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Abstract 
 
Agent-based modelling (ABM) is fast becoming the dominant paradigm in social 
simulation due primarily to a worldview that suggests that complex systems emerge from 
the bottom-up, are highly decentralised, and are composed of a multitude of 
heterogeneous objects called agents. These agents act with some purpose and their 
interaction, usually through time and space, generates emergent order, often at higher 
levels than those at which such agents operate. ABM however raises as many challenges 
as it seeks to resolve. It is the purpose of this paper to catalogue these challenges and to 
illustrate them using three somewhat different agent-based models applied to city 
systems. The seven challenges we pose involve: the purpose for which the model is built, 
the extent to which the model is rooted in independent theory, the extent to which the 
model can be replicated, the ways the model might be verified, calibrated and validated, 
the way model dynamics are represented in terms of agent interactions, the extent to 
which the model is operational, and the way the model can be communicated and shared 
with others. Once catalogued, we then illustrate these challenges with a pedestrian model 
for emergency evacuation in central London, a hypothetical model of residential 
segregation tuned to London data which elaborates the standard Schelling (1971) model, 
and an agent-based residential location built according to spatial interactions principles, 
calibrated to trip data for Greater London. The ambiguities posed by this new style of 
modelling are drawn out as conclusions. 

                                                 
1 This paper was first presented at Geocomputation 2007, National Centre for 
Geocomputation (NCG), National University of Ireland, Maynooth, Co. Kildare, Ireland, 
from 3-5 September 2007. 
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1. Introduction  

Cities are constantly changing and evolving through time and across geographical 

scales where activities and features change from the split second decision involving local 

movements such as people walking, the development of land over months and years, the 

migration of peoples over decades, to the rise and fall of cultures and civilizations over 

eons. These sorts of problem which involve location and mobility have recently been 

articulated in much more disaggregate terms then hitherto with their system components 

or ‘objects’ being conceived of as agents where their movement takes place on a 

backcloth or in an environment composed of points, areas and networks. Such 

simulations began with automata used to grow systems in cell-like fashion but they have 

quickly evolved into models of mobile agents, interacting with one another in a landscape 

or environment usually constituted in traditional cellular terms (Batty, 2005) The big 

difference between these new approaches and the more aggregate, static conceptions and 

representations that they seek to complement, if not replace, is that they facilitate the 

exploration of system processes at the level of their constituent elements. 

 

The development of these ideas is not without its problems and this paper will seek to 

identify these, posing them as key challenges to be addressed in fashioning these models 

to make them scientifically relevant and policy applicable (Axelrod, in press). We begin 

by posing seven key challenges and then illustrating these with three agent-based models 

coupled to geographic information systems (GIS). The challenges that we identify range 

across the spectrum of theory to practice, hypothesis to application, beginning with the 

purpose for which the model is intended, and then focusing on the extent to which 

independent theory lies behind the model. Fifty years ago when models became part of 

the scientific lexicon, it was always assumed that a model either represented an 

articulation of some prior theory or schema to elicit such theory inductively from data. In 

fact models are not often embedded in theory per se and thus the quest in grounding any 

model in theory is often to extract its essence from its operational articulation. In classical 

science, a model acts as some kind of experimental focus for testing a theory and the 

need to replicate the success or otherwise of the experiment in independent situations was 
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regarded as the hallmark of science. This is something that is now much more uncertain 

with few attempts at such classical replication, at least in the social sciences. It throws the 

question of validation, verification and calibration into the melting pot, thus constituting 

another important challenge to developing good simulation. 

 

We then explore the way agents are represented in such models, focussing on the 

need to identify multiple agents all acting either passively or actively in relation to one 

another and their environment. ABM deals with models that reflect processes of decision 

which agents make with respect to their location and in this context, these processes are 

usually temporally dynamic. This breaks with the notion that such models are 

parsimonious and in principle testable in the watertight manner of traditional science. We 

then illustrate the extent to which models need to be operational and this involves the 

way they are articulated in terms of software and the extent to which they are applicable 

to real situations and real data. It is entirely possible to develop ABM using pencil and 

paper; indeed the first such models were developed in this way a generation or more ago 

(Schelling, 2006) but now there are many variants which reflect different degrees of 

operationality. We conclude with perhaps one of the most important challenge – the need 

to share, communicate and disseminate not only model results with others but the 

understanding of such models as well as their operation. In this we are aided by advances 

in computation, particularly visualization and networked communications.  

 

This sets the scene for illustrating these seven challenges with respect to geo-spatial 

simulation models which we have developed to operational status. Castle (2006) has been 

working with a pedestrian model of evacuation dynamics for the complex transport 

interchange at Kings-Cross / St. Pancras in central London which relates to the genus of 

such models of which the social forces model developed and popularised by Helbing and 

Molnar (1995) is typical. Crooks (2006, 2007) has been working with a Schelling-type 

residential segregation model at a coarser spatial scale which deals with processes of 

residential mobility over longer time periods. His model is hypothetical but tuned to 

London data. Batty has been working with a land use transportation model of Greater 

London built along traditional spatial interaction principles with many large zones at the 
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census tract (ward) scale and this has been generalised to treat each trip maker as an 

agent. This focus of this model is on the journey to work where employees are allocated 

to residential zones according to the gravitational hypothesis. The scale is greater than the 

first two but the dynamics is more like that of the pedestrian model dealing with 

movements that take place over short periods of time. 

 

Agent-based models have been developed for a diverse range of applications. To give 

a sense of the range, we note this diversity as: archaeological reconstruction of ancient 

civilisations (Axtell et al., 2002); understanding processes involving national identity and 

state formation (Cederman, 2001); biological models of infectious diseases (Eidelson and 

Lustick, 2004); growth of bacterial colonies (Krawczyk et al., 2003); company size and 

growth rate distributions (Axtell, 1999); price variations within stock-market trading 

(Bak et al., 1999); voting behaviours in elections (Kollman et al., 1992); spatial patterns 

of unemployment (Topa, 2001); and social networks of terrorist groups (North et al., 

2004. These examples lie on a continuum, from minimalist models for academic research 

based upon idealised assumptions which are invariably used pedagogically or test clear 

and simple hypotheses, to large scale commercial decision support systems based upon 

real-world data. In many of these however, the representation of agents is critical and in 

several of these applications, the number and type of agents as well as their location in 

space and time is an important problem which raises many difficult challenges. Unlike 

earlier mathematical models of urban phenomena say, these kinds of models are much 

more generic, fashioned according to ABM principles but not embodied as a single 

modelling type to be tested widely on different applications but more tailored to a 

particular task in hand. This makes an enormous difference to their replicability and the 

way they are calibrated and applied as we will see a little later. 

 

Despite the many advantages of geo-spatial agent-based models as a tool for 

simulating the micro-diversity of their systems of interest, their emergent properties, and 

their process dynamics (see Castle and Crooks, 2006), such models did not begin to 

feature prominently in social simulation and GI science until the mid-1990s after Epstein 

and Axtell (1996) demonstrated that the notion of modelling individuals making up an 
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idealised society in space could be extended to growing entire artificial cities. The use of 

ABM for experimenting and exploring geographical phenomena however is still in its 

infancy (see Brown et al., 2005; Parker, 2005; Benenson and Torrens, 2004; Gimblett, 

2002 for sample applications) and thus our focus here is on identifying key challenges to 

the development of such models. This makes their applicability somewhat different to the 

previous generations of models to spatial and urban systems, and we should stress that 

modellers should consider these challenges before they embark on such simulations. We 

will now outline these seven challenges, prior to showing how we are handling them in 

our own applications which we will present in the final section. 

 

2. Key Challenges  

The structure of a typical agent-based model composed of agents/objects/components 

which interact with each other and with their environment(s) is well known (see Castle 

and Crooks, 2006). Such models are usually considered as forming a miniature laboratory 

where the attributes and behaviour of agents, and the environment in which they are 

housed, can be altered, experimented with, where their repercussions are observed over 

the course of multiple simulation runs. The ability to simulate the individual actions of 

many diverse agents and measure the resulting system behaviour and outcomes over time 

means that agent-based models can be useful tools for studying the effects on processes 

that operate at multiple scales and organisational levels (Brown, 2006). Our models here 

roughly approximate the notion of generative social science articulated particularly by 

Epstein (2007) which proposes that models should be ‘grown’ within such simulation 

laboratories, thus explicitly rooting such models in temporal dynamics. 

 

 The seven challenges that we see as important to their development involve the 

following: the purpose for which the model is built, the extent to which the model is 

rooted in independent theory, the extent to which the model can be replicated, the way 

the model might be verified, calibrated and validated, the way model dynamics are 

represented in terms of agent interactions, the extent to which the model is operational, 

and the way the model can be communicated and shared with others. We do not consider 
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this to be an exhaustive list but it is a beginning. Such challenges have been identified 

before (see particularly Axelrod, in press), but here we will address them in turn, first 

identifying each major issue and then demonstrating them where appropriate with actual 

applications.  

 

2.1 The Purpose of the Model  

Fifty years ago when computer models were first constructed for urban systems, these 

were always predicated on the notion that they were to be used for testing the impacts of 

urban plans and policies rather than scientific understanding per se. The argument went 

as follows: given a good theory, a model would be constructed which would then be 

validated and if acceptable, used in policy making. This rather tight loop has been relaxed 

in the last two decades and now models are built to explore all stages of the theory-

practice continuum. This has largely occurred because the certainty of science has come 

under fire. The idea that the computer represents the scientist’s laboratory is an attractive 

notion but when it comes to control of the inputs and parameters, most social systems 

cannot be represented in a form that guarantees any measure of closure. The difficulties 

and failures of earlier generations of urban model for example, bear testament to the fact 

that however good the fit of the model is to reality and to theory, there always seem to be 

features that are missing.  

 

ABM relaxes all these assumptions and most of the social science simulations that we 

noted above do not focus these models on policy applications. In short, as ABM is 

generic, it is more a style of modelling which is largely independent of theory and 

practice and thus the purpose of any particular model will depend on issues that are often 

beyond the generic principles of ABM. In fact, whether or not ABM is appropriate for the 

theory and its applications, for the policies involved or for the design of systems that the 

model might be built to inform, cannot be guessed in advance. Thus only when we 

broach particular problems and develop particular models, do these issues become clear. 
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Frequently in ABM, the actual purpose and position in this scientific process is 

unclear largely due to the changing conceptions of how to do science and also the fact 

that agent-based models deal with systems that are complex, open-ended, hence emergent 

and thus exhibit novelty and surprise. However a model is only as useful as the purpose 

for which it was constructed and for agent-based models, this needs to be clear. A model 

has to be built at the right level of description for every phenomenon, judiciously using 

the right amount of detail for the model to serve its purpose (Couclelis, 2002). This 

remains more art than a science (Axelrod, in press) but of course, this is using the term 

science in its narrow sense for there is as much art in science as science in art. The 

purpose of agent-based models range from the explanatory to the predictive (see Castle 

and Crooks, 2006) with prescriptive and design models of increasing importance, 

although as we have noted, there is less focus on policy and prescription with this style of 

simulation than in previous, more aggregate modelling. 

 

2.2 Theory and Model  

Models should be based on theory and the traditional role of a model in the social 

science is as a translation of theory into a form whereby it can be tested and refined. In 

this sense, a computer model provides a computer laboratory for virtual experimentation, 

and hence a vehicle for refining theory through ‘what if’ style experiments and sensitivity 

testing. In fact as scientific method has blurred from this classical tradition, then 

increasingly models are being used to develop theory. In fact, the term theory has fallen 

out of favour in many contexts as models themselves contain theories. Our concern here 

however is that the theoretical implications of many agent-based models remain implicit 

and hidden, often covered by a thick veil of ad hoc assumptions about structure and 

process as well as a veneer of software interfacing. In many models, it is hard to figure 

out what they are for as they are simply additional applications of some simple structure 

which is tweaked for the local context and application. Domain knowledge is often 

lacking and increasingly agent-based models are being considered generic, independent 

of any particular field or application, and hence subject to use for any purpose that arises 



 8

in a pragmatic way. In short, the scientific standards of the past are often buried in ad hoc 

model development. 

 

We do not believe that ‘theory’ should necessarily be independent of ‘model’ for we 

are well aware that new styles of model now embrace theory in quite a different manner 

from those hitherto. But we do consider that in developing good models, there needs to 

be recognition that many styles of theorising and thinking must be brought to bear on 

model construction. For example, in our understanding of urban spatial structure, there is 

a long heritage of location theory in the urban and industrial economics domains with this 

theory being reflected in equilibrium micro-economics of the individual and the firm. 

This theory has produced many important insights and in any agent model of residential 

development, say, we might expect such issues to be reflected. The style of theorising in 

micro-economics is quite different from its embodiment using ABM but we would 

consider such theory essential to the structure of such models. In the same fashion, the 

notion of bringing large groups of researchers with different interests into the 

development of such a model, polling their insights and resources across the web, is also 

important to the development of large scale models, and this represents quite a different 

source of theory and understanding from the traditional practice whereby single 

individuals develop theory in a more formal, considered manner. In short, what we are 

saying is that the domain of model and theory is now considerably wider than at any time 

in the past and ABM must respond to such complexity. 

 

2.3 Replication and Experiment  

It is a canon of scientific inquiry that a theory that withstands the test of time is more 

likely to inform our understanding than one that can be easily refuted. In short, this is the 

inductive hypothesis that suggests that the more confirming instances of a theory, the 

stronger it becomes. This is the quest for generalisation in that a theory that works for one 

set of circumstances should work for any other and as long as the theory is not refuted, it 

remains ‘true’. Of course, all this has been turned on its head by the notion that theories 

cannot be confirmed but only falsified and that even a theory that withstands many 



 9

confirmatory instances and applications has no greater probability of being true than any 

other. It only takes one falsification to sink it. 

 

Nevertheless, our intuition suggests no matter how wrong this might be, our 

confidence in a model (or its theory) always increases the more confirming instances we 

have of its successful application. To pursue this, we need to replicate the model in 

independent situations. This is rarely done in the social sciences largely because of the 

difficulties in controlling all the variables that pertain to a particular situation, thus 

making it almost impossible to ensure comparability in terms of applications. A more 

limited quest which we discuss below is to make sure that the model can be verified in 

different laboratory situations, with different software for example, rather than different 

data. This is a much lesser quest. A reverse form of replication involves testing different 

kinds of models or different variants of the same model, for example in different software 

systems, on a standard data base. Axtell et al. (1996) refer to this process as ‘docking’ 

where it is clear that we have much greater control over the model than the data; hence 

keeping the data fixed and varying the model does give some insight into the robustness 

of each model. In fact in cases where rather similar models have been compared on 

standard data sets as in the case of the large scale study of urban land use transportation 

models (based on spatial interaction) conducted in the late 1980s, it was found that so 

many idiosyncratic decisions made by the modellers with respect to their different models 

and in terms of the way the data was configured and defined in different places, made 

comparisons almost impossible (Webster et al., 1988). And this was for parsimonious 

models of a rather narrow genus where applications were quite standard in terms of the 

data required. 

 

2.4 Verification, Calibration, and Validation 

If an agent-based model is developed to the point where it can be used to generate 

outcomes/results, there are several different tests that can be made and each of these 

involves a key challenge. Some models do not reach the point where they are set up as 

simulations for their purpose may be simply to articulate a way of thinking about the 
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problem, even in terms of heterogeneous agents, environments and their interactions. 

However most ABM will embrace issues of testing and these can conveniently be 

identified as verification, calibration and validation. We will deal with these in turn.  

 

Verification and validation are often confused in terms of their terminology but here 

we will define verification as the process of testing whether or not the logic of the model 

is acceptable. This is as a much a matter of testing the logic of the model through its 

computer programme as testing its formal logic. It involves checking that the model 

behaves as expected which is something that is often taken for granted. It is sometimes 

referred to as testing the ‘inner validity’ of the model (Brown, 2006; Axelrod, in press) 

but we will not use this phraseology here as it tends to confuse verification (which does 

not involve any external data) with validation. Validation relates to the extent that the 

model adequately represents the system being modelled (Casti, 1997) and in this sense, it 

involves the goodness of fit of the model to data. However, the validity of a model should 

not be thought of as binary event (i.e. a model cannot simply be classified as valid or 

invalid); a model can have a certain degree of validity (Law and Kelton, 1991) which of 

course is encapsulated by various measures of fit. Validity can thus be ascertained by 

comparing the output of the model with comparable data collected from a real-world 

system using various statistics over which there is usually quite intense debate. The 

question of what best statistics to use in model fitting is something that has dominated the 

literature on models of land cover, for example. Moreover, there are also more qualitative 

evaluation of model validity that might be made. For example, Mandelbrot (1983) argues 

that good models which generate spatial or physical predictions that can be mapped or 

visualised must ‘look right’. Axelrod (in press) suggests that to understand the output of 

an agent-based model, it is often necessary to evaluate the details of a specific simulation 

‘history’ and this too is usually a qualitative matter. 

 

Calibration involves fine-tuning the model to a particular context and this means 

establishing a unique set of parameters that dimension the model to its data. This is not 

validation per se but calibration can often involve validation because the parameters are 

often chosen so that performance of the model is optimal in some way, in terms of some 
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criterion of goodness of fit, for example. This is a large subject area and suffice it to say, 

many if not most agent-based models suffer from a lack of uniqueness in parameter 

estimation at this stage.  

Concerns have been raised pertaining to verification and validation by numerous 

researchers (e.g. Batty and Torrens, 2005; Parker et al., 2002). Batty and Torrens (2005) 

write that with respect to developing traditional models, two rules have been taken as 

central to the process of developing good models in the social sciences. The first is the 

rule of parsimony – Occam’s razor – which suggests that a better model is one which can 

explain the same phenomena with a lesser number of intellectual constructs. The second 

principle relates to independence in verification. A theory which is induced using one set 

of data needs to be validated against another independent set, and this obviously relates to 

our earlier discussion about replication. While it is sometimes possible to achieve this 

with traditional models, this is not the case for models developed using ABM principles, 

particularly where this involves human systems which evolve over time. Modellers are 

embracing increasingly diverse and richer model structures containing large numbers of 

parameters. Often with traditional models, parsimony is reflected in the linkage of 

dependent and independent variables while agent-based models have multiple causes 

which display heterogeneity of processes that are impossible to observe in their entirety 

(Batty and Torrens, 2005). Thus these new model structures are never likely to be 

validated in any complete sense against data; they are too rich and data needed to test 

them too poor (Batty et al., 2006). 

 

2.5 Agent Representation, Aggregation and Dynamics  

In spatial systems, what constitutes an agent is a critical issue in that the term can be 

applied to any aggregation of objects at any spatial scale and across different time 

horizons. Moreover it need not be restricted to human objects but might pertain to any 

object that exists in space and/or time. A slightly more restrictive definition of agents has 

been adopted in some spatial models and we adhere to this here in that we consider 

spatial agent-based models to deal with agents that have some form of mobility (Batty, 

2005). Agents that do not move such as cells in cellular automata we would not define as 
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agents in this context. Some of these issues of representation are clarified in the examples 

that we introduce below, particularly in the way we represent their applications and 

outcomes using various forms of graphic.  

 

The scale of agents is also an issue as the finer the scale, the less ambiguous the 

definition, although we appreciate that this is contentious. This means that there are 

greater difficulties in specifying rules for defining agents which are aggregations of lower 

level units – i.e. groups within a human population, or defining abstracted agents such as 

a forest or a farmer or a city which pertain to models that in themselves are generic. In 

particular as we aggregate, we can unwittingly change the kinds of processes that agents 

enable, the kinds of mobility intrinsic to their location, and the scale at which they exist. 

It is thus more and more difficult to define relevant processes as these too are 

aggregations of lower level routines and behaviours for aggregation can confuse our 

identification of coherent patterns that make sense in terms of basic human decision-

making. 

 

Another issue involves the sheer number of agents and the sheer number of attributes 

and processes that they are engaged with. Like all systems that deal with interactions and 

networks, the size of the computation usually rises as the square of the number of agents, 

if not faster, and there are always limits on our ability to deal with such exponentiation. 

Sampling is often a favourite strategy to deal with multitudes but we must be cautious 

about proposing models that seek to represent behaviour at its most elemental level and 

then simplifying this back through taking samples. Sampling is not a well developed art 

in ABM as yet. Moreover choices are necessary in terms of the number of agents and 

processes which are reflected in the software used, the computational time involved, and 

of course the ability to get data that matches the specification of the model. In general, 

most agent-based models are tested against a fraction of data that could be applied to 

them in that many implicit explicit assumptions about behaviours cannot be observed as 

data does not exist. This reflects the issues about validation and calibration which we 

have already noted above as our fourth challenge. 
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2.6 Operational Modelling  

Making agent-based models operational means moving them to the point where they are 

configured as simulation models and running them so that they might produce outcomes. 

In the past, most models have been programmed from scratch and although this keeps the 

application in touch with theory, it makes the ability to generalise the model to other 

situations, to replicate the model that is, difficult as the study previously referred to by 

Webster et al. (1988) indicated. What has happened with ABM is that because this 

implies a generic approach, various software are now evolving that like GIS, are being 

used to enable such generic applications. As always, the extent to which generic software 

can be well-tuned to specific situations will vary dependent on the application and its 

complexity, and besides the advantages of consistency and modularity that such software 

enables, it is always limited in its applicability. 

 

In terms of ABM as in other areas of simulation and representation, such software 

enables modellers to adapt it to their problem context, implementing their model through 

high level scripting, for example, which the software usually allows. This opens up 

models to a wider community of scholars than hitherto but it also forces modellers 

without the skills or resources to develop their own models from scratch to meet 

constraints posed by the software. This can be a key problem when limits posed by the 

software on the numbers and representation of agents occur. Nevertheless, the 

development of agent-based models can be greatly facilitated through the use of 

simulation/modelling systems such as Swarm, Repast, NetLogo, OBEUS, etc. (see Castle 

and Crooks, 2006). They provide reliable templates for the design, implementation and 

visualisation of agent-based models, allowing modellers to focus on research (i.e. 

building models), rather than building fundamental tools necessary to run a computer 

simulation (Tobias and Hofmann, 2004; Railsback et al., in press).  

 

In particular, the use of simulation/modelling systems can reduce the burden 

modellers face programming parts of a simulation that are not content-specific (e.g. the 

Graphical User Interface (GUI), data import-export, visualisation/display of the model). 

It also increases the reliability and efficiency of the model because complex parts have 
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been created and optimised by professional developers as standardised simulation-

modelling functions. Additionally, the object-oriented paradigm allows the integration of 

additional functionality from libraries not provided by the simulation/modelling system, 

extending the capabilities of these toolkits. Of particular interest here is the integration of 

functionality from GIS software libraries (e.g. OpenMap, GeoTools, ESRI’s ArcGIS, 

etc.) which provide ABM toolkits with greater data management and spatial analytical 

capabilities required for geospatial modelling. Castle and Crooks (2006) provide a 

comprehensive review of ABM simulation/modelling systems capable of creating 

geospatial agent-based models. 

 

One feature that we have not yet seen in this field although it is possible that there are 

examples, is the design of models that take modules from a very wide library of 

components and literally throw these together in different combinations to make different 

types of model. The notion that with many different modules, a large array of model 

variants can be easily constructed enhances the use of theory in that a solution space of 

models types can be explored, literally. This has been done for solutions to individual 

models in terms of their parameter space but not really for different variants of models 

themselves. It is thus an attractive way forward. Repast, which we illustrate below, 

potentially has the components to enable this and we speculate that such diversity of 

modelling may well mark the next advance in this field. 

 

2.7 Sharing and Dissemination of the Model  

The last challenge involves how we might communicate and share agent-based 

models with all those who we seek to influence and who we and they believe that such 

modelling will inform their activities. In the past before the development of intensive and 

all pervasive computation, communicating models was mainly through discussion, 

simplification and visualisation, through pedagogy in all its various forms. Clearly 

visualisation is one of the keys to such sharing in that with digital models, their structure 

is easily amenable to visualisation. Of course spatial outcomes can be mapped and this is 

a key medium for dissemination as well as for validation and other aspects of the 
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simulation process. But model structures can be described visually while the process of 

running the model, calibrating it, examining its inputs and outputs can be presented 

visually even while the model is running.  

 

A good example of the power of such sharing is embodied in the current model-

building capability within the GIS software ArcGIS (Maguire, 2005). The ability to drag 

and drop various modules – albeit only overlay (map) layers – and utilise various simple 

functionality – again albeit only map algebra type calculations – does offer an interesting 

way of involving those who are not expert in simulation in model construction. In fact 

much of the software that is now being evolved not only communicates and shares the 

modelling process and its outcomes with various non-expert participants but also enables 

non-experts to participate in the actual model construction. ABM in particular offers this 

possibility in contrast to earlier styles where the model was wrapped around a narrower 

professional expertise.  

 

The other face of this revolution is the development of procedures for disseminating 

this kind of visualisation and model building process to whoever has an internet 

connection. Again an excellent example of this is the development of simple pedagogic 

software online. ABM is in the forefront of this as many simple examples such as the 

Schelling (1971) model indicate. In fact, a good example of this is on one of our own web 

sites where we simply took an example from the NetLogo site and embedded it in a web 

page (see http://www.genesis.ucl.ac.uk/model.html). The development of online 

laboratories – collaboratories for example – where model building and users engage in 

mutual and shared development activities although their infancy are very much on the 

horizon. The MOSES model at Leeds is a good example of the potential of this kind of 

activity (Birkin et al., 2006). The development of web site where many users develop 

agent-based models such as NewTies (http://www.new-ties.org/) is another good 

example of how this field is developing into a more sharing mode where collaboratories 

hold out great promise for new advances in the field of social simulation.  
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3. More General Challenges  

To conclude our catalogue of challenges, we will briefly focus on more general issues 

in creating spatially explicit agent-based models before presenting various examples. 

While GIS is a particularly useful medium for representing model input and output of a 

geospatial nature, GIS are not well suited to dynamic modelling (Goodchild, 2005; 

Maguire, 2005) such as ABM. In particular, there are problems of representing time 

(Langran, 1992; Peuquet, 2005) and change within GIS (Longley et al., 2005). To 

address these problems, numerous authors have explored linking (through coupling or 

integration/embedding) a GIS with a simulation/modelling system purposely built, and 

therefore better suited to supporting the requirements of ABM (e.g. Westervelt, 2002, 

Brown et al., 2005).  

 

ABM focuses on the individual, and thus the progress currently being made in the use 

of disaggregate data is an essential determinant of their applicability (e.g. Benenson et 

al., 2002). Increased computer power and storage capacity has made individual-level 

modelling more practical recently. An example can clearly be seen in the evolution of 

pedestrian modelling (see Galea and Gwynne, 2006) where there has been a concerted 

movement from aggregate to individual level modelling. However limitations still remain 

when modelling large systems. For example, large and refined datasets of high-resolution 

information now exist for initialising agent-based models for urban simulations. For 

instance in the UK, there are now excellent databases on land parcels and associated 

land-uses (OS MasterMap Address Layer 2®), and road segment data available (OS 

MasterMap® Integrated Transport Network™ Layer). Current GIS are capable of 

encoding these datasets into forms that provide the foundations for such simulations 

along with providing spatial methods for relating these objects based on their proximity, 

intersection, adjacency or visibility to each other.  

 

One major stumbling block is that there is potentially too much detail in these data for 

the current generation of computers to deal with when application to entire cities rather 

than just small areas are made. Thus agent-based models have the potential to suffer from 

similar limitations to those of the first generation of urban models developed in the 1960s 
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(Lee, 1973). However this can be overcome by considering the level of abstraction 

needed to examine the phenomena of interest for all the available detail is rarely needed. 

Or a series of smaller models could be created by examining specific aspects of the 

system. Second there is the lack of personal individualised data for the present and the 

past. For example, in the UK, the smallest measure of individual data from the Census is 

the Output Area which contains around 125 households. Sometimes access to more 

personal data can be obtained from commercial sources (see Benenson et al., 2002) or 

synthetic populations can be generated through micro-simulation techniques (Birkin et 

al., 2006) but dynamic, individualised data is in general a major problem which will 

continue to influence the development of such models in the foreseeable future. 

 

4. Applications  

4.1 A Pedestrian Model for Emergency Evacuation  

The first of our models is based on simulating pedestrians exiting a subway station 

that is one of the busiest intersections in the London transport network.  In particular the 

intersection of train lines and other transport modes are central to the new Eurostar 

station at King’s Cross St. Pancras and projected visitor movements during 2012 

Olympic Games. In 1987, the interchange was devastated by a major fire with 

considerable loss of life and the current redevelopment is still taking into account the 

safety recommendations identified by the Fennel (1988) investigation. In addition, the 

station must cope with the projected increase in future passenger demand from the new 

Eurostar terminal which will open in late 2007 and the projected 105,000 people will use 

the station during the morning peak (7-10am) during the Olympics. The model that was 

built is part of the appraisal by Camden Primary Health Care Trust who are responsible 

for the allocation and positioning of key emergency functions and facilities (e.g. 

ambulance loading point(s), casualty clearing station(s) to which the injured can be taken, 

etc.) in the event of a future emergency incident within the Underground station complex. 

The aim of the model is to predict the likely evacuation dynamic (i.e. total evacuation 

time, usage of evacuation routes, conditions experienced by passenger e.g. crowd 

density) given different very short term evacuation scenarios, future travel demand, and 
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short term fluctuations in passenger use at different times of day and week (peak/off-peak 

and weekday/weekend). 

 

With this well defined policy context, the model (which we refer to as the King’s 

Cross Pedestrian Evacuation Model – KXPEM) is built on theory of movement 

associated with evacuation (Castle 2007b), and various other pedestrian evacuation 

models that have been developed (Castle and Longley, in press). Models such as this 

have been built by several researchers and are quite widely applied. In fact they are the 

closest of all agent-based models to traditional scientific models which are testable 

against data and are capable of being replicated in different situations. This is largely 

because of the simplified behaviour of the agents  (e.g. optimised utility – least cost path), 

although the context of the problem is such that cultural and institutional differences, 

differences in geometric construction of facilities, and the standard emergency practice 

makes each application unique. Data is also difficult to obtain, especially flow and 

interaction data rather than routine count data of traffic volumes which is fairly basic. 

Developing such models with standard ABM software is quite possible and in this 

context KXPEM has been developed using the Repast framework as we note below, and 

as is clear from the GUI which is shown in Figure 1. Sharing the model is essential and 

although the application is still in desktop form, several groups of people involved in the 

Kings Cross evacuation scenarios, are involved in the model design and use. In short this 

is as good an example of an ABM tuned to a real problem as there currently exists. 

 

The model was programmed in Java which is used in relation to the agent-based 

simulation/modelling toolkit Repast. Our comprehensive assessment of existing software 

(Castle and Longley, in press) identitfied this as a viable option rather than using an off 

the shelf packages such as Legion, buildingExodus, etc., so that we thoroughly 

understand the requirements of a pedestrian evacuation model. The conceptual model of 

KXPEM was based on theory and principles of pedestrian evacuation modelling 

identified by Castle (2007b) where our focus on issues such as geometric enclosure 

representation, occupant and enclosure perspective, speed and direction of occupant 

movement, and the behavioural perspective of pedestrians, are all critical factors that 
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have influenced the design of this application. As pedestrian movement involves 

representing a relatively well-behaved but heterogeneous population of occupants, a 

coarse grain network model of movement was deemed inappropriate, whilst it was 

deemed unnecessary (given the purpose of the model) and impractical (due to limitations 

of current ABM software) to develop  a model using continuous space. The enclosure 

representation is thus based on a regular latticed representation (i.e. 50cm by 50cm cells).  

 

Each pedestrian is defined as a movable object of which groups are definable in terms 

of age, gender, and passenger type, thus permitting a heterogeneous population of 

passengers. Furthermore, KXPEM permits either a global or individual perspective of the 

station layout as pedestrians can be defined as either irregular or regular passengers. The 

calculation of a regular passenger’s exit route-choice is based on the assumption of prior 

knowledge of the station layout, and habitual use. Conversely, occasional passengers are 

programmed with limited knowledge of the station layout. Their exit route choice is 

calculated based on the assumption they will follow emergency signage to exit the 

station. The speed at which a pedestrian can walk is dependent upon their available space 

(i.e. density of pedestrians within a local area), as well conditions of their local 

environment (e.g. surface terrain) and characteristics of the individual (e.g. age and 

gender). Four secondary data sources for pedestrian walking speed as a function of 

available space and surface terrain, have been incorporated into the model to explore their 

effect on simulation outcomes: these come from Hankin and Wright, (1958); Ando et al. 

(1988); Fruin (1971); Predtechenskii and Milinskii (1978) and are based on widely 

agreed observed movement patterns. Exit route-choice and way-finding are defined by 

cost-surfaces, akin to many other pedestrian evacuation models that adopt a regular 

lattice approach to enclosure representation. 

 

Based on the assessment criteria of pedestrian evacuation models (Castle, 2007b), 

KXPEM adopts a rule-based approach to simulate occupant behaviour. Evacuee decision 

making is separated into pre-evacuation (e.g. length of time required to perceive and 

investigate an evacuation cue or alarm before initiating movement) and evacuation 

components (e.g. the effects of crowding and prior knowledge of the structure upon route 
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choice and walking speed). The rules that determine the response of each pedestrian 

when confronted with a decision are a combination of deterministic and stochastic 

responses based on information derived from literature (Castle, 2007a). 

 
Figure 1: The Graphical User Interface of KXPEM 

 
Illustrating the Starting Location of Pedestrians on the Piccadilly Line Platform (top left), 

Exit Time Profiles for each Section of the Station (bottom left), the Accumulative Exit 
Path of Pedestrians from the Piccadilly Line Platform (bottom right), and the Parameter 

Values Used.
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The calibration of KXPEM was an intensive process. For example, Computer Aided 

Drawing (CAD) floor plans of King’s Cross Underground station were used to ground 

the model with respect to the accuracy of enclosure’s layout and therefore its capacity. In 

line with the models purpose, cost surfaces were developed to explore three evacuation 

scenarios. Two scenarios are defined by the UK Health and Safety Executive (HSE, 

1996) to assist in the design and analysis of escape capacity from railway stations. 

Specifically, these are first, a train on fire at a platform, and second, a fire within a station 

structure. The third scenario permits the simulation of pedestrians from the station 

without incident. In particular, extensive periods of observation were made of pedestrian 

movement at the station in order to calibrate the cost surfaces used to specify direction of 

pedestrian movement and route-choice. In addition, surveys at King’s Cross Underground 

station were used to determine passenger volume and characteristics (e.g. age, gender and 

passenger type at different times of the day and week), in order to specify these 

parameters within the model. In terms of enabling the model to be built and used, an 

advisory panel was set up to facilitate its development, in particular to gain access to 

necessary information, often not in the public domain (survey data and CAD floor plans, 

for instance), and to advise on the development and calibration of the model. These 

included the British Transport Police, Camden Council, the Health Protection Agency; 

London Underground Limited, the Metropolitan Police Service, Network Rail, Transport 

for London, and the Camden Primary Care Trust.  

 

Typical of most ABM and related simulations, the development of KXPEM was an 

iterative process where model verification involved many iterations of the system. The 

final model was the 35th version where each version represented a major progression and 

backup point. A descriptive log of each programming progression was kept in case the 

author needed to reverse any changes. In total, over one hundred programming iterations 

were made. Unit testing was undertaken after every adjustment to the programming code. 

As the model became more complex, small and quick changes to the code took several 

hours to verify. Unit testing was achieved through Eclipse IDE debug mode, print lines, 

and by visual analysis of the model. Following this meticulous regime of verification, 
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confidence was gained in the model, specifically in terms of model processes taking place 

at the right time, and each process occurring in the manner in which it was intended. 

KXPEM was designed and developed for predictive purposes but information regarding 

past evacuation drills at the station and detailed empirical data on passenger flow was 

largely absent. In this sense, the model was not validated in the traditional manner against 

real-world data, and it is thus better suited for exploratory purposes at present. The 

visualisations shown in Figure 1 not only reveal the process of building and testing the 

model but the kind of outputs that non-expert users can relate to. 

 

4.2 A Model of Residential Segregation  

Our second application involves an extension to Schelling’s (1971) classic model in 

which individuals with very mild preferences to live amongst their own kind generate 

highly segregated districts when they move in response to any mismatch between their 

preferences and the configuration of their own and different types in their immediate 

neighbourhood. The purpose of this model is to explore the impact of space and geometry 

on such a process and in this sense, it is simply a pedagogic demonstration, a hypothetical 

demonstration of how individuals react to one another with respect to their preferences. 

The model deals with more than two groups of individuals, thus showing how 

segregation can occur in much more realistic systems than in the simpler system 

composed of two types of individual used by Schelling (1971). In so far as the model is 

grounded in theory, this is in the notion that individual action does not lead to any 

collective welfare, quite the opposite and it is an example of how unfettered and 

uncoordinated actions at the individual level lead to unexpected outcomes that are 

collectively undesirable, mild preferences revealing what are often quite wrongly judged 

to be extreme preferences. Although dimensioned to characteristics of populations in 

Greater London, the model is not capable of validation in any strict sense. Its theoretical 

basis is commonsensical, and the model is uncluttered with additional variables that 

might affect segregation – for example, how economic factors may contribute to racial 

segregation based systematic income differences across groups as well as price and 

quality of life arising from lot size and other amenities.  
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The model departs from other models which either explore or extend Schelling’s 

original insights (e.g. Bruch and Mare, 2005; Fossett and Senft, 2004; Laurie and Jaggi, 

2003; Omer, 2005; O’Sullivan et al., 2003) which are all based on the regular partitioning 

of space (e.g. cells or polygons) to represent the location of households (Benenson et al., 

2002). The focus here is on how different conceptions of spatial organisation affect the 

process of segregation with the model allowing agents to move anywhere within the 

urban environment (i.e. movement is not restricted to discrete cells or areas). The model 

explores how segregation in space emerges as agents move to new locations, and how 

segregated areas grow and decline over time. In this sense, it makes Schelling’s model 

much more explicitly geographical than any other applications to date but it is easy to 

replicate and is an ideal basis for experimentation. The fact that it can be demonstrated 

using a whole range of media from pencil and paper to a variety of types of computation 

– on the desktop, the web etc., illustrates its pedagogic quality and the ease with which 

the model can be shared amongst non-experts as a demonstration of how complex, 

unexpected, and surprising patterns emerge from simple foundations. 

 

In GIS terms, the model is comprised of two vector layers – the urban environment 

represented as a series of polygons, and four types of agents (red, blue, green and white) 

represented as points. It is the information held within fields of the environment layer that 

is used to create the agents. The distribution of four types (ethnic groups, say) of agent as 

observed through aggregate census population counts form the initial starting conditions 

of the model. Figure 2A represents four wards in the City of London each with their own 

attribute information stored in a data table where each row relates to a specific ward (e.g. 

ward 1 has a population of ten red, five blue, four green and two white agents). The 

model reads this data and creates an environment polygon for each ward and for the 

desired agent population based on data held in the fields as in Figure 2B. Note that the 

underlying colour of the polygon (ward) always represents the predominant social group 

in the area. This model is designed to work on many different geographical scales (e.g. 

boroughs, wards, output areas, and OS MasterMap TOIDs) without the need for model 

reconfiguration as we show in Figure 3. This was considered important as most socio-
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economic data comes in this format, for example, census and geo-demographic data. This 

functionality was created so that the model could be easily replicated in other areas in the 

quest to allow the modeller to see if the same rules can be applied to different areas and at 

different scales. Replicability is one of the key challenges we identify above and using 

modular software such as Repast in which the model is scripted, enables such flexibility 

in application. 

 
Figure 2: Reading in the Data and Creating the Agents 

 
Figure 3: Spatial Representation within the Model 

A: A Street Section. B: London Composed of Boroughs. Agents Are Shown As Dots. 
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In this model, agents only move if they find themselves in a minority which we have 

set as being less than 50% of the same kind in their area (neighbourhood). While 

Schelling’s original segregation model is an excellent example explaining residential 

dynamics, there are limitations. First, reality is much more complex and for this reason, 

the model has been extended in several ways, particularly in defining more than two 

groups. For example within London, there are numerous types of ethnic or 

socioeconomic group and thus this extension explores the impact of four different types 

of agents (although the model can permit any number) defined as white, red, blue or 

green. Each agent has a preference related to residential contact (co-residence) with 

members of each other group. Second, not only are we interested in how patterns of 

segregation evolve over time but how this pattern changes with the introduction of new 

agents and the death of older agents, and thus the model allows for the addition and 

removal of agents which has an important effect on the pattern of segregation seen within 

urban areas.  

 
Figure 4: Segregation Model User Interface 

Showing Segregation Dimensioned to the Geography of Wards in the City of London. 
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In Figure 4, we highlight the graphical user interface to the model. Clockwise from 

the top left is the control bar for the simulation, the GIS display which shows the agents 

and the urban environment (i.e. wards in the City of London), graphs for aggregate 

outputs, a legend for interpretation of the GIS interface, model output in the form of text, 

and the model parameters. We are not able to validate the model per se, except through 

testing its plausibility in commonsense terms but we can verify the structure. This is 

achieved by building the model iteratively similar to Castle’s (2007a) approach, each step 

extending the basic model, providing greater realism and functionality. At each step, unit 

testing was carried out, executing the computer programme after each modification of the 

code to check that a mistake in the computer programme (a ‘bug’) had not been 

introduced. This permitted the identification of unexpected outcomes of the model itself 

as opposed to errors in the code. 

 

Once the model was verified, a series of experiments were carried out in order to test 

the sensitivity of the model and to highlight the effect of the underlying model 

assumptions. Simulations involved between 1000 to 14000 agents. This exploration 

provided a detailed understanding of the implications of each assumption but also 

allowed one to evaluate the logic behind the model. This included the influence of the 

size of neighbourhoods, the influence of geographical features and the degree to which 

segregation changes when agent preferences for neighbourhood composition change. 

These explorations showed that geometry of an area can act as a physical barrier to 

segregation and that by increasing agents’ preferences to reside by a specific group, 

marked segregation can emerge but not in a linear progression. A distinct shift in the 

degree of segregation occurs when agent preferences increase from 40% to 50% of their 

own type. As with the more ‘traditional’ segregation models, this model also highlights 

how with mild tastes and preferences to locate amongst ‘like’ demographic groups, 

segregation will emerge. Adding agents and removing agents from an existing population 

alters existing patterns but for new groups entering the system, they must have either low 

tolerances for other groups or be willing to live by themselves in order to become 

established. The model illustrates how small minority groups cluster in areas and how 
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these clusters remain persistent over time, outcomes which are well beyond what 

Schelling showed in his initial model.  

 

 
Figure 5: Segregation within Areas and across Boundaries 

A: The Entire Area, B: A Zoomed in Section of A 

 
In Figure 5A, we show a representative simulation outcome, where all agents are 

satisfied with their current neighbourhood locations. While areas may have a 

predominant type of one agent within them (e.g. a polygon shaded red, say, has more red 

agents than any other type), there are areas where there are equal numbers of two or more 

groups (grey areas). However closer inspection of these mixed areas in Figure 5B reveals 

distinct micro clusters of different types of agents. Moreover it is also clear that clusters 

do not stop at boundaries but cross them as well and these clusters would be lost if we 
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were only to consider aggregate level data without the ability of agents to move in free 

space. Finally this model like KXPEM, is highly visual and in some respects is more 

modular in its construction. It has been put together using as much open source software 

as possible, built around Repast but using GeoTools and OpenMap as well as being 

coupled to ArcGIS in terms of its inputs and some outputs. It is still only a desktop 

application but its results are being disseminated across the web which provides a good 

example of this pedagogy (see www.casa.ucl.ac.uk/andrew/phd/). It is not designed for 

policy applications per se although policy is a clear consequence of such thinking. It is a 

‘classic tool to think with’, part of the growing arsenal of techniques and tools useful for 

informed discussion of urban problems. 

 

4.3 A Residential Spatial Interaction Model  

Our third application involves a more traditional model of spatial interaction which is 

articulated at the level of small zones in terms of employment and population aggregates. 

Such models allocate employment associated with small zones to residential locations, 

often the same set of small zones, through simulating interactions, in this specific case, in 

the form of the journey to work. The logic of interaction is based on the well-established 

gravitational hypotheses where the flow from employment site to residential location is 

inversely proportional to some measure of the impedance – distance or travel cost 

between these origins and destinations, and directly proportional to some measure of 

attraction or size of each two locations. The model we are building is part of an integrated 

assessment of climate change impacts on the Greater London area and as such it is 

designed to provide small scale population estimates for long term (2050 and 2100 

scenarios) interfacing between higher scale climate predictions which are factored into 

the regional employment and population estimates from an environmental input-output 

model and lower scale models related primarily to flooding and environmental risk 

(Dawson et al., 2007). The model is also designed to predict trips in four modes of 

transport – car, bus, rail and tube – which each have a considerable impact on how the 

pattern of residential population might adjust in terms of the way people might travel in 

the future. 
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The purpose of this model is clear and the theory on which it is based very well-

established as a corner stone of classical social physics. It is also has strong links with 

urban economic theory and the operation of land markets through the trade-off between 

accessibility and the attraction of different locations. This sort of model has been 

replicated many times and because it is comparatively parsimonious, it can be fitted at the 

aggregate level to available data. Flow matrices for each mode of travel represent the key 

data for validation and calibration is accomplished through tuning the model to reproduce 

the known trip lengths for each mode. The key problems with such models relate to the 

fact that the heterogeneity of location is not represented other than in the distinctions 

between the small zones used in predicting aggregate trips. In short, although there are 

over 600 zones defined for the model (see Figure 6 where we show the overall data input 

sequence and work trips from one zone), the fine grained spatial detail which 

characterises each place is not picked up whatsoever and there is considerable variation 

within each zone. To reflect this, the model must be further disaggregated to the point 

where such detail is relevant and this probably means that each household or trip making 

entity needs to be represented separately. In short of the 4 million work trips in greater 

London, each of these needs to be represented in terms of location but without sacrificing 

the aggregate conservation properties of the spatial interaction models which enable 

realistic totals to be predicted.  

 

What we have done is divide each of the 633 zones into a very fine grid which laid 

across greater London is of approximate dimension 1000 x 800 (each cell being about 

60m x 60m). We then randomly allocate the known employment and residential totals, 

individual by individual, to these grid squares but constrained by the actual pattern of 

development in each zone. Non-residential and employment cells are thereby excluded 

and this produces a much more accurate pattern of trip making. As the distances used in 

the crude model are crow-fly/airline, this detail affects every individual who makes a trip. 

We are currently developing ways of building in real distance/cost surfaces into the 

model so that we can move beyond straight-line distances. Each one of the four million 

trips is then individually simulated in terms of choosing a residential location in an 

appropriate zone and as each trip is identified in terms of its origin, running the model at 
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this individual levels conserves the total activity at each origin. In some respects the 

model is not unlike a disaggregate travel demand model built around discrete choice 

principles except that in this case, all the heterogeneity and choice is loaded on the spatial 

variation in locations. 

 

 
 

Figure 6: Inputting and Exploring the Model’s Data 
 

The Work Trips from Heathrow to the Other 632 Destinations are Shown along with the 
Zone Map and Drop-Down Menus Enabling the User to Interrogate the Data 

 

In another sense, this conception of agent-based models breaks our rule that the 

agents are mobile, at least in the sense of an agent moving purposively. Agents move in 

that they make trips but they do so in entirely routine fashion, and in so far as a dynamics 

exists, it is simply in the way people respond to fixed locations and spatial impedances 

which are unvarying. This model is in fact a simulation of a static equilibrium, although 

the equilibrium is composed of individual agents which when aggregated to small zones 

meet certain conservation constraints. The model is also operational is a somewhat 
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different way from the previous two. The model is not programmed in a particular ABM 

package like Repast but in a standard language – in this case in Visual Basic. Its graphics 

interface uses the components of Visual Studio and its maps are produced using various 

graphics primitives available in VB and as Windows APIs. The model is in fact 

programmed to show how the process of model construction is ordered and there are 

many graphics which enable the user to view data and predictions, and even to input 

various scenarios from the desktop as we show in Figure 7. But although the various 

windows resemble those of Repast, the similarity ends there as the model cannot be 

assembled in any other than the given order. It builds on earlier systems developed by 

Batty (1992). In short the model cannot be configured as a set of re-usable components 

which would involve a much higher level of coding and thus it is much more like an 

interactive graphics interface to a traditional batch process. 

 

 
 

Figure 7: Calibrating the Model. 
 

The Calibration Window, Aggregate Observed and Predicted Work Trips from Heathrow, 
and Predicted Populations are Shown. 

 

However the model can be communicated and shared with others through its graphic 

interface but unlike the Repast models, we have not yet sought to embed its output in an 

online system. The main form of communication comes from enabling users to develop 
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their own scenarios and in Figure 8, we show one part of this interface for inputting new 

levels of employment in each small zone of the system. As yet we have not integrated 

detailed transport networks into the model for these are configured within ArcGIS and at 

present, we do not foresee anything other than a loose coupling of software packages. It 

is unlikely that we will embed the model within a wider GIS as the sequence of software 

required for the entire integrated assessment is based on very different programming and 

data systems. In this sense, the model is more traditional in structure and there is no 

intention of developing it to the point where there are reusable software components. In a 

sense, this places the model into those which are specific rather than generic thus 

illustrating that decisions about software interact with questions of purpose, sharing, and 

communication. 

 

 
 

Figure 8: The Interface Enabling the User to Add or Subtract Employment from Any of 
the 633 Zones in Composing a Future Scenario to Test 

 

5. Conclusions and Next Steps  

These models demonstrate how the representation of individuals, through simple 

rules governing their behaviour and interaction at the micro-scale, can result in 
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recognisable patterns at the macro-scale. The models apply different theories and 

concepts, highlighting how ideas pertaining to urban phenomena can easily be abstracted 

within agent-based models, helping further our understanding of how cities operate. 

Furthermore, these models help laminate the importance of incorporating space when 

modelling urban systems. Notwithstanding their potential, this class of geospatial models 

more than any developed hitherto raise challenges for the field that directly face the issue 

about the changing scientific method which is being forced by the development of 

computation and highly decentralised views of how spatial systems actually work. 

 

The challenges we have identified here are not new for they pertain to all science 

which seeks to hypothesise the workings of a real system in the quest to develop both 

better understanding and tools for manipulating it, in silico, so to speak. The major 

challenge however which emerges from this discussion is the fact that agent-based 

models can be much more arbitrary than the models they both complement and replace. 

What is urgently required is some consensus about ways in which ABM can be structured 

so that major pitfalls are avoided. It is all too easy to develop models whose components 

seem plausible but are in fact rooted in false intuitions and unwarranted assumptions. 

Much of this relates to the goal of science which traditionally has been simplification but 

is changing to embrace possibilities for theories that are too rich to test but essential for 

coping with the evident complexity of the systems under scrutiny. Cities tend to be key 

exemplars of the dilemmas faced in such modelling, and the clear but short conclusion of 

this paper is that all such models should come under a much greater degree of scrutiny 

than any hitherto to avoid the sins of arbitrariness that plague a world where there are 

almost as many models and modellers. This represents a continuing challenge.  
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