
A Model-Driven Engineering Process for Autonomic
Sensor-Actuator Networks

Carlos Vidal, Carlos Fernández-Sánchez, Jessica Díaz, and Jennifer Pérez

Escuela Técnica Superior de Ingeniería de Sistemas Informáticos, CITSEM, Universidad Politécnica de Madrid (UPM),
Carretera de Valencia, Km. 7, 28031 Madrid, Spain

Correspondence should be addressed to Jessica Díaz; yesica.diaz@upm.es

Received 11 August 2014; Revised 22 January 2015; Accepted 2 February 2015

Academic Editor: Chih-Yung Chang

Copyright © 2015 Carlos Vidal et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any médium, provided the original work is properly cited.

Cyber-Physical Systems (CPS) are the next generation of embedded ICT systems designed to be aware of the physical environment
by using sensor-actuator networks to provide users with a wide range of smart applications and services. Many of these smart
applications are possible due to the incorporation oí autonomic control loops that implement advanced processing and analysis of
historical and real-time data measured by sensors; plan actions according to a set of goals or policies; and execute plans through
actuators. The complexity of this kind of systems requires mechanisms that can assist the systems design and development. This
paper presents a solution for assisting the design and development of CPS based on Model-Driven Development: MindCPS
(doMaIN moDel for CPS) solution. MindCPS solution is based on a model that provides modelling primitives for explicitly
specifying the autonomic behaviour of CPS and model transformations for automatically generating part of the CPS code. In
addition to the automatic code generation, the MindCPS solution offers the possibility of rapidly configuring and developing the
core behaviour of a CPS, even for nonsoftware engineers. The MindCPS solution has been put into practice to deploy a smart
metering system in a demonstrator located at the Technical University of Madrid.

1. Introduction

Cyber-Physical Systems (CPS) refer to ICT systems (sensing,
actuating, computing, and communication) embedded or
software integrated in physical objects, interconnected, and
providing citizens and businesses with a wide range of
smart applications and services [1-3]. Examples of these
CPS include smart buildings, cities, energy grids, and water
networks. These CPS are designed to monitor and respond to
the physical environment, enabling fast, effective autonomic
control loops between sensing and actuation, possibly with
cognitive and learning capabilities [1]. To sense and act upon
the physical environment, CPS are often built on wireless
sensor/actor networks (WSAN) [4]. Autonomic control loops
implement (i) information monitoring, (ii) advanced analysis
and processing of historical and real-time data measured by
sensors or other external sources, (iii) planning of actions
according to a set of goals or policies, and (iv) execution
of those plans through actuators. This implementation is
supported by real-time or historical knowledge. CPS systems

are complex due to factors such as the heterogeneity of
sensors and actuators, the definition of complex conditions
and patterns for problem detection over a large amount of
data and events, the needs for real-time processing, and the
implementation of plans for problem solving. This complexity
makes engineers require mechanisms and tools that could
assist them during the systems design and development.

This paper presents a solution for designing and develop­
ing CPS, specifically CPS that are conceptualized as a set of
smart nodes distributed throughout a WSAN that implement
autonomic control loops for smart sensing and actuation.
This solution is a Model-Driven Development process (MDD
[5]), called MindCPS (doMaIN moDel for CPS). MDD is
a software development approach in which the focus and
primary artefacts of development are models—as opposed to
programs—and model transformations [5]. The automated
and semiautomated code generation through model transfor­
mations provide benefits in terms of increase of productivity,
facilitated maintenance and portability thanks to the quality
of the produced code [6, 7]. MindCPS provides modelling

mailto:yesica.diaz@upm.es

2 International Journal of Distributed Sensor Networks

primitives for explicitly specifying the autonomic behaviour
of CPS. T e MindCPS solution also includes the defnition of
a set of model-to-code transformations for automatically gen-
erating the following: (i) Java code that implements the “core
behaviour” of the smart nodes of a CPS (i.e., the autonomic
control loop for smart sensing and actuation and communi-
cation through an event publish-subscribe middleware); (ii)
the EPL (Event Processing Language) queries of an Esper CEP
engine (Esper is a component for complex event processing
(CEP) and event series analysis available for Java.) that
implement the advanced analysis and processing of real-time
events coming from monitored and fltered measurements
of sensors; and (iii) the SQL queries of a database manager
that implement the advanced analysis and processing of
non-real-time data coming from monitored and fltered
measurements of external sources, services, or even sensors
without real-time restrictions. T e automatic code generation
increases the productivity of constructing CPS thanks to the
development time reduction with regard to the traditional
programming (the hand-made development). T e advantage
ofered by the MindCPS solution, in addition to the automatic
code generation, is the possibility of rapidly confguring and
developing the core behaviour of a CPS, even for nonsofware
engineers, thanks to its graphical and intuitive domain lan-
guage. Finally, it is important to emphasize that this solution
has been iteratively designed by extracting the code gener-
ation patterns from our industrial experiences. Tese code
generation patterns have been iteratively refned and enriched
by each case study. T i s makes that most of the generated
code had been previously tested in terms of functionality and
performance. Tese industrial experiences together with the
MindCPS solution are the result of research initiated in two
larger ITEA2 projects, IMPONET (intelligent monitoring
of power networks http://innovationenergy.org/imponet/)
and NEMO&CODED (networked monitoring & control
diagnostic for electrical distribution http://innovationenergy
.org/nemocoded/). Tese projects focused on supporting
complex and advanced requirements of smart grids [8],
specifcally supporting enhanced efciency through sensing
and metering technologies, as well as automated control and
management techniques based on energy availability and the
optimization of power demand. To illustrate the application
of the MindCPS solution, we present the implementation of
a demonstrator for smart metering following the MindCPS
process.

T i s paper is structured as follows. Section 2 briefy
introduces the concepts of CPS and WSAN, autonomic com-
puting, and MDD. Section 3 presents the MindCPS solution
for designing and developing autonomic smart nodes of CPS
over a WSAN. Section 4 describes the use of this MDD
process in a demonstrator for smart metering. Section 5
describes related work. Finally, conclusions and further work
are described in Section 6.

2. Background

2.1. Cyber-Physical Systems and WSAN. CPS are composed of
devices with embedded sensors that continuously collect and

Corrective

Figure 1: MAPE-K loop. Source: [11].

process information from the physical environment, ofen in
real time. Tese CPS are then able to make decisions and
act upon the physical world through actuators. In order to
realize these sensing and acting capabilities, CPS are ofen
built on WSAN [4]. However, the deployment of complex
sofware to perform these tasks in WSAN is difcult due
to power, computation, and memory limitations of their
nodes (i.e., sensors and actuators). To deal with this issue,
WSAN usually incorporate other kinds of nodes with higher
processing capabilities (e.g., base stations) in order to perform
more complex operations. Tese unconstrained nodes, also
known as smart nodes, are essential for satisfying CPS’
requirements for more intelligent and autonomic behaviours
as they grow in complexity. Upon these smart nodes, most
of the advances made on the area of autonomic computing
should be implemented.

2.2. Autonomic Computing. Autonomic computing (AC) [9,
10] emerged as a solution to deal with the increasing
complexity of today’s computing systems and human man­
agement limitations. Horn [9] defnes autonomic systems
as sofware systems that mostly operate without human or
external involvement according to a set of rules or policies;
in other words, the systems are self-managed. Specifcally,
IBM proposed the MAPE-K loop for supporting autonomic
computing (see Figure 1). According to the MAPE-K loop,
resources to be managed are composed of a set of sensors that
provide information about the current state of the resources.
T e model implements the following: the monitoring of the
information (Monitor); the analysis to detect symptoms that
need corrective action (Analyze); the planning of the action
required to change the current state of the resource according
to a set of goals or policies (Plan); and the execution of the
plan through a set of efectors (Execute). Tese actions are
operated over a knowledge base. T e MAPE-K loop model
ofers the advantage of isolating the main concerns that any
autonomic process has to provide.

http://innovationenergy.org/imponet/
http://innovationenergy

International Journal of Distributed Sensor Networks 3

M3 layer
meta-metamodel

"""* Ke™ü!r>

ÜSr iíf,-
««,»„, • " " " "

IGHLII ;S™

™;;,T ™,ÍC':

Iraff ~ ~

conformsJo

M2 layer
metamodels

P MI layer
models

is3nstancej)f isjnstancejaf

% £ . Templ200: TemperaturelnternalSensor

(•-) Temperature: degree_Celsius

W^ HEJNF0033: HeatingSystemController
MO layer

, information

Figure 2: MOF four-layered architecture.

2.3. Model-Driven Development (MDD). MDD is a sofware
development approach in which models can be managed
and transformed to facilitate and automate tasks involved in
development and evolution by employing high-level abstrac-
tions. T i s approach increases productivity and quality and
reduces costs by automating basic activities in sofware
development and evolution [5]. Current quantitative analysis
such as the work of Papotti et al. [6] shows that the main
advantage of MDD is its code generation, demonstrating that
development teams that use code generation are faster than
those that applied manual coding.

T e OMG metaobject facility (MOF) 2.0 specifcation [12]
defnes an architecture to support metamodelling and MDD.
Its main purpose is the management of model descriptions

at diferent levels of abstraction. T e four-layered metamodel
architecture of MOF 2.0 can be described as follows (see
Figure 2). T e M3 layer (meta-metamodel layer) defnes the
abstract language used to describe the entities of the lower
layer (metamodels). T e MOF specifcation proposes the
MOF language as the abstract language for defning all types
of metamodels, such as the metamodel of UML. T e M2 layer
(metamodel layer) specifes the structure and semantics of the
models defned at the lower layer. T e M1 layer (model layer)
comprises the models that describe the data of the lower
layer. Tese models are specifed using the primitives and
relationships defned in the metamodel layer (M2). Finally,
the M0 layer (information layer) consists of the instances of
the models that are defned at the model layer (M1).

4

3. Model-Driven Engineering Process for
Autonomic Sensor-Actuator Networks

T i s section presents MindCPS solution, a process based on
models and model transformations designed to assist and
guide the design and (semi)automatic development of CPS.
Specifcally, we focus on CPS that ofer a set of services
to users and businesses through autonomic control loops—
typically composed of monitoring, analysis, planning, and
execution tasks according to the MAPE-K loop defned in
Section 2.2—which allow CPS to autonomously react to
a wide range of situations in order to minimize human
intervention.

3.1. doMaIN moDel for CPS (MindCPS). CPS are mainly
constituted by the sensors embedded in devices that contin-
uously collect measures from the environment in order to
detect problems in the system. Tese problems are triggered
through events in order to plan actions to execute them on the
physical system through actuators. T e domain knowledge
model MindCPS (doMaIN moDel for CPS) consists of a
set of modelling primitives. It was designed to support
the specifcation and defnition of the main concepts of a
CPS, that is, sensors, measurements, events, problems, plans,
actions, and actuators. Trough this model, one is able to
specify the autonomic control loop of CPS from scratch
as well as a change in existing CPS, dealing in a higher
abstraction level with some issues that make this kind of
systems complex. Some of these issues, mentioned above, are
the heterogeneity of sensors and actuators and the defnition
of complex conditions and patterns for problem detection
and the respective plans to deal with them. In order to
use the modelling primitives of MindCPS, it is necessary
to design a domain-specifc language (DSL) through the
defnition of a metamodel, its domain concepts, relationships,
and rules (see layer M2 in Figure 2), as well as a graphi-
cal language representation. Using this graphical modelling
primitives, engineers, even nonsofware engineers, can model
the autonomic behaviour of CPS (see layer M1 in Figure 2)
that conforms to the MindCPS metamodel (see layer M2
Figure 2).

T e MindCPS metamodel is composed of a set of interre-
lated metaclasses. Tese metaclasses defne a set of properties
and services for each concept considered in the model.
On the one hand, metaclasses, their properties, and their
relationships describe the structure and information that is
necessary to defne the domain knowledge of CPS. On the
other hand, the methods of metaclasses ofer the primitives to
develop instances by creating, destroying, adding, or remov-
ing elements which are compliant with the constructors of the
metamodel (most methods are omitted to gain readability).

Figure 3 shows a fragment of the MindCPS metamodel.
Sensors are described by the metaclass Sensor. A sensor is
characterized by an identifer, an IP address, a MAC address,
and a communication protocol (see the attributes id, ip,
mac, and protocol inside the metaclass Sensor). A sensor
has the ability to acquire measurements (see the aggregation
relationship acquired between the metaclasses Sensor and
Measurement in Figure 3). Measurements are defned by the

International Journal of Distributed Sensor Networks

metaclass Measurement, which has two attributes: id and
unit (measure unit). T e metaclasses Filter, SimpleFilter and
ComplexFilter, defne the flters of measurements in order
to detect when they are indicating a symptom associated
with a problem (see these metaclasses and their relationships
isFiltered bySimpleF and isFiltered byComplexF in Figure 3).
T e abstract metaclass Filter has three attributes common to
simple and complex flters: id, condition, and value, where
the condition can be GreaterTan, LessTan, or EqualTo
the value. Tese attributes are inherited by the metaclasses
SimpleFilter and ComplexFilter. Whereas SimpleFilter models
flters that can be applied only to one type of measurement,
ComplexFilter defnes flters that are applied to more than
one measurement. Terefore, the metaclass ComplexFilter
has the attribute aggregation that permits it to specify an
aggregation function (e.g., sum, diference, etc.) to be applied
to a set of diferent measurements. Between the metaclasses
Measurement and SimpleFilter, there is an association meta-
class called SimpleFilteredMeasurement; and between the
metaclasses Measurement and ComplexFilter, there is an asso-
ciation metaclass called ComplexFilteredMeasurement. Both
metaclasses may indicate symptoms (see the relationships
indicates and shows in Figure 3).

T e abstract metaclass Symptom defnes a symptom of
a problem and it is characterized by an identifer (id). Four
more attributes defne when a set of fltered measurements
must be considered a symptom in terms of the number
of times a measurement must satisfy a flter condition
(numOccurrences); how much the measurement must vary
over time in absolute terms (variation) or percentage (vari-
ationPct); and the type of variation, positive or negative
(increment). Symptoms are diferent depending on whether
they are detected from real-time fltered measurements or
from historical data stored by the system. T e metaclass
RealTimeSymptom defnes the real-time symptoms that are
detected within a certain period of time, identifed by the
attribute timeSpan (see Figure 3), while the metaclass His-
toricalDataSymptom historical-data symptoms are detected
within an interval defned by a beginning and an end (see the
attributes startInterval and endInterval in Figure 3). Analysis
of historical-data symptoms can be triggered when a real-
time symptom is detected (see the relationship triggers in
Figure 3) or periodically according to a frequency (see the
attribute frequency in Figure 3).

Symptoms are indications of problems (see the aggre-
gation relationship hasSymptoms between the metaclasses
Problem and Symptom in Figure 3). Problems are defned by
means of the metaclass Problem, which has four attributes:
id, severity, timespan, and timeUnit. T e attribute timespan
refers to the time during which symptoms must be detected
to consider that there is a problem. Problems are resolved
through a plan (see the association relationship resolves
between the metaclasses Problem and Plan Figure 3). T e
metaclass Plan has three attributes: id, responseTime, and
priority. T e attribute responseTime is the expected time for
the efect of a plan to be noticeable. A plan can include
other plans and/or can confict with other plans (see the
association relationships includes and confictsWith). Plans
perform one or more action/s to solve a problem (see the

International Journal of Distributed Sensor Networks 5

«ordered»
performs

OCL constraint: a symptom is
caused by a simple íiltered
measurement or a complex

filtered measurement

Figure 3: MindCPS metamodel.

metaclass Action in Figure 3) according to a preestablished
order (see the association relationship performs that has the
stereotype ordered in Figure 3). Finally, actuators provide
the actions that can be performed (see the aggregation
relationship hasAction between the metaclass Actuator and
Figure 3). T e metaclass Actuator includes the same attributes
as the Sensor metaclass: id, ip, mac, and protocol.

Figure 4 shows the graphical language representation
through an illustrative example A sensor that has the capa-
bility of measuring three variables—Measure1, Measure2,
and Measure3—that are fltered through a set of flters; for
example, a flter sets the condition that the value of Measure1
is greater than a constant X, while other flters set the
condition that the addition (SUM) of Measure2 and Mea-
sure3 is less than a constant X. Tese fltered measurements
indicate symptoms associated with a problem. For example, a
symptom is detected when 3 occurrences of Measure1 greater
than X are received within 2 seconds with an increment of 2
units between them. T i s problem can be resolved through
one of two possible plans. One of them is composed of two
actions—Action 1 and Action 2—and has a time of response
of 30 seconds. Finally, Figure 4 shows an actuator that can
perform the two actions.

T e MindCPS DSL was implemented using the Epsilon
generative modelling technologies (GMT) research project
and was made available as an Eclipse plugin, the MindCPS
tool (see snapshot in Figure 4).

3.2. Model-to-Code Transformation. In MDD, models seek to
automate development tasks through model transformations
and thereby, reducing the development and/or adaptation
time [6, 7]. T i s is why we defne a set of model-to-code
transformations to generate the code and metadata necessary
to support the development of a CPS that is specifed through
the MindCPS model. To that end, a model-to-code transfor-
mation engine is the component in charge of automatically
transforming a model into the code necessary to implement
the core structure and behaviour of CPS. T i s core behaviour
has a common part, that is, the common structure and code
that is common to a general control loop for any kind of
CPS, and a variable part, that is, the code that is variable
according to information to be monitored, analysed, planned,
and executed, which is modelled through a MindCPS model
(e.g., the model shown in Figure 4).

To provide a visual of the common structure and code
necessary for any kind of CPS according to our defnition,

International Journal of Distributed Sensor Networks

Figure 4: MindCPS graphical language supported by the MindCPS tool.

Figure 5 shows a layered view of the architecture that we
have implemented for the construction of CPS’ smart nodes.
T e two-bottom layers of the architecture shown represent
the devices of a specifc domain and the sensor/actuator
network. T e communication middleware is in charge of
acquiring raw data from sensors through a set of drivers
that implement the communication protocols of the sensors
(e.g., ZigBee, Bluetooth, 802.11, etc.). T e central layer imple-
ments a control loop that will provide low-level services for
monitoring, analysis, planning, and execution, as well as for
publishing and subscribing events. T i s layer is composed
of controllers that are composed, in turn, of components.
Controllers manage the lifecycle and the running context of
their respective components. Hence, the MonitorController
manages the lifecycle and the running context of specifc
monitors. Each specifc Monitor implements the fltering of
raw data in order to identify relevant data, the translation
of raw data into comprehensible information conforming to
the MindCPS model, and the routing, that is, the creation
of events that are published through an event channel. T e
AnalyserController manages the lifecycle and the running
context of specifc analysers. Each specifc analyser processes
real-time events—coming from the monitoring—through a
CEP (complex event processing) engine and makes use of
historical data for detecting anomalies and potential prob-
lems. T e Planner&ExecuterController manages the lifecycle
and the running context of specifc planners and executers.
Each specifc planner plans corrective actions to change the
current state of the resource according to a set of goals
and policies, while the executer executes the plan through a
set of actuators. Finally, the event driven middleware imple-
ments the channel that interconnects monitors, analysers,
planners, and executers through events. It can be implemented
using diferent technologies, such as DDS (data distribu-
tion service for real-time systems) and JMS (Java message
service). Tese technologies, based on the publish-subscribe
paradigm, implement an event driven infrastructure which
provide extremely loosely coupled and highly distributed
nodes in order to construct scalable solutions and provide
an implementation independent from the number of smart

nodes of the CPS. T i s is due to the fact that the publisher
of the event has no knowledge of the event’s subsequent
processing or the interested parties subscribed to the event
(asynchronous publish-and-subscribe pattern) [13].

T e architecture defnition was guided by certain require-
ments and quality attributes that usually must be addressed
when designing CPS. In the context of sofware architecture,
quality attributes are the way to express the qualities we
want an architecture to provide to the system or systems
that will be built on it [14]. We have focused on interop-
erability, modifability, and performance quality attributes.
Interoperability and modifability are achieved thanks to
main principles of the event driven SOA paradigm [15],
which leverages the interaction between events and services
providing fexibility and loose coupling, provides adapt-
ability through service composition and orchestration, and
supports encapsulation to integration at highly distributed
systems. Performance is addressed by the inclusion of sev-
eral architectural frameworks for distributed and real-time
systems widely tested and used by industry. RTi DDS [16–
18] and Esper CEP engine [19] have been proved to be
highly efcient in terms of latency, throughput, and memory
usage.

As mentioned above, this architecture provides the com-
mon structure for the smart nodes of CPS. T e behaviour
and functionality that are variable depending on the specifc
CPS are specifed through the MindCPS model. As described
in Section 3.1, MindCPS supports the specifcation of the
measures to be fltered and monitored, the symptoms to be
analysed, the problems to be identifed, and the actions to be
planned and executed. From the identifcation of the com-
mon and variable parts, it is possible to automatically develop
the core behaviour of CPS. From this core control loop, it is
possible to provide users and businesses with a wide range
of smart applications and high-level services, such as real-
time monitoring, alarm management, and decision support
(see service layer in Figure 5). Finally, it will be necessary to
manually implement the listeners dependent on the drivers
of sensors and actuators (see protocol and drivers layer in
Figure 5).

6

International Journal of Distributed Sensor Networks 7

ESB

[Real-time]
monitoring

Alarm
management

Service layer

Decisión support
system (DSS)

Action
management

c

AnalyserController

I Analyser.l . . . Analyser_X

Planner&ExecuterController

J K-
J

Planner_l Planner_X

[RT] event-driven middleware IDDS! *
JKS o

MonitorController

^

msmm^BBSM-^ESSM MSStHWMSSaHWSM

Communication middleware Listener í ^ : ; Listener KJ

" A

Smart grid Smart city Smart water Traffic monitoring system

n Services

Control
loop

D" Protocols
drivers

Sensor/actuator
network

Í Specifc
domains

Figure 5: CPS architecture.

Once common and variable parts of code to be generated
have been identifed, model-to-code transformations are
defned. Transformations can generate code in any language,
such as Java and C#. T e task of defning the transformation
is complex but can be reused for any CPS based on that lan-
guage. T e difculty is in defning the frst transformation, as
subsequent transformations are very similar. We have defned
the transformation based on our background in CPS projects.
Concretely, the model-to-code transformations were created
using previously developed projects, and, therefore, most of
the code has been previously tested in production. In detail,
the model-to-code transformations we defned generate the
following:

(1) the code that implements a control loop to be
deployed in the smart nodes of a CPS; specifcally,
the transformation automatically generates Java code
skeletons and composes the common code from a
set of common code templates and the variable code
from the information modelled in a MindCPS model;

(2) the EPL (Event Processing Language) queries of an
Esper CEP engine that implement the advanced anal-
ysis and processing of real-time events coming from
monitored and fltered measurements of sensors;

(3) the SQL queries of a database manager that imple-
ment the advanced analysis and processing of non-
real-time data coming from monitored and fltered
measurements of external sources, services, or even
sensors without real-time restrictions.

3.3. MindCPS into Practice. T e design and development of
CPS require frst modelling the embed sofware on physical
objects (i.e., the smart nodes) that continuously acquire and
collect information from the physical environment, which
is processed—ofen in real time—to make decisions and
act on the physical world through actuators. To that end,
the MindCPS solution provides the modelling primitives
for specifying the data to be monitored, the problems to
be analysed, and the plans to be executed. Trough this
specifcation, it is possible to automatically generate the code
that implements the behaviour of the smart nodes of CPS.
Figure 6 shows how the MDD process works to support
the development process. CPS are specifed and confgured
through the defnition of a MindCPS model (see label 1) that
conforms to the MindCPS metamodel from which, through
a model-to-code transformation (see label 2), three artefacts
are generated: Java code, EPL, and SQL queries. Finally, the
resulting system is executed (see label 3).

International Journal of Distributed Sensor Networks

L.
MindCPS
metamodel

—k ^̂ —k 0 ^ ^

\

. MindCPS modela

\

. MindCPS modela

\
definition /

\
definition /

\ \
ava skeleton \

CPS knowledge
> •

/) ava skeleton > \

k
/)

^ ^
• L. • 9 \ ^ k . ^ i rCode execution^H L. • ̂ , 1 , - r , ^ , \ ^i rCode execution^H L.

> Model loC >oae \ on the physical \
CPS /

L.
> Model loC

_̂ / >
on the physical \

CPS /

L.
> on the physical \

CPS /

L.
> on the physical \

CPS /

L.

MindCPS system model EPL queries 1 MindCPS system model

^
^ ^

'

1, , , , -

' '
Code generation patterns

'
Code generation patterns

'
Code generation patterns

'
Code generation patterns

'

SQL queries

Asset

> Process

J j Guidance

Figure 6: Overview of the MDD process.

T e MDD approach supports the automatic generation
of the code for new components—for example, a new
monitor, analyser, or planner. T i s code conforms to the
core components of the architecture shown in Figure 6.
In this way, MindCPS solution simplifes the design and
development of CPS, conceptualized as a set of smart nodes
distributed throughout a WSAN that implement autonomic
control loops for smart sensing and actuation. As a result, the
efort invested to develop CPS using the MindCPS consists of
(i) the time and efort that the engineers invest in defning the
conceptual modelling of the CPS and (ii) the time and efort
for implementing the code that is specifc of each of CPS,
that is, the listeners dependent on the drivers of sensors and
actuators. Using MindCPS the time and efort of developing
the automatically generated code are minimum.

System complexity is also taken under control thanks to
theMAPE-Kloop model.TeMAPE-Kloop model ofers the
advantage of isolating the main concerns that any autonomic
process has to provide. T e separation of concerns provided
by the MAPE-K loop model entails a substantial reduction of
interactions between sofware components that can be more
easily handled.

T e automation of code generation provided by MindCPS
solution also provides higher code quality and faster sofware
design, development, and evolution. Since their components
are decoupled and constructed for being reused for other
systems, the transformations (code generation patterns)

have been iteratively constructed from our experiences in
CPS’ construction in IMPONET and NEMO projects (see
Section 1).

4. Experience Report

T e MindCPS MDD process is the result of the research
initiated in the projects IMPONET and NEMO&CODED, as
it has been previously mentioned. To illustrate the application
of the MindCPS solution, we present the implementation of
a demonstrator for smart metering with energy efciency
capabilities (see Figure 7).

T e demonstrator, which we refer to as Arboleda, was
deployed in a building located on the south campus of the
Technical University of Madrid. T e Arboleda demonstrator
was equipped with various artefacts; including sensors, smart
grid nodes, gateways, and actuators. T e sensors included
power, water, humidity and temperature meters, and a
presence detector. T e actuators included a HVAC system
controller and a photovoltaic generator PLC connected to a
solar panel. T e Smart Node sofware components, including
the automatically generated code, run on a Raspberry Pi
model B (512 MB of RAM) connected through its 100 Mb
Ethernet port to the LAN where the rest of the elements
are installed. T i s Raspberry Pi is also equipped with a
ZigBee Shield to allow the device communication via ZigBee

8

International Journal of Distributed Sensor Networks

(Smart) power meter
Temperature and humidity
sensor

Presence detector

Figure 7: Arboleda demonstrator for smart metering.

protocol. It is remarkable that Raspberry Pi model B has a cost
per year between 7$ and 15$ (24/7 running), which is fairly
good in terms of power consumption.

Figure 8 shows a fragment of a MindCPS that models
the domain knowledge of the Arboleda demonstrator as fol-
lows. T e PowerMeter Building measures and records power
consumption, maximum voltage, slip frequency, and phase
angle, while the PowerMeter SolarPanel measures power out-
put, voltage, slip frequency, and phase angle. T e resulting
measures are fltered to detect symptoms and problems
related to unusual consumption levels in the building, as
well as synchronization failures (abnormalities of voltage and
frequency between the corresponding phases of a solar panel
output and grid supply) (see Unusual Consumption and Power
Grid Synchronization Failure). For example, the problem of
Power Grid Synchronization Failure is detected when the
limits for synchronization are exceeded. Tese limits are as
follows: phase angle is ±20 degrees (see maxPhaseAngleDif),
maximum voltage diference is 7% (see voltageDif), and
maximum slip frequency is 0.44% (see frequencyDif). T i s
problem is solved through a plan that consists of an action
that synchronizes—that is, minimizes the diference in volt-
age, frequency, and phase angle between the corresponding
phases of the solar panel output and grid supply—through a
PLC connected to the solar panel (see the plan Repair Sync
Failure).

T e temperature sensor measures temperature which is
fltered (measurements greater than 22 C) to indicate a
problem that we call Rapid Temperature Increase when 6
consecutive occurrences are detected within 1 minute with
an increment of 2 C. T e Cooling Procedure plan generates
an alarm and attempts to solve the problem by launching the
Reduce Temperature action, provided by the HVAC System
Controller. Finally, the sensor Occupancy Sensor measures
the number of people inside the building. T e problem of
Unusual Consumption is detected when two symptoms occur:
(1) 5 measures of power consumption greater than 21.5 KWh
are detected during a period of 30 minutes and (2) during the
same 30-minute period, the building occupancy is low (under
15 people). As shown in Figure 8, the historical data analysis
for detecting the symptom Few People in Building is triggered
when an Over Average Consumption symptom is detected.
T e problem Unusual Consumption is reported through a
service that publishes the problem and associated symptoms
to a website (see the plan Report Unusual Consumption).

T e MindCPS model identifes which measurements a
smart grid node of the Arboleda demonstrator must be
able to monitor and analyse in order to execute plans.
Once this is accomplished, the code can be generated.
Figure 9 shows an overview of the Java classes that are
automatically (see solid rectangles) or semiautomatically (see
dashed rectangles) generated for detecting and solving the

9

10 International Journal of Distributed Sensor Networks

•*/mt TemperatureSensor

f •"!

*

G powerOutput KW

r *J\ voltage: V

f «-^ slipFrequency: Hz

O phaseAngle: Deg

'% leterArboleda

f ^\ gridMaximumVoltage: V

\ +\ gridSlipFrequency: Hz

f +A phaseAngle: Deg

G powerConsumption: KWh

^ ^F HighTemperature

Condition: GreaterThan 22

^ y voltageDiíf

Condition: GreaterThan 7
Aggregation: SUM

w T frequencyDiíf

Condition: Greater Than 0.44

Aggregation: %DIFF

^TT maxPhaseAngleDiíf

Condition: Greater Than 20

Aggregation: DIFF

-»
'MF ConsumptionExcess

Condition: GreaterThan 21.5

Aggregation: DIFF

mjK Rap idTemperatu reinare ase

Severity: Critical

Time Span: 1

Time Unit: min

A Symptom

Number of occurrences: 6

Increment Positive

Variation: 2

VariationPct 0

Time Span: 0

Time Unit —

e

PLAN CoolingProcedure

Priority: High

Response Time: 5

Time Unit: min

i X AlarmGeneration

Order: 0

•
^3k HVAC System Controller i X AlarmGeneration

Order: 0
^^ ReduceTemperature

Description: reduces the tem...

Estimated Time: 5 min

^ ^ ReduceTemperature

Order: 1

^^ ReduceTemperature

Description: reduces the tem...

Estimated Time: 5 min

^ ^ ReduceTemperature

Order: 1

^^ ReduceTemperature

Description: reduces the tem...

Estimated Time: 5 min

- < K OccupancySensor

f #-^ peopleNumber: Integer

^T Occupancy

Condition: ALL

(x) Aggregatic

UpperLimit 15

LowerLimit 0

Function: AVG

c

S S * UnusualConsumption

Severity: Warning

Time Span: 30

Time Unit: min

<-

/*t\ OverAvgConsumption

Number of occurrences: 5

Increment —

Variation: 0

VariationPct: 0

Time Span: 0

Time Unit

O íBuilding

Number of occurrences: 0

Increment: —

Variation: 0

VariationPct 0

Start interv

End interval: —

Frequency: —

flH PowerSynchronizationFailure

Severity: Major

Time Span: 30

Time Unit sec

A Voltage Imbalance

Number of occurrences: 2

Increment:

Variation: 0

VariationPct 0

Time Span: 5

Time Unit: sec

A nbalance

Number of occurrences: 2

Increment

Variation: 0

VariationPct 0

Time Span: 5

Time Unit sec

A mb alance

Number of occurrences: 2

Increment

Variation: 0

VariationPct 0

Time Span: 5

Time Unit sec

PLAN ReportUnusualConsumption

Priority: Médium

Response Time:

Time Unit

0<h Report

Order: 0

RepairSyncFailure

Priority: High

Response Time: 60

Time Unit: sec

Ojk Report

Order: 0

Synchronize

Á P h otovoltaicG eneratorP LC

'Qi Synchronize

Description: minimizes the dif..

Estimated 1

Figure 8: A fragment of the MindCPS model of the CPS deployed at the Arboleda demonstrator.

problem Rapid Temperature Increase. Tree events, three
publishers, and three subscribers are created in order to
enable interaction between the automatically generated com-
ponents: TemperatureMonitor, RapidTemperatureIncreaseAn-
alyzer, and CoolingProcedure-Plan. Event-based interactions
between these publishers and subscribers provide the system
functionality. T e MindCPS process generated 61 classes,
6573 lines of code, 11 running threads, 6 publishers, and 12
subscribers. Tese numbers could be low, but they are suitable
for maintaining loose coupling between components and for
implementing design patterns correctly.

In addition to the Java code, a key part of the demonstra-
tor is the analysis and detection of problems—consumption
abnormalities. T e analysers of this demonstrator are imple-
mented on the Esper CEP engine, and thus EPL queries

are also automatically generated. Pseudocode 1 shows the
EPL query automatically generated for detecting the Rapid
Te m p e r a t u r e I n c r e a s e p r o b l e m .

Code generation can be even more complex in the
case of the detection of historical-data symptoms. Although
the components for the Unusual Consumption problem are
generated in a similar way, the main diference lies in how the
code for historical-data symptom detection is generated. T i s
is due to the fact that not all database management systems
support SQL clauses for pattern recognition. For example,
Pseudocode 2 shows the Java method pseudocode for detect-
ing the historical-data symptom Few People in Building and
Pseudocode 3 shows the generated SQL query. T e method
createQuery creates the query, extracting the interval from
which the analysis must be carried out (see startInterval)

te mperature: C

SolarPane

Order: 1

International Journal of Distributed Sensor Networks 11

AnalyzerController

RapidTemperatureAnalyzer

HighTemperatureCEP

Planner&ExecuterController

CoolingProcedurePlan

ReduceTemperatureAction

AlarmGenerationAction

HighTemperaturelncreaseEvent

SUB

Event-driven
Middleware

Figure 9: Overview of classes semiautomatically and automatically generated.

select from TemperatureCEP.win:time(1 min)
match recognize

(pa t te rn (A B C D E F G)
define
B as B.temperature > A. temperature,
C as C.temperature > B. temperature ,
D as D.temperature > C. temperature ,
E as E.temperature > D. temperature,
F as F. temperature > E . temperature ,
G as G.temperature > F. temperature

and (Math.abs(G.temperature
A.temperature) >=

PSEUDOCODE 1: EPL statement.

p u b l i c i n t f e w P e o p l e I n B u i l d i n g S y m p t o m (s t a r t I n t e r v a l
S t r i ng){

S t r i n g que ry = c r e a t e Q u e r y (s t a r t l n t e r v a l) ;
Ar rayLis t<OccupancyEvent> r e s u l t =

DccupancyDAO.executeQuery(query) ;
return a p p l y A g g r e g a t i o n F u n c t i o n (r e s u l t , AVG,

u p p e r L i m i t , l o w e r L i m i t) ;
}
public St r ing createQuery(String s t a r t l n t e r v a l) {

Str ing startDateTime= ob ta inDate (s ta r t ln te rva l) ;
St r ing query = " . . . " ;
return query;

Pseudocode 2: Java methods pseudocode for historical-data symptom detection.

}

12 International Journal of Distributed Sensor Networks

Select peopleNumber, eventTimeStamp
from OccupancyHistoricalData
where eventTimeStamp > @startDateTime

and eventTimeStamp < current timestamp
order by eventTimeStamp asc

Pseudocode 3: Generated SQL query for fewPeopleInBuilding symptom detection.

based on the current system time. As endInterval is not
defned, the end of the interval is determined by the current
system time. Finally, the method applyAggregationFunction
returns the number of matches for the searched pattern,
applied over the executed query result.

Another issue that afects the time of generation is the
number of smart nodes to be generated. Until now, we have
modelled small and medium size CPS. However, to cope
with the modelling of big CPS using MindCPS, in which
the number of nodes undergoes an explosion in number,
abstraction and parameterization techniques with diferent
levels of generation will be implemented in the future. Tese
techniques will allow modeling families, subsystems, and
types of elements and then instantiating them by refnement
in order to scale the creation of nodes as we have demon-
strated in previous works [20].

Using the MindCPS model described in Figure 8, we were
able to automatically generate most of the code necessary to
implement the demonstrator for smart metering. T i s code
will be deployed at the smart grid nodes of the Arboleda
demonstrator (see the smart grid node in Figure 7).

To conclude this section, it is necessary to underline
some limitations of the presented case study. Our testing
scenario pursues to check the MDD generation and its
feasibility in small/medium size CPS, although it is not able
to measure performance in large-scale systems. We plan to
measure performance and other quality attributes impact in
complex CPS, providing metrics and accurate statistics, but
this specifc work is out of the scope of this paper.

5. Related Work

T e main contribution of MindCPS is the adoption of MDD
for the (semi)automatic construction of CPS. A few works
were found regarding the modelling of this kind of system,
particularly autonomic CPS that follow an MDD process.
Prakash et al. [21] combine MDD and several autonomic
computing principles in a diferent domain. Specifcally, they
present a model-driven methodology for designing and veri-
fying autonomic behaviours of future network architectures.
Zein et al. [22] present a metamodelling approach to defne a
DSL for smart sensor description for a deep-sea observatory.
T i s approach is focused on defning a metamodel, while
the work presented here goes two steps further in the MDD
process by (1) defning a DSL by means of a graphical
modelling tool and (2) performing model-to-code trans-
formation. T e MindCPS metamodel defnes higher-level

WSAN functionalities than the metamodel presented by Zein
et al. [22].

6. Conclusions and Further Work

T e current work presents the MindCPS solution that sup-
ports and automates the design and development of CPS.
Design is guided by a DSL for specifying the autonomic
behaviour of CPS. (Semi)automatic development is supported
by an MDD approach, specifcally by a model-to-code trans-
formation whereby models that conform to the MindCPS
DSL are transformed into (i) Java code that implements
the autonomic control loop for smart sensing and actuation
and communication through an event publish-subscribe
middleware; (ii) the EPL queries of an Esper CEP engine that
implement the advanced analysis and processing of real-time
events coming from monitored and fltered measurements of
sensors; and (iii) the SQL queries of a database manager that
implement the advanced analysis and processing of non-real-
time data coming from monitored and fltered measurements
of external sources, services, or even sensors without real-
time restrictions.

T e MindCPS solution was put into practice in a demon-
strator for smart metering located in a building on the south
campus of the Technical University of Madrid. With the
implementation of this demonstrator, we were able to check
the feasibility of the MindCPS solution and also refne and
improve the model.

As further work, we are planning to provide a CPS
framework with the capability of dynamic reconfguration,
or even self -reconfguration, by adding mechanisms for safe-
stopping in order to guarantee that the elements to be evolved
at runtime are placed in safe state, avoiding the possibility that
changes in these elements would introduce inconsistencies
into the running system.

Conflict of Interests

T e authors declare that there is no confict of interests
regarding the publication of this paper.

Acknowledgments

T e work reported here has been partially sponsored by the
Spanish fund: IMPONET (ITEA 2 09030, TSI-02400-2010-
103), NEMO&CODED (ITEA2 08022, IDI-20110864), and
MESC DPI2013-47450-C2-2-R. It has also been funded by the

International Journal of Distributed Sensor Networks 13

UPM (Technical University of Madrid) through its researcher
training program.

References
[1] E. A. Lee, “Cyber physical systems: design challenges,” in

Proceedings of the 11th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed
Computing (ISORC ’08), pp. 363–369, May 2008.

[2] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical
systems: T e next computing revolution,” in Proceedings of the
47th Design Automation Conference (DAC ’10), pp. 731–736, June
2010.

[3] J. A. Garc ı́a and J. J. Rodr´ıguez, “Open CPS platforms,” in Pro-
ceedings of the CPS 20 Years from Now—2nd Experts Workshop
Cyphers, pp. 22–26, 2014.

[4] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network
survey,” Computer Networks, vol. 52, no. 12, pp. 2292–2330, 2008.

[5] S. Beydeda, M. Book, and V. Gruhn, Model-Driven Sofware
Development, Springer, 2005.

[6] P. E. Papotti, A. F. Do Prado, W. L. De Souza, C. E. Cirilo,
and L. F. Pires, “A quantitative analysis of model-driven code
generation through sofware experimentation,” Lecture Notes in
Computer Science (including subseries Lecture Notes in Artifcial
Intelligence and Lecture Notes in Bioinformatics), vol. 7908, pp.
321–337, 2013.

[7] A. G. Kleppe, J. Warmer, and W. Bast, MDA Explained: Te
Model Driven Architecture: Practice and Promise, Addison-
Wesley, Longman, Boston, Mass, USA, 2003.

[8] V. C. Gu¨ngo r̈, D. Sahin, T. Kocak et al., “Smart grid technologies:
communication technologies and standards,” IEEE Transactions
on Industrial Informatics, vol. 7, no. 4, pp. 529–539, 2011.

[9] IBM White Paper, “An architectural blueprint for autonomic
computing,” 2005, http://www-03.ibm.com/autonomic/pdfs/
AC%20Blueprint%20White%20Paper%20V7.pdf.

[10] J. O. Kephart and D. M. Chess, “ T e vision of autonomic com-
puting,” Computer, vol. 36, no. 1, pp. 4–50, 2003.

[11] V. Tewari and M. Milenkovic, “Standards for autonomic com-
puting,” Intel Technology Journal, vol. 10, no. 4, pp. 275–284,
2006.

[12] Object Management Group, “Meta-object facility (MOF) spec-
ifcation 2.0,” Tech. Rep. formal-06-01-01, Object Management
Group, 2006, http://www.omg.org/spec/MOF/2.0/PDF/.

[13] G. Hohpe and W. Bobby, Enterprise Integration Patterns: Design-
ing, Building, and Deploying Messaging Solutions, Addison-
Wesley Longman Publishing, Boston, Mass, USA, 2003.

[14] L. Bass, P. Clements, and R. Kazman, Sofware Architecture in
Practice, Addison-Wesley Professional, 3rd edition, 2012.

[15] S. Overbeek, B. Klievink, and M. Janssen, “A fexible, event-
driven, service-oriented architecture for orchestrating service
delivery,” IEEE Intelligent Systems, vol. 24, no. 5, pp. 31–41, 2009.

[16] P. Bellavista, A. Corradi, L. Foschini, and A. Pernafni, “Data
distribution service (DDS): a performance comparison of
OpenSplice and RTI implementations,” in Proceedings of the
18th IEEE Symposium on Computers and Communications
(ISCC ’13), pp. 377–383, July 2013.

[17] C. Esposito, S. Russo, and D. di Crescenzo, “Performance as-
sessment of OMG compliant data distribution middleware,” in
Proceedings of the IEEE International Symposium on Parallel and
Distributed Processing (IPDPS ’08), pp. 1–8, IEEE, Miami, Fla,
USA, April 2008.

[18] M. Xiong, J. Parsons, J. Edmondson, H. Nguyen, and D.
C. Schmidt, Evaluating the Performance of Publish/Subscribe
Platforms for Information Management in Distributed Real-Time
and Embedded Systems, 2010, http://www.omgwiki.org/dds/,
http://portals.omg.org/dds/sites/default/fles/Evaluating Per­
formance Publish Subscribe Platforms.pdf.

[19] M. Dayarathna and S. Toyotaro, “A performance analysis of
system s, s4, and Esper via two level benchmarking,” in Quan-
titative Evaluation of Systems, vol. 8054 of Lecture Notes in
Computer Science, pp. 225–240, Springer, Berlin, Germany,
2013.

[20] J. P´erez, I. Ramos, J. A. Cars ı́, and C. Costa-Soria, “Model-
driven development of aspect-oriented sofware architectures,”
Journal of Universal Computer Science, vol. 19, no. 10, pp. 1433–
1473, 2013.

[21] A. Prakash, R. Chaparadza, and A. Starschenko, “A Model-
driven approach to design and verify autonomic network
behaviors,” in Proceedings of the 3rd IEEE International Work-
shop on Management of Emerging Networks and Services, pp.
701–706, IEEE, December 2011.

[22] O. K. Zein, J. Champeau, D. Kerjean, and Y. Aufret, “Smart
sensor metamodel for deep sea observatory,” in Proceedings of
IEEE OCEANS EUROPE, pp. 1–6, May 2009.

http://www-03.ibm.com/autonomic/pdfs/
http://www.omg.org/spec/MOF/2.0/PDF/
http://www.omgwiki.org/dds/
http://portals.omg.org/dds/sites/default/fles/Evaluating

