12 research outputs found

    Rooftop Surface Temperature Analysis in an Urban Residential Environment

    Get PDF
    abstract: The urban heat island (UHI) phenomenon is a significant worldwide problem caused by rapid population growth and associated urbanization. The UHI effect exacerbates heat waves during the summer, increases energy and water consumption, and causes the high risk of heat-related morbidity and mortality. UHI mitigation efforts have increasingly relied on wisely designing the urban residential environment such as using high albedo rooftops, green rooftops, and planting trees and shrubs to provide canopy coverage and shading. Thus, strategically designed residential rooftops and their surrounding landscaping have the potential to translate into significant energy, long-term cost savings, and health benefits. Rooftop albedo, material, color, area, slope, height, aspect and nearby landscaping are factors that potentially contribute. To extract, derive, and analyze these rooftop parameters and outdoor landscaping information, high resolution optical satellite imagery, LIDAR (light detection and ranging) point clouds and thermal imagery are necessary. Using data from the City of Tempe AZ (a 2010 population of 160,000 people), we extracted residential rooftop footprints and rooftop configuration parameters from airborne LIDAR point clouds and QuickBird satellite imagery (2.4 m spatial resolution imagery). Those parameters were analyzed against surface temperature data from the MODIS/ASTER airborne simulator (MASTER). MASTER images provided fine resolution (7 m) surface temperature data for residential areas during daytime and night time. Utilizing these data, ordinary least squares (OLS) regression was used to evaluate the relationships between residential building rooftops and their surface temperature in urban environment. The results showed that daytime rooftop temperature was closely related to rooftop spectral attributes, aspect, slope, and surrounding trees. Night time temperature was only influenced by rooftop spectral attributes and slope

    Rooftop surface temperature analysis in an urban residential environment

    Get PDF
    The urban heat island (UHI) phenomenon is a significant worldwide problem caused by rapid population growth and associated urbanization. The UHI effect exacerbates heat waves during the summer, increases energy and water consumption, and causes the high risk of heat-related morbidity and mortality. UHI mitigation efforts have increasingly relied on wisely designing the urban residential environment such as using high albedo rooftops, green rooftops, and planting trees and shrubs to provide canopy coverage and shading. Thus, strategically designed residential rooftops and their surrounding landscaping have the potential to translate into significant energy, long-term cost savings, and health benefits. Rooftop albedo, material, color, area, slope, height, aspect and nearby landscaping are factors that potentially contribute. To extract, derive, and analyze these rooftop parameters and outdoor landscaping information, high resolution optical satellite imagery, LIDAR (light detection and ranging) point clouds and thermal imagery are necessary. Using data from the City of Tempe AZ (a 2010 population of 160,000 people), we extracted residential rooftop footprints and rooftop configuration parameters from airborne LIDAR point clouds and QuickBird satellite imagery (2.4 m spatial resolution imagery). Those parameters were analyzed against surface temperature data from the MODIS/ASTER airborne simulator (MASTER). MASTER images provided fine resolution (7 m) surface temperature data for residential areas during daytime and night time. Utilizing these data, ordinary least squares (OLS) regression was used to evaluate the relationships between residential building rooftops and their surface temperature in urban environment. The results showed that daytime rooftop temperature was closely related to rooftop spectral attributes, aspect, slope, and surrounding trees. Night time temperature was only influenced by rooftop spectral attributes and slope

    EXTRAÇÃO SEMIAUTOMÁTICA DE CONTORNOS DE TELHADO DE EDIFÍCIOSCOMBASEEM SNAKES E PROGRAMAÇÃO DINÂMICA

    Get PDF
    Este trabalho apresenta um método para a extração de contornos de telhado de edifícios a partir de imagens digitais tomadas sobre cenas urbanas complexas. O método proposto é baseado na otimização de uma função de energia snakes, que representa contornos de telhado de edifícios em imagens digitais, através da técnica de otimização por programação dinâmica. Como a grande maioria dos contornos de telhado de edifícios possui lados retilíneos se interceptando em ângulos retos, foram aplicadas restrições à função de energia snakes de modo a atender esta condição geométrica. A principal vantagem de se usar o algoritmo de programação dinâmicapara otimizar a função de energia snakes é o aumento do raio de convergência, quando comparado com o que é normalmente obtido na solução original baseada em cálculo variacional. A avaliação experimental foi realizada a partir de dados reais e os resultados obtidos na inspeção visual e análise numérica dos experimentos mostraram o potencial do método para a extração de contornos de telhado de edifícios a partir de imagens digitais

    Full Hierarchic Versus Non-Hierarchic Classification Approaches for Mapping Sealed Surfaces at the Rural-Urban Fringe Using High-Resolution Satellite Data

    Get PDF
    Since 2008 more than half of the world population is living in cities and urban sprawl is continuing. Because of these developments, the mapping and monitoring of urban environments and their surroundings is becoming increasingly important. In this study two object-oriented approaches for high-resolution mapping of sealed surfaces are compared: a standard non-hierarchic approach and a full hierarchic approach using both multi-layer perceptrons and decision trees as learning algorithms. Both methods outperform the standard nearest neighbour classifier, which is used as a benchmark scenario. For the multi-layer perceptron approach, applying a hierarchic classification strategy substantially increases the accuracy of the classification. For the decision tree approach a one-against-all hierarchic classification strategy does not lead to an improvement of classification accuracy compared to the standard all-against-all approach. Best results are obtained with the hierarchic multi-layer perceptron classification strategy, producing a kappa value of 0.77. A simple shadow reclassification procedure based on characteristics of neighbouring objects further increases the kappa value to 0.84

    Evaluation of automatic building detection approaches combining high resolution images and LiDAR data

    Full text link
    In this paper, two main approaches for automatic building detection and localization using high spatial resolution imagery and LiDAR data are compared and evaluated: thresholding-based and object-based classification. The thresholding-based approach is founded on the establishment of two threshold values: one refers to the minimum height to be considered as building, defined using the LiDAR data, and the other refers to the presence of vegetation, which is defined according to the spectral response. The other approach follows the standard scheme of object-based image classification: segmentation, feature extraction and selection, and classification, here performed using decision trees. In addition, the effect of the inclusion in the building detection process of contextual relations with the shadows is evaluated. Quality assessment is performed at two different levels: area and object. Area-level evaluates the building delineation performance, whereas object-level assesses the accuracy in the spatial location of individual buildings. The results obtained show a high efficiency of the evaluated methods for building detection techniques, in particular the thresholding-based approach, when the parameters are properly adjusted and adapted to the type of urban landscape considered. © 2011 by the authors.The authors appreciate the financial support provided by the Spanish Ministry of Science and Innovation and FEDER in the framework of the projects CGL2009-14220 and CGL2010-19591/BTE, and the support of the Spanish Instituto Geografico Nacional (IGN).Hermosilla, T.; Ruiz Fernández, LÁ.; Recio Recio, JA.; Estornell Cremades, J. (2011). Evaluation of automatic building detection approaches combining high resolution images and LiDAR data. Remote Sensing. 3:1188-1210. https://doi.org/10.3390/rs3061188S118812103Mayer, H. (1999). Automatic Object Extraction from Aerial Imagery—A Survey Focusing on Buildings. Computer Vision and Image Understanding, 74(2), 138-149. doi:10.1006/cviu.1999.0750Kim, T., & Muller, J.-P. (1999). Development of a graph-based approach for building detection. Image and Vision Computing, 17(1), 3-14. doi:10.1016/s0262-8856(98)00092-4Irvin, R. B., & McKeown, D. M. (1989). Methods for exploiting the relationship between buildings and their shadows in aerial imagery. IEEE Transactions on Systems, Man, and Cybernetics, 19(6), 1564-1575. doi:10.1109/21.44071Lin, C., & Nevatia, R. (1998). Building Detection and Description from a Single Intensity Image. Computer Vision and Image Understanding, 72(2), 101-121. doi:10.1006/cviu.1998.0724Katartzis, A., & Sahli, H. (2008). A Stochastic Framework for the Identification of Building Rooftops Using a Single Remote Sensing Image. IEEE Transactions on Geoscience and Remote Sensing, 46(1), 259-271. doi:10.1109/tgrs.2007.904953Lee, D. S., Shan, J., & Bethel, J. S. (2003). Class-Guided Building Extraction from Ikonos Imagery. Photogrammetric Engineering & Remote Sensing, 69(2), 143-150. doi:10.14358/pers.69.2.143STASSOPOULOU, A., & CAELLI, T. (2000). BUILDING DETECTION USING BAYESIAN NETWORKS. International Journal of Pattern Recognition and Artificial Intelligence, 14(06), 715-733. doi:10.1142/s0218001400000477Jin, X., & Davis, C. H. (2005). Automated Building Extraction from High-Resolution Satellite Imagery in Urban Areas Using Structural, Contextual, and Spectral Information. EURASIP Journal on Advances in Signal Processing, 2005(14). doi:10.1155/asp.2005.2196Kim, Z., & Nevatia, R. (1999). Uncertain Reasoning and Learning for Feature Grouping. Computer Vision and Image Understanding, 76(3), 278-288. doi:10.1006/cviu.1999.0803Dare, P. M. (2005). Shadow Analysis in High-Resolution Satellite Imagery of Urban Areas. Photogrammetric Engineering & Remote Sensing, 71(2), 169-177. doi:10.14358/pers.71.2.169Weidner, U., & Förstner, W. (1995). Towards automatic building extraction from high-resolution digital elevation models. ISPRS Journal of Photogrammetry and Remote Sensing, 50(4), 38-49. doi:10.1016/0924-2716(95)98236-sCord, M., & Declercq, D. (2001). Three-dimensional building detection and modeling using a statistical approach. IEEE Transactions on Image Processing, 10(5), 715-723. doi:10.1109/83.918565Ma, R. (2005). DEM Generation and Building Detection from Lidar Data. Photogrammetric Engineering & Remote Sensing, 71(7), 847-854. doi:10.14358/pers.71.7.847Miliaresis, G., & Kokkas, N. (2007). Segmentation and object-based classification for the extraction of the building class from LIDAR DEMs. Computers & Geosciences, 33(8), 1076-1087. doi:10.1016/j.cageo.2006.11.012Zhang, K., Yan, J., & Chen, S.-C. (2006). Automatic Construction of Building Footprints From Airborne LIDAR Data. IEEE Transactions on Geoscience and Remote Sensing, 44(9), 2523-2533. doi:10.1109/tgrs.2006.874137Lafarge, F., Descombes, X., Zerubia, J., & Pierrot-Deseilligny, M. (2008). Automatic building extraction from DEMs using an object approach and application to the 3D-city modeling. ISPRS Journal of Photogrammetry and Remote Sensing, 63(3), 365-381. doi:10.1016/j.isprsjprs.2007.09.003Yu, B., Liu, H., Wu, J., Hu, Y., & Zhang, L. (2010). Automated derivation of urban building density information using airborne LiDAR data and object-based method. Landscape and Urban Planning, 98(3-4), 210-219. doi:10.1016/j.landurbplan.2010.08.004Paparoditis, N., Cord, M., Jordan, M., & Cocquerez, J.-P. (1998). Building Detection and Reconstruction from Mid- and High-Resolution Aerial Imagery. Computer Vision and Image Understanding, 72(2), 122-142. doi:10.1006/cviu.1998.0722Estornell, J., Ruiz, L. A., Velázquez-Martí, B., & Hermosilla, T. (2011). Analysis of the factors affecting LiDAR DTM accuracy in a steep shrub area. International Journal of Digital Earth, 4(6), 521-538. doi:10.1080/17538947.2010.533201Ruiz, L. A., Recio, J. A., Fernández-Sarría, A., & Hermosilla, T. (2011). A feature extraction software tool for agricultural object-based image analysis. Computers and Electronics in Agriculture, 76(2), 284-296. doi:10.1016/j.compag.2011.02.007Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(6), 610-621. doi:10.1109/tsmc.1973.4309314Sutton, R. N., & Hall, E. L. (1972). Texture Measures for Automatic Classification of Pulmonary Disease. IEEE Transactions on Computers, C-21(7), 667-676. doi:10.1109/t-c.1972.223572Freund, Y. (1995). Boosting a Weak Learning Algorithm by Majority. Information and Computation, 121(2), 256-285. doi:10.1006/inco.1995.1136Shufelt, J. A. (1999). Performance evaluation and analysis of monocular building extraction from aerial imagery. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(4), 311-326. doi:10.1109/34.761262Shan, J., & Lee, S. D. (2005). Quality of Building Extraction from IKONOS Imagery. Journal of Surveying Engineering, 131(1), 27-32. doi:10.1061/(asce)0733-9453(2005)131:1(27

    GIS-based urban land use characterization and population modeling with subpixel information measured from remote sensing data

    Get PDF
    This dissertation provides deeper understanding on the application of Vegetation-Impervious Surface-Soil (V-I-S) model in the urban land use characterization and population modeling, focusing on New Orleans area. Previous research on the V-I-S model used in urban land use classification emphasized on the accuracy improvement while ignoring the discussion of the stability of classifiers. I developed an evaluation framework by using randomization techniques and decision tree method to assess and compare the performance of classifiers and input features. The proposed evaluation framework is applied to demonstrate the superiority of V-I-S fractions and LST for urban land use classification. It could also be applied to the assessment of input features and classifiers for other remote sensing image classification context. An innovative urban land use classification based on the V-I-S model is implemented and tested in this dissertation. Due to the shape of the V-I-S bivariate histogram that resembles topological surfaces, a pattern that honors the Lu-Weng’s urban model, the V-I-S feature space is rasterized into grey-scale image and subsequently partitioned by marker-controlled watershed segmentation, leading to an urban land use classification. This new approach is proven to be insensitive to the selection of initial markers as long as they are positioned around the underlying watershed centers. This dissertation links the population distribution of New Orleans with its physiogeographic conditions indicated by the V-I-S sub-pixel composition and the land use information. It shows that the V-I-S fractions cannot be directly used to model the population distribution. Both the OLS and GWR models produced poor model fit. In contrast, the land use information extracted from the V-I-S information and LST significantly improved regression models. A three-class land use model is fitted adequately. The GWR model reveals the spatial nonstationarity as the relationship between the population distribution and the land use is relatively poor in the city center and becomes stronger towards the city fringe, depicting a classic urban concentric pattern. It highlighted that New Orleans is a complex metropolitan area, and its population distribution cannot be fully modeled with the physiogeographic measurements

    Assessing Building Vulnerability to Tsunami Hazard Using Integrative Remote Sensing and GIS Approaches

    Get PDF
    Risk and vulnerability assessment for natural hazards is of high interest. Various methods focusing on building vulnerability assessment have been developed ranging from simple approaches to sophisticated ones depending on the objectives of the study, the availability of data and technology. In-situ assessment methods have been widely used to measure building vulnerability to various types of hazards while remote sensing methods, specifically developed for assessing building vulnerability to tsunami hazard, are still very limited. The combination of remote sensing approaches with in-situ methods offers unique opportunities to overcome limitations of in-situ assessments. The main objective of this research is to develop remote sensing techniques in assessing building vulnerability to tsunami hazard as one of the key elements of risk assessment. The research work has been performed in the framework of the GITEWS (German-Indonesian Tsunami Early Warning System) project. This research contributes to two major components of tsunami risk assessment: (1) the provision of infrastructure vulnerability information as an important element in the exposure assessment; (2) tsunami evacuation modelling which is a critical element for assessing immediate response and capability to evacuate as part of the coping capacity analysis. The newly developed methodology is based on the combination of in-situ measurements and remote sensing techniques in a so-called “bottom-up remote sensing approach”. Within this approach, basic information was acquired by in-situ data collection (bottom level), which was then used as input for further analysis in the remote sensing approach (upper level). The results of this research show that a combined in-situ measurement and remote sensing approach can be successfully employed to assess and classify buildings into 4 classes based on their level of vulnerability to tsunami hazard with an accuracy of more than 80 percent. Statistical analysis successfully revealed key spatial parameters which were regarded to link parameters between in-situ and remote sensing approach such as size, height, shape, regularity, orientation, and accessibility. The key spatial parameters and their specified threshold values were implemented in a decision tree algorithm for developing a remote sensing rule-set of building vulnerability classification. A big number of buildings in the study area (Cilacap city, Indonesia) were successfully classified into the building vulnerability classes. The categorization ranges from high to low vulnerable buildings (A to C) and includes also a category of buildings which are potentially suitable for tsunami vertical evacuation (VE). A multi-criteria analysis was developed that incorporates three main components for vulnerability assessment: stability, tsunami resistance and accessibility. All the defined components were configured in a decision tree algorithm by applying weighting, scoring and threshold definition based on the building sample data. Stability components consist of structure parameters, which are closely related to the building stability against earthquake energy. Building stability needs to be analyzed because most of tsunami events in Indonesia are preceded by major earthquakes. Stability components analysis was applied in the first step of the newly developed decision tree algorithm to evaluate the building stability when earthquake strikes. Buildings with total scores below the defined threshold of stability were classified as the most vulnerable class A. Such the buildings have a high probability of being damaged after earthquake events. The remaining buildings with total scores above the defined threshold of stability were further analyzed using tsunami components and accessibility components to classify them into the vulnerability classes B, C and VE respectively. This research is based on very high spatial resolution satellite images (QuickBird) and object-based image analysis. Object-based image analysis is was chosen, because it allows the formulation of rule-sets based on image objects instead of pixels, which has significant advantages especially for the analysis of very high resolution satellite images. In the pre-processing stage, three image processing steps were performed: geometric correction, pan-sharpening and filtering. Adaptive Local Sigma and Morphological Opening filter techniques were applied as basis for the subsequent building edge detection. The data pre-processing significantly increased the accuracy of the following steps of image classification. In the next step image segmentation was developed to extract adequate image objects to be used for further classification. Image classification was carried out by grouping resulting objects into desired classes based on the derived object features. A single object was assigned by its feature characteristics calculated in the segmentation process. The characteristic features of an object - which were grouped into spectral signature, shape, size, texture, and neighbouring relations - were analysed, selected and semantically modelled to classify objects into object classes. Fuzzy logic algorithm and object feature separation analysis was performed to set the member¬ship values of objects that were grouped into particular classes. Finally this approach successfully detected and mapped building objects in the study area with their spatial attributes which provide base information for building vulnerability classification. A building vulnerability classification rule-set has been developed in this research and successfully applied to categorize building vulnerability classes. The developed approach was applied for Cilacap city, Indonesia. In order to analyze the transferability of this newly developed approach, the algorithm was also applied to Padang City, Indonesia. The results showed that the developed methodology is in general transferable. However, it requires some adaptations (e.g. thresholds) to provide accurate results. The results of this research show that Cilacap City is very vulnerable to tsunami hazard. Class A (very vulnerable) buildings cover the biggest portion of area in Cilacap City (63%), followed by class C (28%), class VE (6%) and class B (3%). Preventive measures should be carried out for the purpose of disaster risk reduction, especially for people living in such the most vulnerable buildings. Finally, the results were applied for tsunami evacuation modeling. The buildings, which were categorized as potential candidates for vertical evacuation, were selected and a GIS approach was applied to model evacuation time and evacuation routes. The results of this analysis provide important inputs to the disaster management authorities for future evacuation planning and disaster mitigation

    Remote sensing of impervious surface area and its interaction with land surface temperature variability in Pretoria, South Africa

    Get PDF
    Includes summary for chapter 1-5Pretoria, City of Tshwane (COT), Gauteng Province, South Africa is one of the cities that continues to experience rapid urban sprawl as a result of population growth and various land use, leading to the change of natural vegetation lands into impervious surface area (ISA). These are associated with transportation (paved roads, streets, highways, parking lots and sidewalks) and cemented buildings and rooftops, made of completely or partly impermeable artificial materials (e.g., asphalt, concrete, and brick). These landscapes influence the micro-climate (e.g., land surface temperature, LST) of Pretoria City as evidenced by the recent heat waves characterized by high temperature. Therefore, understanding ISA changes will provide information for city planning and environmental management. Conventionally, deriving ISA information has been dependent on field surveys and manual digitizing from hard copy maps, which is laborious and time-consuming. Remote sensing provides an avenue for deriving spatially explicit and timely ISA information. Numerous methods have been developed to estimate and retrieve ISA and LST from satellite imagery. There are limited studies focusing on the extraction of ISA and its relationship with LST variability across major cities in Africa. The objectives of the study were: (i) to explore suitable spectral indices to improve the delineation of built-up impervious surface areas from very high resolution multispectral data (e.g., WorldView-2), (ii) to examine exposed rooftop impervious surface area based on different colours, and their interplay with surface temperature variability, (iii) to determine if the spatio-temporal built-up ISA distribution pattern in relation to elevation influences urban heat island (UHI) extent using an optimal analytical scale and (iv) to assess the spatio-temporal change characteristics of ISA expansion using the corresponding surface temperature (LST) at selected administrative subplace units (i.e., local region scale). The study objectives were investigated using remote sensing data such as WorldView-2 (a very high-resolution multispectral sensor), medium resolution Landsat-5 Thematic Mapper (TM) and Landsat-8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) at multiple scales. The ISA mapping methods used in this study can be grouped into two major categories: (i) the classification-based approach consisting of an object-based multi-class classification with overall accuracy ~90.4% and a multitemporal pixel-based binary classification. The latter yielded an area under the receiver operating characteristic curve (AUROC) = 0.8572 for 1995, AUROC = 0.8709 for 2005, AUROC = 0.8949 for 2015. (ii) the spectral index-based approach such as a new built-up extraction index (NBEI) derived in this study which yielded a high AUROC = ~0.82 compared to Built-up Area Index (BAI) (AUROC = ~0.73), Built-up spectral index (BSI) (AUROC = ~0.78), Red edge / Green Index (RGI) (AUROC = ~0.71) and WorldView-Built-up Index (WV-BI) (AUROC = ~0.67). The multitemporal built-up Index (BUI) also estimated with AUROC = 0.8487 for 1993, AUROC = 0.8302 for 2003, AUROC = 0.8790 for 2013. This indicates that all these methods employed, mapped ISA with high predictive accuracy from remote sensing data. Furthermore, the single-channel algorithm (SCA) was employed to retrieve LST from the thermal infrared (TIR) band of the Landsat images. The LST overall retrieval error for the entire study generally was quite low (overall root mean square RMSE ≤ ~1.48OC), which signifies that the Landsat TIR used provided good results for further analysis. In conclusion, the study showed the potential of multispectral remote sensing data to quantify ISA and evaluate its interaction with surface temperature variability despite the complex urban landscape in Pretoria. Also, using impervious surface LST as a complementary metric in this research helped to reveal urban heat island distribution and improve understanding of the spatio-temporal developing trend of urban expansion at a local spatial scale.Rapid urbanization because of population growth has led to the conversion of natural lands into large man-made landscapes which affects the micro-climate. Rooftop reflectivity, material, colour, slope, height, aspect, elevation are factors that potentially contribute to temperature variability. Therefore, strategically designed rooftop impervious surfaces have the potential to translate into significant energy, long-term cost savings, and health benefits. In this experimental study, we used the semi-automated Environment for Visualizing Images (ENVI) Feature Extraction that uses an object-based image analysis approach to classify rooftop based on colours from WorldView-2 (WV-2) image with overall accuracy ~90.4% and kappa coefficient ~0.87 respectively. The daytime retrieved surface temperatures were derived from 15m pan-sharpened Landsat 8 TIRS with a range of ~14.6OC to ~65OC (retrieval error = 0.38OC) for the same month covering Lynwood Ridge a residential area in Pretoria. Thereafter, the relationship between the rooftops and surface temperature (LST) were examined using multivariate statistical analysis. The results of this research reveal that the interaction between the applicable rooftop explanatory features (i.e., reflectance, texture measures and topographical properties) can explain over 22.10% of the variation in daytime rooftop surface temperatures. Furthermore, analysis of spatial distribution between mean daytime surface temperature and the residential rooftop indicated that the red, brown and green roof surfaces show lower LST values due to high reflectivity, high emissivity and low heat capacity during the daytime. The study concludes that in any study related to the spatial distribution of rooftop impervious surface area surface temperature, effect of various explanatory variables must be considered. The results of this experimental study serve as a useful approach for further application in urban planning and sustainable development.Evaluating changes in built-up impervious surface area (ISA) to understand the urban heat island (UHI) extent is valuable for governments in major cities in developing countries experiencing rapid urbanization and industrialization. This work aims at assessing built-up ISA spatio-temporal and influence on land surface temperature (LST) variability in the context of urban sprawl. Landsat-5 Thematic Mapper (TM) and Landsat-8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) were used to quantify ISA using built-up Index (BUI) and spatio-temporal dynamics from 1993-2013. Thereafter using a suitable analytical sampling scale that represents the estimated ISA-LST, we examined its distribution in relation to elevation using the Shuttle Radar Topography Mission (SRTM) and also create Getis-Ord Gi* statistics hotspot maps to display the UHI extent. The BUI ISA extraction results show a high predictive accuracy with area under the receiver operating characteristic curve, AUROC = 0.8487 for 1993, AUROC = 0.8302 for 2003, AUROC = 0.8790 for 2013. The ISA spatio-temporal changes within ten years interval time frame results revealed a 14% total growth rate during the study year. Based on a suitable analytical scale (90x90) for the hexagon polygon grid, the majority of ISA distribution across the years was at an elevation range of between >1200m – 1600m. Also, Getis-Ord Gi* statistics hotspot maps revealed that hotspot regions expanded through time with a total growth rate of 19% and coldspot regions decreased by 3%. Our findings can represent useful information for policymakers by providing a scientific basis for sustainable urban planning and management.Over the years, rapid urban growth has led to the conversion of natural lands into large man-made landscapes due to enhanced political and economic growth. This study assessed the spatio-temporal change characteristics of impervious surface area (ISA) expansion using its surface temperature (LST) at selected administrative subplace units (i.e., local region scale). ISA was estimated for 1995, 2005 and 2015 from Landsat-5 Thematic Mapper (TM) and Landsat-8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) images using a Random Forest (RF) algorithm. The spatio-temporal trends of ISA were assessed using an optimal analytical scale to aggregate ISA LST coupled with weighted standard deviational ellipse (SDE) method. The ISA was quantified with high predictive accuracy (i.e., AUROC = 0.8572 for 1995, AUROC = 0.8709 for 2005, AUROC = 0.8949 for 2015) using RF classifier. More than 70% of the selected administrative subplaces in Pretoria experienced an increase in growth rate (415.59%) between 1995 and 2015. LST computations from the Landsat TIRS bands yielded good results (RMSE = ~1.44OC, 1.40OC, ~0.86OC) for 1995, 2005 and 2015 respectively. Based on the hexagon polygon grid (90x90), the aggregated ISA surface temperature weighted SDE analysis results indicated ISA expansion in different directions at the selected administrative subplace units. Our findings can represent useful information for policymakers in evaluating urban development trends in Pretoria, City of Tshwane (COT).Globally, the unprecedented increase in population in many cities has led to rapid changes in urban landscape, which requires timely assessments and monitoring. Accurate determination of built-up information is vital for urban planning and environmental management. Often, the determination of the built-up area information has been dependent on field surveys, which is laborious and time-consuming. Remote sensing data is the only option for deriving spatially explicit and timely built-up area information. There are few spectral indices for built-up areas and often not accurate as they are specific to impervious material, age, colour, and thickness, especially using higher resolution images. The objective of this study is to test the utility of a new built-up extraction index (NBEI) using WorldView-2 to improve built-up material mapping irrespective of material type, age and colour. The new index was derived from spectral bands such as Green, Red edge, NIR1 and NIR2 bands that profoundly explain the variation in built-up areas on WorldView-2 image (WV-2). The result showed that NBEI improves the extraction of built-up areas with high accuracy (area under the receiver operating characteristic curve, AUROC = ~0.82) compared to the existing indices such as Built-up Area Index (BAI) (AUROC = ~0.73), Built-up spectral index (BSI) (AUROC = ~0.78 ), Red edge / Green Index (RGI) (AUROC = ~0.71) and WorldView-Built-up Index (WV-BI) (AUROC = ~0.67). The study demonstrated that the new built-up index could extract built-up areas using high-resolution images. The performance of NBEI could be attributed to the fact that it is not material specific, and would be necessary for urban area mapping.Environmental SciencesD. Phil. (Environmental Sciences

    Detección automática de edificios y clasificación de usos del suelo en entornos urbanos con imágenes de alta resolución y datos LiDAR

    Full text link
    Esta Tesis tiene como objetivo establecer una metodología fiable de detección automática de edificaciones para la clasificación automática de los usos del suelo en entornos urbanos utilizando imágenes aéreas de alta resolución y datos LiDAR. Estos datos se corresponden con la información adquirida en el marco del Plan Nacional de Ortofotografía Aérea (PNOA), y se encuentran a disposición de las administraciones públicas españolas. Para realizar la localización de edificaciones se adaptan y analizan dos técnicas empleando imágenes de alta resolución y datos LiDAR: la primera se basa en el establecimiento de valores umbral en altura y vegetación, y la segunda utiliza una aproximación mediante la clasificación orientada a objetos. La clasificación de los entornos urbanos se ha realizado empleando un enfoque orientado a objetos, definidos a partir de los límites cartográficos de las parcelas catastrales. La descripción cualitativa de los objetos para su posterior clasificación se realiza mediante un conjunto de características descriptivas especialmente diseñadas para la caracterización de entornos urbanos. La información que proporcionan estas características se refiere a la respuesta espectral de cada objeto o parcela, la textura, la altura y sus características geométricas y de forma. Además, se describe el contexto de cada objeto considerando dos niveles: interno y externo. En el nivel interno se extraen características referentes a las coberturas de edificaciones y vegetación contenidas en una parcela. En el nivel externo se calculan características globales de la manzana urbana en la que una parcela esta enmarcada. Se analiza la contribución específica de las características descriptivas en la descripción, así como su aporte en la clasificación de los usos del sueloHermosilla Gómez, T. (2011). Detección automática de edificios y clasificación de usos del suelo en entornos urbanos con imágenes de alta resolución y datos LiDAR [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/11232Palanci
    corecore