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Abstract 
 

New forms of representation at a fine spatial scale, where units of space are 
conceived as cells and populations as individual agents, are currently changing 
the way we are able to simulate the evolution of cities and related systems. In 
this paper, we review progress to date in this field. We show how these new 
approaches are consistent with traditional urban models that have gone before 
with the emphasis no longer being on spatial interaction but on the dynamics of 
development and local movement. We first introduce a generic structure for 
urban simulation based on ideas about spatial evolution as reaction and diffusion, 
and then show how problems conceived in terms of cells, or agents, or both 
enable new implementations of this generic model. We sketch the rudiments of 
cellular automata (CA) which emphasises rules of development, and agent-based 
models which focus on how agents respond to attributes of their environment 
often encoded in cellular landscapes. We develop various exemplars based on 
residential location to impress the way these approaches work. Three 
applications are then presented at very different spatial scales: first pedestrian 
movement at the building scale, then the evolution of systems of cities at a 
country scale, and finally urban growth at the city scale. In developing these 
approaches, we show how cellular and agent-based models have the potential for 
explicitly incorporating spatial interaction and transportation which is their 
current weakness. We conclude with proposals that formal policy analysis in this 
domain should always be informed by more than one approach. 
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From Pattern to Process 
 

The earliest mathematical models of cities, developed and implemented in the 1950s 

and 1960s, were focussed entirely on simulating patterns of land use and transport at a 

single cross-section in time. These models assumed that cities could be conceived of 

as structures with distinct causes and effects, that what was observed in cities could be 

factored into different spatial patterns with unique roles as either ‘independent causes’ 

or ‘dependent effects’. There was some logic to this separation. In the industrial city 

at least, residential patterns and related services were clustered around more basic 

export-orientated employment, while transport routes determining the relative pattern 

of accessibility, provided differential competitive advantage which in turn dictated 

where the best locations for various activities might lie.  

  

What gave this approach credence was the idea that cities reflected a spatial and 

structural equilibrium which was relatively unchanging in time. If we could find 

strong enough correlations within spatial structure to enable robust predictions to be 

made from one pattern to another, then it mattered little how the transformation from 

independent to dependent variables was actually accomplished. In short, the process 

of moving from one pattern to another could be as simple as possible if the 

association between them was significant and robust enough. Thus models came to be 

fashioned around relatively simple associations at an aggregate scale where variations 

in spatial patterning were least. Parsimony was the goal with models being 

constructed to meet the traditional canons of scientific method: first the reproduction 

of existing urban spatial structures, ideally in many different places using the same 

model, and thence if their performance was good enough, their subsequent use in 

prediction. 

 

As we now know, this rather superficial view reflects the fact that at an aggregative 

enough scale, all the volatility and dynamism of land use change in the city is ironed 

out, smoothed away. When we dig under this surface, this apparent equilibrium is far 

from being the stable and well-behaved system that we once assumed. In fact, most 

traditional urban models did not suffer from the problem of wild predictions in that 

their users were sufficiently wily to be able to ‘massage’ them into contexts in which 
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they were most useful. But there were worrying structural features in such models that 

could lead to untenable forecasts. Used sensibly, such models provide good short term 

forecasting techniques and there are many versions still in use today. They continue to 

form the cutting edge of operational land use-transportation modelling (Wegener, 

1994). 

 

The main criticism of these models however does not revolve around their 

equilibrating structure and aggregative nature per se. It is more that they do not 

address the concerns of contemporary planning and policy analysis, now strongly 

orientated to questions of regeneration, segregation, polarisation, economic 

development, and environmental quality. Urban sprawl and transportation are still 

within their ambit but these new problems exist at a scale that these models do not 

reach. To develop models which simulate how much finer scale actions take place 

requires significant disaggregation often to the point at which individuals and 

certainly groups need to be explicitly and formally represented. And it is a 

consequence of such disaggregation that temporal change comes much more centrally 

onto the agenda. There is no avoiding the fact that simulating individual behaviour at 

the finest spatial scales must take place over time.  

 

So in the quest to address different kinds of urban issues, we come full circle again to 

the need for simulating urban dynamics; in short, we need to simulate the processes 

that lead to the spatial patterns that we observe as if cities are in equilibrium. None of 

this is very new for there have been many attempts at making static models dynamic 

(Forrester, 1969; Batty, 1971) as well as a series of attempts to ground these 

traditional models in the new nonlinear mathematics of chaos, catastrophe, and 

bifurcation (Wilson, 2000). But all these explorations have failed to yield models that 

are significantly different from their aggregate predecessors. What has happened is 

that a new generation of thinking, based not on aggregative, equilibrium seeking 

assumptions but without any formal assumptions about dynamics whatsoever has 

emerged, consistent with models of how activities cooperate and compete in 

producing emergent social structures from the bottom up (Epstein and Axtell, 1996). 

These are the models that we will review in this paper. We will show how new ways 

of representing change in urban systems through rule-based decision processes can be 
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articulated through new ways of representing urban elements as individuals which we 

call ‘agents’ and ‘cells’ defining their location.    

 

We will begin outlining principles for urban simulation which tie these newer styles 

of model to the old, and then we will define new ways of representation. To link the 

old to the new, we present three exemplars: first a traditional urban model in which 

one spatial pattern – residential location, is immediately predictable from another – 

accessibility, with this transformation based on an arbitrary allocation or assignment 

not matched to the reality of how this actually happens; second, a model predicting 

the same but with the spatial assignment subject to an evolution at the most local level 

where what has already happened dictates, to an extent, what will happen; and third, a 

model in which this evolution is given active form through agents that compare 

different places in their quest to optimise their residential location. These three 

exemplars set the scene for our review of new models at three different spatial scales: 

first we simulate the local dynamics of movement in buildings and streets at the very 

small scale where agents are walkers or pedestrians; second we move to the very large 

scale using these agents to grow a system of cities, evolving a landscape where the 

migration of agents generates urban agglomerations; and third we generalise these 

agents to cells, simulating the evolution of a metropolitan area at the meso- or 

intermediate scale. Our exemplars and applications provide us with clear conclusions 

on the problems and opportunities this new perspective offers. 

 

 

Generic Structures for Urban Simulation 
 

All urban models can be written in functional form as some convolution of 

independent and dependent variables, parameters, and random errors which 

encapsulate noise or uncertainty in data and behaviour. Assuming K  dependent 

variables KkY k
i ....,,2,1, = , M  independent variables MmX m

i ....,,2,1, = , MK +  

parameters MK += ....,,2,1, llλ , and a composite random variation term k
iε  where 

the subscript i  refers to a location, a census tract, a cell, a parcel and so on, the 

generic model can be specified as 
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iii

k
i fY ε,,, ΓXY=   .     (1) 

 

The bold symbols define appropriate vectors of variables and parameters. This 

structure contains two features which are often missing in specific models – the 

positive feedback effect associated with the dependent variables and the error term 

absent from deterministic models. Feedback is relevant to systems of equations such 

as (1) where several different dependent variables are being simulated as, for example, 

in econometric models which are usually specified in linear simultaneous form. 

Equation (1) thus implies a process which is temporal in an implicit sense for it is 

inconceivable that such causal effects take place instantaneously. 

 

The simplest model from equation (1) scales one spatial pattern }{ 1
iX  to another }{ 1

iY  

as 11
ii XY λ=  where the causal effect is a proportionate one. In fact, this structure was 

used quite widely for the first land use-transportation models in the 1950s. Hansen 

(1959) proposed his residential location model in these terms as 

 

∑
j ij

j
i d

E
P α~  ,       (2) 

 

where iP  is defined as population in i , jE  as employment in j , ijd  the travel 

distance (or travel cost) between i  and j , and α  a parameter reflecting the friction of 

distance. Equation (2) is the well-known measure of potential or accessibility (Stewart 

and Warntz, 1958), in this case the accessibility of residential location i  to all 

employment locations j . In applications of this model, equation (2) is usually scaled 

to ensure that the total population sums to a predetermined total ∑= i iPP . When an 

increment of population P∆  is to be allocated, the summation is ∑ ∆=∆
i iPP  where 

iP∆  rather than iP  is predicted from equation (2). 

 

The largest number of land use transportation models developed to date have been 

based on accessibility equations of this kind. The most widely used structure involves 

a generalisation of this to two dependent activities – population and employment as 



 5

 













+

+

∑

∑

i ij

i
j

j ij

j
i

d
zP

zE

d
zE

zP

β

α

)(
~)1(

)(
~)1(

  ,     (3) 

 

where the iterator z  simply represents the way positive feedback and simultaneity 

enter the computational process. Iterating in this way until convergence (which is 

usually guaranteed)  provides a solution to the nonlinear equations in (3). Note that 

there are now two parameters on distance, α  and β , which ensure the system can be 

calibrated. Scaling parameters to enable correct orders of magnitude to be predicted 

can also be introduced to provide an appropriate computable form. 

 

The first model based on equations (3) is due to Lowry (1964) although it usually 

involves another independent variable – basic employment – which is added as a 

driver to the second (employment) equation in the system. Several well-known 

versions of this model exist (see Batty, 1976) in which the simultaneity between 

employment and population is conceived of as a multiplier process, thus breaking the 

positive feedback cycle proposed by Lowry. The structure as stated does not compute 

spatial interaction per se although this is implicit in the definition of accessibility. A 

key interest in this structure relates to the process used to map the two patterns of 

population and employment into one another. This process is implicitly dynamic in a 

somewhat artificial way in that the model is started with estimates of population and 

employment often taken from observed data, and then driven to solution through 

computer time. This iterative process can be thought of as having a parallel in real 

time which has been exploited in some temporally dynamic versions of these models 

(Batty, 1984) although the usual way of making these models dynamic is to simply 

compute the increment or decrement of activity through time using the same structure.  

 

A more appropriate temporal extension grounded in the dynamics of physical 

processes involves its specification in reaction-diffusion equations. Here we must 

introduce scalars directly into the model for these structures, unlike those on which 

traditional land use-transportation models have been built, deal with both growth (and 
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decline) of activities in time as well as their distribution across space. We will only 

state the model for the population equation for others follow by analogy. Then 

 

)(
)(

)()1( t
d

tE
tPtP P

i
j ij

j
ii εψλ α ++=+ ∑  ,   (4) 

 

where the postscripts t  and 1+t  refer to time instants, the scaling factors λ  and ψ  

enable appropriate magnitudes to be grown, and the error term )(tP
iε is simply 

indicative of need to provide some noise within the dynamic process in contrast to the 

previous spatial allocation models where random error is not usually considered. In 

equation (4), the first term on the RHS is the action/reaction while the second – the 

accessibility term – is the diffusion element. In this sense as population changes 

through time, it is always a function of population at the previous time period (the 

positive feedback effect) and employment in other locations which acts to diffuse 

population around its centres. It is worth noting that structures such as these when 

made operational, are often tempered against sets of constraints which enable 

discontinuities and thresholds to be met. For example, the Lowry models in equations 

(3) above, are usually subject to capacity constraints on the density of cells while 

reaction-diffusion equations like (4) are often operationalised using cellular automata 

(CA) methods which are discrete, often in binary form as we will illustrate in the next 

section. 

 

Finally we need to show how these structures are consistent with movement through 

the diffusion effect. In a way, all the models we have stated so far have interaction 

between locations implicit in their form through the definition of accessibility.  If we 

write the accessibility term in equation (2) as 

 

α
ij

j
ij d

tE
tp

)(
~)(  ,       (5) 

 

where the term )(tpij  is now the explicit interaction/diffusion between i  and j , we 

can state a more complete interaction relation adding the reaction and noise terms as 
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)()()()1( ttptPtP P
iijiij ε++=+  .    (6) 

 

If we now use spatial interaction accounting to examine the population in i  at 1+t , 

we derive the conventional reaction-diffusion equation in (4) above as 

 

)(
)(

)(~)()1( t
d

tE
tPtPtP P

i
j ij

j
i

j
iji εα ++=+ ∑∑  .  (7) 

 

In fact there is really a rather strong tie-up to traditional spatial interaction theory and 

gravitational modelling of city and transport system using these forms. If we add the 

reaction term into the product of the diffusion term and forget the noise, then equation 

(6) becomes 

 

α
ij

j
iij d

tE
tPtP

)(
)()( =   ,     (8) 

 

and with appropriate scaling, total population and total employment can be computed 

in the same way as constraints are handled in Wilson’s (1970) family of spatial 

interaction models. In short, it is quite feasible in dynamic model structures such as 

these to incorporate relevant conservation laws with respect to the total activities 

generated. 

 

We have presented these models in this form so that we can see how disaggregation 

leads to objects of interest which have a degree of discreteness and wholeness quite 

different from traditional conceptions of population and employment, hitherto the 

main working variables of traditional land use-transportation models. At much finer 

spatial scales, we reach a level where the zones or tracts – cells we will call them – 

become so small that it is appropriate to consider each to have only one state. In other 

words, imagine that cell i  houses only one unit of population, one household. If a cell 

were to be developed, then 1)( =tPi , if not, then 0)( =tPi . At this point, we might 

decide that the population might be better represented as something other than a cell, 

for example as an independent object or agent. However the cell would still be of 

interest in that it would contain land on which the household resides and as such 
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would act as a source for attributes of the built or natural environment. This idea 

clearly changes the nature of the above equations but only in the way they are 

computed. Their generic form does not change. But to make this clear, we must first 

define the rules needed to work with cities which are represented by cells or agents or 

both. 

 

 

Representations and Aggregations: Cells, Agents, Neighbourhoods 
and Rules 
 

We will still define a cell as a location i  but with the understanding that magnitudes 

associated with an activity in any cell are usually computed by adding cells within 

some larger neighbourhood. Most of our traditional models can be defined in terms of 

cells but when it comes to the definition of agents, there is no such association with 

particular locations. An agent k  is thus an object }{ kw  which has attributes and at 

any point in time t  is associated with a cell i . In this context, it is defined as )(twk
i ; 

more than one agent can exist or be associated with a cell and agents can of course 

move between cells. This changes our conception yet again in that the magnitudes of 

agents associated with any cell i  are computed by adding up the number of agents in 

i . Agent-based representation is thus much more general than the cellular in that 

agents usually exist on a landscape of cells whereas cellular models associate agents 

directly with cells: in CA, cells are agents and vice versa while in agent-based models, 

cells and agents are quite separate from one another. 

 

We will deal with cellular models first. The dynamic which drives such models 

involves defining rules which enable a cell i  to change its state over some interval of 

time from t  to 1+t . There is usually a limited number of states which any cell can 

take on, the simplest being developed or non-developed, urban or rural in which the 

variable )(tPi  is defined appropriately as 1 or 0. Change in any cell is some function 

of reaction, diffusion and/or randomness as implied in equation (4) but the critical 

feature of cellular automata models is that the neighbourhood over which diffusion 

takes place is strictly limited. In traditional CA, this neighbourhood removes any 

‘action-at-a-distance’ with interaction/diffusion confined to the cells immediately 
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adjacent to the cell which is the recipient of such change. This is based on the quite 

obvious notion in physical systems that when a gas or liquid diffuses, its constituents 

must move to adjacent locations or cells in order to travel any distance. In urban 

models, this is appropriate for pollution or walking, for example, but it is problematic 

for movement involving more manufactured kinds of technology. People can hop over 

intervening distances between places but particles cannot, and as such, this represents 

the most significant limit on the use of strict CA in urban simulation. In fact, this 

neighbourhood restriction is relaxed in many applications where it is more appropriate 

to refer to these as cell-space (CS) rather than cellular automata (CA) models (Albin, 

1975; Couclelis, 1985). 

 

The key reason why locality is so important in CA revolves around the idea that local 

action leads, in many circumstances, to global order, to emergent structure. Often 

local rules which are applied routinely lead to structures in the large that look highly 

ordered but cannot be predicted from any top-down command-like process or model. 

CA are thus excellent examples, as we will see below, of local rules which lead to 

surprising and possibly unexpected structures. For example, patterns of global 

segregation can be produced under very mild conditions of preference at the local 

level; if you prefer to live, say, with at least the same number of people around you 

who share your preferences, meaning that you would be equally at home with as 

many people around you with a different preference, then given enough slack in the 

system and some places where this is not satisfied, it is easy to show how the entire 

system can unravel, leading to extreme patterns of segregation where most will live 

with those around them sharing an identical opinion (Schelling, 1978). 

 

To demonstrate how CA actually works, let us implement the reaction-diffusion 

structure in equation (4) first without noise and then with. We will structure the 

solution by examining reaction first and then if this test is passed, consider the 

diffusion. The cellular array consists of developed 1)( =tPi  and non-developed 

(empty) 0)( =tPi  cells. We state that a cell can only change its state – react – if it is 

empty, meaning that already developed cells will not change and remain developed. 

For reaction 
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=+
=

1)1(
0)(

tPotherwise
testdiffusionthebeginthen

tPif
i

i   .  (9) 

 

If this test is passed, we then see whether or not development will diffuse to the empty 

cell. That is 

 

 




=+
=+

Φ≤≤Φ ∑
Ω∈ 0)1(

1)1()(
maxmin tPotherwise

tPthen
d

tP
if

i

i

j ij

j

i

α  , (10) 

 

where minΦ  is the minimum and maxΦ the maximum access thresholds of the 

neighbourhood iΩ  that need to be met if the cell is to be developed. In fact, this 

access threshold is entirely local being simply a count of developed cells. If we define 

},,,{ WESNi =Ω , cells which are north, south, west and east of the cell i  – the so-

called von Neumann neighbourhood (Toffoli and Margolis, 1987) – then each 

distance in equation (10) is the same, that is 1==== iWiEiSiN dddd , and (10) 

reduces to a count of cells in the neighbourhood.  

 

There are many different rules based on neighbourhood counting. As Wolfram (1994) 

shows, there is a combinatorially explosive number of rules for even the simplest of 

two-dimensional CA and it is not usually possible to classify these. There are other 

rules too, based on voting, for example, as in counting cells associated with 

preferences in the Schelling (1978) model where states are changed subject to 

thresholds defined in terms of majorities or minorities. There are different kinds of 

simple neighbourhood to consider such as the 8 cell Moore neighbourhood in contrast 

to the 4 cell von Neumann. All these give rise to many possibilities but to illustrate 

the essential feature of CA, we will show what happens when we plant a seed in the 

centre of a square cellular space and then grow the structure – city if you like – 

around its central business district (CBD). There is one case worth noting before we 

continue. We have assumed that a reaction only takes place if the cell is empty as in 

equation (9) but if this rule abandoned, then only the diffusion takes place through 

equation (10). If we set 2min =Φ  and 3max =Φ , this generates Conway’s Game of 

Life (Gardner, 1970). When the number of cells is less than 2, a cell which is already 
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developed ‘dies’ through isolation. When the number is greater then 3, the cell ‘dies’ 

through overcrowding. When between 2 and 3, an already developed cell remains 

developed but an empty cell is also developed, giving rise to a ‘birth’. These simple 

rules lead to structures which are self-perpetuating as is ‘life itself’ (Poundstone, 

1985). 

 

In Figures 1(a) and (b), we show two different structures where 0min =Φ  and 

1max =Φ , and where 0min =Φ  and 8max =Φ . The grey tones indicate the order in 

which the cells are developed. It is quite clear in Figure 1(a) how simple rules lead to 

global patterns; how local rules applied over and over again repeat themselves at 

different spatial scales generating fractal-like structures whose form is difficult to 

predict simply from a knowledge of these local rules. The completely filled pattern in 

Figure 1(b) can in fact be generated when every value of 1max >Φ , due to the way the 

von Neumann neighbourhood restricts the counting rule. In Figures 1(c) to (d), we 

have added some noise, that is, we have made all the reaction and diffusion rules in 

equations (9) and (10) subject to a meta rule which we specify as 

 





=+
=+

Λ<+=+
0)1(
1)1(

)1(1)1(
tPotherwise
tPthen

tandtPif
i

iP
ii ε . (11) 

 

Λ  is a threshold above which if the random event )1( +tP
iε  occurs, the 

development is sustained. This is accomplished through drawing random numbers 

with appropriate scaling and using these values to modify the diffusion threshold. In 

these instances, it is clear that the patterns generated are much more irregular but still 

with some semblance of the global patterning of Figures 1(a) and (b).  

 

Introducing agents into this mixture adds an entirely new dimension to such dynamics. 

An agent  defined as 1=kw   where we now assume there are K  agents in total, 

∑= k
kwK , always exists with reference to a location i  as )(twk

i , and the number of 

agents in any cell is ∑= k
k
ii twtw )()( . There is a special class of such agent-based 

models called ‘active-walker’ models (Kayser, Aberle, Pochy, and Lam, 1992). Here 

there is a strict separation between the landscape of cells which we define as before as 
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)}({ tPi  and the walkers who exist on the landscape as )}({ twk
i . In active-walker 

models, agents change the landscape on which they walk and the landscape changes 

the agents in that it directs them where to walk. This can be specified in the set of 

coupled equations 

 

[ ]
[ ] 





=+

=+

)(),()1(

)(),()1(

twtPgtw

tPtwftP
k
ii

k
i

i
k
ii  .    (12) 

 

The two functions f  and g  represent the landscaping function and the walker 

movement function respectively. Agents affect the future landscape by having been 

there, by walking upon it, while the landscape affects the walkers in terms of where 

the walkers are able to walk (and possibly other of their attributes). 

 

(a) With 0min =Φ  and 1max =Φ  (b) With 0min =Φ  and 8max =Φ  

 
 

 
(c ) a above with Noise (d) b above with Noise 

 
 

Figure 1: Local Rules Leading to Global Pattern: Generating Concentric Structures 
in von Neumann Neighbourhoods with and without Noise 
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One of the features about ‘walking’ is that the activity is entirely local. Walkers only 

move to adjacent cells and like CA, the same kinds of local rules and neighbourhoods 

apply. Let us now write the joint reaction-diffusion movement function as 

 

 α
ij

ji
ij d

tPtP
tP

)()(
)( =    ,     (13) 

 

where this interaction is only possible if i  and j  are part of the same local 

neighbourhood Ω . In this case, then 1=ijd  and )()()( tPtPtP jiij = . We now define 

the landscape function as an encoding of the geometry of the system: 0)1( =+tPif i , 

then this means it is possible to walk on the space, the space is empty and not 

occupied whereas 1)1( =+tPif i , this means it is occupied, with a building or is 

illegal for walking upon. This implies the only possible moves in the system are given 

by the matrix elements defined by the conjunction 0)()()( =∧= tPtPt jiijρ . It is now 

very easy to fashion a simple walking model. An agent at i , )(twk
i can walk to j  as 

)1( +twk
j  if and only if 0)( =tijρ . However this would result in mindless walking 

because there is nothing else on the landscape to direct motion. A feature of the 

problems that we will illustrate here is that there is an objective in terms of walking 

and this can be encoded into the landscape as some form of location specific resource 

)(tRi . This may vary through time by being consumed or replenished but it serves to 

direct the walker into available cells in which the resource is optimal in some local 

way. Thus our walking model might be written as 

 







+→

+→
==

Ω∈ )1()(

)1()(
)}({max)(0)(

twtwotherwise

twtwthen
tRtRandtif

k
i

k
i

k
j

k
i

jij
i

l
l

ρ . (14) 

 

The reaction-diffusion structure is complete when we add some noise. As with our 

other models, randomness is essential when we have many walkers so that we can 

simulate slight deviations from intended direction and other elements of real world 

uncertainty (Helbing, Molnar, Farkas, and Bolay, 2001).  
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This kind of algorithm can be easily generalised and embedded into the generic 

structures introduced previously. The local optimality which this implies is easily 

visualised if we imagine an accessibility surface focused on the centre of a city. A 

walker arrives at the edge with a view to finding the most accessible location. The 

walking algorithm in equation (13) not only enables the walker to climb this surface 

to the optimal point but also to circumnavigate any obstacles. If the access surface is 

perfectly symmetrical and convex-up centred on a single point, the CBD say, then the 

algorithm will find the optimum optimorum. If there are instabilities in the surface, the 

algorithm will detect local optima and thus in real problems additional mechanisms 

are likely to be required to reduce the impact of any sub-optimality. Many examples 

of these types of model exist in the simulation of pedestrian behaviour and these are 

being generalised to other kinds of human motion using active particle techniques 

(Schweitzer, 2003). However the most impressive attempt to date for socio-economic 

system is the Sugerscape model (Epstein and Axtell, 1996). Here agents optimise their 

economic performance in climbing a Sugarscape, a resource surface, which acts as a 

metaphor for search through hill climbing to achieve an optimal consumption of 

resources. 

 

 

Exemplars: Static Patterns, Cellular Growth, and Agent-Based 
Diffusion 
 

We have now sketched the rudiments of a general structure for urban simulation 

although we will finish our elaboration far short of a well worked out theory. At this 

point, we will shift tack to illustrate our theories in more practical terms as it is worth 

emphasising just how close the different modelling strategies and paradigms of the 

last 50 years are in terms of the way activities and land uses in cities can be simulated. 

In this section, we will introduce three hypothetical applications – exemplars of the 

way cells and agents can be used to represent both static and dynamic models which 

build on the structures in the last section. Our focus will be upon explaining 

residential location in terms of cells becoming occupied by households who seek to 

optimise their accessibility. 
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At the heart of urban economic theory, lies a trade-off between a consumer’s demand 

to minimise distance travelled to various activities and a desire to capture as much 

living space as possible. This is the theory first formally articulated by Alonso (1964) 

where it was assumed that in the monocentric industrial cities, residents arranged their 

locations around the CBD according to this trade-off between distance (travel cost) 

and space. The structure of preferences and the market for various land uses appears 

to have led to wealthy groups being able to capture more space at the edge of the city 

than poorer groups who have been confined to the inner areas around the CBD.  

 

Our first exemplar operationalises Hansen’s (1959) residential model where 

accessibility in equation (2) is measured on a cellular landscape around a CBD. Travel 

accessibility is measured lineally using ‘negative’ distance  0idD −  while space 

available is measured as a nonlinear ‘positive’ function of distance ηξ 0id . D  is some 

limiting distance at the edge of the city, ξ  and η  are parameters, and the CBD is 

defined where 0=j . In fact, it makes more sense presentationally to describe 

locations ji,  in terms of coordinates yx, . Thus we define travel accessibility xyd  

and space available xys  respectively as 

 

 [ ] 
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where it is assumed that the values associated with cell yx,  are with respect to the 

CBD at 00 , yx . Note that to differentiate the two equations, we define a Manhattan-

like distance where travel to the CBD is always at right angles for the travel 

access/cost and a direct crow-fly distance to the CBD with respect to the space 

available. 

 

Accessibility xyT  is now defined as a simple sum of these two components in equation 

(14) as 

 

xyxyxy sdT +=   .      (16) 
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The model is very easy to state. We define one unit of population (a household, say) 

associated with a cell as 1=xyP , the total units of population to be allocated as 

∑= xy xyPP , and we allocate population to cells so that  

 

01 =>= ′′′′ yxyxxyxy PwhereTTthenPif  .  (17) 

 

This is a simple assignment that ensures that every household is in a cell which has 

higher accessibility than the empty cells and that this allocation is exhaustive. In fact 

the discreteness of the formulation leads to a slightly different allocation from that 

associated with equation (2) where the number of units is scaled according to the 

value of the accessibility with all units having some value, no matter however small. 

However with careful definition, this discrete CA representation can be made to 

replicate its continuous equivalent in equation (2). 

 
(a) Travel Accessibility (b) Space Available (c) Composite Accessibility 

 
                                 (d) Allocation without Noise        (e)Allocation with Noise 

                             
 

Figure 2: Hansen’s (1959) Accessibility Model Implemented as a Cellular Automata 
with and without Noise 
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To illustrate its application, we use a cellular space of 201 x 201 pixels where the 

central cell 101, 101 is defined as the CBD. In Figure 2(a), we show the linear travel 

accessibility, in Figure 2(b) the space available, and in Figure 2(c), the aggregate 

accessibility, all defined using equations (15) and (16) where ,4.0,101 == ξD and 

1.0=η . In Figure 2(d), we allocate 4000 households units where it is clear that the 

symmetric pattern generated simply reflects the form of the aggregate accessibility in 

Figure 2(c). This model is entirely based on an implicit diffusion process with no 

growth or decline (reaction) and no error or noise. It is easy enough to add noise as 

xyε  and using an appropriate scaling, allocating 2000 households leads to the pattern 

shown in Figure 2(e). It is clear from these images that this kind of model is simply a 

mapping of one pattern onto another. Its morphology, even with some randomness, is 

entirely symmetric and hence predictable and there is no irregularity in terms of the 

morphology which is generated. It has all the hallmarks of a system generated from 

the top down without the kinds of dynamics and bottom-up processes which are so 

necessary to understand how cities change and evolve. 

 

Our second example is even simpler in that our conception of travel accessibility and 

space available is entirely local. This is a model where we seek to locate households 

around a CBD which is the first active location initiating the development process. 

We will now mix coordinate with index notation. For development to occur at time 

1+t  in cell i , the cell must be linked to the growing city – that is, it must be adjacent 

to some already developed cell ij janytP Ω∈= ,1)( , and the amount of space around 

this cell i  must be a maximum for the system. We can easily implement these rules 

using the following conditional: 

 







=+=+

=>= ∑ ∑
Ω∈ Ω∈

0)1(,1)1(

)(min)(0)(0)(

tPotherwisetPthen

tPtNandtPandtPif

ii

j j
jiiji

i i  . (18) 

 

)(tNi  is the number of neighbours around i  which needs to be a minimum for the 

number of empty spaces to be a maximum and the cell to be developed.  
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We begin this process with the central cell as the seed, that is 1
0

== oyxiP  and this leads 

to the structure shown in Figure 3(a) which is shown where 4750 cells have been 

occupied. It is clear that as the structure grows, it becomes compact as the average 

number of neighbours for the entire space begins to converge. The pattern of these 

numbers of neighbours is shown in Figure 3(b), and for the overall system at 1600=t  

when the simulation is stopped, this average is 2.78. Although this pattern is clearly 

something which can only be grown from the bottom up and thus reflects all the 

principles of local cellular action, there is still a uniformity about its morphology 

which is unrealistic. In fact we could introduce some noise and this would distort the 

pattern in terms of aging but it would not distort the morphology. To generate more 

realistic structures, we need to turn to our third exemplar which adds the notion of 

active agency to cellular action.  

 
(a) Developed Cells 

 
(b) Numbers of Neighbours 

 
Figure 3: Connected Cellular Growth Around a Central Seed with Local 

Maximisation of Residential Space 
 

This third model adds a new layer to cellular automata which in one sense might be 

thought of as an active, purposive dimension. Essentially our model is the same as the 

previous two in that all the action begins in or around the CBD. Agents kw  are 

launched at the edge of the city space and then engage in a random walk. If they walk 

outside the city space, they are moved back to the edge but if they walk to a cell 

adjacent to a cell that has already been developed, given by ij janytP Ω∈= ,1)( , 

then they will decide to locate there, the cell i  in question being developed, that is 
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1)1( =+tPi . The simulation is begun with the central cell – the CBD cell – being 

developed, and with all the walkers being located randomly at the edge of the city 

space, that is, kwk
i ∀),0(  where Dd xyi ≥= . Random walking is simply a method of 

exploring the space, and in this model, walkers move randomly to adjacent cells in the 

von Neumann neighbourhood WESNj ,,,=Ω∈ . Essentially the structure grows 

when walkers make first contact with developed cells and as in our previous model, 

the fact that cells are developed one by one ensures that the structure remains 

connected. In terms of maximizing space available, walkers have a greater probability 

of locating at the edge of the structure than towards its centre due to the way they are 

initiated. 

 

Formally we can pose this model as follows. At each time t , we execute the test 
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,  (19) 

 

In the first line of equation (19), we test to see if the cell location in which the walker 

is located is empty and if there is development in its neighbourhood. In the second 

line if this is so, the cell is developed and the walker returns to its initiating point on 

the edge of the city space where the index Ddwithyxrandomz xy ≥= , . The third 

line of the test is associated with failing the test in the first line and then the walker 

simply continues walking to a cell in its neighbourhood, chosen randomly as 

WESNjrandom i ,,,=Ω∈ . 

 

This is the very well known model of diffusion-limited aggregation (DLA) which is 

central to the physics of far-from-equilibrium systems. It was first introduced in this 

form by Witten and Sander (1981) and has been used to grow many kinds of 

structures which have a dendritic structure. Essentially what is generated is surprising. 

Unlike the previous model where the mass is compact, this structure is much more 

tree-like in form with branches reaching out to capture as much space as possible, not 
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unlike the way cities grow into their surrounding hinterland. It is essentially a fractal 

structure and its morphology can be tuned to produce dendrites of differing 

compaction with varying fractal dimensions. The di-electric breakdown model 

represents an equivalent form. Rather than being conceived as a bombardment of a 

growing mass with particles from the edge, growth takes place from the centre where 

tips of the evolving structure have the greatest probability of growth (Niemeyer, 

Pietronero, and Wiesmann, 1984;  Stanley, and Ostrowksy, 1986).  

 
(a) Developed Cells 

 
(b) Numbers of Neighbours 

  
 

Figure 4: Diffusion-Limited Aggregation: Cellular Growth from Agent-Based 
Random Walks 

 

We illustrate the structure on our 201 x 201 cellular space in Figure 4(a) where we 

show its morphology and in Figure 4(b) where we plot the number of developed 

neighbours associated with each of its cells. In contrast to our previous model, it is 

clear that as the structure grows, the average number of neighbours declines 

inexorably as the development reaches out into greater and greater regions of empty 

space, although the average number of those cells which have at least 1 developed 

neighbour is about 2.3, only a little less than in the previous model. This kind of 

irregularity can only be generated from the bottom up. It is a product of randomness 

with locational principles based on keeping the structure connected, agglomerated, 

combined with the search for greater and greater space in which to grow. It is as good 

an example of a reactive-diffusive structure as we have and in a sense it provides the 

baseline exemplar for the various applications that we will now elaborate. 
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Simulation at the Very Smallest Scales: Pedestrian Movement in 
Buildings and Streets 
 

Our three applications represent a classification of problems at different scales which 

also reflect different varieties of dynamics and different assumptions about the extent 

to which cells and agents engage in goal-seeking activities. At the smallest scale in 

built environments, routine, repetitive movement based on ‘fast’ dynamics is the 

focus where the frequency of interaction is measured in terms of seconds and minutes, 

sometimes hours and days but never any longer. Such activities usually respond to the 

environment through agents ‘using’ what has been already created rather then 

recreating it which takes place over much longer time periods. In contrast, at the very 

largest scales where we are dealing with systems of cities in Berry’s (1964) terms, the 

dynamics is ‘slow’. These are based on decisions which take place much more 

infrequently through migration, decisions to establish new settlements that evolve 

over years, probably decades, if not centuries and eons. Somewhere in between, we 

will deal with the city, the meso-scale –the focus of our exemplars so far – where the 

temporal scale is over years and decades. In fact associating slow with the large scale 

and fast with the small is always an oversimplification for in some applications, slow 

and fast exist together. 

 

In terms of purposive activities, spatial and temporal scale tend to determine the 

degree to which agents and cells react to each other in terms of change to their 

environment. We will begin with models that simulate small scale movements over 

short time intervals in buildings and streets where the focus is on visiting places rather 

than on making decisions which change the composition of activities associated with 

those places. We have already mapped out a general structure for such agent models 

in which movement – walking – was articulated as the intersection of geometry 

defining where one might walk with responses to location attractions based on 

resources defining the landscape on which movement takes place. We will retain our 

previous notation: walking takes place on and between cells i  and j  adjacent to one 

another in appropriately defined neighbourhoods ij Ω∈ , which meet the requirement 

that both are empty of any other activity, that is 0=ijρ . For movement in streets and 

buildings, we assume that the matrix ρ  does not vary through simulation time, and 
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thus it defines the ‘container’ within which walkers are able to respond to the resource 

landscape }{ iR  which is also unchanging in time. In fact, our models at this scale are 

not active-walker models at all, but passive-walker models. The landscape never 

changes although walkers do respond to each other which is an additional feature of 

models at this scale. 

 

There are many variants ranging from those in which geometry is all important to 

those where the accessibility of resources takes precedence. Where geometry is 

important, these models deal with very fine scales at the level of corridors and rooms 

and tend to be used to predict panic situations and evacuation events in hazardous 

environments. Very detailed issues involving the physics of acceleration characterise 

these models (Helbing, Molnar, Farkas and Bolay, 2001). At the other extreme where 

geometry is unimportant but patronage of different locations is, as in shopping 

activities for example, the attraction surface is all important and this is reflected in the 

way such models are specified and implemented (Borgers and Timmermans, 1986). In 

our example here, both are important as we will simulate movement in a complex 

building where geometry does dictate where people go but the attraction of different 

exhibits is the prime reason why people move within the building in the first place. 

We will state the model by modifying equation (14) as follows. A walker will move  
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Note that we define ijR∇  as the local gradient in the resource surface in the direction 

from i  to j  which is a maximum but add to this some random noise )(tk
jε . All this 

does is push the walker in the direction of greater resources. In fact obstacle 

avoidance is probably the more frequent occurrence in complex geometries and 

routines to effect this consist of moving walkers in different directions, dependent 

upon the previous history of how each walker has reacted to obstacles, how far they 

are able to see, and so on. The other feature of this model involves interactions 

between different walkers. There are limits on congestion which involve dispersing 

walkers if too many attempt to reach the same location. This is simply a matter of 
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ensuring that ∑k
k
i tw )(  is within a certain threshold and initiating local movement if 

it is not. Panic can set in if congestion occurs across a wider region of cells and 

dispersion is not possible. In contrast, flocking or herding based on walkers 

‘following the crowd’ is considered by assessing how the number of walkers 

∑ ∑Ω∈j k
k
j tw )(  in a wider area Ω  attracts even more walkers. 

 

To illustrate this model, we have applied it to the movement of visitors in the Tate 

Gallery on London’s Millbank. We have good data on the circulation patterns of 550 

visitors observed over a short time period in August, 1995 which we show in Figure 

5(a) (UAS, 1996). At that time, paintings were on display in 49 rooms of the building 

and we simplified the problem to consider only those visitors – some 97% of those 

visiting in fact – who entered the Gallery through the main entrance. We did not deal 

with movement in the Clore Annex which is excluded from Figure 5. What we were 

interested in is the pattern of visitation to the various rooms. To measure this, we 

introduced walkers into the Gallery over a short period of time and then examined the 

pattern of room occupancy in the steady state which emerges when the model is run 

through many time periods. What we assess is the average number of walkers visiting 

each room rΩ  over T  time periods which we compute from TwT

j k
k
j

r
∑ ∑ ∑= Ω∈1

)(
τ

τ . 

Once this quantity stabilises as it clearly does, we are then in a position to assess the 

‘fit’ of the model to the actual pattern of room visitation. 

 

One of the greatest advantages of agent-based models is that as we run the model with 

different numbers of agents, we can derive different kinds of information about the 

problem. In our Tate model, when we launch just one agent, we can consider this as a 

probe used to explore a complex space and in doing so, assess how well it is dealing 

with problems of obstacle avoidance which we illustrate in Figure 5(b). As we run the 

model with more, then many agents, we can also assess the role of randomness on the 

pattern of visitation and the steady state, enabling the ‘right’ level of variation in 

overall spatial behaviour to be defined. In Figure 5(c), we show a typical snapshot of 

agents within the gallery. It is immediately clear that although this does tend to show 

those rooms more frequently patronised as well as the position of different agents at 
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(a) Walker Paths in the Gallery, 
August 1995: 12noon to 12-15pm 

 

 
 

(b) The Progress of a Single 
Agent Exploring the Gallery 

 

 

(c ) A Snapshot of Agents Moving 
in the Gallery 

 

 
 

(d ) The Steady State Pattern: 
Visitors to Cells and Rooms 

 

 
 

 
Figure 5: Movements of Real and Simulated Walkers 

in the Tate Gallery, Millbank, London 
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every point in the space, it is not possible to say anything about the long term 

visitation pattern. In short, this is as good an example as we have where cross-

sectional patterns mean very little in terms of the longer term dynamics. In Figure 

5(d), we show the average patronage in the steady state in each cell, not in each room 

although it is possible to a get a sense of the frequency of room visitation from this. 

The use of this kind of model for ‘what if’ analysis is fairly obvious. In this case, 

closing or opening rooms or changing their configuration for various types of 

exhibition as well as showing how different kinds of attractions in rooms affect 

movement is what the application is all about. 

 

We have but touched the surface of this kind of modelling as the field is currently 

exploding. In terms of using this particular model, our main applications have been to 

simulating shopping patronage in town centres (Haklay, Thurstain-Goodwin, 

O’Sullivan and Schelhorn, 2001), predicting shortest routes in pedestrian networks 

(Batty and Jiang, 2000), and modelling street parades, in particular the Notting Hill 

Carnival where public safety was the main focus (Batty, Desyllas, and Duxbury, 

2003a, 2003b). Models at much finer scales involving panic and evacuation 

possibilities tend to include much more basic physics and there are strong links to CA 

models of traffic movement (Helbing, Farkas and Vicsek, 2000). Useful summaries 

are provided by Schreckenberg and Sharma (2002) and Vicsek (2002). There are also 

active-walker versions of these models where the landscape is altered by the act of 

walking, In particular, Helbing, Schweitzer, Keltsch and Molnar (1997) show how 

paths become established where none exist before as walkers move across a space, 

interacting with the tracks established so far and the paths of other walkers. These 

models are being extended to other kinds of economic system by Schweitzer (2003) 

and there are many applications which mirror animal movements in the biological 

sciences (see Camazine, Deneubourg, Franks, Sneyd, Theraulaz and Bonabeau, 2001). 

In all these cases, the models treat agents quite literally as distinct objects such as 

people but in their extension to larger scales and different temporal dynamics, the idea 

of the agent changes, becoming more abstract and instrumental. It is to these kinds of 

problem that we now turn. 
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Simulation at the Very Largest Scales: The Emergence of Systems of 
Cities 
 

We will evolve a system of cities where walkers are ‘migrants’ and resources are their 

‘jobs’. These are active-walker models where walkers respond to jobs which define an 

economic landscape which in turn directs where migrants search. Our landscapes have 

no geometry, being featureless plains in the grand sense, although it is entirely 

possible that geometric obstacles could be introduced and thus the mechanisms of the 

very small scale (in the previous section) might feature in directing walkers. The 

ultimate model is in fact composed of two such landscapes, the first linking people to 

jobs through physical networks based on origins and destinations, the second being 

defined in terms of ‘resource’ potential which enables new walkers – new migrants to 

the system – to be located to meet an appropriate growth rate. Positive feedback and 

diffusion are reflected in the way both landscapes are formed. It is quite possible to 

specify models where these landscapes are compatible but separate, networks simply 

being the consequence of where jobs and people are located. However in the model 

we will present, these landscapes interact with one another through time, thus adding 

a meta-level coupling, defining not simply ‘active-walker’ models but ‘active-

landscape’ models. In this sense, we consider this to be an extension to the state-of-

the-art in agent-based modelling. 

 

We will first introduce a model with fixed origins for walkers and fixed destinations 

for resources, and this will enable us to predict the paths that walkers take between 

them. We will then show how the capacity of the network channels which emerge can 

be used to define the potential for locating new walkers. In this way, we link our 

network model to a location model, thus tying together walkers and landscapes in 

several different ways, each reflecting various positive feedbacks and diffusive effects 

that drive the system’s evolution. We will index each origin cell for a walker as I  and 

each destination cell for a resource as J  where )0(k
Iw  and )0(JR  are the initial 

distributions of these quantities. In fact in our first model, these will not change in 

time as our focus is entirely on generating the networks that connect these two 

distributions.  

 



 27

The way the model works is by letting walkers move randomly through space, starting 

from their origins in search of resources at the given destinations. When a walker 

discovers a resource, essentially it tells other walkers of its discovery. But most of 

these will not be in the vicinity if the walk is truly random and thus the walker has to 

have some means of communicating this information. The walker does this by 

returning to its origin with the resource – back home to consume the food, if you like 

– and in making this trip, it lays down a path that other walkers can observe. This path 

will mark the straight-line distance from the origin to the destination, subject to any 

noise that interferes with the process. If this process is operated continually, then 

more and more walkers will discover resources, more and more walkers who have not 

discovered resources will detect the paths that lead to these resources, and ultimately 

everybody will be travelling on a route that takes them directly from their origin to a 

resource destination.  

 

This is quite similar to Helbing, Schweitzer, Keltsch, and Molnar’s (1997) model of 

trail formation and it figures widely in the way insect populations such as ants forage 

for food (Camazine, Deneubourg, Franks, Sneyd, Theraulaz, and Bonabeau, 2001). 

The model is sometimes called a swarm algorithm because when all movement is 

random, this is akin to a swarm moving out from some source. It is used to predict 

shortest paths in the Notting Hill model where such paths within the street network 

were unknown (Batty, Desyllas, and Duxbury, 2003a) although we will use it here to 

predict straight-line distances in our featureless plain. In essence if there are enough 

walkers swarming out from known origins )}0({ k
iw  to known destinations )}0({ JR , 

then once such a destination is discovered, the agent in question heads back directly 

from J  to I  impressing a track )1( +tsij  on every ji,  cell pair which defines this 

line. This is added to the existing track, if there is one, as )1()()1( ++=+ tstStS ijijij  

and in this way, the track gains in capacity. Walkers who are still in search of 

resources then react to the gradient formed by this track )(tSij∇  following the route 

from i  to j  which is the maximum of this gradient. Ultimately as tracks or network 

channels emerge, this is a reflection of the relative nearness of the origins to the 

destinations and the numbers of walkers involved. 
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The formal mechanism is little different from what has been stated already but for any 

walker in search of a resource 

 

)}()({max)1()( ttSjwheretwtw k
jijj

k
j

k
i ε+∇←+→  ,  (21) 

 

where we have added the usual term for noise. This procedure works in a trackless 

landscape where movement is entirely dictated by random noise. Eventually all the 

walkers discover all the resources and the network landscape begins to stabilise in its 

morphology. When a track is formed as walkers who have discovered resources head 

back to base, it is usual to simply set )(tsij  to a constant which reflects a simple 

addition to the capacity due to the actions of one agent. A more detailed elaboration of 

the swarming that occurs with and without geometric constraints is presented in Batty, 

Desyllas and Duxbury (2003b).  

 

An application of this network formation is illustrated in Figure 6 where we have 

simulated the tracks formed between 10 fixed walker and 13 resource locations where 

1000 walkers have been randomly assigned to the 10 origins. In Figure 6(a) we show 

the origins and destinations, and then in 6(b) to (d), the distribution of the agents in 

the 201 x 201 cellular space, all paths taken in the landscape, and the tracks formed 

which is a subset of all paths taken: these patterns are illustrated for 50=t , 500=t , 

and 5000=t . The convergence from random walks to nodal structure in the 

landscape is impressive. There is more information, however, contained in this 

simulation. We have assumed that the numbers of agents visiting each resource 

location is unknown even though we may know the amount of resources there. It is 

however possible to compute the numbers of walkers visiting these locations in a 

cumulative manner which would give some indication of their size as 
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As the network stabilises, so will the numbers attracted to each resource destination 

and to express these in terms of the total number of walkers, it is a simple matter to 
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(a) 

The initial conditions for 
simulation are based on 
10 walker origins and 

13resource destinations. 
Walkers search randomly 
moving out from origins 
in search of resources 

which when found, 
provide the rationale  for 
laying direct tracks back 

to destinations 

 
Agent Origins 

 

 
 

Resource Destinations 
 

 

 Agents in search of 
Resources 

 
All Paths Generated 

 

 
Permanent Tracks 

 

(b) 
 

t=50 

   

(c) 
 

t=500 

 

 

 

 

 

 

(d) 
 

t=5000 

 

 

 
 

 

 
Figure 6: Network Formation Between Walker Origins and Resource Destinations 
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scale these totals as 

 

∑
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)(ˆ TRJ   can in fact be regarded as a measure of potential – network potential – of the 

resource node which can then be used to condition an extension of the model to 

incorporate growth in different locations. 

 

Imagine we now wish to grow the number of agents from the initial base. One way of 

locating them would be to form a measure of potential and then to seek locations for 

new walkers where this potential is maximised. We form a generic potential using a 

reaction-diffusion equation  

 

 )()1(ˆ)()(~)1( 2 ttwtPtPtP iiiii εω +++∇++  .  (24) 

 

ω  is a weight on the diffusion term and )1(ˆ +twi  is the location of one new agent in 

each time period, reflecting uniform growth through time whose location is chosen so 

that )1(ˆ +twi  is determined from the cell given by )(max tPjj
. If we start with one 

walker, then what happens is that the first walker is located randomly as the potential 

surface is uniform. Reaction and diffusion ensures that this initial location survives 

and a path dependence then sets in which can only be broken if the noise in the 

system )(tiε  is large enough. In such applications, it is likely that the initial cluster 

will be reinforced. However if we make the connection between generic potential and 

the potential interaction at the node J  as )()(ˆ tPTR JJ = , we set in motion a process 

in which population becomes a function of resource potential which in turn is a 

function of the way populations discover resources through the emergence of their 

networks. To make the structure more elaborate, we might introduce a second 

potential equation in which new resources are located as a function of population, 

developing a structure in which agents and landscapes interact in all possible ways. 
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In fact, we will illustrate the simpler structure in which resource potential is used for 

generic potential in equation (24) rather than the more elaborate model just sketched. 

We will begin with 20 fixed resource locations and 100 walkers randomly located. As 

walkers begin their random walk using equation (21), new walkers are introduced one 

in each time period using equation (24). We show the tracks in space, the potential, 

and the location of the populations at an early stage ( 100=t ) in Figures 7(a) to (c), 

and then at a much later stage ( 2000=t ) in Figures 7(d) to (f). Although there is 

considerable persistence in the spatial structures generated over quite long time 

periods, over thousands of time periods, clusters of activity can change quite radically. 

Much depends on the level of noise introduced into the simulation but the patterns 

produced do mirror real systems of cities in terms of their social physics (Batty, 2001). 

Similar although more simplified models have been developed by Manrubia and 

Zanette (1998), and similar arguments are presented by Schweitzer (2003). 
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Figure 7: The Generation of a Coupled Active Urban Landscape 
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Cities at the Meso Scale: Metropolitan Dynamics and Urban Sprawl 
 

Between the very small and the very large scale lie cities. New urban models at this 

meso scale have developed very rapidly but these have been largely fashioned around 

aggregating agents into cells, building on the traditional idea that land use and related 

urban activities take place in zones. These developments have been driven by GIS, 

treating space as a raster or pixel grid inspired by remotely sensed digital data. 

Moreover, urban growth, particularly in its current manifestation as sprawl, has 

spurred on these developments with a major focus on land consumption and 

conversion. 

 

CA methods provide the workhorse for these new models although very few of these 

are built around strict CA and thus they are better thought of as cell-space (CS) 

automata. Generally cells are small enough to be associated with one and only one 

state, a land use, with several such states being represented, and the model dynamics 

being based on transitions between these land uses. Typically, a land use k  in cell i  

at time t , )(tP k
i , has the potential to spawn a new land use l  in cell j  at time 1+t , 

)1( +tPj
l , where the location depends on how the neighbourhood is configured. In 

short, these CA/CS models enable land uses to grow or decline as a function of space, 

time and type but not as an explicit function of spatial interaction which is their 

Achilles’ heel. 

 

The model we will illustrate here was first developed by Xie (1994) under the 

acronym DUEM (Dynamic Urban Evolutionary Model) and a detailed presentation of 

the form to be presented is given by Batty, Xie and Sun (1999). In essence, the model 

integrates a life cycle for each land use with the possibility that any land use in its 

early life will spawn new land uses in the manner just suggested. Uses are classified 

into initiating, mature, or declining (and then vacant – the null state) with a regular 

transition between each controlled by parameters specific to the average time each 

land use is in each cycle. Initiating land uses have the potential to grow new land uses 

of any type within a field which is wider than the neighbourhood within which they 

are located. Constraints posed by distance and direction first determine the probability 

of new land uses but these are subject to a series of land use type and density 
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constraints within the narrower neighbourhood. Overall regional constraints dictate 

whether or not a cell can be occupied for a particular land use. 

 

The rules are too tricky and extensive to formalise in the simple manner illustrated 

previously in equations (9) to (11) but we can sketch the way they operate. In each 

time period, the probability of converting a land use k  in cell i  to l  in j  is 

computed as )}1(),({)1( +=+ tPtPFtp j
k

i
k
ij

ll  where the functional form is based on a 

series of ‘ thenif →  rules’ of the conventional CA type. For any land use k  in i , the 

probability is first determined by the distance from i  to j  in the field around i . Any 

distortions in direction are added, and then this probability is checked for legitimacy 

against a series of density constraints on the occurrence of different land uses in the 

neighbourhood around i . If the probability of new growth survives, this is tested 

against the presence of some street pattern in the neighbourhood for it is essential that 

any new use be ‘near’ some transport. Streets are land uses too and these are grown in 

a similar but slightly more restrictive manner. In this way, land development and 

transportation are coordinated in physical terms. Once this probability matrix is in its 

final form, a new land use is chosen from the probability )1( +tp k
ij
l  using some 

random mechanism, or if it is decided that a new land use must always be grown, the 

maximum probability determines what this is. There is no symmetric process to 

simulate decline for this is determined by the aging of land uses. 

 

In DUEM, there are currently five land uses – residential (population), manufacturing 

and primary uses, services and commerce, streets, and vacant land. In the current 

software, further uses can be defined although these five are the default, with 

plausible distance, aging, density, and related parameters defining their respective 

transitions. Another problem of CA/CS models is the inability to control the extent to 

which local growth meets global targets although this might also be regarded as a 

predictive ability. In fact at each time cycle, in operational versions which must meet 

some target, this is achieved by a crude scaling. The version we illustrate here enables 

both real and hypothetical examples to be developed and we will begin with the 

hypothetical. We have randomly planted a series of land uses of these five types in a 

350 x 250 pixel space and using the default rules, grown the system through time to 

the point where the entire space is occupied. Some land use seeds never take off 
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because they do not satisfy constraints in their local neighbourhoods and fields but 

most do. As the space fills up, the total quantities of land use grow logistically to 

upper limits but as aging takes place, land uses become vacant and the trajectories of 

growth begin to oscillate. This is indicative of a simple capacitated system but the 

interest here is on the long term balance of land uses. As the rules are specified locally, 

we have no idea in advance as to how these will combine together to produce realistic 

structures and thus the experimentation which we show in Figure 8 is essential for 

tuning the transition probabilities governing the system’s evolution. 

 

 
 

Figure 8: Logistic Growth of a Capacitated Urban System 

 

Our second example simulates growth in a real system, in metro Detroit which 

although declining in total population like many cities in the US rustbelt, is growing 

rapidly on its edges. Detroit and towns in its suburbs like Ann Arbor which we have 

also modelled, represent the equivalent of jobless growth in the economy with rapid 

change taking place in terms of land consumption and abandonment but with total 

activity declining or, at least, not growing much. The software that we have allows us 

to import land use patterns from desktop GIS; we begin with the pattern of 

development in Detroit in 2000 and simulate its growth and spread forward to a long 

term steady state some 200 years hence when the region reaches capacity. We 
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illustrate a typical output in Figure 9 where the size of the space in which the 

simulation takes place is 514 x 613. In fact we can handle up to 9 million pixels/cells 

in the current software and thus we have no difficulties in ensuring that the cell size is 

appropriate to single land uses. 

 

 
 

Figure 9: Residential Development in the Very Long Term in the Detroit Metro Area 

 

There are now upwards of 50 applications of CA/CS models of urban growth with 

sustained effort taking place in some half dozen places, namely at RIKS (White and 

Engelen, 2000), Santa Barbara (Clarke, Hoppen and Gaydos, 1997), Southampton-

Cardiff (Wu and Martin, 2002), Hong Kong (Li and Yeh, 2000), Tel Aviv (Portugali, 

2000), and Brisbane (Ward, Murray, and Phinn, 2000) besides our own. Most but not 

all these models are inspired by applications involving urban sprawl but some such as 

the Tel-Aviv models are geared to segregation and polarisation while there have been 

various attempts to endow such structures with stronger urban economic content. 

These applications are all subject to the limitations that plague this area generally, the 

lack of explicit transportation, poor command over control totals, and rather stylised 

representations of land uses in cells. Nevertheless progress is being made and there 

are many new developments in the pipeline. 
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Conclusions: Next Steps 
 

This long review warrants a short conclusion. Currently the extent to which CA/CS 

and agent-based models of urban systems can be fully implemented for policy 

applications is quite limited. As the scale gets finer and the agents and their cells 

become more like real objects, their operationality increases to the point where 

substantive policy applications are possible. Such is the case with the pedestrian 

models that we began with where the definitions of objects are quite unambiguous in 

comparison to larger scales. At the largest scale, these approaches stretch the field in 

terms of theory and such is their role. But the biggest problem with all these models is 

their lack of parsimony. The richness of the data required makes calibration and 

estimation difficult and predictive accuracy hard to assess in terms of past simulations. 

Thus many of these models are demonstrated in pedagogic fashion to show 

emergence and path dependence in terms of their processes. Use in forecasting is 

largely restricted to very long term futures where their role in scenario testing is clear. 

 

In scientific terms, the biggest hurdle to surmount involves the role of transportation 

but in the agent-based modelling strategies we illustrated for the very small and very 

large scales, explicit interaction can be simulated. Much more work needs to be done 

in this area while more routine extensions need to be implemented with respect to 

cellular representation. It is interesting that apart from a few notable exceptions 

(Sanders, Pumain, Mathian, Guerin-Pace and Bura, 1997), hardly any agent-based 

model have yet been developed at the meso scale although there is active 

development for more environmentally-based land cover systems (Parker, Manson, 

Janssen, Hoffman, and Deadman, 2003). Applications will doubtless increase but at 

the end of this review, we are still left with the perennial question which dominates all 

discussion of science in public affairs: to what extent can formal models be built 

which will provide robust enough forecasts for real policy analysis? These new 

approaches only provide a part of this answer. Although promising in that new forms 

of representation clearly get to grips somewhat more effectively with the way 

contemporary problems are articulated, this perspective raises a new set of questions 

which limit their applicability in rather different ways from traditional urban models. 

This is a recurrent feature of this field which suggests that not one but many different 

approaches will always be required. 
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