7 research outputs found

    Design of the goat/sheep holding cage slaughtering system (cage for animal slaughter): innovations and prospect

    Get PDF
    The main objective of inventing the goat/sheep holding cage-slaughtering mechanism or cage for animal slaughter was to seek solutions for the slaughtering mechanism from the traditional operation with four to five persons manning it to a one-person operation. The development of this innovation is for Chak Chee Bor Enterprise. This mechanism consists of a goat/sheep holding cage of 1.23m (height) X 1.60m (length) X 0.97m (width). The overall purpose of using this goat/sheep holding cage is to keep the goat/sheep calm, whilst minimizing the danger of unnecessary injury to both the animal and worker. The goat/sheep holding cage-slaughtering mechanism consists of a head latch (neck yoke or head gate) to hold the animal‘s neck and head, and two wooden boards to hold or gently clamp the body of the animal, with the purpose to calm the animal and ensure that it does not move. The round-shaped iron pieces at the end of both sides of the holding cage enable the mechanism to be swung aside or tilted at a 45o angle before the final stage of the ritual. This holding cage-slaughtering mechanism that comes with an adjustable head latch is able to accommodate different sizes of animals

    Semantic correlation of behavior for the interoperability of heterogeneous simulations

    Get PDF
    A desirable goal of military simulation training is to provide large scale or joint exercises to train personnel at higher echelons. To help meet this goal, many of the lower echelon combatants must consist of computer generated forces with some of these echelons composed of units from different simulations. The object of the research described is to correlate the behaviors of entities in different simulations so that they can interoperate with one another to support simulation training. Specific source behaviors can be translated to a form in terms of general behaviors which can then be correlated to any desired specific destination simulation behavior without prior knowledge of the pairing. The correlation, however, does not result in 100% effectiveness because most simulations have different semantics and were designed for different training needs. An ontology of general behaviors and behavior parameters, a database of source behaviors written in terms of these general behaviors with a database of destination behaviors. This comparison is based upon the similarity of sub-behaviors and the behavior parameters. Source behaviors/parameters may be deemed similar based upon their sub-behaviors or sub-parameters and their relationship (more specific or more general) to destination behaviors/parameters. As an additional constraint for correlation, a conversion path from all required destination parameters to a source parameter must be found in order for the behavior to be correlated and thus executed. The length of this conversion path often determines the similarity for behavior parameters, both source and destination. This research has shown, through a set of experiments, that heuristic metrics, in conjunction with a corresponding behavior and parameter ontology, are sufficient for the correlation of heterogeneous simulation behavior. These metrics successfully correlated known pairings provided by experts and provided reasonable correlations for behaviors that have no corresponding destination behavior. For different simulations, these metrics serve as a foundation for more complex methods of behavior correlation

    Spiral Growth Manufacturing (SGM): A Continuous Additive Manufacturing Technology for Powder Processing

    Get PDF
    Layered manufacturing (LM) technologies are a class of additive manufacturing processes which create three dimensional geometries directly from CAD data sequentially layer by layer. This group of technologies can process a variety of metallic, polymer and ceramic materials, as liquids, powders, or solid sheets or filaments. The material can be processed using a laser, such as melting a powder or curing a polymer resin or consolidated using a binder deposited from a print head. The build methodology used in all LM is fundamentally a start-stop process since the deposition of material and processing of each layer occurs ~equentially. Hence, the build rate can be slow (2 - 6 Layers per minute); consequently, LM technologies have largely found application as prototyping tools to speed up product development. In order for these technologies to be adopted as rapid manufacturing (RM) methods to directly manufacture complex components which cannot be manufactured by other means these speed limitations need to be addressed. This Thesis describes a new high speed RM process, Spiral Growth Manufacturing (SGM), whereby 3D parts are built by simultaneously depositing, levelling and selectively consolidating thin powder layers onto a rotating build platform. This build configuration has several advantages when compared to conventional layered manufacturing systems: firstly, the process is continuous with no layer preparation overheads; secondly, the material deposition and solidification process can be performed simultaneously by the addition of further 'build stations' radially distributed about the circumference of the machine. The work presented in this thesis focused on the design, development and testing ofthe Spiral Growth Manufacturing process. Two machines were developed; one used a bank of stationary inkjet heads to print material, either as a binder into a powder layer or as hard material from mixing two printed ink solutions and the other machine used a 90 W, flash lamp pumped Nd:YAG laser to process metal powders by localised melting. The main objective ofthe testing phase was to produce simple 3D objects from solidified layers by: a) ink jet printing a binding agent into the deposited plaster powder layers; and b) ink jet printing reactive materials to form plaster directly. The second machine was developed to exploit the considerable knowledge of Selective Laser Melting (SLM) at Liverpool, with the modification of a research SLM machine to SGM operation

    Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen : 04. bis 06.07. 2012, Bauhaus-Universität Weimar

    Get PDF
    The 19th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering will be held at the Bauhaus University Weimar from 4th till 6th July 2012. Architects, computer scientists, mathematicians, and engineers from all over the world will meet in Weimar for an interdisciplinary exchange of experiences, to report on their results in research, development and practice and to discuss. The conference covers a broad range of research areas: numerical analysis, function theoretic methods, partial differential equations, continuum mechanics, engineering applications, coupled problems, computer sciences, and related topics. Several plenary lectures in aforementioned areas will take place during the conference. We invite architects, engineers, designers, computer scientists, mathematicians, planners, project managers, and software developers from business, science and research to participate in the conference

    Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen : 04. bis 06.07. 2012, Bauhaus-Universität Weimar

    Get PDF
    The 19th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering will be held at the Bauhaus University Weimar from 4th till 6th July 2012. Architects, computer scientists, mathematicians, and engineers from all over the world will meet in Weimar for an interdisciplinary exchange of experiences, to report on their results in research, development and practice and to discuss. The conference covers a broad range of research areas: numerical analysis, function theoretic methods, partial differential equations, continuum mechanics, engineering applications, coupled problems, computer sciences, and related topics. Several plenary lectures in aforementioned areas will take place during the conference. We invite architects, engineers, designers, computer scientists, mathematicians, planners, project managers, and software developers from business, science and research to participate in the conference

    Publications of Goddard Space Flight Center, 1964. Volume I - Space sciences

    Get PDF
    This publication is a collection of articles, papers, talks, and reports generated by the scientific and engineering staff of Goddard Space Flight Center in the year 1964. Many of these articles were originally published in scientific or engineering Journals or as official NASA technical publications, while other are documents of a more informal nature. All are reprinted here as nearly verbatim as typography and format will permit. These articles are grouped into broad subject categories, but no detailed subdivision has been made. Within each category, the articles are arranged alphabetically by author. An overall author index is given in the back of the volume. The years 1963, 1964, and 1965 are being published as whole-year issues, and the resulting size dictates the use of two volumes; the first volume is titled Space Sciences, and the second Space Technology. It is anticipated, however, that future issues will be quarterly single volumes

    an interdisciplinary research project to study the Dead Sea Transform

    Get PDF
    repor
    corecore