139,376 research outputs found

    Knowledge formalization in experience feedback processes : an ontology-based approach

    Get PDF
    Because of the current trend of integration and interoperability of industrial systems, their size and complexity continue to grow making it more difficult to analyze, to understand and to solve the problems that happen in their organizations. Continuous improvement methodologies are powerful tools in order to understand and to solve problems, to control the effects of changes and finally to capitalize knowledge about changes and improvements. These tools involve suitably represent knowledge relating to the concerned system. Consequently, knowledge management (KM) is an increasingly important source of competitive advantage for organizations. Particularly, the capitalization and sharing of knowledge resulting from experience feedback are elements which play an essential role in the continuous improvement of industrial activities. In this paper, the contribution deals with semantic interoperability and relates to the structuring and the formalization of an experience feedback (EF) process aiming at transforming information or understanding gained by experience into explicit knowledge. The reuse of such knowledge has proved to have significant impact on achieving themissions of companies. However, the means of describing the knowledge objects of an experience generally remain informal. Based on an experience feedback process model and conceptual graphs, this paper takes domain ontology as a framework for the clarification of explicit knowledge and know-how, the aim of which is to get lessons learned descriptions that are significant, correct and applicable

    Post-Westgate SWAT : C4ISTAR Architectural Framework for Autonomous Network Integrated Multifaceted Warfighting Solutions Version 1.0 : A Peer-Reviewed Monograph

    Full text link
    Police SWAT teams and Military Special Forces face mounting pressure and challenges from adversaries that can only be resolved by way of ever more sophisticated inputs into tactical operations. Lethal Autonomy provides constrained military/security forces with a viable option, but only if implementation has got proper empirically supported foundations. Autonomous weapon systems can be designed and developed to conduct ground, air and naval operations. This monograph offers some insights into the challenges of developing legal, reliable and ethical forms of autonomous weapons, that address the gap between Police or Law Enforcement and Military operations that is growing exponentially small. National adversaries are today in many instances hybrid threats, that manifest criminal and military traits, these often require deployment of hybrid-capability autonomous weapons imbued with the capability to taken on both Military and/or Security objectives. The Westgate Terrorist Attack of 21st September 2013 in the Westlands suburb of Nairobi, Kenya is a very clear manifestation of the hybrid combat scenario that required military response and police investigations against a fighting cell of the Somalia based globally networked Al Shabaab terrorist group.Comment: 52 pages, 6 Figures, over 40 references, reviewed by a reade

    Acquiring Correct Knowledge for Natural Language Generation

    Full text link
    Natural language generation (NLG) systems are computer software systems that produce texts in English and other human languages, often from non-linguistic input data. NLG systems, like most AI systems, need substantial amounts of knowledge. However, our experience in two NLG projects suggests that it is difficult to acquire correct knowledge for NLG systems; indeed, every knowledge acquisition (KA) technique we tried had significant problems. In general terms, these problems were due to the complexity, novelty, and poorly understood nature of the tasks our systems attempted, and were worsened by the fact that people write so differently. This meant in particular that corpus-based KA approaches suffered because it was impossible to assemble a sizable corpus of high-quality consistent manually written texts in our domains; and structured expert-oriented KA techniques suffered because experts disagreed and because we could not get enough information about special and unusual cases to build robust systems. We believe that such problems are likely to affect many other NLG systems as well. In the long term, we hope that new KA techniques may emerge to help NLG system builders. In the shorter term, we believe that understanding how individual KA techniques can fail, and using a mixture of different KA techniques with different strengths and weaknesses, can help developers acquire NLG knowledge that is mostly correct

    Qualitative Effects of Knowledge Rules in Probabilistic Data Integration

    Get PDF
    One of the problems in data integration is data overlap: the fact that different data sources have data on the same real world entities. Much development time in data integration projects is devoted to entity resolution. Often advanced similarity measurement techniques are used to remove semantic duplicates from the integration result or solve other semantic conflicts, but it proofs impossible to get rid of all semantic problems in data integration. An often-used rule of thumb states that about 90% of the development effort is devoted to solving the remaining 10% hard cases. In an attempt to significantly decrease human effort at data integration time, we have proposed an approach that stores any remaining semantic uncertainty and conflicts in a probabilistic database enabling it to already be meaningfully used. The main development effort in our approach is devoted to defining and tuning knowledge rules and thresholds. Rules and thresholds directly impact the size and quality of the integration result. We measure integration quality indirectly by measuring the quality of answers to queries on the integrated data set in an information retrieval-like way. The main contribution of this report is an experimental investigation of the effects and sensitivity of rule definition and threshold tuning on the integration quality. This proves that our approach indeed reduces development effort — and not merely shifts the effort to rule definition and threshold tuning — by showing that setting rough safe thresholds and defining only a few rules suffices to produce a ‘good enough’ integration that can be meaningfully used

    Requirements modelling and formal analysis using graph operations

    Get PDF
    The increasing complexity of enterprise systems requires a more advanced analysis of the representation of services expected than is currently possible. Consequently, the specification stage, which could be facilitated by formal verification, becomes very important to the system life-cycle. This paper presents a formal modelling approach, which may be used in order to better represent the reality of the system and to verify the awaited or existing system’s properties, taking into account the environmental characteristics. For that, we firstly propose a formalization process based upon properties specification, and secondly we use Conceptual Graphs operations to develop reasoning mechanisms of verifying requirements statements. The graphic visualization of these reasoning enables us to correctly capture the system specifications by making it easier to determine if desired properties hold. It is applied to the field of Enterprise modelling
    corecore