CF con-
ventions. This is often used in digital elevation data. We suggest to categorize this latter type differently, namely
as a regularized point data set (e.g., a PointMeasure).
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Building on the OWL based analysis data (ada) design pattern19 [59], we capture a layer
in terms of a SpatialDataSet20, which is a collection of data items which have geometries of
the same type as spatial references21. As with a table row, different attribute values can be
linked to a single data item, which in turn is element of some data set. We distinguish Re-
gionData, LineData and PointData depending on whether these geometry values are points,
lines or regions22. For example, a RegionDataSet is a spatial data set with only RegionData
elements:

Ontological definition 1. RegionDataSet ≡ SpatialDataSet u ∀hasElement .RegionData

In our model, (cell-) Raster is a subclass of Tessellation, which is a subclass of Region-
DataSet:

Axiom 1. Raster @ Tessellation @ RegionDataSet

The distinction between vector and raster reflected in incompatible data formats can be
retained by redefining vector layers as not raster:

Ontological definition 2. Vector ≡ SpatialDataSet u ¬Raster

A vector tessellation can be expressed as the intersection Vector u Tessellation . Point-
DataSet and LineDataSet are special types of Vector data, being distinct from each other and
from RegionDataSets:

Ontological definition 3. LineDataSet ≡ Vector u ∀hasElement .LineData

Ontological definition 4. PointDataSet ≡ Vector u ∀hasElement .PointData

Axiom 2. RegionDataSet u LineDataSet u PointDataSet v ⊥

This captures the main intuition that tessellations are bound to be built by either raster
or vector regions, yet not both at the same time. It also keeps our types open for further
geometric realizations of tessellations, such as TINs or Thiessen polygons.

4.4 Attribute types for representing core concepts on different levels of
measurement

How can these layer types represent core concepts? To approach this question, first, note
that core concepts are basically about thematic contents of a layer. Fields as well as objects
and events have qualities (such as noise level, building heights and event durations), and
our core concept types need to be able to reflect these in terms of attributes. We therefore
consider CCD types to be types of attributes, and not types of spatial data sets. Following
the ada ontology, a (spatial data) Attribute is described as a value list of some SpatiaDataSet
(namely the list of values of one of its attributes):

Ontological definition 5. Attribute ≡ ValueList u ∃ofDataSet .SpatialDataSet

19http://geographicknowledge.de/vocab/AnalysisData.rdf
20We use the terms “layer” and “spatial data set” interchangeably here, knowing that there might be a difference

that is not captured by our scheme.
21That is, we make the assumption that a layer does not mix points, lines and regions.
22These types are not necessarily restricted to 2D geometries. However, we focus here on 2D examples.
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Figure 6: The difference between a field (Coverage) and an object (Lattice) tessellation in
terms of self-similarity. Land cover is an example for a coverage, and average elevation is
an example for a lattice. The attribute located at the cross is determinable for the coverage,
but not for the lattice. Cf. [55].

Each geometric layer type gives rise to a corresponding attribute type. Geometric sub-
types of attributes, e.g., a LineA attribute (cf. Figs. 4 and 5), are defined as:

Ontological definition 6. LineA ≡ Attribute u ∃ofDataSet .LineDataSet

Second, note that such attributes have their own mathematical properties that only in-
directly reflect the properties of the corresponding concept. For example, in order to rep-
resent a field with irregular tiles, we can use a tessellated representation called Coverage23.
In contrast to the field it represents, a coverage has the property that parts of its regions have
the same attribute value as the entire region. For instance, within any polygon of a land use
coverage, any location has the same landuse value as the attribute of the containing poly-
gon (Fig. 6). We call this attribute property self-similarity in the following24. This property is
precisely what allows us to reconstruct the values of the field at arbitrary locations simply
by subdividing geometries. Object or event representations, in contrast, do not have such
a property. For example, a corresponding tessellated object representation (called in this
article Lattice), such as “average elevation within Amsterdam”, is not self-similar (Fig. 6).
Note that this distinction is not captured by saying that objects are discrete and fields are
not, since all mentioned layer data models are bound to be discrete.

In addition to core concept qualities, we need to take into account further attribute dis-
tinctions that are relevant for geo-analytic operations. This primarily includes measurement
levels, since they largely determine the type of numerical GIS operation that can be applied
to data [15], as well as the distinction between extensive and intensive attributes [56], which
denotes whether attribute values are dependent on the size of their support regions (exten-
sive attributes) or not (intensive attribute). In this article, we do not further focus on the
latter distinction, yet our ontology inherits these classes.

Based on the arguments given above, we introduce classes of spatial data attributes (see
Fig. 5) that represent core concept qualities (ending with a “Q”). A FieldQ, e.g., is a spa-
tial data attribute which directly represents the quality values of a field, and similarly for
EventQ and ObjectQ:

23See [55]. The term resembles the notion introduced by the Open Geospatial Consortium (OGC) in http://
docs.opengeospatial.org/is/09-146r6/09-146r6.html. However, the OGC term does not distinguish core concepts
from data types and is practically used only as a supertype of raster formats.

24The property is also called homeomerosity in the ontology literature [30].
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Axiom 3. FieldQ v Attribute; EventQ v Attribute; ObjectQ v Attribute

An example of a field quality would be temperature, and an example of an object quality
would be the size of a building or the average income of a municipality. Note that since our
core concept attribute classes are defined orthogonal to geometric layer types, we are free
to mix them. This enables us to represent, e.g., a temperature field by point data as well as
region data.

We finally capture levels of measurement for spatial attributes as a chain of subsumptions,
since lower measurement levels are special cases of higher levels and thus imply these
higher levels [15, 59]:

Axiom 4. CountA v RatioA v IntervalA v OrdinalA v NominalA v Attribute

Note that count scales are a special case of ratio scales, where not only the meaning of
0 but also of 1 is fixed. We consider a Boolean (True/False) attribute as a special case of a
(bi)nominal attribute, as an ordering is not implied:

Axiom 5. BooleanA v NominalA

5 Core concept data types (CCD) and operational signatures

Each of the distinctions introduced above is relevant for some form of geospatial analy-
sis, and thus for determining a corresponding data type. In principle, the proposed three
semantic dimensions could be freely combined for this purpose, resulting in a large num-
ber of types, i.e., 6 (Point, Line, Region, Tessellation, Vector, Raster) * 3 (FieldQ, ObjectQ,
EventQ) * 6 (NominalA, OrdinalA, IntervalA, RatioA, CountA, BooleanA) = 108. However,
not all combinations seem meaningful and practically relevant. In this section, we discuss
what we think are the most useful combinations in terms of the ccd design pattern25, and
then introduce corresponding signatures for common GIS operations. Cf. the concept hi-
erarchy in Fig. 5. The CCD ontology and all annotation data in this article was checked for
consistency using standard OWL reasoners.

5.1 CCD ontology pattern

A simplified overview is given in terms of the matrix in Fig. 7, and we define and explain
these type combinations in the following based on examples. The borders of layer types in
this figure are dotted, reminding us that classes are not mutually exclusive, and thus can
overlap each other.

5.1.1 Field based types

We start with data representations of a field. The simplest way of representing a field
is to represent it in terms of a pointwise sample of measurements. We define this data type
PointMeasure as a field quality represented by the attribute of some point data set:

Ontological definition 7. PointMeasures ≡ FieldQ u ∃ofDataSet .PointDataSet

25ccd: http://geographicknowledge.de/vocab/CoreConceptData.ttl
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Figure 7: Matrix of data types based on combining geometric layer types with spatial core
concepts. Combinations are formalized with DL class constructors, and empty cells are
deprecated combinations, as explained in the text. Note that the class tessellation intersects
with both raster and vector, so matrix cells are not mutually exclusive.

Since it is provable that the underlying data set is not a tessellation (by Axioms 1 and 2),
this type of data is incapable of providing an estimate for the field quality for each location
in the covered area. Still, the representation is trivially self-similar, since parts of points
are always identical. Prime examples of point measures are pointwise representations of
air quality or noise measurements. A LineMeasures attribute maps lines of homogeneous
values of a surface, such as in an isoline map:

Ontological definition 8. LineMeasures ≡ FieldQ u ∃ofDataSet .LineDataSet

Each line may represent, e.g., a particular height in a digital terrain model. A Field-
Raster, in contrast, is a typical field representation in remote sensing. It enables spatially
continuous analysis since a (cell) raster is a type of tessellation (by Axiom 1):

Ontological definition 9. FieldRaster ≡ FieldQ u ∃ofDataSet .Raster

A more general way of representing a field in terms of a tessellation is a Coverage, which
is defined as a tessellated representation of some field quality:

Ontological definition 10. Coverage ≡ FieldQ u ∃ofDataSet .Tessellation

It follows by Axiom 1 that field rasters are special kinds of coverages. Coverages include
also irregular tessellations used, e.g., to represent landuse data in terms of nominal classes.
Depending on the level of measurement, we can further distinguish Contours, which are
kinds of coverages whose values are ordinally scaled, denoting quality intervals of fields26:

26Since contour maps go beyond ordinally scaled coverages, this is not a definition. A formal model of contours
was recently suggested by Hahmann and Usery [34]. Note also that we make a distinction between contour
(region) and isoline maps. Isoline maps are of type LineMeasures , and are not tessellated. This distinction can be
made for Amsterdam datasets that we use for our scenario.
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Axiom 6. Contour v Coverage uOrdinalA

Examples for contours are vector based digital elevation models, where each irregu-
lar polygon maps some height interval of the terrain. Since contours are coverages and
coverages are field representations, they are self-similar27. Correspondingly, all coverages
provide an estimate of the field quality for each location within their extent. For example,
an estimate of height or landuse for each point on the terrain.

An important subtype of field representation is a field raster with Boolean value ranges.
We call this type of raster ExistenceRaster:

Ontological definition 11. ExistenceRaster ≡ FieldRaster u BooleanA

Such field rasters are used to show the existence of diverse kinds of phenomena (in-
cluding all core concepts) for each location in space. For example, an existence raster may
be used to show where a certain type of landuse is located, where a certain height is, or
where a certain set of houses is located28. The value True asserts the presence of the phe-
nomenon at the cell location29. Following the same kind of logic, alternatively, we can use
Boolean Vector Fields to represent the existence of such phenomena. In this case, irregular
vector geometries (”patches”) show the existence of a phenomenon under consideration at
all locations within the geometry:

Ontological definition 12. ExistenceV ector ≡ FieldVector u BooleanA

Note that existence rasters and existence vectors can both play the role of an individ-
uation criterion to construct new kinds of objects, defined as the whole of all locations for
which the existence field is true, such as “the green territory in Amsterdam”. In this way,
they give rise to new spatial boundaries of a synthetic object that encompasses those parts
of the underlying field that correspond to the selection of green landuse.

5.1.2 Object based types

In contrast to field based types, object based attribute types are not self-similar, so we can-
not assume that parts of their geometries have the same attribute values as the whole.
Object vectors are attributes of vector data which directly represent object qualities:

Ontological definition 13. ObjectV ector ≡ ObjectQ u ∃ofDataSet .Vector

Examples of object vectors are building prizes or heights in a cadastral data set, emission
values of industry buildings, or tagged Points of Interest (POI) such as in Open Street Map
(OSM). These datasets are not tessellated, and so we can expect spatial gaps where no
object (and thus no quality) is located. Think about a dataset of power plant emissions,
vs. a dataset of emission concentrations. The former is an object vector, the latter being an
example for a point measures representation of a field.

In addition, objects are countable and have boundaries denoting, e.g., physical bor-
ders such as walls or legal boundaries. Note that object vectors as well as existence

27Cf. also the discussion of coverages (”inverted fields”) in [55].
28For this reason, one could further specify existence rasters according to their data origins, as was done in [53].

This is considered future work.
29Fuzzifying boolean values would result in an existence raster which points at the vague location of a phe-

nomenon [10].
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rasters/vectors afford the determination of a well defined spatial boundary30. We therefore
summarize these types into a bounded phenomenon supertype:

Ontological definition 14. BoundedPhen ≡ ObjectVector t ExistenceRaster t
ExistenceVector

This type is useful to overload proximity and topological operations which make use of
boundaries (see examples below).

A Lattice31 is defined as a tessellated representation of an object quality, implying that
object boundaries form a tessellation:

Ontological definition 15. Lattice ≡ ObjectQ u ∃ofDataSet .Tessellation

The prototype of a lattice is statistical data summarized by pre-defined statistical regions.
This type of data represents the qualities of particular kinds of objects, such as the mean
income of the municipalities in the Netherlands. Note that also in this case, administrative
units have a distinctive identity, and attributes are not self-similar. Furthermore, since these
regions extensively cover a spatial area without overlap, it becomes possible to aggregate
measures of their attributes (e.g., the mean income of the Netherlands). Note that this is
not possible with any other kind of data in our schema.

In principle, a possible subtype of lattice would be an object raster, where each raster
cell denotes the location of an object. However, such a representation is hardly practical,
as it enforces squared boundaries on objects. Indirect raster representations of objects are
more common, such as object density rasters or object existence rasters. Yet, the latter are
indeed special types of field rasters in our scheme32, and therefore appear as deprecated
types in our matrix.

5.2 Geocomputational signatures for spatial analysis

Based on CCD data types, we introduce type signatures to describe input and output types
of GIS operations and to check validity constraints on the automatic composition of GIS
operations into a workflow. Signatures of GIS operations are gathered in a tool description
file which links CCD classes as inputs and outputs to tool identifiers33, an overview of
which is given in Table 1. Operations will be discussed now in their order of appearance,
using implementation examples from ArcGIS Pro 34. However, we expect that an equiv-
alent set of operations is available in other GIS software. Signatures are summarized in a
computational diagram in Fig. 8.

5.2.1 Operations on Field representations

Prominent FieldRaster operations are Tomlin’s map algebra functions [62]. Local and focal
map algebra (such as local sums or focal averages, and many others) take some FieldRaster
as input and generate a new FieldRaster, thus sharing the same signature and operating

30Even though some objects (such as mountains) have vague boundaries [9], they are still “bounded” in the
sense that we can determine a minimal region containing their location.

31Used here in the sense of lattice data in spatial statistics (cf. [52]).
32The idea being that spatial distance/existence creates a spatial (ratio-scaled/Boolean) field. This field can be

represented as a raster, for example.
33https://github.com/simonscheider/SemanticPipelines/blob/master/ToolDescription.ttl
34https://pro.arcgis.com/en/pro-app/help/analysis/geoprocessing/basics/geoprocessing-quick-tour.htm
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On Operation type Input type 2nd Input type Output type

Field Local Map Algebra FieldRaster FieldRaster FieldRaster
Focal Statistics* FieldRaster FieldRaster
Zonal Statistics** FieldRaster VectorTessellation Lattice
Boolean Reclassify FieldRaster ExistenceRaster
Select by attribute Coverage ExistenceVector
Raster to Polygon NominalAuFieldRaster Coverage
Create Contours IntervalAuFieldRaster Contour
Polygon to Raster Coverage NominalAuFieldRaster
Polygon to Raster Contour OrdinalAuFieldRaster
Overlay Coverage Coverage Coverage
Point Interpolation IntervalAuPointMeasures FieldRaster
Extract Values to
Points

FieldRaster PointA PointMeasures

Thiessen Polygons PointMeasures Coverage
Least Cost Dis-
tance/Path

IntervalAuFieldRaster BoundedPhen ExistenceRaster

Object Areal Interpolation Lattice Lattice
Select by Location ObjectVector ObjectVector
Spatial Join*** ObjectVector VectorTessellation Lattice
Raster to Vector ExistenceRaster ObjectVector
Feature to Raster ObjectVector ExistenceRaster
Merge ExistenceVector ObjectVector
Euclidean Distance BoundedPhen RatioAuFieldRaster
Focal Density BoundedPhen RatioAuFieldRaster

Table 1: Signatures for major types of GIS operations. Some operations are overloaded and
some have the same signature. Some require additional function parameters, which can
change the type of input and output attributes: *with Mean, Variety, Sum function **with
Mean, Majority, Sum function, ***with Join_one_to_one parameter and Count, Mean, Sum
functions. In effect, this is only a coarse overview of operational types described in our
annotation file.

exclusively on field representations. Yet, zonal operations have a different role in the compu-
tational diagram, namely as one of the few possibilities to generate lattice data from field
representations. We can distinguish zonal functions according to their required scale level,
e.g., Zonal Mean requires interval scales, and Zonal Median requires ordinal scales, while
Zonal Variety35 requires only nominal scales. As rasters are tessellations, the geometric layer
type is hardly affected by this operation36, however the underlying semantics change con-
siderably from field rasters to lattices. Everyone who practically works with rasters learns
early on that Reclassify is an indispensable tool. Our signatures (Fig. 8) show a possible
reason for this: it enables us to turn a field raster into an existence raster, by selecting and
“highlighting” a specific field quality value using a Boolean value. For example, to turn a
landuse raster into a one telling us “here is forest” and “here is no forest”, which can then
be used in further analysis. Select by Location allows us to do the same thing with vector
field representations. Create Contours takes an interval scaled field raster and generates a
contour map. Every contour map is a coverage, and every coverage can be turned into a

35Computes the number of unique values in each zone.
36As a matter of fact, there are zonal map algebra implementations for both vector tessellation as well as raster

outputs, compare “Zonal statistics” and “Zonal statistics as Table”.
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Figure 8: Computational diagram of types of geoanalytic operations applicable to semantic
data types. Boxes denote semantic data types, and bold circles denote operation types.

field raster simply by Polygon to Raster, because coverages are self-similar. The “converse”
operation, Raster to Polygon37, selects subsets of cells with the same attribute value to gen-
erate polygons, making it the prototypical operation for generating coverages. Because of
self-similarity, coverages can be combined in a straightforward manner via Overlay (includ-
ing Identity, Intersect and Union), since the newly generated polygons can simply inherit
the attribute values of their source layers. Our Overlay signature is therefore exclusively
on coverages, though ordinary GIS would allow analysts to unjustifiably apply them to
all kinds of vector data sets38. A different set of operations is used to deal with field vec-
tors. Point Interpolation (such as Kriging or Inverse Distance Weighting (IDW)) exclusively
works with Point measures to generate a field raster. The inverse operation is Extract val-
ues to points. Similarly, interpolating with Thiessen polygons requires that the input points
represent a field, such as liters of rainfall. Least Cost Distance/Path39 takes an interval scaled
field raster which represents a cost surface, and computes an existence raster that denotes
the location of the least cost path.

5.2.2 Operations on Object representations

Combining layers is entirely different for lattices, which are tessellated object represen-
tations. The default operation for combining and turning lattices into each other is Areal

37Using the “raster_field” parameter to indicate the attribute.
38Note that intersecting the geometries of objects is still possible with other operations. Remember that the

listed operations are on spatial attributes, not on geometry values.
39We treat here both, Least Cost Distance and Least Cost Path, as a single operation, though they appear as

separate (but chained) operations in ArcGIS.
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Interpolation (including simple area weighted averages as well as Kriging based approaches
and others) [20]. Simple overlay is inappropriate here due to missing self-similarity40.

A more general way of representing objects is an object vector, which misses the tessel-
lation requirement. We argue that this is the data type for which location queries (Select by
location) are meaningful, due to the fact that spatial relations (such as “overlaps”, “contains”,
“within distance”), which are used in these queries, require countable, bounded entities
which can overlap. Due to the very same reason, a Spatial Join is restricted to object vectors,
effectively turning them into lattices when used together with a vector tessellation. For
example, by counting the number of objects within each region or by summarizing their
qualities.

The Raster to Point/Line and Feature To Raster toolsets in ArcGIS41 can be used to trans-
late from existence rasters to object vectors and back for all geometric types. Note that
their signature therefore differs from “Polygon to Raster” discussed above, which operates
exclusively on field representations.

Operations for analysing bounded phenomena are Euclidean Distance and Focal Density.
These methods use boundaries to compute a field of distances to the nearest/densities of
neighboring phenomena. Focal Density subsumes Kernel Density estimation, simple Point
Density, as well as Areal Density (computing the percentage of areal coverage in a moving
window around each cell).

6 Workflow synthesis and validation

In order to test our ontology, we translate the competency questions of Sect. 2 into queries
of a logic called Semantic Linear Time Logic (SLTL) [46,61], an extension of the well-known
Linear Time Logic (LTL). This logic can be used to specify and synthesize programs in terms
of sequences of typed operation applications over data. For workflow synthesis we are
using the APE framework [40]42. Since data retrieval is beyond the scope of this study, two
simplifications were applied to workflow construction: 1) Only relevant data sources are
available at the start; 2) At any moment during workflow construction, relevant input data
can be unambiguously identified by its type. We tested our ontology by checking whether
it generates valid workflows for each question and corresponding data source, with the
capacity of answering this question. Quality was assessed by expert judgment, based on
exploring examples of answer workflows43. Note that a more systematic test (including IR
precision gains and broader scenarios) is planned in the near future.

6.1 Semantic Linear Time Logic

The domain of discourse of SLTL are computational pipelines (workflows), which we
model as alternating sequences (paths) of sets of concrete data types ti ∈ Tc and concrete

40This is the same for raster based lattices, which is why raster resampling is similar to vector-based areal inter-
polation [54]. In our scheme, we subsume both under Areal Interpolation. We are aware that in practice, such
raster lattices may often be re-interpreted as field rasters instead.

41Used with a boolean “raster_field” and “value_field” parameter. Unfortunately, boolean values are only
implicit in ArcGIS, encoded, e.g., in “NoData” values.

42https://github.com/sanctuuary/APE
43The synthesis software together with all configurations, input and output files is available under https://

github.com/simonscheider/SemanticPipelines/blob/master/SatSolutionsCCDT.
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tools si ∈ Sc, with length k+1, k ∈ N0:

p = (t0, s1, t1, s2, t2, ...sk, tk) (1)

Concrete types/tools refer to specific data types and tools/operations from the domain, i.e.,
each concrete type represents an actual data instance (e.g., FieldRaster), while a concrete
tool represents an executable operation (e.g., EuclideanDistance(Vector)). These concrete
elements are depicted as leaves in a larger semantic hierarchy of types T = Tc ∪ Ta and
tools S = Sc ∪ Sa, where Ta and Sa represent abstractions over the concrete elements.

Auxiliary definition 1. Let T = Tc ∪ Ta be a semantic hierarchy of types, where Tc represents
the leaves of the hierarchy and Ta represents the non-leaf elements in the hierarchy. Similarly, let
S = Sc ∪ Sa be a semantic hierarchy of tools. Then ∀ti ∈ Tc and ∀si ∈ Sc, the sets of the
corresponding abstract types and tools are defined as follows:

TTax(ti) = {ti} ∪ {t ∈ Tc| ti subsumed by t in T} ,

STax(si) = {si} ∪ {s ∈ Tc| si subsumed by s in S}

Auxiliary definition 2. Let p be a path of length k + 1, where k ∈ N0 and let i ∈ [1, k] be an
index. A subpath pi represents a part of the path p obtained by removing the first i pairs of types
and tools (2n elements in total) and is defined as follows:

pi = (ti, si+1, ...sk, tk)

with a special cases of pi = p when i = 0 and pi = (tk) when i = k.

We now introduce formulas in SLTL:

Auxiliary definition 3. Formulas of SLTL are described by the following BNF:

φ ::= true | t | ¬φ | φ ∧ φ | < s > φ | Gφ | φU φ

where t ∈ T and s ∈ S.

For a path to satisfy such a formula, the alternating sequence of types and tools has to
satisfy the following definition:
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Auxiliary definition 4. Whether a path p satisfies an SLTL formula φ (written as p0 ` φ) is
defined inductively as:

pn ` true is satisfied by every path (2)
(true applies to any path)

pn ` t iff t ∈ TTax(tn) (3)
(t applies to the first type in the sequence)

pn ` ¬φ iff not pn ` φ (4)
(φ does not hold)

pn ` φ1 ∧ φ2 iff pn ` φ1 and pn ` φ2 (5)
(φ1 and φ2 hold)

pn `< s > φ iff s ∈ STax(sn+1) and pn+1 ` φ (6)
(s is the next tool in the sequence and φ holds in the following subpath)

pn ` Gφ iff pn ` φ ∧ pn+1 ` Gφ (7)
(φ holds generally, i.e., in each subpath of the path)

pn ` φ1Uφ2 iff pn ` φ2 or pn ` φa ∧ pn+1 ` φ1Uφ2 (8)
(φ1 holds until φ2)

Notice that operators such as ∨ (logical or) and Fφ (logical finally) can be easily computed
using the presented operators, as follows: pn ` φ1 ∨ φ2 iff pn ` ¬ (φ1 ∧ φ2) and pn `
Fφ iff pn ` trueUφ. More useful operators can be defined over chained operations, such
as out and in:

Auxiliary definition 5. The workflow produces a given output data type t if the last type in the
sequence is of type t. Formally, we have to express that as saying that every subpath of the path p
contains the type t (including the subpath pk where k is the length of the path):

p0 ` out t iff p0 ` G(Ft)

Auxiliary definition 6. The workflow includes a set of given input data types t1, ..., tn if the first
types in the sequence are the types t1, t2, ..., tn. Formally, we have to express that as saying that the
first type in the path p0 satisfies the types t1, ..., tn:

p0 ` in t1,...,tn iff p ` t1 ∧ ... ∧ tn

Additionally, we would like to have operators expressing a need for a certain data type
(gen) or a tool (use) to be used in the sequence. For that purpose we are defining two
additional operators.

Auxiliary definition 7. A workflow generates a data type t when a type element in the path
eventually represents the type t:

p0 ` gen t := pn ` Ft

Auxiliary definition 8. A workflow uses a tool s when one of the steps in the path represents the
tool s:

pn ` use s := pn ` F (< s > true)
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Although workflows are represented as sequences, tools can take as input not only the
direct predecessor type. Rather, the set of available types is expanded in each step, and
therefore types generated previously can be reused further down the path. This means
we can rewrite sequences as directed acyclic graphs (DAG), which is the way how GIS
workflows are usually conceptualized. The synthesis algorithm [40, 61] used in our exam-
ples generates all compositions that satisfy the given specification with a given maximal
length, ordered by length. The specification consists of an SLTL formula, together with the
synthesis universe S, T, Tsig , where T = Tc∪Ta, S = Sc∪Sa and Tsig contains the set of tool
signatures (tin, sc, t

out) denoting the input and output types of each concrete tool, where
tc ∈ Tc.

The workflow synthesis sketched above integrates with reasoning on the CCD ontology
and the tool annotations in two phases:

1. In a first phase, we applied OWL 2 RL44 and RDFS reasoning to expand the ontology
with inferred subsumption statements for defined classed. We then extracted the
subsumption graph corresponding to T . Together with the tool annotation file Tsig , it
was fed into the synthesis process.

2. In the second reasoning phase, the synthesis process starts from a given SLTL formula
(the query specification) and searches the space of all possible tool (in Tsig) sequences
in order to satisfy the formula. The tools are semantically extended using the on-
tology over inputs and outputs. In order to exclude ambiguous classifications and
to speed up search, we assume that the subclass relation is jointly exhaustive, and
leaf classes are pairwise disjoint. This assumption can be satisfied for CCD types by
introducing proper subclasses as leafs and by type combinations in a preprocessing
step. We then can use implications of the form

A⇒ A1 ∨A2

where A is a superclass of A1 and A2, to find A1 and A2 as possible inputs for A.

In this way, OWL subsumption reasoning expands the space of sensible operations for
workflow synthesis reasoning. In practice, this means that we can specify a constraint over
an abstract type, for example by choosing some field (FieldQ) as a goal. This constraint
would be satisfied by a tool that generates, e.g., a field raster. Using the workflow syn-
thesis algorithm, we synthesized up to 50 possible workflows (ordered by size) answering
Questions 1,2,3,4 of a maximum length of 4 tool applications.

6.2 Geo-analytical queries in SLTL

We can now rephrase our competency questions in terms of SLTL formulas exploiting the
CCD ontology and the input data types for each question (cf. complete specification files
in footnotes):

Question 1. What is the number of sport facilities (ObjectPoint) of each PC4 area (VectorTessella-
tion) in Amsterdam?
in ccd:ObjectPoint, ccd:VectorTessellation ∧ out ccd:CountALattice

44https://www.w3.org/TR/owl2-profiles
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45 Note that in this definition, we make use of a measurement level (a count lattice) to
specify what we need as output. Alternatively, one could also leave the measurement level
unspecified. We tried out both versions.

Question 2. What is the rate of elderly people of each PC4 area in Amsterdam?
in ccd:Lattice, ccd:VectorTessellation ∧ out ccd:Lattice

46 In this specification, we ask for translating a lattice of rates on neighborhood level
into one on PC4 level.

Question 3. What is the average distance to the nearest green of each PC4 area in Amsterdam?
in ccd:CoverageNominalA, ccd:VectorTessellation ∧ out ccd:Lattice ∧ use tool:Distance

47 48 In this specification, we ask about the accessibility of green areas, which is trans-
lated in terms of a workflow from a nominal coverage to a lattice which makes use of some
distance function. The use constraint enforces workflows to apply some distance function49.

Question 4. What is the average noise level of each PC4 area in Amsterdam?
in ccd:Contour, ccd:VectorTessellation ∧ out ccd:Lattice ∧ use tool:ZonalStatistics

50 51 In this specification, we ask for a lattice of average noise levels, derived from a
contour map. The term “average” is translated here in terms of the Zonal Statistics method
(which can make use of any aggregation method dependent on the measurement level). Of
course, other translations may be possible.

Note that in order to improve the precision of workflow construction, further con-
straints may be added to each translated question, concerning, e.g., the types of functional-
ity or the order of tool application. However, since our validation is preliminary, precision
(making sure workflows have high quality) is less relevant than recall (useful workflows
are captured by the ontology). We therefore leave more sophisticated translations and eval-
uations to future work.

6.3 Constructing a liveability atlas of Amsterdam

In this section we illustrate how our data types can be exploited together with the operation
signatures in Table 1 to give meaningful answers to questions specified in the last section.
The goal is a liveability atlas on the level of PC4 regions (see example Fig. 3), which is
of type Lattice. The synthesized workflows are sequences of the form type, type,... - tool -
type as introduced above, and we indicate parametrized versions of tools by writing [tool-
name]([parameter]). Once introduced, types can be reused along the pipeline. We picked in

45https://github.com/simonscheider/SemanticPipelines/blob/master/SatSolutionsCCDT/ape sports.
configuration

46https://github.com/simonscheider/SemanticPipelines/blob/master/SatSolutionsCCDT/ape cbs.
configuration

47https://github.com/simonscheider/SemanticPipelines/blob/master/SatSolutionsCCDT/ape bbg.
configuration

48https://github.com/simonscheider/SemanticPipelines/blob/master/SatSolutionsCCDT/constraints bbg.csv
49We use a tool type to illustrate the possibility for different kinds of spatial distance tools that might be used

here, e.g., Euclidean versus network distance.
50https://github.com/simonscheider/SemanticPipelines/blob/master/SatSolutionsCCDT/ape noise.

configuration
51https://github.com/simonscheider/SemanticPipelines/blob/master/SatSolutionsCCDT/constraints noise.

csv
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the following only representative examples of such workflows, both of better and worse
quality for answering the given question. The complete set of answer workflows is linked
in a footnote under each question.

Number of sport facilities of PC4 areas in Amsterdam 52

Workflow 1. NominalAuObjectPoint, TessellationAuVectorA - SpatialJoin(Count) -
CountAuLattice

This occurred not only as the shortest possible workflow in the set, it also corresponds
to the shortest meaningful answer: using a spatial join with the count parameter on a nom-
inal ObjectPoint and a vector tessellation, to produce a lattice of counts of these objects.
When relaxing the goal type to Lattice, the synthesis algorithm produced also two more
sophisticated ways to reach an equally valid result:

Workflow 2. NominalAuObjectPoint, TessellationAuVectorA - EuclideanDistance(Vector) -
FieldRasteruRatioA - ZonalStatistics(Mean) - LatticeuRatioA

In this workflow, we do not count the number of sport facilities, but rather compute a
mean distance to the nearest facility for each PC4 area, using the Euclidean Distance tool
with vector data. This gives a measure of accessibility of sport facilities.

Workflow 3. NominalAuObjectPoint, TessellationAuVectorA - FocalStatistics(Vector)
FieldRasteruRatioA - ZonalStatistics(Mean) - LatticeuRatioA

In this workflow we apply focal statistics to first compute the density of facilities, which
is then averaged into PC4 areas.

Since our specification of the question in the last section is still very coarse, also many
less useful and redundant workflows for the given task are produced. For example:

Workflow 4. NominalAuObjectPoint, TessellationAuVectorA - SpatialJoin(Count) -
CountAuLattice - ArealInterpolation(Rate) - CountAuLattice

In this workflow, we add an unnecessary interpolation step that turns the lattice into
an equivalent lattice. While this workflow is not wrong, it would not be considered for
practical reasons.

Rate of elderly people of PC4 areas in Amsterdam 53 This question produced only a
single workflow result (ignoring redundant mutations):

Workflow 5. Lattice, TessellationAuVectorA - ArealInterpolation(Average) - Lattice

The workflow suggests using an areal interpolation technique to transform rates of el-
derly from CBS neighborhoods to PC4 regions.

52https://github.com/simonscheider/SemanticPipelines/blob/master/SatSolutionsCCDT/
sat solutions sports.txt

53https://github.com/simonscheider/SemanticPipelines/blob/master/SatSolutionsCCDT/sat solutions cbs.
txt
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Distance to the nearest green of PC4 areas in Amsterdam 54

Workflow 6. CoverageuNominalA, TessellationAuVectorA - VectorToRaster -
FieldRasteruNominalA - BooleanReclassify - BooleanAuExistenceRaster - EuclideanDis-
tance(Raster) - FieldRasteruRatioA - ZonalStatistics(Mean) - LatticeuRatioA

In this workflow, the BBG landuse coverage is first turned into a nominal field raster,
which is then reclassified (selecting those landuse values which correspond to “green”) into
an existence raster, before computing a distance field to “green”, which is then aggregated
with zonal statistics into a lattice. The workflow set contains also another interesting and
equally valid result:

Workflow 7. CoverageuNominalA, TessellationAuVectorA - SelectbyAttribute - ExistenceVector
- Merge - CountAuObjectVector - EuclideanDistance(Vector) - FieldRasteruRatioA - ZonalStatis-
tics(Mean) - LatticeuRatioA

Here, the green areas are not selected by raster reclassification, but rather by selection
of vector attributes, which are then merged into a single object, based on which distances
are computed and aggregated into the lattice.

Average noise level of PC4 areas in Amsterdam 55 We obtained a meaningful answer
based on the following workflow:

Workflow 8. Contour, TessellationAuVectorA - VectorToRaster - FieldRasteruOrdinalA - Zonal-
Statistics(Median) - LatticeuOrdinalA

In this workflow, an ordinal lattice (of noise levels) is produced by first generating an
ordinal field raster, and then computing the median of the noise levels within each PC4
area. This is a valid solution. However, in addition, we also got many that were less useful
for the given purpose:

Workflow 9. Contour, TessellationAuVectorA - VectorToRaster - FieldRasteruOrdinalA - Focal-
Statistics(Variety) - CountAuFieldRaster - ZonalStatistics(Mean) - LatticeuRatioA

In this workflow, we compute the variety (the number of different noise values) in a
focal window around each raster cell, which is aggregated into PC4 areas. This workflow
does not measure a central value, but rather the spread of noise values.

Workflow 10. Contour, TessellationAuVectorA - VectorToRaster - FieldRasteruOrdinalA -
BooleanReclassify - BooleanAuExistenceRaster - ZonalStatistics(Majority) - BooleanAuLattice

In this workflow, we pick out a particular noise level in terms of an existence raster and
compute whether the majority of cells within a PC4 area has that level or not. While this
workflow is meaningful, it is less useful because the answer it gives is unnecessarily coarse,
and thus would not be selected by a GIS analyst.

The workflows discussed above are still rather abstract, because they are on the type
level. For each of the four questions, Fig. 9 summarizes the most useful answer in terms
of concrete data sources. These paths in fact correspond to GIS workflows that a pro-

54https://github.com/simonscheider/SemanticPipelines/blob/master/SatSolutionsCCDT/sat solutions bbg.
txt

55https://github.com/simonscheider/SemanticPipelines/blob/master/SatSolutionsCCDT/sat solutions noise.
txt
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Figure 9: Meaningful workflows suggested by our computational signatures. Red and
green boxes denote object and field representations, respectively. Grey diamonds denote
geodata attributes.

fessional GIS analyst might implement in order to generate the atlas: ObjectVectors are
aggregated via Spatial Join (Fig. 9.1). Lattices can be converted to lattices only via areal
interpolation (Fig. 9.2). The landuse map is a nominal coverage. Turned into a FieldRaster,
it becomes nominal, too. We can select one of its classes by reclassification to generate an
ExistenceRaster, which can then be used to generate a distance based raster (which is ratio
scaled). The latter can be aggregated via Zonal Mean into a lattice (Fig. 9.3). Since a noise
map is a contour map, it is bound to be ordinal, so the generated field raster is ordinal, too,
and thus can only be aggregated to a lattice via a Zonal Median function (Fig. 9.4).

Finally, our tests demonstrated that CCD type signatures at the same time prevent loads
of meaningless artifacts of bad GIS design, which result as soon as we remove the core
concept data types and only keep the standard types vector and raster. For example:

Workflow 11. Sport facilities (PointVector) - PointInterpolation - Raster

is meaningless because sport facilities are objects, not fields;

Workflow 12. Grondgebruik 2017 (RegionVector) - SpatialJoin(Count) - RegionVector

is meaningless because landuse coverages represent fields, so areas do not have an iden-
tity and thus are not countable;

Workflow 13. CBS Buurt (RegionVector) - PolygontoRaster - Raster

is meaningless because CBS data are lattices, and thus overlay results in a Modifiable
area unit problem (MAUP) error [22];

Workflow 14. Noise Map 2017 (RegionVector) - ArealInterpolation - RegionVector

is meaningless since noise map is a field, not a lattice, and thus requires point interpo-
lation.
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7 Conclusion, discussion and future work

In this article, we systematically investigated the different ways how core concepts of spa-
tial information can be represented by geodata, as a basis for a type system that helps
answering geo-analytical questions by constructing appropriate workflows. We have sug-
gested a lightweight ontology pattern in OWL, including geometric layer types, measure-
ment levels and core concepts of spatial information. The CCD ontology can not only be
used to specify geo-analytical questions, but also to reason with data sources across data
formats and to add type signatures to GIS operations in order to constrain meaningful ap-
plications and to automate the construction of answers. The basic idea is that core concept
interpretations of data sources can be represented in direct and more indirect ways in terms
of different geometric layer types with different measurement scale levels. We have intro-
duced a DL formalization of such types as combinations of basic classes, which can be used
to reason about geodata and GIS operations. Furthermore, using a scenario for computing
a liveability index for Amsterdam, we demonstrated that our type signatures are effective
in synthesizing useful answers and in preventing computational nonsense. Our test shows
that not only valid workflows are produced, but also that various equally valid answers
can be discovered this way.

However, our study also illustrates a number of challenges which need to be met in
order to turn this into a useful method of geo-analytical question-answering. One challenge
is the problem of ambiguity of core concept interpretation. For example, analysts frequently
re-interpret data, “ignoring” their properties in order to simplify analysis. Events are re-
interpreted as objects, lattices may be re-interpreted as field rasters to simplify overlay, and
rasters may be re-interpreted as regularized point measures using the cell center points.
In the CCD annotation of data sources, we might in the future incorporate this possibility
with systematic (probabilistic?) re-annotations. Another problem is automating annotations.
How can CCD annotations be scaled up across large amounts of data sources and tool
sources on the web, such as the different GIS software tools [4]? This problem might be
partially solved using data mining, as done in [56], or might draw on existing metada, as
given by the OGC. However, we expect that a substantial amount of manual annotations is
unavoidable. For this purpose, we are planning extensive data source annotation studies.
Based on this, future work should investigate the role of the CCD ontology in mitigating
interoperability problems [7], based on matching GIS tools to annotated data sources.

The proposed type system should be extended by the core concepts network and event,
allowing us to capture accessibility and trajectory as concepts within data sources and work-
flows. Also, a genuine ontological study of the formal properties of core concepts in a more
expressive logic is still lacking. Highlighting how the CCD ontology deals with temporal
information is an important part of this. In case time is a constraint on data, one might use
temporal functions that are separate from any ontology. In case we want to describe tem-
poral GIS functions (which have time as input or output), temporal values of core concepts
might be handled with OWL Time56. Beyond this, one might take the stance that processes
should be considered a separate category. However, if all core concepts come with some
temporal dimension, we wonder to what extent this covers the role of processes. Further-
more, it is apparent that our current type system does not distinguish different kinds of
transformations between the same core concept data types. To define GIS functionality be-
yond this level, we need a transformation language that generalizes tools similar to the data

56https://www.w3.org/TR/owl-time/
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types in terms of their behavior. To this end, we are currently working on a transformation
algebra which is based on core concepts.

In this study, we tested GIS workflow synthesis only on a limited basis. In the future,
we plan to extend our test by measuring the precision gain of the approach with respect to a
benchmark of commonly used geodata types, in terms of meaningful vs. non-meaningful,
redundant, or erroneous workflows. For this purpose, we work on extending the test sce-
narios to cover more diverse workflow queries. Regarding reasoning, we plan to use SLTL
workflow reasoning to further constrain workflows in terms of sequences of operations
for retaining data quality [1, 42]. In this way, we can prevent information loss in terms
of (spatial and semantic) resolution. Furthermore, we are working on a method to rea-
son with classes projected to separable semantic dimensions, which makes the approach
independent from ad-hoc class combinations.

Finally, we believe that core concepts and their transformations can play a central role in
realizing question-based interactions with GIS [54, 63], since type transformations can ex-
press analytical goals, which capture precisely the intent of corresponding questions. For
example, the task of aggregating green space into statistical units corresponds to a ques-
tion about aggregated qualities of these units, e.g., “how accessible is green space within
Amsterdam?”. For this purpose, it is necessary to analyse the structure of geo-analytical
questions in greater depth. In the future, a geo-analytical grammar might be devised that
helps constructing and translating such questions into queries over workflows.
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