1,391 research outputs found

    Software Platforms for Smart Cities: Concepts, Requirements, Challenges, and a Unified Reference Architecture

    Full text link
    Making cities smarter help improve city services and increase citizens' quality of life. Information and communication technologies (ICT) are fundamental for progressing towards smarter city environments. Smart City software platforms potentially support the development and integration of Smart City applications. However, the ICT community must overcome current significant technological and scientific challenges before these platforms can be widely used. This paper surveys the state-of-the-art in software platforms for Smart Cities. We analyzed 23 projects with respect to the most used enabling technologies, as well as functional and non-functional requirements, classifying them into four categories: Cyber-Physical Systems, Internet of Things, Big Data, and Cloud Computing. Based on these results, we derived a reference architecture to guide the development of next-generation software platforms for Smart Cities. Finally, we enumerated the most frequently cited open research challenges, and discussed future opportunities. This survey gives important references for helping application developers, city managers, system operators, end-users, and Smart City researchers to make project, investment, and research decisions.Comment: Accepted for publication in ACM Computing Survey

    Federated Embedded Systems – a review of the literature in related fields

    Get PDF
    This report is concerned with the vision of smart interconnected objects, a vision that has attracted much attention lately. In this paper, embedded, interconnected, open, and heterogeneous control systems are in focus, formally referred to as Federated Embedded Systems. To place FES into a context, a review of some related research directions is presented. This review includes such concepts as systems of systems, cyber-physical systems, ubiquitous computing, internet of things, and multi-agent systems. Interestingly, the reviewed fields seem to overlap with each other in an increasing number of ways

    EXPLAINING THE ROLE OF SERVICE-ORIENTED ARCHITECTURE FOR CYBER-PHYSICAL SYSTEMS BY ESTABLISHING LOGICAL LINKS

    Get PDF
    In the context of the so-called fourth industrial revolution, cyber-physical systems (CPS) build the technological foundation for the increasing digitalisation of our world. Because guidelines to overcome challenges of building such systems (e.g. security concerns, missing know-how, and lack of standards) are scarce, researchers and practitioners alike have begun to analyse the role of the mature paradigm of service-oriented architecture (SOA) in implementing CPS. However, the relationship between SOA and CPS is not entirely understood. To close this gap, we analyse SOA’s role for CPS based on a concept-driven literature review. The analysis of 12 publications that address the interrelation between SOA and CPS yielded four groups of CPS benefits that can be achieved by leveraging SOA. Combining these benefits with architectural layers and SOA’s design principles, we identify logical links that explain the role of SOA for CPS. Future research might concentrate on dominant patterns to scrutinise how a specific benefit can be achieved by leveraging SOA. Designers of CPS can leverage the identified patterns to understand the importance of specific characteristics of SOA to address the unique requirements of their CPS

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Middleware Technologies for Cloud of Things - a survey

    Full text link
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    A Framework for Industry 4.0

    Get PDF
    The potential of the Industry 4.0 will allow the national industry to develop all kinds of procedures, especially in terms of competitive differentiation. The prospects and motivations behind Industry 4.0 are related to the management that is essentially geared towards industrial internet, to the integrated analysis and use of data, to the digitalization of products and services, to new disruptive business models and to the cooperation within the value chain. It is through the integration of Cyber-Physical Systems (CPS), into the maintenance process that it is possible to carry out a continuous monitoring of industrial machines, as well as to apply advanced techniques for predictive and proactive maintenance. The present work is based on the MANTIS project, aiming to construct a specific platform for the proactive maintenance of industrial machines, targeting particularly the case of GreenBender ADIRA Steel Sheet. In other words, the aim is to reduce maintenance costs, increase the efficiency of the process and consequently the profit. Essentially, the MANTIS project is a multinational research project, where the CISTER Research Unit plays a key role, particularly in providing the communications infrastructure for one MANTIS Pilot. The methodology is based on a follow-up study, which is jointly carried with the client, as well as within the scope of the implementation of the ADIRA Pilot. The macro phases that are followed in the present work are: 1) detailed analysis of the business needs; 2) preparation of the architecture specification; 3) implementation/development; 4) tests and validation; 5) support; 6) stabilization; 7) corrective and evolutionary maintenance; and 8) final project analysis and corrective measures to be applied in future projects. The expected results of the development of such project are related to the integration of the industrial maintenance process, to the continuous monitoring of the machines and to the application of advanced techniques of preventive and proactive maintenance of industrial machines, particularly based on techniques and good practices of the Software Engineering area and on the integration of Cyber-Physical Systems.O potencial desenvolvido pela Indústria 4.0 dotará a indústria nacional de capacidades para desenvolver todo o tipo de procedimentos, especialmente a nível da diferenciação competitiva. As perspetivas e as motivações por detrás da Indústria 4.0 estão relacionadas com uma gestão essencialmente direcionada para a internet industrial, com uma análise integrada e utilização de dados, com a digitalização de produtos e de serviços, com novos modelos disruptivos de negócio e com uma cooperação horizontal no âmbito da cadeia de valor. É através da integração dos sistemas ciber-físicos no processo de manutenção que é possível proceder a um monitoramento contínuo das máquinas, tal como à aplicação de técnicas avançadas para a manutenção preditiva e pró-ativa das mesmas. O presente trabalho é baseado no projeto MANTIS, objetivando, portanto, a construção de uma plataforma específica para a manutenção pró-ativa das máquinas industriais, neste caso em concreto das prensas, que serão as máquinas industriais analisadas ao longo do presente trabalho. Dito de um outro modo, objetiva-se, através de uma plataforma em específico, reduzir todos os custos da sua manutenção, aumentando, portanto, os lucros industriais advindos da produção. Resumidamente, o projeto MANTIS consiste num projeto de investigação multinacional, onde a Unidade de Investigação CISTER desenvolve um papel fundamental, particularmente no fornecimento da infraestrutura de comunicação no Piloto MANTIS. A metodologia adotada é baseada num estudo de acompanhamento, realizado em conjunto com o cliente, e no âmbito da implementação do Piloto da ADIRA. As macro fases que são compreendidas por esta metodologia, e as quais serão seguidas, são: 1) análise detalhada das necessidades de negócio; 2) preparação da especificação da arquitetura; 3) implementação/desenvolvimento; 4) testes e validação; 5) suporte; 6) estabilização; 7) manutenção corretiva e evolutiva; e 8) análise final do projeto e medidas corretivas a aplicar em projetos futuros. Os resultados esperados com o desenvolvimento do projeto estão relacionados com a integração do processo de manutenção industrial, a monitorização contínua das máquinas e a aplicação de técnicas avançadas de manutenção preventiva e pós-ativa das máquinas, especialmente com base em técnicas e boas práticas da área de Engenharia de Software

    A model-driven engineering process for autonomic sensor-actuator networks

    Get PDF
    Cyber-Physical Systems (CPS) are the next generation of embedded ICT systems designed to be aware of the physical environment by using sensor-actuator networks to provide users with a wide range of smart applications and services. Many of these smart applications are possible due to the incorporation of autonomic control loops that implement advanced processing and analysis of historical and real-time data measured by sensors; plan actions according to a set of goals or policies; and execute plans through actuators. The complexity of this kind of systems requires mechanisms that can assist the system?s design and development. This paper presents a solution for assisting the design and development of CPS based on Model-Driven Development: MindCPS (doMaIN moDel for CPS) solution. MindCPS solution is based on a model that provides modelling primitives for explicitly specifying the autonomic behaviour of CPS and model transformations for automatically generating part of the CPS code. In addition to the automatic code generation, the MindCPS solution offers the possibility of rapidly configuring and developing the core behaviour of a CPS, even for nonsoftware engineers. The MindCPS solution has been put into practice to deploy a smart metering system in a demonstrator located at the Technical University of Madrid
    • …
    corecore