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Rolf Sören Kraußhar
Some Harmonic analysis on the Klein bottle in Rn

181

Wilfried Krätzig
Solar updraft power technology from structural engineering to multi-physics
simulation

191

Artem Kulchytskyy; Ye Horokhov; Viktor Gubanov; Alexander Go-
likov
The influence of local dimples on the function of bearing shell cylindrical high-
rise structures

198

Tom Lahmer; Sharam Ghorashi
Extended isogeometric analysis based crack identification applying multilevel
regularizing methods

208

Julian Lawrynowicz; Osamu Suzuki
Binary and ternary Clifford Analysis on Nonion Algebra and su(3)

217

Thu Hoai Le; Wolfgang Sprößig; Joao Morais
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Abstract. Long-span cable supported bridges are prone to aerodynamic instabilities caused by
wind and this phenomenon is usually a major design criterion. If the wind speed exceeds the
critical flutter speed of the bridge, this constitutes an Ultimate Limit State. The prediction of
the flutter boundary therefore requires accurate and robust models. This paper aims at studying
various combinations of models to predict the flutter phenomenon.

Since flutter is a coupling of aerodynamic forcing with a structural dynamics problem, differ-
ent types and classes of models can be combined to study the interaction. Here, both numerical
approaches and analytical models are utilised and coupled in different ways to assess the pre-
diction quality of the hybrid model. Models for aerodynamic forces employed are the analytical
Theodorsen expressions for the motion-induced aerodynamic forces of a flat plate and Scanlan
derivatives as a Meta model. Further, Computational Fluid Dynamics (CFD) simulations using
the Vortex Particle Method (VPM) were used to cover numerical models.

The structural representations were dimensionally reduced to two degree of freedom sec-
tion models calibrated from global models as well as a fully three-dimensional Finite Element
(FE) model. A two degree of freedom system was analysed analytically as well as numerically.
Generally, all models were able to predict the flutter phenomenon and relatively close agree-
ment was found for the particular bridge. In conclusion, the model choice for a given practical
analysis scenario will be discussed in the context of the analysis findings.
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1 INTRODUCTION

Long-span bridges are highly flexible, light weight and have low structural damping. They
can be subjected to large dynamic motion due to wind actions. The assessment of aerodynamic
behaviour, therefore, plays very important role in the design of long-span bridges. For this
reason, flutter is also viewed as an essential aeroelastic phenomenon to be studied for these
structures. The aeroelastic stability of long-span bridges against flutter is checked by calculating
a wind speed at which flutter occurs which is known as the flutter limit. The required aeroelastic
properties of the bridge deck section are usually determined in wind tunnel tests.

Scanlan introduced mathematical treatment of flutter in 1960s whereas for the last couple of
decades, numerical methods are becoming more popular due to the increasing use of computers
in the field of Structural Engineering. In this paper, the study is made on the aerodynamic
phenomena, the methods available for flutter analysis for bridges, and to apply the analytical
and numerical based analysis on the Lillebælt suspension bridge to calculate ultimately its flutter
limit.

2 METHODS OF AERODYNAMIC ANALYSIS

Analytical approaches play very important role in Wind Engineering whereas numerical
methods are gaining more importance. All methods apply simplifications to a certain extent
such as assuming two-dimensionality of the flow or the shedding process like the wake oscilla-
tor model for the case of vortex induced vibration [?]. There are three main types of analysis to
deal with the aerodynamic problems:

• Experimental methods
• Analytical methods
• Numerical methods
The last two methods have been used in this study. Analytical solution based on potential

flow theory for the motion induced forces on a flat plate exerting sinusoidal heave and pitch
motion was given by Theodorsen [?]. In most cases, the empirical models are available which
are based on the results of experimental studies. These models are mostly for 2D situations
but in reality the 3D effects are present. Also in analytical models, the basic physical causes
are attended but the Fluid-structure Interaction is not addressed. The experimental methods
are considered relatively accurate compared to the other methods. Wind tunnel testing and full
scale models are the examples of experimental methods.

The wind tunnel testing is very expensive for parametric studies but the numerical approach
makes it relatively cheaper. With the advancement in the computer modelling and the processing
power and by using the principles of CFD, it is now possible to study wind effects on structures
in relatively less time. These methods are also efficient, repeatable and economical. Numerical
simulations can be used in place of wind tunnel investigation for the fundamental studies. The
accuracy of results from these methods not only depends on the quality of the solver but also on
the modelling itself. Therefore, the numerical method must be reliable and robust to be used in
place of wind tunnel tests.
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3 REFERENCE OBJECT

The Lillebælt suspension bridge, Denmark, has been used as a reference object to employ
the various model combinations. The data about the bridge is available in [?] and the structural
parameters used for this reference object are given in Table ??. For simplicity in the calculation,
the railing and other attachments on the deck are not considered in this study.

FUNENJUTLAND

240m 600m 240m

Figure 1: Elevation of the Lillebælt suspension bridge, Denmark used as a reference object in this study.
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Figure 2: Simplified Lillebælt suspension bridge deck section geometry used in this study (Dimensions: [m]).

Figure 3: Physical model of the Lillebælt suspension bridge.

Table 1: Basic data and structural properties of the Lillebælt suspension bridge section used in this study.

Section width Mass Inertial mass Bending
Frequency

Torsional
Frequency

Damping ratio

B [m] m [kg/m] I [kgm2/m] fh [Hz] fα [Hz] ξ [-]
33 11667 1017778 0.156 0.500 0.01
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4 COUPLING OF MODELS

Flutter is a coupling of aerodynamic forcing with a structural dynamics problem. Therefore,
different types and classes of models can be combined to study the interaction. In this study,
both numerical approaches and analytical models are utilised and coupled in different ways to
assess the prediction quality of the hybrid model.

The structural representations were dimensionally reduced to two degree of freedom section
models calibrated from global models as well as a fully three-dimensional Finite Element (FE)
model. A two degree of freedom system was analysed analytically as well as numerically. The
following models were thus derived and analysed: Fully analytical, CFD Derivatives-Analytical
and Numerical 2D Structural, CFD Derivatives-Numerical 3D Structural, Fully coupled CFD
Numerical 2D Structural. This has allowed to investigate a very broad range of model combi-
nations and to study their merits and drawbacks.

Table 2: Model coupling for the flutter analysis used in this study.

Flat Plate Lillebӕlt Section

2D Ο • • •
VPM (CFD) 2D ΟΟ

2D • •
3D • •

Ο Simple/ Regular model • Meta model

Numerical

Numerical
FE Software

Aerodynamic

Structural

Analytical

Analytical

Flat Plate

-

-

-

4.1 Analytical Approach (Theodorsen Theory)

Theodorsen investigated the flutter phenomenon for aircraft wings and gave a very popular
approach for the flutter analysis. This approach is independent of the shape of the body but
on the other hand it neglects the effect originating from the simplification to the flat plate.
From the basic principle of potential flow theory, Theodorsen showed that for thin airfoils in
incompressible flow, the expressions for lift FL and moment FM are linear in displacement h
and rotation α and their first and second derivatives [?].

F

FB

M

L

hkα
k

U∞ h

α

Figure 4: Definition of degrees of freedom (heave h and pitch α) for flutter analysis.

where FL and FM are the lift and moment, kh and kα are the vertical and rotational spring
stiffness and h and α are the vertical displacement and rotation respectively. U∞ is the oncoming
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wind speed. The equations of motion can be written as

FL = mḧ+ 2mξhωhḣ+mω2
hh (1)

FM = Iα̈ + 2Iξαωαα̇ + Iω2
αα (2)

where ωh and ωα are the natural circular frequencies in heave and pitch degree of freedom
respectively. The theoretical expressions on a flat plate airfoil for sinusoidal oscillating lift FL
and moment FM are

FL = −ρb2U∞πα̇− ρb2πḧ− 2πρCU2
∞bα− 2πρCU∞bḣ− 2πρCU∞b

21

2
α̇ (3)

FM = −ρb2π1

2
U∞bα̇− ρb4π

1

8
α̈ + 2ρU∞b

2π
1

2
CU∞α + 2ρU∞b

2πCḣ+ 2ρ
1

2
U∞b

3πCα̇ (4)

where ρ is the air density, C(k) is the Theodorsens circulation function and b = B/2. The
system of differential equations (1), (2), (3) and (4) can be written as




ḣ

ḧ
α̇
α̈


 =




0 1 0 0
a21 a22 a23 a24
0 0 0 1
a41 a42 a43 a44







h

ḣ
α
α̇


 (5)

This is of the form

Ẋ = AX (6)

and assuming the response X is of the form

X = Reλt (7)

where R is real. This simplifies to Eigenvalue problem as follows:

[A− λI]Reλt = 0 (8)

The solution for h(t) and α(t) is of an exponential form. The Eigenvalues of λi of the matrix
A characterize the response of the system as follows:

• Positive real part: Increasing response
• Negative real part: Decaying response
• Imaginary part: Oscillating response
The system will become unstable when an Eigenvalue has a positive real part. When the

imaginary part goes towards zero, the oscillatory part vanishes and the phenomenon of static
divergence is observed. In this situation, there will be pure heave or pitch motion which can
be interpreted as loss of vertical stiffness. The system is solved successively for increasing
U∞ until at least one Eigenvalue becomes positive real. The code for solving the Theodorsens
equations was written in Matlab. Using the structural parameters for the Lillebælt bridge (see
Table ??), the flutter limit was found 93.8m/s.
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4.2 Meta Model (Scanlan Approach)

Scanlan proposed a set of expressions for the aerodynamic forces on a bridge cross section. It
assumes that the self-excited lift FL and moment FM for a bluff body may be treated as linear in
displacement h and rotation α and their first derivatives [?]. Below is commonly used linearised
form.

FL =
1

2
ρU2
∞B

[
KH∗1

ḣ

U∞
+KH∗2

Bα̇

U∞
+K2H∗3α +K2H∗4

h

B

]
(9)

FM =
1

2
ρU2
∞B

2

[
KA∗1

ḣ

U∞
+KA∗2

Bα̇

U∞
+K2A∗3α +K2A∗4

h

B

]
(10)

K =
Bω

U∞
(11)

where the non-dimensional coefficients H∗i and A∗i are known as aerodynamic or flutter
derivatives. The frequency of the bridge oscillation under aerodynamic forcing is known as
reduced frequency. As the aerodynamic derivatives are the function of this frequency therefore
they can only be measured when the bridge is in the oscillatory state. Normally these are
measured in special wind tunnel tests.
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Figure 5: Eigenvalue paths for increasing wind speed U∞.

The formulation to the Eigenvalue problem in this case is similar as described in Section ??.
The flutter limit is determined when the real part of at least one Eigenvalue becomes positive as
shown in Figure ??. The flutter limit was determined as 93.8m/s using the structural parameters
of the Lillebælt bridge given in Table ??.

4.3 Forced Vibration Simulation

Forced vibration simulations are used to determine motion-induced forces. The resulting lift
and moment time histories are used to compute the aerodynamic derivatives. A computer code,
VXFlow, based on VPM has been used here to compute these derivatives. Forced vibration
simulations were performed on the Lillebælt section and the flat plate (aspect ratio 1:100) in
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sinusoidal heave and pitch motion over a range of reduced frequencies. The reduced frequency
is controlled by changing the period of heave and pitch forcing motion.

vr =
2πU∞
bω

(12)

where vr is reduced frequency. These simulations are performed in heave and pitch motion
separately and the aerodynamic derivatives are computed from the resulting force time histories.
The simulation gives time histories for F̄ L and F̄M corresponding to known displacement traces
h. Equations (9) and (10) (with α=0) thus constitutes a system of equations as

F̄ L = CL
hH

∗
h (13)

F̄M = CM
h A∗h (14)

where
CL
h =

1

2
ρU2
∞BK

[
ḣ
U∞

K h
B

]
(15)

and
CM
h = BCL

h (16)

H∗
h =

[
H∗1
H∗4

]
,A∗h =

[
A∗1
A∗4

]
(17)

System (13) and (14) can be solved in the least-squares sense by left-multiplying with the C
matrix:

CLT

h F̄ L = CLT

h CL
hH

∗
h (18)

CMT

h F̄M = CMT

h CM
h A∗h (19)

This gives two sets of derivatives in lease-square sense. The procedure to calculate these aero-
dynamic derivatives can be found in [?] and is summarized as follows:

• perform forced vibration tests in either heave or pitch motion
• calculate a best-fit harmonic of the same forcing frequency to obtain lift coefficient and

phase shift
• calculate derivatives
The resulting aerodynamic derivatives can be used to calculate flutter limit of the bridge.

The forced vibration simulation was performed for the Lillebælt section shown in Figure ??
and the flat plate of the same width (with aspect ratio of 100). For both these cases, structural
parameters given in Table ?? were used. The flutter limit for the Lillebælt section was calculated
as 94.2m/s and for flat plate as 88.7m/s.

4.4 Fluid-structure Interaction Simulation

VXFlow has been used here for the coupled analysis of the vertical motion and rotation
of a two-degree of freedom spring supported section model. The coupling of fluid dynamics
solution and the structural dynamics is done at every time step. The pressure on the surface of
the body is integrated to get the resultant force in terms of lift and twisting moment. These are
associated with the two degrees of freedom of the structural system. The equations of motion
for the system are solved by time marching structural dynamics solution. A stiffness matrix is

7
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Figure 6: Aerodynamic derivatives (H∗i and A∗i where i =1, 2, 3, 4) w.r.t. the reduced speed (vr): flat plate by
Theodorsen theory (——), interpolated values from forced vibration analysis on the Lillebælt section (—•—) and
the flat plate (- -◦- -).
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then created and solution is performed. Rayleigh damping is used to model structural damping,
for which the damping matrix is proportional to the combination of mass and stiffness matrices.

Structural parameters, given in Table ?? for the Lillebælt suspension bridge, were used for
the bridge section (see Figure ??) and the flat plate of aspect ratio 100. The simulations were
performed at various wind speed to identify the flutter instability. It was observed that just
before the flutter limit, the section goes into the loss of vertical stiffness stage having extreme
heave condition. At 95m/s the bridge section becomes unstable after a few hundred time steps.
The flutter limit for the plate section was found as 98m/s.

0.0 50 100 150 200 250 300 350
-6

-4

-2

0

2

4

6

tU/B [-]

Ve
rti

ca
l d

is
pl

ac
em

en
t [

m
]

Figure 7: Lillebælt section in Fluid-structure Interaction, displacement time histories at U∞= 95m/s: leading edge
(——), trailing edge (——).

Figure 8: Instantaneous vortex pattern with streak lines for the Lillebælt section (Top) and the flat plate (Bottom).

4.5 Finite Element Model

The section of the Lillebælt suspension bridge deck was modelled as a two degree of freedom
beam element of unit length in a Finite Element software. The system was supported on springs
with vertical and rotational degrees of freedom. The reduced model was calibrated to represent
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the first bending and first torsional mode of the full bridge model. The dimensional reduction to
a two-degree of freedom system is a simplification but on the other hand it neglects the effects
coming from the higher modes. The aerodynamic derivatives obtained through forced vibration
analysis (see Section ??), for the Lillebælt section and the flat plate, were used to calculate the
aerodynamic forces. Dynamic wind history analysis was performed on the system. The flutter
limit both for the Lillebælt section and the flat plate was found to be 58.5m/s.

A 3D Finite Element model of the Lillebælt suspension bridge was made and calibrated to
represent the structural properties of the bridge given in Table ??. In the calibration process
some discrepancies were found and the target frequencies were not achieved exactly. The mode
shapes of first bending and first torsional mode with their achieved frequencies are shown in
Figure ??. The approach from the two degree of freedom model was implemented to the full
3D model of the bridge and the resulting flutter limits were calculated. The effect of higher
modes was observed in the deformed model of the bridge at flutter limit. The flutter limit
calculated was 49.0m/s both for the Lillebælt section and the flat plate.

Figure 9: View of full 3D Finite Element bridge model.
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Figure 10: First bending mode (——) (achieved frequency = 0.151 Hz) and first torsional mode (——) (achieved
frequency = 0.502 Hz) of full 3D Finite Element bridge model.
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5 CONCLUSIONS

The flutter phenomenon was studied employing various combinations of analytical and nu-
merical prediction models. Lillebælt suspension bridge was used as a study object. Generally,
all models were able to predict the flutter phenomenon and relatively close agreement was found
for the particular bridge. Fully coupled CFD analyses have the advantage that no prior knowl-
edge as to the phenomenon needs to be inserted into the model. Three-dimensional structural
representations are superior over dimensionally reduced models in that no prior knowledge as
to the modes participating in the flutter coupling is required. Fully analytical models are more
direct models and allow a better insight into the force coupling. Simplified aerodynamic models
need to be critically assessed with respect to their ability to predict the aerodynamic behaviour
of the real cross section. The summary of the results is preseneted in Table ??.

Table 3: Summary of flutter limits from different model coupling (see Table ??).

Flat Plate Lillebӕlt Section

2D 93.8 93.8 88.7 94.2
VPM (CFD) 2D 98.0 95.0

2D 58.5 58.5
3D 49.0 49.0

Structural

Aerodynamic Numerical

Analytical

Analytical

Flat Plate

-

-

-
Numerical

FE Software
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Abstract. In this paper, wavelet energy damage indicator is used in response surface method-
ology to identify the damage in simulated filler beam railway bridge. The approximate model
is addressed to include the operational and surrounding condition in the assessment. The pro-
cedure is split into two stages, the training and detecting phase. During training phase, a
so-called response surface is built from training data using polynomial regression and radial
basis function approximation approaches. The response surface is used to detect the damage in
structure during detection phase. The results show that the response surface model is able to
detect moderate damage in one of bridge supports while the temperatures and train velocities
are varied.
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1 INTRODUCTION

Damage in civil engineering structures can be defined by changes of structural properties
that lead to degradation of performance. A robust approach to identify structural damages
is by analyzing the vibration responses. The degradation of material or structural properties
lead to change in dynamics properties. However, changes in dynamics properties could be
the outcomes of environmental condition changes. The structural health monitoring (SHM)
systems will not be accepted in practical applications unless robust techniques are developed to
explicitly account for environmental and operational conditions, [7].

Response surface methodology (RSM) approach seems able to take into account all damaged
and environmental or operational factors that has significant effects on dynamics response of
structure. However, the capability of meta models to identify damage is also depend on damage
indicator. Low sensitivity damage indicator causes identification procedures more difficult. The
difference between damage and non-damage response is too small and can be hidden by noise,
model error, or minor parameters that are not included in the models.

Wavelet transform is well known powerful tool in signal analysis. Wavelet reveals hidden
information in signals. Instead of wavelet package and wavelet entropy that have been suggested
by many researcher e.g. [6, 8, 9], total wavelet energy can be an alternative indicators. The
alteration of dynamics response signals due to damage is indicated by the change of energy
distribution over frequency sub bands.

In this paper, the response surface methodology was applied to numerical simulated train
passage over a filler beam railway bridge. The dynamic response was computed using Newmark
method while the damping matrix was constructed using Rayleigh method. The temperature and
train speed were chosen as the environmental and operational variables respectively. Wavelet
energy was employed as damage indicator while the polynomial regression model and radial
basis function approximation were used to construct the surrogate model.

2 WAVELET DAMAGE INDICATOR

2.1 Wavelet Analysis

The history of wavelet transform was started in the 1909 when Alfred Haar introduced rect-
angular basis function. However the term wavelet was firstly used by Jean Morlet to describe
the resulting waveforms of varying window width in short time fourier transform, [1]. The
theoretical formulation of wavelet transform was first proposed by Jean Morlet and Alex Gross-
mann, [15]. The important breakthrough of wavelet analysis emerged in late 1990s. Ingrid
Daubechies introduced a so-called Daubechies wavelet bases and Stephane Mallat proposed a
general method to construct wavelet bases. The theory of wavelet transform described in many
literatures e.g. [10, 12]. A short summary of wavelet analysis is presented here.

The wavelet transform of a function f(t) is written as:

W f
ψ (a, b) = |a|−1/2

∞∫

−∞

f(t)ψ

(
t− b
a

)
dt (1)

The function ψ is often called ”mother wavelet” where its value can be real or complex. In
this application, ψ is assumed to be real, otherwise the complex conjugate should be introduced
to the equation. In the equation (1), it is obvious that the function f(t) is multiplied by a function
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of two variables (a,b) which is shown in equation (2).

ψa,b(t) = |a|−1/2 ψ
(
t− b
a

)
(2)

The term wavelets is used to the function ψa,b, which is actually the dilated (stretched or
compressed) and translated versions of mother wavelet ψ. a dan b are called scaling parameter
and translation parameter respectively. Several types of wavelet families have been known
such as Haar, Mexican Hat, Morlet, Meyer, Daubechies etc. Figure (1) shows mother wavelet
examples.
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Figure 1: mother wavelet

For discrete wavelet transform, the parameter a and b in equation (2) become discrete and
are chosen to be a constant, where am = am0 and bm,n = nb0a

m
0 . m,n ∈ Z and a0 > 1, b0 > 0,

[12]. By substituting these constants, the equation (2) becomes:

ψm,n = a
−m

2
0 ψ

(
a−m0 t− nb0

)
(3)

A well-known group of discrete wavelet is given by dyadic wavelet. They are formed by
setting a0 = 2 and b0 = 1. By considering these values, the equation (3) can be written as:

ψm,n = 2−
m
2 ψ
(
2−mt− n

)
(4)

The numerical implementation of discrete wavelet transform is done by means of the fast
wavelet transform (FWT) which is a set of algorithm developed by [14]. The algorithm is based
on multiresolution analysis. A short description of wavelet transform is presented here.

A signal f in the subspace V−1 in L2 (R) is separated into a high and low frequency part.
The low frequency part is the projection P0f onto a lower space V0. The complement is the
projection Q0f into W0.

f = P0f +Q0f, V−1 = V0 ⊕W0 (5)

Therefore a signal f in L2 (R) can be described by the following decomposition:

f = PMf +
M∑

k=m+1

Qkf, Vm = VM ⊕
M⊕

k=m+1

Wk (6)

which is graphically shown in figure (2).
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L2 (R) . . .→ V−1 −→ V0 −→ V1 · · · → {0}
A
A
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Q0W0

A
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Q1W1

P0 P1

Figure 2: Scheme of a multi-scale analysis

The multi-scale analysis in the context of orthogonal wavelet transformation assumes the
existence of scaling function ϕ.

ϕm,n = 2−
m
2 ϕ
(
2−mt− n

)
(7)

The scaling function ϕ satisfies the scaling condition;

ϕ(t) =
√

2
∑

k∈Z
akϕ(2t− k), ak ∈ R (8)

Based on such a scaling function ϕ a mother wavelet ψ can be written:

ψ(t) =
√

2
∑

k∈Z
bkϕ(2t− k), bk ∈ R (9)

ϕ and ψ hold properties,
∫ ∞

−∞
ϕ(t)dt = 1,

∫ ∞

−∞
ψ(t)dt = 0 (10)

ak and bk follow the conditions,
∑

k∈Z
ak =

√
2,

∑

k∈Z
bk = 0 (11)

By using fast wavelet transform, a signal f ∈ V0 ⊂ L2 (R) defined by equations(5) and (6)
can be decomposed as:

f(t) =
∑

k∈Z
CM,kϕM,k +

M∑

m=1

∑

k∈Z
Dm,kψm,k (12)

Where Cm,n and Cm,n are approximation coefficients and detail coefficients respectively,
which are calculated using the following equations:

Cm,n =
∑

k∈Z
ak−2nCm−1,k, Dm,n =

∑

k∈Z
bk−2nCm−1,k (13)

The algorithm fast wavelet transform based on multi resolution analysis that proposed by
[14] has been implemented in SLang software Package, [3] and was used in this study.
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2.2 Wavelet Energy Damage Indicator

In signal processing, the energy of a given signal x(t) is defined as :

E =

∫

t

|x(t)|2 dt (14)

Wavelet also has orthonormal basis, therefore the concept of energy in signal processing can
also be applied in wavelet. Based on equation (12), the total energy of the decomposition signal
up to level M can be calculated from equation (15).

Π0 =
∑

k

2MC2
M,k +

M∑

m=1

∑

k

2mD2
m,k (15)

C and D indicate the approximation and details of respective wavelet decomposition. The
factor 2m guarantees the energy conservation at each level. Consequently, the absolute wavelet
energy of the approximation and detail of a level m is given by equation (16) and (17) respec-
tively.

ΠC,m = 2m
∑

k

C2
m,k (16)

ΠD,m = 2m
∑

k

D2
m,k (17)

3 RESPONSE SURFACE METHODOLOGY

3.1 Overview

Response Surface Methodology (RSM) is a collection of statistical and mathematical tech-
niques useful for developing, improving, and optimizing processes, [4]. The RSM emerged
in 1951 when G. E. P. Box and K. B. Wilson proposed empirical model to study the relation-
ship between some variables in chemical experimental study, [16]. Three decades later, this
approach was also applied in numerical or computer experiments. RSM has been applied to
optimize the high-speed mass transport, [11]. In [5] and [13], the RSM approach was used for
reliability analysis. This paper presents the application of RSM in structural health monitoring
(SHM) systems.

3.2 Damage Detection Response Surface

In damage identification, the RSM is used to take into account all variables that contribute
the variation of structural response including the operational and environmental conditions.
The procedure is split into two stages, the Learning Phase and the Detection Phase which are
elaborated in the following subsections.

3.2.1 Learning Phase

The learning phase is commenced by a basic assumption that no damage is present in the
structure. The vibration response of structure is measured including its corresponding opera-
tional and surrounding condition. The measured or simulated response signal is further pro-
cessed to obtain the damage indicator values. The indicator values will be used to train the
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approximation model. Therefore, this phase is also known as Training Phase. The model is
called Reference Surface, the benchmark of healthy structure responses in various environmen-
tal and operational conditions. Figure (3) illustrates the approximation models and its observa-
tion points.
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Figure 3: Training phase: the reference surface is built from observation points using scattered data approximation

In numerical simulation, the training points can be set by using design of experiments (DoE)
such as full factorial design, fractional factorial design or latin hypercube sampling. Both sta-
tioner and non-stationer data can be generated. However, in real application the stationer space
filling is generally not possible. The data spread irregularly because most of the variation of
environmental or operational variables are uncontrollable. Furthermore, it also possible to have
support points that are concentrated in certain regions. In this case, the effect of influence radius
in approximation with weighting function should be carefully observed. Poor approximation
can be achieved in the neighboring area of dense support points.

For model selection and validation, the observation data is split into two parts, the training
and testing data sets. The first is used to fit the model while the second is used to compute
the model error. It is importance to assess the model quality in non-sampled region. The
simple way to assess the quality of approximation model is by using coefficient determination
(R2). Better model has higher R2. Another approach that is also very popular is called cross
validation. Furthermore, the sensitivity analysis is employed to improve the surrogate model.
Some variables possibly do not have significant impact on model response. Therefore, omitting
these variables is useful to reduce model complexity and improve model quality.

Several methods are available to construct reference surface from scattered points. Polyno-
mial regression is very famous because of its simplicity. However, high order polynomials are
required to approximate a surface with many peaks and troughs. Combination of many vari-
ables and higher order increase the complexity in model selection. Furthermore, high order
polynomial order can lead to over fitting in noise data. More local representative is obtained
by weighting method such as radial basis function or moving least square. Artificial neural net-
works can also be an option in model approximation. Polynomial and radial basis function is
applied in this study. More detail elaboration about these method is described in section (3.3).
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3.2.2 Detection Phase

The detection phase is started after the reference surface is built. The damage identification
is done by comparing damage indicator value from actual measurement to the reference surface.
Significant deviation from reference indicates the presence of damage. Figure (4) illustrates the
responses of damage structures and it respective benchmark.

The capability of the reference surface to detect damages is depend on the sensitivity of
damage indicator. Less sensitivity indicator are not able to support the response surface model to
identify the damage. The reason is because the distinction between damaged and non-damaged
response is too narrow. In real application this small discrepancy is potentially obscured by
noise of measurement or approximation error. Another requirement for damage indicator is
stability with respect to damage severity. It means no sudden change of gradient sign when the
damage becomes more severe.
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Figure 4: Detection phase: the actual response is compared to reference surface

Basically, RSM approximation approach is very suitable for damage detection of structures
after extreme loading event. The structural condition can immediately assess by using ambient
excitation from vehicles, winds, or pedestrian steps. However, application for long term moni-
toring also gives a great advantage. The RSM damage identification can be used to monitor the
degradation of structural performance or damage growth. Therefore this phase also known as
monitoring phase.

3.3 Scattered Data Approximation

As mentioned earlier, several methods are available to construct the reference surface from
scattered data. Polynomial and radial basis function are used in this study. Short review about
these approaches is described in the following sub subsection.

3.3.1 Polynomial Model Regression

Basically, the polynomial approximation of a function is similar to a Taylor series expansion
of function f after m+1 terms, Box:1987. The flexibility of the estimation function increases
as a new higher polynomial order is included in the model. A polynomial approximation of a
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function y = f(x) of order m is written in equation (18).

y = β0 + β1 + β2x
2 + · · ·+ βmx

m + ε (18)

In a matrix form the equation (18) can be written as (19), where X is known as Vandermonde
matrix.

y = Xβ + ε (19)





y0
y1
y2
...
yn





=




1 x1 x21 . . . xm1
1 x2 x22 . . . xm2
1 x3 x23 . . . xm3
...

...
... . . . ...

1 xn x2n . . . xmn








β0
β1
β2
...
βn





+





ε0
ε1
ε2
...
εn





(20)

The estimation variables β are solved through least square solution of equation (20), which
give β = X+y, where X+ = (XTX)−1XT is known as Moore-Penrose pseudo-inverse.

The polynomial model approximation can also apply to multivariable systems by expanding
the equation (18). For second order, multivariable polynomial model with interaction terms has
general form:

y = β0 + β1x1 + β2x2 + · · ·+ βkxk + β11x
2
1 + · · ·+ βkkx

2
k

+β12x1x2 + β13x1x3 + · · ·+ βk−1,kxk−1xk + ε
(21)

y = β0 +
k∑

i=1

βixi +
k∑

i=1

βiix
2
i +

∑ k∑

i<j=2

βijxixj + ε (22)

3.3.2 Radial Basis Function Approximation

The general equation of RBF interpolation in space dimension s can be written as:

F (x) =
N∑

k=1

ckϕ(‖ x− xk ‖), x ∈ Rs (23)

Where, ϕ is basis function. (‖ x− xk ‖) is a matrix of Euclidean distance, for n points this
matrix becomes:





f(x1)
f(x2)

...
f(xn)





=





c1
c2
...
cn








ϕ(‖ x1 − x1 ‖) ϕ(‖ x1 − x2 ‖) . . . ϕ(‖ x1 − xn ‖)
ϕ(‖ x2 − x1 ‖) ϕ(‖ x2 − x2 ‖) . . . ϕ(‖ x2 − xn ‖)

...
... . . . ...

ϕ(‖ xn − x1 ‖) ϕ(‖ xn − x2 ‖) . . . ϕ(‖ xn − xn ‖)


 (24)
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Coefficient ck are obtained by solving the linear equation system in (23). The solution of
this equation is unique if the Euclidean distance matrix is non-singular. Certain type of basis
function can be used to develop a positive definite weighting matrix. Several basis function can
be used in RBF e.g. the truncated power function, multiquadratic or inverse multiquadratic. A
widely used basis function is Gaussian fuction as described in equation (25). This type of basis
function also used in this study.

ϕ(r) = e−(εr)
2

(25)

The shape parameter ε in equation (25) is used to adjust the local influence of support points.
Figure (5) illustrates how a shape parameter has a profound influence on how flat or peak (lo-
calize) is the basis function. Smaller value of ε that also means larger variance results a flatter
surface while larger value of ε tend to have more peaked plot. Furthermore, it affects the accu-
racy and numerical stability of the approximation.

Figure 5: Shape parameter ε is used to adjust the local influence. Shape parameter in gaussian basis function, ε =
1 (left), ε = 3 (middle) and ε = 5 (right).

4 CASE STUDY AND RESULTS

4.1 Simple Supported Steel Beam

Simple supported steel beam is modeled using finite element package to observe the sen-
sitivity of wavelet energy damage indicator. The beam is a modification of standard IPE 80
section. The additional 40 mm thickness plate is attached to its bottom flanges. The section
with extra plate is considered as non-damaged structure. The damage scenario is carried on by
turning back the section to its original section. The beam is illustrates in figure (6). The natural
frequencies and their corresponding shape of vertical bending mode are shown in figure (7).

The beam was excited by single impulse in vertical direction. The responses signals were
monitored in 5 locations as indicates in figure (7). The extracted vertical acceleration signals
were decomposed using wavelet. The energies content in the decomposed signals were calcu-
lated using equations (15, 16, and 17).

The performance of eigen frequencies and modal displacement to identify the damage is
summarized in figure (8). There are no significant differences in frequencies from damaged and
non-damaged scenarios. Only 0.3 % approximately of frequency changes is obtained from these
two scenarios. More clear differences are shows by modal displacement amplitude. However
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Figure 6: (a) Simple supported steel beam model, (b) Non-damaged section, (c) Damaged section.

X
Y

Z

X
Y

Z

Mode 1: 25.401 Hz Mode 2: 99.752 Hz

X
Y

Z

X
Y

Z

Mode 3: 217.61 Hz Mode 4: 570.58 Hz

Figure 7: Vertical bending mode shapes of simulated simple supported beam
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this trend appears in higher frequencies mode shapes. In practice, high frequency mode shape
is difficult to be extracted.

In general, wavelet energy show much better result compared to frequencies or modal dis-
placement amplitude. The difference between wavelet energy in damaged and non-damage sce-
nario exceed 3 % in all extracted signals. Therefore this indicator is more suitable to be applied
in RSM damage identification. The energy ratio between damage and non-damage structure is
shown in figure(9).
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Figure 9: comparison of wavelet energy details in damaged and nondamaged structure

4.2 Railway Bridge

The response surface model for damage detection was applied to filler beam bridge through
numerical simulation. The bridge has 24.60 m span and 5.39 m width. The main structure
consists of girder and deck slab which are modeled by beam and shell elements respectively.
The 3D spring elements are used to model the elastomeric bearings which are directly support
the steel I-shape main girders. The similar elements also are used to model the ballast, where
five spring elements are allocated to support each sleeper. Figure (10) shows the finite element
model of the bridge. Three of the lowest eigen frequencies of the bridge model are 3.63 Hz,
5.53 Hz, and 9.18 Hz.

A collective of moving loads was built and shifted for each time step to develop the dynamic
excitation. This collective load represents a series of ICE3 train, one load for each wheel. It
means 64 vertical point loads were applied to the structure with sampling rate 500 Hz. Possible
effects due to rail-roughness, train-bridge-interaction or wheel irregularities were neglected for
simplification.

The speed of the loading train and temperature were chosen as operational and environ-
mental condition respectively. The train speed varies from 200 to 300 km/h. The temper-
ature is assumed to affect the elastomeric material only. The temperature effects model is
adopted from [2]. The relation between temperature and shear modulus is described as G =
4.06574−0.0271153T −0.00503455T 2, −5◦C ≤ T ≤ 21◦C, where G and T are shear mod-
ulus and temperature respectively. The temperature-shear modulus model was obtained from
long term dynamics experimental test of the similar bridge.

Full factorial design was adopted for design of experiments to generate 42 regular training
points. The same approach was also applied to obtain 30 testing points for model selection and
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Figure 10: Finite element model of the bridge.

validation. The support points and its correspond response surface that was generated using
polynomial model is shown in figure (11a). It shows that the 1st level wavelet energy fitted well
by polynomial model. The response surface generated by RBF is show in figure (11b).

(a) (b)

Figure 11: (a) Reference surface of wavelet energy level 1 generated using polynomial regression. (b) Reference
surface of wavelet energy level 2 generated using radial basis fuction approximation.

The damage is prescribed by reducing 50 % stiffness of one elastomeric support. 5 varia-
tion of train speed and surrounding temperature are selected using Latin Hypercube Sampling
method. The level 2 wavelet energy of the testing points are plot together with its reference
in figure(12a). A clear distinction of damage and non-damaged wavelet energy is obtained in
3 points. The energy ratio of these 3 points changed up to 25 % while only 10 % changes is
monitored from the rest 2 points. However, these 2 points indicates much better differentiation
in the next wavelet energy level. Therefore, the change of wavelet energy should be observed in
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all level in order to have comprehensive assessment of structural condition. The comparison of
wavelet energy in the damage and healthy condition in all level of wavelet is presented in figure
(12b).

(a) (b)

Figure 12: Response surface method for damage identification. (a) Response of damage structure and its reference
at level 2. (b) Comparison wavelet energy in all level

5 CONCLUSIONS

The paper describes an approximation procedure to assess the structural health in assorted
operational and environmental condition by using wavelet energy as response indicator. The
response surface methodology is a potential approach to deal with damage detection problem
in a situation where the non-damaged variables also affect the data response. A quite sensitive
damage indicator is also very substantial to increase the capability of the method.

From the simulation results, wavelet energy is a good candidate for an indicator in com-
bination with response surface damage identification. Its sensitivity allows to distinguish the
alteration between two scenarios of numerical simulation. However, more effort is needed to be
spent in observation of each wavelet level because the sensitivity is different from one to other
level. As the signal becomes longer, more level will be acquired from the decomposition.

Both polynomial and RBF model show a good performance for model approximation in
this study. However, the polynomial models are not able generate a good approximation in
higher level of wavelet energy. The complexity of searching the best polynomial model increase
significantly as new variables are introduced to the surrogate model while in RBF new variables
only add new term in calculation of Euclidean distances. Therefore, the RBF model is more
suitable as the number of variable increase.
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Abstract. Both Geometric Algebra (GA) and Differential Geometry (DG) distinguish among
different kinds of vectors of the same dimensionality, leading to a higher expressiveness of
algebraic objects than usual vector calculus based on Euclidean geometry. The distinct seman-
tics of different kinds of vectors vector, co-vector, bi-vector, bi-co-vector - is obscured in the
framework of Euclidean vector calculus, but they can be reasonably associated with a specific
visual representation. However, in just three dimensions various ambiguities arise which ques-
tion the requirement to distinguish these vector types. Higher dimensions help to illustrate this
requirement, but only in five dimensions all these four vector types become unambiguous. A
spatial representation in five dimension is unfortunately hard to comprehend. In this article
we consider colors as dimensions instead of spatial coordinates, leading to considerations that
allow improved understanding of the differences between vectors, co-vectors, bi-vectors and
bi-co-vectors. This discussion is primarily intended for didactic purposes, but may have actual
applications in image processing.
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1 INTRODUCTION

1.1 Related Work

D. Hestenes [6, 7] introduced Geometric Algebra as a tool providing more insight into math-
ematical formalisms, in particular (but not only) the spinor formalism in quantum mechanics.
Geometric Algebra applies to arbitrary dimensions and when applied to a four-dimensional
spacetime allows to express special and general relativity within this framework [5]. In space-
time algebra (STA) space and time have different properties which impedes understanding of
four-dimensional structures. The four-dimensional computer graphics presented by A. Han-
sons [4] considers a fully spatial four-dimensional situation where all coordinates are equiva-
lent. Unfortunately such a four-dimensional space is less intuitive since it is unphysical and
therefore beyond human experience. However, higher dimensional spaces are still intuitive
when considering colors instead of spatial dimensions, as will be demonstrated in this article. It
is not uncommon to consider colors as elements of a vector space, and such approaches may be
useful for image processing [3]. In previous work [1] we discussed the properties of using the
framework of geometric algebra in conjunction with differential geometry without performing
the frequently done identifications between vector-valued objects. In this article we introduce
texturing as additional dimension to a color space, leading to color patterns as the basic objects
of consideration instead of geometric objects. A metric on color patterns as a measure of per-
ceptual similarity has been investigated by Mojsilovic et.al. [8]; however, they did not express
their findings in vision research using a mathematical framework such as the one presented here.

1.2 Outline

Section 2 reviews the mathematical framework introducing the notation and terminology
used throughout this article. While each of the reviewed theories can be found in standard text
books, they are usually presented in their own, often incompatible or sometimes even obscure
notation which impacts insight. Section 2.1 reviews the basic definitions of a vector space,
which is the sufficient for defining the Grassmann algebra in section 2.2. Section 2.3 reviews
the definition of tangential and co-tangential vectors as well as the definition of a metric. The
metric is essential for defining the geometric algebra, reviewed in section 2.4. Section 2.5 finally
discusses applying the Grassmann and Geometric algebra on the tangential and co-tangential
vectors. Section 3 discusses the abstract relationships introduced in section 2 in virtue of colors
instead of geometrical objects: Section 3.1 discusses the three-dimensional case using the RGB
color model, section 3.2 the four-dimensional case and section 3.3 presents the extension to five
dimensions.

2 MATHEMATICAL FRAMEWORK

Differential Geometry is a most fundamental mathematical framework crucial to physics as
it describes the concept of a manifold with charts. Many formalism in physics and in particu-
lar simplifications used in engineering are based on vector calculus in euclidean space, which
can be seen as a special case of the more general framework. Only in certain application do-
mains such as general relativity or computational modeling using curvilinear grids it is evident
that a more powerful framework than Euclidean vector calculus is required. In such more gen-
eral cases the actual structures that are implicitly assumed in Euclidean vector algebra become
visible and explicit. The awareness of such otherwise implicitly used structures is helpful for
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understanding the mathematical framework and to ease generalizing algorithms. This section
follows mostly the introduction of [1].

2.1 Vector Spaces

The concept of a vector space is most fundamental, as it considers abstract objects with
certain constraining properties: A vector space over a field F is a set V together with two
binary operations, called scalar multiplication and vector addition, satisfying the vector space
axioms. A significant consequence is that a vector space is closed under these operations, i.e.
for arbitrary u, v ∈ V and a, b ∈ F , then it follows that au+ bv ∈ V .

An element of V is called a “vector”, commonly illustrated via an arrow. However, the vector
space elements may have a variety of other properties distinguishing them and the representation
as an arrow is not always appropriate to them.

Some formalisms may be implied directly on vector spaces such as the grassmann algebra,
others such as geometric algebra require additional structures, for instance a metric. The con-
cept of a space-time, fundamental to physics, is not a vector space, though in simplifications it is
treated as such. In general however the full framework of differential geometry needs to be ap-
plied, which in addition to a metric also may require more structures such as an orientation-form
and possibly a connection form, as will be discussed below.

2.2 Grassmann Algebra

Grassmann Algebra [2] introduces another binary operation to a vector space, the Grassmann
product “∧”, also called the wedge, alternating or exterior product. It can be seen as the anti-
symmetric subset of the direct product of two vectors v ∧ u = v ⊗ u− u⊗ v and provides the
important property

v ∧ u = −v ∧ u (1)

The Grassmann product introduces a new type of vectors, so-called bi-vectors, which form their
own vector space distinct, but related to, vectors. When vectors are illustrated by an arrow, a bi-
vector is appropriatly illustrated by the plane that is spun by two vectors as in Fig. 1. Bi-vectors

ab 

Figure 1: A bi-vector is represented by an (oriented) area element spun by its two generating vectors.

form their own vector space, called Λ2(V ) or V ∧ V . With n the dimensions of a vector space
V , the dimension of Λ2(V ) is n(n− 1)/2.
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Higher order wedge products are defined by applying the wedge product to bi-vectors and
vectors etc., leading to the k-th power Λk(V ) of a vector space V . Its element is a k-vectors
with

(
n
k

)
components. However, since v ∧ v = 0 due to eqn. (1), the highest power can

only be k = n for an n-dimensional vector space as there are at most n linearly independent
vectors. Λn(V ) is a one-dimensional vector space as all elements, the so-called pseudo-scalars,
are scalar multiples of the basis vector v1 ∧ v2 . . . vn where v1, v2 . . . vn are the n basis vectors
of V . Pseudo-scalars represent oriented (n-dimensionial) volumes, and - in contrast to a actual
scalars - depend on the used coordinate system. For instance, they change sign under reflections.

These dimensionality of k-vectors are illustrated by the Pascal’s triangle, with the row rep-
resenting the dimensionality n (starting with 0D in the first row) of the underlying vector space
and the column the power k of the k-vector:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

(2)

For a three-dimensional vector space, there are three vectors as well as three bi- vectors. There-
fore, in three dimensions vectors and bi-vectors can be identified. Bi- vectors describing a
surface area are known as “normal vector” in usual Euclidean vector calculus. For a four-
dimensional vector space this identification of vectors with bi-vectors is no longer possible, as
there will be four 1-vectors, six bi-vectors, four tri-vectors and one 4-vector.

2.3 Differential Geometry

Differential Geometry (DG) identifies derivatives along curves in a manifold as tangential
vectors. Given a curve q : R → M : s 7→ q(s), the derivative d/ds along the curve can be
written as a linear combination of basis vectors (e.g. {∂x, ∂y, ∂z}), which each are derivatives
in the direction of a (local) coordinate system (e.g. given by coordinate functions {x, y, z}):

d/ds = q̇x∂x + q̇y∂y + q̇z∂z . (3)

The numbers {q̇x, q̇y, q̇z} represent the tangential vector q̇ in the coordinate system {x, y, z}.
The notation “∂x” hereby stands for “derivation into the direction of the coordinate function x”
and is a shortcut for the partial derivative ∂/∂x. The set of all tangential vectors at a certain
point P ∈ M is called the tangential space Tp(M). The tangential space is a vector space
regardless whether the underlying manifold M is a vector space itself or not.

In addition to tangential vectors differential geometry considers linear functions on tangential
vectors df : Tp(M) → R, which constitute a vector space by itself. They can be constructed
from scalar functions f : M → R such that for any tangential vector v ∈ Tp(M)

df(v) := v(f) ≡ (vx∂x + vy∂y + vz∂z)(f) . (4)

These linear functions on tangential vectors are called co-vectors and their space is the co-
tangential space T ∗

p (M). The basis of the co-tangential space in a coordinate system {x, y, z}
is denoted {dx, dy, dz} following the notation of a scalar function’s total differential

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz . (5)
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Tangential vectors and co-vectors are dual to each other, i.e. when applying the kth basis co-
vector as dxk to the ith basis vector ∂i the result will be 1 only if i = k, otherwise 0. This
property is intrinsic to the tangential and co-tangential spaces on an arbitrary manifold.

Additional properties that may be specified on a certain manifold are in particular the metric
tensor field g : Tp(M) × Tp(M) → R that allows to define the inner product of two vec-
tors and therefore means to compute the norm (magnitude) of tangential vectors (a co-metric
g : T ∗

p (M)×T ∗
p (M)→ R is required to compute the norm of co-vectors). Given an (invertible)

metric tensor allows identifying vectors and co-vectors via the so-called musical isomorphisms.
In Euclidean geometry the metric tensor is represented by a unity matrix at each point such that
vectors and co-vector are represented by the same numerical values and thus usually not con-
sidered as distinct objects. However, treatment of non-Euclidean spaces requires distinguishing
between vectors and co-vectors.

2.4 Geometric Algebra

Geometric Algebra [6, 7] extends the usual vector calculus using vector addition and scalar
multiplication by introducing the geometric product as the combination of the inner product and
the exterior (Grassmann) product. For two vectors u, v ∈ V of a vector space V with metric
g : V × V → R the geometric product uv (by convention denoted without explicit operator
symbol) is given by uv = g(u, v) + u ∧ v. The geometric product provides useful properties
such as being associative and invertible, whereas it is not commutative in general. It is closed
within the space of multi-vectors, which is formed by linear combinations of k-vectors:

Λ(V) =
n⊕

k=0

Λk(V) (6)

where n is the dimension of the underlying vector space V . The dimensionality of Λ(V) is 2n.
The Geometric Algebra (GA) requires a metric given on the underlying vector space, in

contrast to the Grassmann algebra which is independent from any metric. Given the concept
of a “norm” through the metric, GA allows to identify k-vectors with n − k vectors using the
hodge-star operator ? : Λk(V) → Λn−k(V) since the dimensionality of Λk(V) and Λn−k(V) is
equal.

2.5 Geometric Algebra on the Tangent Space

Given a manifold M with tangent space Tp(M) and co-tangent space T ∗
p (M) we can apply

the Grassmann and Geometric algebra on each of these vector spaces. The multi-vector space
constructed from tangential vectors is then Λ

(
Tp(M)

)
, the multi-vector space of co-vectors

Λ
(
T ∗
p (M)

)
. The multi-vector space of tangential vectors hereby corresponds to “multiple di-

rections”, such as a bi-vector defining an (oriented) area. In contrast, co-vectors describe a
direction that is “not to be used”, as they represent a scalar function on just this direction. A
co-vector can be seen as a “cut out” function which removes a direction from the n-dimensional
volume. For instance, in three dimensions a co-vector “cuts off” one direction, thus leaving the
plane defined by the two remaining directions. Thus, a bi-co-vector is an operation that “cuts
off” two directions.

A bi-co-vector corresponds to the subspace of an n-dimensional hyperspace where a plane
is “cut out”. In three dimensions these visualizations overlap: both, a bi-tangential vector and
a co-vector correspond to a plane, and both a tangential vector and a bi-co-vector correspond
to an one-dimensional direction (“arrow”). In four dimensions, these visuals are more distinct
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Tangential Vectors
∂x

Co-Vectors /
Pseudo-Vectors

dxBi-Co-Vectors 
dx^dy Bi-Vectors

∂x ^ ∂y

0D

1D

2D

3D

4D

5D 

Figure 2: Pascal’s triangle depicting tangential vectors, bi-vectors, co-vectors and bi-covectors for the Grassmann
algebra of tangential and co-tangential spaces. In three dimensions there are many ambiguities where all vectorial
objects are of the same dimensionality 3. In four dimensions there are less ambiguities , but only in 5D all vector
types become unambiguous.

but still overlap: a co-vector corresponds to a three-dimensional volume, but a bi-tangential
vector is represented by a plane similar to a bi-co-vector, since cutting out a 2D plane from
four-dimensional space yields a 2D plane again. Only in higher dimensions these graphical
representations become unique, as indicated by Fig. 2. In any case a co-vector and a pseudo-
vector will have the same appearance as an n− 1 dimensional hyperspace, same as a tangential
vector corresponds to an pseudo-co-vector: The difference between a co-vector and a pseudo-
vector however is their orientation: a co-vector does not provide any orientation information,
it is just a “cut-off” operation. In contrast, a pseudo-vector is constructed from alternating
products of tangential vectors with relevance to its ordering. In 3D, we can therefore visualize a
co-vector as non-oriented planar area element and a bi-vector as an oriented planar area element.

3 GEOMETRIC ALGEBRA OF COLOR SPACE

3.1 Three-dimensional Color Space - RGB

Colors form a vector space same as spatial dimensions due to the linear properties1 of the
Maxwell equations, allowing to superpose electromagnetic waves, i.e. light. Colors in partic-
ular form a three-dimensional space due to the biophysical properties of the human eye being
sensitive to three fundamental colors. There are many ways to represent a color space such as
RGB, HSV, CIE etc..; a metric given on a color space may for instance be used to determine
color similarities when comparing images [3].

1In contrast, gravitational waves cannot be superposed due to the non-linearity of the Einstein equations.
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A most simple color space is RGB, using the red, green and blue primary colors to construct
other colors, similar to the x,y,z coordinates in Euclidean vector calculus. It is common to asso-
ciate xyz coordinates with RGB colors for illustration purposes in computer graphics. The RGB
color space describes the additive color system as it represents light being added to darkness,
for instance, relevant to LED displays or computer/TV monitors. Complementary to RGB is the
CMY color space describing the subtractive color system where color filtering is applied to a
white background, such as in painting or printing colors on a white sheet of paper. The primary
colors of the CMY color space are cyan, magenta and yellow, which are complementary to red,
green and blue in the additive color system.

When considering the notion of tangential and co-tangential vectors in differential geometry,
it seems quite fitting to associate RGB colors with tangential vectors and CMY colors with
co-vectors: RGB colors “add” directional information, like tangential vectors, whereas CMY
colors “subtract” directional information, like co-vectors. The intrinsic duality between vectors
and co-vectors corresponds to the complementarity of RGB and CMY colors. We may denote
the basis vectors of the RGB space as {∂r, ∂g, ∂b} and of the CMY space as {∂c, ∂m, ∂y} to
support this interpretation. Duality between RGB and CMY then means in this notation:

? ∂r = dr ≡ ∂c (7)
?∂g = dg ≡ ∂m (8)
?∂b = db ≡ ∂y (9)
?∂c = dc ≡ ∂r (10)

?∂m = dm ≡ ∂g (11)
?∂y = dy ≡ ∂b (12)

The exterior product of color vectors then corresponds to the mixing of colors in this interpre-
tation, allowing for additive and subtractive mixing. For instance, mixing red and green light
yields yellow light, described as ∂r∧∂g, a bivector in the additive color space. Yellow (∂y) in the
CMY system can be seen as removing blue from white and is thus identified with a co-vector
in the RGB system, db ≡ ∂y. This co-vector is identified with the dual of the blue color, i.e.
?∂b ∼= ∂r ∧ ∂g. This identification is the same as relating the cross product “×” of vectors with
a “normal” vector in Euclidean vector calculus ∂z ∼= ∂x × ∂y = ?(∂x × ∂y). Identifying the
same “colors” in the additive (RGB) color systems with colors in the subtractive (CMY) color
system is the same as identifying vectors with co-vectors and bi-vectors. This is only possible
within a three-dimensional vector space.

3.2 Four-dimensional Color Space - RGBA

While human vision is limited to only three primary colors, in computer graphics color is fre-
quently described using four components. The fourth component is transparency. Considering
transparency as an additional property of a color space allows to consider a four-dimensional
space. The property complementary to transparency is opacity, or “blackness”, which may be
expressed via the CMYK color model where “k” stands for an additional blackness component,
similar to opacity of the overall color. Starting from the four-dimensional RGBA color space
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with four basis vectors {∂r, ∂g, ∂b, ∂a} we may construct six color bi-vectors

∂r ∧ ∂a → transparent red
∂g ∧ ∂a → transparent green
∂b ∧ ∂a → transparent blue
∂r ∧ ∂g → yellow (non-transparent)
∂g ∧ ∂b → cyan (non-transparent)
∂b ∧ ∂r → magenta (non-transparent)

four three-vectors

∂r ∧ ∂g ∧ ∂a → transparent yellow
∂g ∧ ∂b ∧ ∂a → transparent cyan
∂b ∧ ∂r ∧ ∂a → transparent magenta
∂r ∧ ∂g ∧ ∂b → gray (non-transparent)

and last not least one pseudo-scalar

∂r ∧ ∂g ∧ ∂b ∧ ∂a → transparent white .

These various wedge products allow to express all possible combinations to be built from
RGBA. Using the relationships eqn.(7), (8) and (9) we can express mixed colors via their dual
counterparts from the CMYK space, e.g.

∂r ∧ ∂g = dc ∧ dm = ?(∂c ∧ ∂m) (13)

where we can interpret using the co-vector as indicating a color that “must not” be used. The
star-operator hereby plays the role of a “not” operator, i.e. the indicated color blue in the
subtractive color model, expressed as ∂c ∧ ∂m (mixing cyan and magenta gives blue) must not
be used for printing the additive color yellow ∂r ∧ ∂g. Using vectors, the ∧ -operator means
“both”, using co-vectors, the ∧ operator means “neither”. Thus we can identify RGBA colors
with their dual counterparts from the CMYK space by considering “color that should not be
printed” on a white canvas, whereby “transparency” corresponds to some “light” or “bright”
color in this case:

∂r ∧ ∂a = ?(∂c ∧ ∂k) → light red means printing neither black nor cyan
∂g ∧ ∂a = ?(∂m ∧ ∂k) → light green means printing neither black nor magenta
∂b ∧ ∂a = ?(∂y ∧ ∂k) → light blue means printing neither black nor yellow
∂r ∧ ∂g = ?(∂c ∧ ∂m) → intense yellow means printing neither cyan nor magenta
∂g ∧ ∂b = ?(∂m ∧ ∂y) → intense cyan means printing neither magenta nor yellow
∂b ∧ ∂r = ?(∂y ∧ ∂c) → intense magenta means printing neither yellow nor cyan

Expressing a rule “to print colors” means that all CMYK colors are printed except those spec-
ified to not be printed. The four tri-vector colors relate to the RGBA/CMYK color space as
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follows:

∂r ∧ ∂g ∧ ∂b = da = dc ∧ dm ∧ dy = ?dk = ∂k → gray - no white - print black
∂r ∧ ∂g ∧ ∂a = db = dc ∧ dm ∧ dk = ?dy = ∂y → light yellow - no blue - print yellow
∂g ∧ ∂b ∧ ∂a = dr = dm ∧ dy ∧ dk = ?dc = ∂c → light cyan - no red - print cyan
∂b ∧ ∂r ∧ ∂a = dg = dy ∧ dc ∧ dk = ?dm = ∂m → light magenta - no green - print magenta

The relationships between RGBA color vectors and their CMYK counterparts may therefore be
interpreted as “rules” on how to print additive colors using the subtractive color model. The
inverse rules, not shown here explicitly, can be interpreted as rules how to produce subtractive
colors using a light projector. Arbitrary colors are created via linear combinations of these base
vectors. The pseudo-scalars represents white and black:

∂r ∧ ∂g ∧ ∂b ∧ ∂a = dc ∧ dm ∧ dy ∧ dk → white - do not print any color
dr ∧ dg ∧ db ∧ da = ∂c ∧ ∂m ∧ ∂y ∧ ∂k → black - do print all colors

In this four-dimensional RGBA color space, vectors (i.e. primary colors in the additive color
system: red, green, blue, transparent) can no longer be identified with bi-vectors (light red, light
green, light blue, intense yellow, intense cyan, intense magenta) as it was possible in the three-
dimensional RGBA color space. We can however identify tri-vectors with co-vectors, since
using three colors means not using the fourth color, whereby “color” hereby also includes the
transparency/black channel.

This illustration of the base vectors of four-dimensional space is similar to the case of space-
time algebra (STA) [5] where we have three spacelike and three timelike, i.e. six, bi-vectors.
Using these color vectors, the transparency (alpha channel, black channel for printing) playes
the same role as time in STA, hereby distinguishing “bright” and “dark” colors.

The 24 = 16 colors that can be produced by a system of four light emitting diodes (LEDs)
(red, green, blue and white) are summarized in the following table, where color vectors indicate
the LEDs to be switched on and co-vectors indicate LEDs that must not be used:

RGBA vector RGBA covector color
LED’s to use LED’s not to use
0 dr ∧ dg ∧ db ∧ da black
∂r dg ∧ db ∧ da dark red
∂g dr ∧ db ∧ da dark green
∂b dr ∧ dg ∧ da dark blue
∂a dr ∧ dg ∧ db transparency / brightness
∂r ∧ ∂a dg ∧ db bright red
∂g ∧ ∂a dr ∧ db bright green
∂b ∧ ∂a dr ∧ dg bright blue
∂r ∧ ∂g db ∧ da dark yellow
∂g ∧ ∂b dr ∧ da dark cyan
∂b ∧ ∂r dg ∧ da dark magenta
∂r ∧ ∂g ∧ ∂b da gray
∂r ∧ ∂g ∧ ∂a db bright yellow
∂g ∧ ∂b ∧ ∂a dr bright cyan
∂b ∧ ∂r ∧ ∂a dg bright magenta
∂r ∧ ∂g ∧ ∂b ∧ ∂a 0 white
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It should be pointed out that both ∂a and ∂r ∧ ∂g ∧ ∂b represent gray; this corresponds to the
two alternative ways of a CMYK printer to produce a gray color: either using all of CMY inks,
or using just the black ink. In theory, both methods would yield gray. In practice, there will be
slight deviations in the gray tone. The ambiguity among these two approaches may therefore be
resolved by assuming that ∂a yields an overall intensity different from ∂r ∧ ∂g ∧ ∂b, for instance
“bright gray” vs. “dark gray”.

When identifying bright and dark colors, i.e. ignoring the alpha channel/intensity, we arrive
at the three-dimensional color space as before where vectors and co-vectors can be identified
with each other. This, again, relates to identifying vectors and bi-vectors in 3D (“bright red” ≈
“dark red”).

3.3 Five-dimensional Color Space - RGBAT/CMYKU

The four-dimensional RGBA color space could easily be extended to a five-dimensional
scheme by introducing different levels of gray, introducing infra-red or ultra-violet, but this
would become rather confusing and less intuitive since these extensions are not easily accessible
to the perception of the human eye and thus our experiences. A more suitable approach is to
add texturing as a fifth parameter to the color space, now considering not just single dots of
colors, but some spatially extend elements that may or may not provide some additional pattern.
Denoting this texturing property as a “t” coordinate, we have the following basis vectors for a
five-dimensional RGBAT color space:

∂r → red
∂g → green
∂b → blue
∂a → brightness
∂t → textured

These five base vectors produce 25 = 32 combinations for colored patterns, encompassing 10
bi-vectors, 10 tri-vectors, 5 four-vectors and one pseudoscalar. Instead of listing each of these
cases, the main purpose of considering a five-dimensional color space is to show that each of
these objects is different in 5D as pointed out in Fig. 2, and none of them can be identified with
each other any more like in 3D or 4D.

In 3D we could say “red is not cyan” (∂r = dc), “red light means using neither green and blue
light” (∂r = ?(∂g ∧ ∂b)), “printing red means mixing magenta and yellow colors” (∂r = ?(∂m ∧
∂y)), allowing for alternative ways to produce the same color in RGB space, i.e. identifying
vectors (primary RGB colors) with bi-vectors (specifying which lights not to use) and co-vectors
(specifying which inks to use for printing): pure or mixed color in the three-dimensional scheme
is a primary color in either the RGB (“tangential”) or CMY (“co-tangential”) space. Thus for
each color we have the option to uniquely specify it by just giving one colorization vector (i.e.
any of “red”,“green”,“blue”, “magenta”,“cyan” or “yellow”).

In 4D, any primary color (“dark red”) can only be expressed by three complementary proper-
ties (e.g. ∂r = dg∧db∧da). Any mixed color can only be expressed by a mix of complementary
colors as well (e.g. bright red ∂r ∧ ∂a = dg ∧ db), but never as a primary color in either RGBA
or CMYK. This corresponds to identifying vectors with tri-covectors and bi-vectors with bi-co-
vectors in 4D, e.g.
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dark red ∂r dg ∧ db ∧ da vector / tri-co-vector
bright red ∂r ∧ ∂a dg ∧ db bi-vector / bi-co-vector
bright magenta ∂r ∧ ∂b ∧ ∂a dg tri-vector / co-vector

Thus in 4D space we have a unique choice to express primary colors, but alternative options
to express mixed colors if we want to specify only two color properties from either RGBA or
CMYK.

In 5D, we can still express each k-vector via its dual n− k co-vector (adding colors/textures
vs. removing colors/textures), but the descriptions will no longer be equivalent. For instance,
a “dark red textured” pattern is the bi-vector ∂r ∧ ∂t, “bright red textured” is the tri-vector
∂r ∧ ∂a ∧ ∂t and “bright magenta textured” is the four-vector ∂r ∧ ∂b ∧ ∂a ∧ ∂t, see Fig. 3.

black 0 dr ∧ dg ∧ db ∧ da ∧ dr scalar
dark red ∂r dg ∧ db ∧ da ∧ dr vector
dark red textured ∂r ∧ ∂t dg ∧ db ∧ da bi-vector
bright red textured ∂r ∧ ∂a ∧ ∂t dg ∧ db bi-co-vector
bright magenta textured ∂r ∧ ∂b ∧ ∂a ∧ ∂t dg co-vector
bright white textured ∂r ∧ ∂g ∧ ∂b ∧ ∂a ∧ ∂t 0 pseudo-scalar

Figure 3: Six exemplary and unique 5D multi-vector elements illustrated in 5D color space using red, green, blue,
alpha and texture (RGBAT). From left to right: scalar, vector, bi-vector, bi-co-vector, co-vector and pseudo-scalar.

In this 5D space we may still express any color via just two properties from either RGBAT or
its complementary CMYKU (“U” meaning “untextured”) space, but in contrast to the 3D and
4D space this choice will be unique now: A mixed color must either be expressed via RGBAT
quantities or CMYKU quantities such that two basis vectors are sufficient for identifying the
color. This property of the five-dimensional texture color space disables the ability to identify
vectors with co-vectors, bi-vectors and bi-co-vectors.

4 SUMMARY

Considering the properties of colors is an alternative to geometry for illustrating the notion
of tangential vectors and co-vectors in differential geometry in conjunction with Grassman and
geometric algebra. This approach eases intuition for higher-dimensional spaces. A tangential
vector can be understood as a “adding” a property to a colorization scheme, a co-vector can
be understood as a rule to “remove” a property from a color. The wedge product is the join of
these properties, leading to objects such as bi-vectors, co-vectors and bi-co-vectors. In 3D and
4D these objects can be described in alternative ways, only in 5D the “most easy” description
in terms of a “minimal number of properties to be specified” becomes unique.
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5 FUTURE WORK

The discussion on applying geometric algebra and differential geometry to color spaces is
intended to be of primarily didactic purpose; it may lead to inspirations and further applications,
for instance in image processing where the choice of color/pattern metric plays a relevant role
for similarity assessments based on perception theory such as in [8, 3]. The provided discus-
sion does not utilize the full mathematical framework of geometric algebra considering such a
metric. For a meaningful interpretation of colors as vectors and bi-vectors one would also have
to consider the ordering of colors (∂r ∧ ∂g = −∂g ∧ ∂r), i.e negative intensities for color values.

6 ACKNOWLEDGEMENT

This research employed resources of the Center for Computation and Technology at Louisiana
State University, which is supported by funding from the Louisiana legislature’s Information
Technology Initiative. This work was supported by the Austrian Science Foundation FWF
DK+ project Computational Interdisciplinary Modeling (W1227) and by the Austrian Ministry
of Science BMWF as part of the UniInfrastrukturprogramm of the Forschungsplattform Scien-
tific Computing at LFU Innsbruck..

REFERENCES

[1] W. Benger, A. Hamilton, M. Folk, Q. Koziol, S. S. Princeton, E. Schnetter, M. Ritter, and
G. Ritter. Using geometric algebra for navigation in riemannian and hard disc space. In
V. Skala and D. Hildebrand, editors, GraVisMa 2009 - Computer Graphics, Vision and
Mathematics for Scientific Computing. UNION Agency, Na Mazinach 9, CZ 322 00 Plzen,
Czech Republic, 2010.

[2] A. Bossavit. Differential geometry for the student of numerical methods in electromag-
netism. Technical report, Tampere University of Technology, 1991.

[3] A. Doloc-mihu, V. Raghavan, and P. Bollmann-sdorra. Color retrieval in vector space
model. In In Proceedings of the 26 th International ACM SIGIR Workshop on Mathe-
matical/Formal Methods in Information Retrieval MF/IR, 2003.

[4] A. J. Hanson and R. A. Cross. Interactive visualization methods for four dimensions. In
Proceedings of the 4th conference on Visualization ’93, VIS ’93, pages 196–203, Washing-
ton, DC, USA, 1993. IEEE Computer Society.

[5] D. Hestenes. Space-Time Algebra. Routledge, 1966.

[6] D. Hestenes. New Foundations for Classical Mechanics, 2nd ed. Springer Verlag., 1999.

[7] D. Hestenes. Oersted Medal Lecture: Reforming the Mathematical Language of Physics.
American Journal of Physics, 71(2):104–121, 2002.

[8] A. Mojsilovic, J. Kovacevic, R. J. S. J. Hu, and K. Ganapathy. Matching and retrieval
based on the vocabulary and grammar of color patterns. IEEE Trans. on Image Processing,
9(1):pp. 38–54, 2000.

37



19th International Conference on the Application of Computer 
Science and Mathematics in Architecture and Civil Engineering 

K. Gürlebeck, T. Lahmer  and F. Werner (eds.) 
Weimar, Germany, 04–06 July 2012 

COMPUTATION OF THE REFLECTANCE AND TRANSMITTANCE 
FOR AN INHOMOGENEOUS LAYERED MEDIUM WITH TURNING 

POINTS USING THE WKB AND SPPS METHODS 

R. Castillo-Pérez*,1, A. del C. Cedillo-Díaz2, V. V. Kravchenko3 and H. Oviedo-Galdeano1

*,1SEPI ESIME, National Polytechnic Institute
 Av. IPN s/n, C.P. 07738, Mexico City, Mexico 

2SEPI UPIITA, National Polytechnic Institute, Av. IPN 2580, C.P. 07340, Mexico City, Mexico 
3Department of Mathematics, CINVESTAV del IPN, Campus Querétaro, Apartado Postal 

1-798, Arteaga # 5, Col. Centro, Santiago de Querétaro, Qro., C.P. 76001 Mexico 
E-mail: rcastillo@ipn.mx 

Keywords: Pseudoanalytic functions, transmittance, reflectance, turning points. 

Abstract. Electromagnetic wave propagation is currently present in the vast majority of 
situations which occur in everyday life, whether in mobile communications, HDTV, satellite 
tracking, broadcasting, etc. Because of this the study of increasingly complex means of 
propagation of electromagnetic waves has become necessary in order to optimize resources 
and increase the capabilities of the devices as required by the growing demand for such 
services. 

Within the electromagnetic wave propagation different parameters are considered that 
characterize it under various circumstances and of particular importance are the reflectance 
and transmittance. There are several methods for the analysis of the reflectance and 
transmittance such as the method of approximation by boundary condition, the plane-wave 
expansion method (PWE), etc., but this work focuses on the WKB and SPPS methods. 

The implementation of the WKB method is relatively simple but is found to be relatively 
efficient only when working at high frequencies. The SPPS method (Spectral Parameter Powers 
Series) based on the theory of pseudoanalytic functions, is used to solve this problem through a 
new representation for solutions of Sturm-Liouville equations and has recently proven to be a 
powerful tool to solve different boundary value and eigenvalue problems. Moreover, it has a 
very suitable structure for numerical implementation, which in this case took place in the 
Matlab software for the evaluation of both conventional and turning points profiles. 

The comparison between the two methods allows us to obtain valuable information about 
their performance which is useful for determining the validity and propriety of their application 
for solving problems where these parameters are calculated in real-life applications. 
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1    INTRODUCTION 

When a wave traveling from a medium to another is considered, some parameters such as 
reflectance and transmittance can be identified. They are defined as the ratio of the amplitude 
of the reflected wave and the transmitted wave with respect to the incident wave amplitude 
respectively. 

The study of these parameters is necessary in many areas of science for increasingly 
complex media. For example, most modern optical systems could not function without 
inhomogeneous optical coatings. The telecommunications industry uses various types of layers 
such as antireflective layers, polarizers and dichroic layers in personal displays, optical filters, 
inhomogeneous planar waveguides [1], inhomogeneous photonic crystals [2], devices for 
splitting and combining optical communication channels, and so on. Also the knowledge of the 
reflectance and transmittance has important applications in ionospheric communications and in 
the analysis of radiation of antennas [3]. Other areas of study include applications such as 
environmental studies, precision agriculture, ecology, etc. [4]. 

There are numerous methods for the analysis of the reflectance and transmittance having 
different degrees of precision, complexity and efficiency. Some examples of them are the WKB 
method [5], the method of approximation by boundary condition, the plain wave expansion 
method PWE [6], the transfer matrix method TMM [7], the variational method [8], the 
perturbation method [9], differential TMM, etc. (see, e.g., [10, 11, 12, 13, 14]). A recently 
developed method is the SPPS method (Spectral Parameter Powers Series method [15, 16, 17]). 

This work focuses on the WKB [5] and SPPS [18] methods because the WKB method is 
well known and has been extensively studied, in addition it is relatively easy to implement and 
efficient especially when working at high frequencies. The SPPS method, which in this 
particular case is associated with the solutions of a Sturm-Liouville problem, has proven a 
powerful tool for solving various types of boundary and eigenvalue problems [19, 20, 21] and 
has a structure which is very suitable for its numerical implementation. 

The particular problem discussed in this paper is calculating the reflectance and 
transmittance of an electromagnetic wave with perpendicular polarization that propagates 
through an inhomogeneous layered medium with normal incidence. Inhomogeneous media are 
those for which one or more of their material parameters depend on space and are defined here 
by means of a refractive index profile, which in this case depends on a single space coordinate. 
In addition to traditional profiles, profiles with turning points are considered. 

We proceeded with the programming of both methods and with the evaluation of different 
profiles. We used some profiles with known exact solutions (linear, exponential and hyperbolic 
profiles) as test problems to verify the correct operation of the methods. Then the study of 
turning points profiles was carried out with both methods. 

The organization of this paper is as follows. In Section 2 we introduce the problem to be 
solved and propose the elements for calculating the reflectance and transmittance. In Section 3 
the WKB method is developed and the considerations under which it can be adapted for the 
analysis of a turning points profile are described. Section 4 introduces the SPPS method and it 
is shown how the solutions of a Sturm-Liouville equation can be used to construct the solution 
to our problem. In Section 5 the results of the computations are presented and the performance 
of the methods is analyzed. 
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2    WAVE PROPAGATION IN INHOMOGENOUS LAYERED MEDIA 

In general the characteristics of wave propagation and dispersion in a non homogeneous 
medium cannot be described in a simple manner. However, there are special cases where 
asymptotic methods may apply as, for example, when working with high or low frequency 
fields [5]. The low frequency approach is applicable whenever the size of a dielectric body is 
much smaller than a wavelength. The high-frequency approach is useful when the refractive 
index variation is negligibly small over the distance of one wavelength. 

The inhomogeneous media under consideration will have the layered structure shown in Figure 
1. 
where T is the transmission coefficient and k3 = k0n3. In this case and for non-absorbent media 
the following energy conservation relation holds 

Figure 1. Inhomogeneous layered medium. 

The refractive index n has constant values n1 and n3 in the regions I and III respectively and 
is an arbitrary continuous function in the region II. If we suppose an incident wave in region I 
represented by the scalar function u which stands for a transverse component of the electric 
field of an s-polarized electromagnetic wave, the following Helmholtz equation is satisfied  

( )  [ ( ) ] ( ) (1) 

where  ( )    
   ( ), k0 is the free-space circular wavenumber and  = k0 sinθ, θ being the 

angle of incidence (for the sake of simplicity normal incidence is considered, so in what 
follows θ = 0°, and   vanishes). If the incident wave is supposed to have the form       , 
where k1 = k0n1, then together with the reflected wave the whole solution for x < 0 is 

 ( )

where the constant R is the reflection coefficient whose absolute value is less than 1. The 
solution corresponding to the transmitted wave in region III has the form 

 ( )

| |  | | 
 . (2) 

The general solution of (1) for 0 < x < d is proposed to have the form 

and consists of two linearly independent solutions u1 and u2 in the interval 0  x  d such that 
( )   ,            

 ( ) (3) 
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( )  ,          ( ) (4) 
and with c1 and c2 being arbitrary constants. So, from the continuity and initial conditions the 
expressions for R and T were found to be [18] 

( )    
 ( )       ( )       

 ( )

[  
 ( )  ( )]  [ ( ) ( )]

 ( ) 

[  ( )  
 ( )  ( )  ( )] 

[  
 ( )        ( )]   [    ( )      

 ( )]
 ( ) 

These are the formulas for the reflectance and transmittance in an inhomogeneous layered 
medium. 

3    WKB METHOD 

3.1    WKB method for profiles without turning points 
Initially we work with (1) considering normal incidence 

[ ( )]  ( )  . (7) 

The following solution is proposed 

 ( )   ( ) (8) 

where  ( ) is given by the following expression 

 ( )  ∫  ( )  

It is worth mentioning that  ( ) will be found later. Now, replacing (8) in (7) we get 

 ( ) ( )  ( )  .  (9) 

Equation (9) can be expressed as a Riccati equation 

  ( )    ( )    ( )  . (10) 

Knowing that  ( )  ( ), (10) becomes 

  ( )    ( )    
   ( )   . (11) 

Now,  ( ) can be written as an inverse  power series of 

 ( )  [ 
 
( )  

 
( )

  ( )   ( ) ]. 

Taking into account the power series of   ( ), (11) becomes 

[ 
 
 ( ) ( )] [ 

 
 ( )  

 
( ) 

 
( )] [ 

 
 ( )  

 
 ( )    

 
( ) 

 
( )]  

where when considering high frequencies, the large value of  allows us to neglect the terms 
in which it appears in the denominator. 

Equating the coefficients of each power of to zero, we obtain an infinite number of 
equations, but we only took the first three 

 
 
 ( ) ( ) (12) 
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( ) (13) 

 
 
 ( )   

 
 ( )  

 
( ) 

 
( )  . (14) 

From (12) we can get the value of  
 
( ) 

 
 
( )   ( ). (15) 

In order to find  
 
( ), using  

(   )   equation (14) turns out to be 

 
 

  
 

  

    
 

 ⁄

. (16) 

Now, from (8) for 

 ( )  
 

 
 

 
 

 
 

we get 

 ( )
∫[   

    
 ]  

Neglecting all the terms which have   in the denominator and replacing the values of (15) and 
(16) we get 

 ( )  
 

√  
    ∫   ( )  . (17) 

Developing the previous expression we can state it in terms of  ( ) 

 ( )  
 

( )
 ⁄

[     ∫ ( ) ∫  ( )  ] . (18) 

The constants a and b can be found using the initial conditions. Then the solution consists of a 
wave  traveling in the  +z direction and a wave  traveling in the direction of –z 

( )  
 ⁄

 ∫  (19) 

( )  
 ⁄

 ∫  . (20) 

After obtaining the solutions (19) and (20) that are solutions of the quadratic equation with 
inhomogeneous parameters (7), we proceed to find the value of the constants, which together 
with the above equations will constitute the complete solution v which will allow us to satisfy 
the initial conditions (3) and (4). 

In order to do this we propose two linearly independent solutions given by 
( ) ( ) ( ) (21) 

and 
( ) ( ) ( ) (22) 

The constants for the conditions (3) were found to be 

 ⁄ ( ) ( ( ) ( )) (23) 

and 
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   ⁄ ( )  ⁄ ( ) ( ( ) ( )). (24) 

For the conditions (4) we found 

 ⁄ ( )
(25) 

and also 

 ⁄ ( )
 . (26) 

Solutions (21) and (22) can be used for calculating the reflectance and transmitance using 
(5) and (6).  

3.2    WKB method for profiles with turning points 
The solutions found with the WKB method (19) and (20) in Section 3.1 for the Helmholtz 

equation (7) can be used to find the reflectance and transmittance of profiles that do not have a 
zero crossing singularity, i.e., when the function   ( ) (which depends on the refractive index) 
does not pass through zero. In the case of profiles having such zero crossing, the point where 
they cross zero (here denoted by    ) is called the turning point. (Figure 2). 

Figure 2. Profile with turning points. 

In order to study the above problem, the inhomogeneous region of the medium is in its turn 
divided into three regions. Let x1 delimit the region II by the left hand side and x2 delimit the 
region II by the right hand side. This region is a -neighburhood of the turning point x0. In 
region I and region III, the solutions found in Section 3.1, (19) and (20) are valid, but in region 
II, the one where the turning points lie, a different solution should be calculated. 

In order to find the solution in region II [5] one can go back to the Helmholtz equation (7) 
for which   ( ) can then be expanded around x0 using the Taylor series. In this case only the 
first term will be used 

( )  ( ), (27) 

where   is the slope at   : 

 (  )
|

Then (7) becomes 
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[  ( )]  ( )  . (28) 

To see what happens around the turning point, one must find the solution of (28). This is 
possible, using the solutions in the Region I (21) and (22) in order to calculate the solutions in 
region II that we will denote by   ̃( ) and   ̃( ). In addition, it is necessary to connect the 
solutions found for the Region I with the solutions in the  Region II, for which new initial 
conditions are introduced (Cauchy problem). The following continuity conditions are to be 
imposed 

  ̃(  ) (  ),            ̃
 (  )  (  ) (29) 

  ̃(  ) (  ),            ̃
 (  ) (  ) (30) 

It is possible to solve this system using the mathematical package Matlab, which in its turn 
uses an internal process based on Maple. The command used to obtain the solutions is dsolve 
and it allows the solution of a quadratic equation with initial conditions to be found. The 
command used in Matlab to solve (28) for the initial conditions (29) was 

 ( (  )  (  )    (  )  ).

The resulting expression after applying the simplify command is: 

  ̃

  (  )  (  
 (  )  (  ) (  )  (  )  ( ) )

 (  (  )  (  )  (  )   (  ))  ( )

  (  )  (  
 (  )   (  ) (  )  (  )  ( ) )

 (  (  )  (  )  (  )   (  ))  ( )

 (  ) 

where 

( ) ( )

  ( )      ( )  

and for the initial conditions (30) the solution is the following expression 

  ̃

  (  )  (  
 (  )  (  ) (  )  (  )  ( ) )

 (  (  )  (  )  (  )   (  ))  ( )
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  (  )  (  
 (  )   (  ) (  )  (  )  ( ) )

 (  (  )  (  )  (  )   (  ))  ( )

 (  ) 

For Region III we take up the solutions found with the WKB method (19) and (20) and 
proceed to find the constants that will complement the proposed final solutions   

  ̃̃( ) ( ) ( ) (33) 

  ̃̃( ) ( ) ( ) (34) 

for which with similar initial conditions to those used in Region II were imposed that lead to 
the following constants 

(  )    ̃ (  )    ̃(  ) (  )

(  ) (  ) (  ) (  )
 (  ) 

  ̃(  ) (  )

 (  )
 (  ) 

(  )    ̃ (  )    ̃(  ) (  )

(  ) (  ) (  ) (  )
 (  ) 

  ̃ (  ) (  )

(  )
 (  ) 

Equations (33) and (34) are the final solutions needed to find the reflectance and 
transmittance for a turning points profile.  

In Section 4 we will work with these profiles using the SPPS method. This will later allow 
us to stablish a comparison of the performance of both methods. 

4    SPPS METHOD 

An application of the theory of pseudoanalytic functions corresponds to the theory of linear 
ordinary differential equations of second order. One of them is the Sturm-Liouville equation, 
which is of fundamental importance because of the many situations in mathematical physics 
where it arises, and that has the following form 

(   ) (39) 

for which       and v are complex-valued functions of an independent real variable x ∈ [0, d] 
and β is an arbitrary complex constant. The coefficients p, q and r depend on the considered 
problem and are proposed so that there is a particular solution    (which is also a complex-
valued function of a real variable x) of the homogeneous equation  

( ) (40) 

such that the functions  and  (  )⁄  are continuous in the interval [  ]. 

The general solution for (39) takes the form [18] 

(41) 

where  are arbitrary complex constants,   are defined in the following way 
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∑  ̃( )   (  ) 

∑ ( )  (  ) 

where   ̃( ) and  ( ) are defined as

 ̃( ) ( ) (44) 

and for   ∈   , 

 ̃( )( )

{

∫  ̃(   )( )  
 ( ) ( )  

∫  ̃(   )( )
( ) ( )

 (  ) 

 ( )( )

{

∫ ( )( )
 ( ) ( )

∫  ( )( )  
 ( ) ( )  

 (  ) 

With the above recursive formulas, the solution v can be found. The solution consisting of 
the equations (41)-(43) is a power series in β that is really attractive for the numerical solution 
of spectral problems, initial value and boundary value problems. Both series in (42) and (43), 
which are called Spectral Parameter Power Series (SPPS), converge uniformly on [0, d] and as 
shown in [16] it is easy to obtain a rough but useful estimate of the rest of the series. This 
estimate provides a simple tool to calculate the number of powers N which guarantees an a 
priori established accuracy. 

The required non vanishing particular solution    of (42) and (43), at least in the case of a 
regular equation with real-valued coefficients, always exists and and can be easily constructed 
as follows [18]: take any two linearly independent solutions      y      of (40), then their zeros 
do not coincide (otherwise their Wronskian is zero and are not linearly independent) and then 

 can be chosen as . 

Then    can be constructed in a manner similar to the solutions    and    considering a 
special case of the already presented result when q ≡ 0 and β = 1, which was already known to 
Weyl [22]. That is, let   ⁄  and r be continuous on [0, d]. The general solution of equation 
(   )     in (0, d) has the form (41) where c1 and c2 are arbitrary constantsand  v1 and v2 are 
defined by equations (42)-(46) with       . 

As a special case another important situation is considered. Very often in electromagnetic 
theory (see for example [8]) it is necessary to solve the equation 

 ( )
 ( ) ( )  (  ) 

for different values of the complex constant . It can be seen that the above equation is 
practically the same as (7). Its general solution can be represented as follows 

 (  ) 
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where 

∑  ̃( ) 

∑ ( )

with  ̃( ) and  ( ) defined by

 ̃( )  , ( )  , (49) 

and for  , 

 ̃( ) ( )

{

∫  ̃(   )( ) ( )  

∫  ̃(   )( )  

 (  ) 

 ( )( )

{

∫ ( )( )  

∫ ( )( ) ( )  

 (  ) 

and for c1 and c2 two arbitrary complex constants. Thus, once  ̃( ) and  ( ) are calculated up 
to a certain power N, an approximate solution of (47) is simply a polynomial on k with its 
calculated coefficients  ̃( ) and  ( ). This observation is also valid for the case of solution
(41), (42) and (43) of equation (39). Furthermore this property is very useful for the numerical 
solution of the corresponding spectral problems, which reduces to finding the zeros of the 
polynomials with respect to k and β respectively [18]. 

5    CALCULATIONS 

5.1    Calculation for profiles without turning points 
Initially, to ensure that the programs developed for the WKB and SPPS methods were 

functioning correctly, we studied some well known profiles having analytic solutions based on 
Bessel functions [23, 24]. Such profiles are the linear, exponential and hyperbolic profiles. 

For example for the exponential profile its refractive index profile is described by 

 ( )    [  (  )]  . (52) 

The following data were used in our programs: 
 Incidence angle  , that is, normal incidence 
 Size of the non homogeneous medium  m 

 Number of points in the evaluated interval [   ]
 Refractive index of medium in region I,
 Refractive index of medium in region III,
 Refractive index of  the boundary of medium 1,
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 Refractive index of  the boundary of medium 3,  

 Wavelengths, approximately from 2  to 100 
 Frequencies, approximately from 3 THz to 150 THz.

The program used to implement the SPPS method performed the calculations using 31 
formal powers, approximating the functions needed to calculate the recursive integrals by 
splines of order two and using 500 segments for integrating. From the parameters (    and  )  
in (39) one can obtain a particular solution    for (40). The same parameters are used to 
calculate the formal powers (45)-(46), with which two linearly independent solutions are found 
according to formulas (42) and (43) which in turn are used to find the solution (41) that will be 
a solution of (39). 

The obtained results are shown in the following figures. 

   Figure 3. Reflectance for the exponential profile. 

The elapsed time for the program which implemented the WKB method was approximately 
of 1.5 seconds, using a laptop computer with an Intel Core i7 2.8 GHz processor, with 8 GB of 
RAM. The SPPS method for its execution needed a time of around 11 minutes. 

Another comparison which was performed was estimating the absolute error of the two 
methods in comparison with the exact solutions for each of the profiles. Some of the resulting 
graphs are shown in Figures 5 and 6. 
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         Figure 4. Transmittance for the exponential profile. 

        Figure 5. Absolute error for the exponential profile using the SPPS method. 
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       Figure 6. Absolute error for the exponential profile using the WKB method. 

5.2    Calculation for profiles with turning points 
In order to study profiles with turning points we proceeded to enter into the program that 

implements the WKB solution a profile n(x) with a zero crossing. It is shown in Figure 7. 

        Figure 7. Profile for n(x) with turning points with . 
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The percentage of the reflectance and transmittance was obtained with the modified WKB 
method for a profile with turning points replacing (33) and (34) in the expressions (5) and (6) 
and their values are shown in Figure 8. 

The same profile with turning points was tested with the use of the SPPS method. The 
results are shown in Figure 9. 

Figure 8. Reflectance and transmittance calculated with the modified WKB method for turning points. 

Figure 9. Reflectance and transmittance calculated with the modified SPPS method for turning points. 
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It is worth noting that for the SPPS method no changes at all are needed for its 
implementation (which implies another advantage of it). The WKB method should be 
specifically adjusted in order to work with profiles with turning points in which   ( ) is 
arbitrary. 

6    CONCLUSIONS 

Up to date there was no comparative analysis between the SPPS method and the WKB 
method, and it was presented in this paper. The numerical implementation of both methods 
does not represent any difficulty. 

For the first time different profiles with turning points were analyzed using the SPPS 
method. Note that the SPPS method has very few limitations in terms of the profiles it can 
evaluate compared with the WKB method which requires a more thorough work. As an 
example, unlike the WKB method, no modifications are required in the case of the profile with 
turning points for the SPPS method. 

Talking about computation time, the WKB method is much faster (2 seconds) compared 
with the SPPS method (11 minutes). The SPPS method’s precision was much higher because in 
comparison with the exact solutions, in the worst case an accuracy of       was obtained. In 
contrast, we found that the WKB method in the best case could only deliver an accuracy of 
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Abstract. The present research analyses the error on prediction obtained under different data
availability scenarios to determine which measurements contribute to an improvement of model
prognosis and which not.

A fully coupled 2D hydromechanical model of a water retaining dam is taken as an example.
Here, the mean effective stress in the porous skeleton is reduced due to an increase in pore water
pressure under drawdown conditions.

Relevant model parameters are ranked by scaled sensitivities, Particle Swarm Optimization
is applied to determine the optimal parameter values and model validation is performed to
determine the magnitude of error forecast. We compare the predictions of the optimized models
with results from a forward run of the reference model to obtain actual prediction errors.

The analyses presented here were performed to 31 data sets of 100 observations of varying
data types. Calibrating with multiple information types instead of only one sort, brings better
calibration results and improvement in model prognosis. However, when using several types of
information the number of observations have to be increased to be able to cover a representa-
tive part of the model domain; otherwise a compromise between data availability and domain
coverage prove best.

Which type of information for calibration contributes to the best prognoses, could not be
determined in advance. For the error in model prognosis does not depends on the error in
calibration, but on the parameter error, which unfortunately can not be determined in reality
since we do not know its real value. Excellent calibration fits with parameters’ values near the
limits of reasonable physical values, provided the highest prognosis errors. While models which
included excess pore pressure values for calibration provided the best prognosis, independent
of the calibration fit.
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1 INTRODUCTION

There has been a growing need to better understand model quality of numerical models in
all branches of science. This issue has been recently addressed by [1, 2, 3, 4, 5] among others.

Models have grown in complexity and scope. In civil engineering, different models have
to be coupled to simulate behavior of complex structures. Type, location and quality of mea-
surements significantly impact model calibration and validation in these coupled models. This
information either contributes to model quality by improving model forecast or to model uncer-
tainty when neglecting important information. Models have to be parameterized; however, the
values of the parameters are usually not known and have to be calibrated by inverse methods
using observations [6]. This study focus on the influence of using different observation types
for calibration on model prediction.

An advantage of calibrating with different observation types is to overcome systematic errors.
Systematic errors are difficult to detect and cannot be analyzed statistically, because all of the
data is off in the same direction, either too high or too low. The approach to overcome this is
similar to that of investing in stokes of different branches, the risk of having the wrong numbers
is disperse. Experience with the specific data type and measurement conditions are required to
detect this errors. A way around this is to use different types of observations for calibration.
If one set is wrong the others will push the values still in the right direction. By working with
many data sets, even if you do not notice that one of them is wrong, the model could still be
calibrated properly by the weight of other ”correct” data sets.

To analyze the effects of the observation types in the numerical model, the drawdown of an
embankment will serve as illustrative example. This is a typical flow and deformation coupled
problem in geotechnical engineering.

It is not the goal of this paper to find the best model description for hydromechanical models,
but to quantify the error related to model calibration with different data type availability. The
objective is to identify the data relationships which are necessary to correctly predict deforma-
tion, strain and excess pore pressure development within a coupled hydromechanical model.

2 METHODOLOGY

A reference model of a water retaining dam is generated to assess the impact of data availabil-
ity to model error prognosis. Such a model provides different types of synthetic measurements,
in this case, under slow drawdown conditions. The same model can be then, calibrated to all
possible combinations of these measurement sets. Finally, the models with the optimized sets
of parameters can be validated under rapid drawdown conditions and the prognosis error be
compared.

With the reference model we create a total of five different data sets: horizontal and vertical
deformation, horizontal and vertical strain and excess pore pressure. Based on these sets we
generate 31 combinations (25 data types - 1 = 31 data sets) of equal number of observations but
different type of data. In order to determine the effect of ”data type” in model forecast, we
calibrate the more important parameters to the different 31 data sets using the same model
which generated the data. This is necessary to avoid external influences other than data type,
and compare their forecasts to the reference model.

Before calibration, a sensitivity analysis is performed to determine the most important pa-
rameters of the model. The optimal parameter values are identified with Particle Swarm Op-

55



timization on a surrogate model. Finally, the calibrated models are validated under a rapid
drawdown scenario and the actual forecast errors are determined.

3 THEORY

Single scaled sensitivities (ssi,j) are used to determine the most relevant parameters of the
model. They provide the ratio of difference in model response at each i measuring point (yi) to
a small change in parameter value of every j parameter (pj) where i,j ∈ N. They are calculated
as follow [7]:

ssi,j =
∂yi
∂pj

pj (1)

In matrix form the scaled sensitivity matrix (SS) can be calculated as

SS =
∂y
∂p

p (2)

where y is the calculated model response vector {y1, y2, ..., yi} and p is the model parameter
vector {p1, p2, ..., pj}. The partial derivatives are approximated by forward finite difference:

∂y
∂p
≈ y(p + ∆p)− y(p)

∆p
(3)

The resulting sensitivities are ranked calculating the variance-covariance matrix, (SSTSS)-1,
which is the inverted product of the transposed scaled sensitivity matrix times itself. The smaller
the value of the respective parameter in the main diagonal of the variance covariance matrix,
the more influential the parameter is.

The divergence between model response and reference measured values is quantified by the
objective function as follows:

F (p) =

√√√√
n∑

i=1

(yi,meas − yi(p1, p2, ..., pn)calc)2∑n
j=1 y

2
i,meas

wi (4)

where F (p) is the average error sum, i = 1, 2, ..., n counts each measurement of a time series,
and w is a weighting factor, in this case equal to one. In F (p) the absolute error of all obser-
vation types is sumed and then squared to get an average. The objective funtion sums unitless
values. This is achieved for each type of data by norming the squared residuals of a given type
at each measuring point, by the squared sum of the measurements at the given point.

An automated calibration is performed with Particle Swarm Optimization [8] using the fol-
lowing surrogate model:

y(p)calc = ŷ(p, β) + ε̂ (5)

by this means the numerical model is approximated with a fully quadratic function, ŷ(p, β), for
each time step [9]. Where β are the coefficients of the fully quadratic approximation and ε̂ is
the error between numerical and surrogate model.
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During optimization the sum of the objective function for each measurement series is mini-
mized:

Ftotal(p) =
1

m

m∑

j=1

Fj(p)→ min. (6)

where m stands for the amount of test series.

4 ILLUSTRATIVE EXAMPLE: WATER RETAINING DAM

A numerical model of a water retaining dam under drawdown conditions is used to illustrate
the data availability influence on error prognosis of coupled numerical models in constructive
civil engineering. The simulations were performed with PLAXIS 2D [10], a commercial Finite
Element Program.

4.1 Geometry and boundary conditions

The earth dam is of trapezoidal form (Figure 1), 30 m high, trapezoid upper side is only 5
m long while the bottom side is 172.5 m long, from which 20 m correspond to the core. The
underline block is 260 m long and also 30 m height. The extension of this block was conceived
large enough to avoid effects of the boundary conditions inside the dam.

The mesh was constructed with 6-node triangular elements refined on the embankment itself
and consists of around 500 elements and ca. 1100 nodes. On Figure 1 it is also marked the
initial water level at 25 m (straight line) and the final water level at 5 m (dashed line).

Furthermore, the boundary condition at the bottom of the rectangular block is of full fixity,
no deformation in horizontal or vertical direction allowed. At the sides just vertical deformation
is allowed while the entire upper boundary is a free surface with a time dependent water level.

Figure 1: Mesh of water retaining dam with core (trapezoid in the center), fill (lateral triangles) and subsoil
(rectangular basement), showing schematic drawdown and water pressure distribution

4.2 Material model

The embankment has three distinctive parts of different materials which have to be param-
eterized: 1) an almost impermeable clay core to prevent flow through it; 2) the fill, normally
constructed of local material to protect the core from erosion and forces applied by the water;
and 3) the subsoil which is the foundation in which the dam is built on.

For all three soil materials, the Mohr-Coloumb model (MC) is used to represent the elastic-
plastic soil behavior. MC is suitable to analyze the stability of slopes and embankments [11].
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The hydraulic model is parameterized using the Hypres data set available in PLAXIS with Van
Genuchten parameterization. This parameterization is of coarse subsoil type for fill and subsoil
material and of very fine type for the core.

The values of the parameters are given in Table 1 and are synthetic since they were not
determined from an existing object.

Table 1: Soil parameter values for the three different materials

Soil parameters Core Fill Subsoil
Undrained Drained Drained

Saturated soil unit weight γunsat [kN/m3] 16 16 17
Unsaturated soil unit weight γsat [kN/m3] 18 20 21
Shear Modulus G [kN/m2] 555.60 7518.80 19230.77
Poisson’s ratio ν ′ [-] 0.35 0.33 0.30
Cohesion C ′ref [kN/m2] 5 5 1
Friction angle ϕ′ [◦] 25 31 35
Dilatancy angle ψ [◦] 0 1 5
Hydraulic conductivity kxy [m/d] 0.0001 0.25 0.01
(isotropic)

4.3 Simulation

The hydraulics in PLAXIS are simulated with the Darcy law for fully saturated soil and with
the Richards equation which describes unsaturated groundwater flow. They are fully coupled to
the mechanical model using Biot’s theory of consolidation. This formulation contains a coupled
hydromechanical behaviour represented by both the equilibrium equation and the continuity
equation of the water-soil mixture [12].

Calculations are performed in classical mode, which uses Terzaghi’s definition of stress. In
a first phase, the initial stress due to soil and material weight is calculated, as well as the initial
pore water pressure under undrained behaviour and steady state groundwater flow conditions.

To the previous Gravity loading phase follows a Nil-Step phase. This phase improves the
accuracy of the equilibrium stress field with a plastic drained long term calculation in which
no additional loading is applied [13]. Finally, the effect of the drawdown can be simulated as a
consolidation phase with transient groundwater flow in which the dam is submitted to a linear
drawdown of 40 cm/d.

5 RESULTS AND CONCLUSIONS

5.1 Sensitivities

The Parameters of interest for the present study are those of the soft soil core, specially the
isotropic hydraulic conductivity (kxy), two parameters from Hooke’s law: shear modulus (G)
and Poisson’s ratio (ν ′) and also the parameter to describe the flow rule, the dilatancy angle (ψ).
Since we are working on the range of values where the dam is stable and cannot sample data
about its collapse, the parameters to define failure are not of interest for this study, these are the
friction angle and cohesion.

Eight nodes and five stress points within the core and the fill (Figure 2) were selected for
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measurements of five different types of data: horizontal and vertical deformation (ux, uy), hori-
zontal and vertical strain (εxx, εyy) and excess pore pressure (EPP)

Figure 2: Observation points at the embankment

The Sensitivities were calculated with respect to the five different types of model answers
at those observation points using the equations presented on Section 3. The resulting variance-
covariance matrix is shown on Table 2. The smaller the value on the diagonal, the more sensitive
the respective parameter is.

Table 2: Variance-Covariance Matrix (SSTSS)-1 of the most relevant parameters of the impermeable core

G ν ′ ψ lg(kxy)
G [ 4 · 10−4 −8 · 10−5 2 · 10−3 −3 · 10−6 ]
ν ′ [ 7 · 10−5 7 · 10−5 −1 · 10−7 ]
ψ [ 1 · 10−1 −1 · 10−6 ]
lg(kxy) [ symmetric 6 · 10−7 ]

The more influential parameter is kxy from the hydraulic model followed by G and ν ′ from
Hooke’s law of the material model.

5.2 Calibration

The four previous parameters, which were sensitive to a set of model answers of diverse type
in 13 different points, were calibrated to different data type availability. 31 data sets, shown in
Table 3, each with 100 observations were generated from the combinations of ux, uy, εxx, εyy
and EPP.

The resulting combinations have a constant number of observations and vary in data type.
This generates a tradeoff between data type coverage and spatial domain coverage. The spatial
coverage of the first data set, considering all data types is shown at the left side of Figure 3.
Measured in nodes A and B are ux and uy, EPP in nodes B and C, and εxx, εyy in the stress
points K and L. In contrast, at the right side of Figure 3, data set 31, which uses just EPP
observations, shows a good spatial coverage of EPP in the core. As data type increases, spatial
coverage decreases and vice versa.

The model was calibrated to the 31 data sets with an automated algorithm using the Particle
Swarm Optimization method on a surrogate model. The resulting deviations to the respective
data sets are also given on Table 3 as average error sum in percent.
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Table 3: Combinations of data type availability for calibration purpose using 100 observations; number of points
per data type (10 measurements in time per point) and resulting average error sum [%]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ux 2 3 2 2 3 3 3 3 4 3 3
uy 2 2 2 2 3 3 3 3 4 3 3
εxx 2 3 3 2 2 4 3 3 3 3 3
εyy 2 2 3 2 2 4 3 3 3 3 3
EPP 2 3 3 3 3 4 4 4 4 4 4
Error 0.8 0.2 0.6 0.9 0.9 1.0 0.1 0.1 0.9 0.3 0.9 0.3 0.0 1.1 0.7 1.4

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
ux 5 5 5 5 10
uy 5 5 5 5 10
εxx 5 5 5 5 10
εyy 5 5 5 5 10
EPP 5 5 5 5 10
Error 0.2 0.0 0.2 0.1 0.1 0.6 0.7 0.2 1.1 1.7 0.1 0.2 0.9 0.7 1.5

Figure 3: Left: Observation points for data set 1, ; Right: Observation points for data set 31

The average error sum for all different calibrations is small, lower than 2 %. After sorting
the average error three classes were identified, as shown in Figure 4. These are, a first class with
excellent fit, up to 0.3 % average error (green oval), a second class with good fits on the range
0.5 - 1.2 % average error (orange oval) and a third class with relative bad fits from 1.4 to 1.7 %
average error (red oval). Most of the calibrations fall within the first two classes.

Furthermore, by sorting Figure 4 additionally by number of data types, see Figure 5, we can
determine that the best results are obtained by using 1 to 3 data types, however, also the worst
values. The choice of data type makes then the difference between best or worst case. It must
be noticed that most of the best calibration results can be attained with 2 and 3 data types. This
reflects the tradeoff between using different data types for calibration vs. the spatial coverage
of each single data type. For our case with 100 observations, a set with two or three data types,
might allow for variety in information for calibration while maintaining some representative
spatial coverage of the domain.

Every data type is used 16 times in different combinations. The calibrations using combina-
tions of data sets with ux show the best fits, see Figure 6. In contrast, the worst fits are obtained
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Figure 4: Sorted average error sum of calibration results for different parameter combinations

Figure 5: Sorted average error sum of calibration results by number of data types used

when EPP is considered.

5.3 Validation

The model was validated for each of the resulting optimal parameter values. For this, 90
observations were taken on the 5 days period in which the water table decreased at a linear rate
of 4 m per day.

The average error sums of the validations were lower than those obtained during calibration.
However, the average error sums of both graphs are not comparable in magnitude, since the
validation values were measured at different points, at different times, with fewer measurements
and what is more important with other boundary conditions (under rapid falling water table).
What can be compared are the tendencies to analyze if there are correlations between them.

The maximum prediction average error sum was around 1 %, see Figure 7. Most of the
validation results fall within the range 0.3 and 0.7 % average error sum.

When the average error sum of the prognosis is sorted also by number of data types, see
Figure 8 we see a similar trend as with the calibration results. The best and worst fits are
obtained with 2 or 3 types of data.

Which parameters are responsible for the best and worst cases is appreciable in Figure 9,
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Figure 6: Sorted average error sum of calibration results by data type

Figure 7: Sorted average error sum of validation results for different parameter combinations

where the results are sorted by type of observation used for calibration. Surprisingly the worst
prognosis were made by considering deformation or strain observations during calibration. In
contrast, a guarantee for good prognosis seemed to be attained by calibrating with EPP infor-
mation. This is the opposite as deducted from Figure 6, in which calibrating with deformation
while excluding EPP information is recommended to obtain best calibration results.

By plotting the sorted calibration results against the actual errors of the prognosis (left side
of Figure 10), we observe that a decrease in calibration error does not improve the prognosis
accuracy. The prognosis error seems to be normal distributed around 0.4 % average error sum.
However, for the case of excellent calibration fits with average error sums lower than 0.3 % the
validation error becomes more variable, and the parameter set is susceptible of giving prognosis
with higher errors.

The right side of Figure 10 shows the corresponding parameter error of the optimized param-
eter sets at the left side of the Figure. By very small calibration errors, the optimized parameter
values can be driven to values close to the limit of reasonable physical values, as it was here the
case for several combinations for kxy, which is the most sensitive parameter in this model.

5.4 Conclusion

The fit obtained by the automated Particle Swarm Optimization calibration was very good,
with an average error sum at all cases lower than 2 %. However, the error in prognosis does not
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Figure 8: Sorted average error sum of validation results by number of data types used

Figure 9: Sorted average error sum of validation results by data type

correlate with the calibration effort, since when calibration error decreases, validation error does
not. Excellent calibration values, interestingly increased the variation in prognosis error. These
calibrations, with very small errors can drive the value of the optimized parameters to the limit
of reasonable physical values, as it is here the case. The error of the prognosis depends on the
parameter error. Unfortunately, the parameter error can not be determined since we normally
do not know the real value of the parameter.

Surprisingly, the model calibrated to all five different types did not provide the best results.
This could be explained by the reduction of the spatial coverage. Using 2 or 3 types of in-
formation, both, best and worst calibrations were obtained. Depending on which data sets are
considered, either the best or the worst results are obtained. The best calibrations usually were
obtained considering ux while the worst calibrations included a data set of EPP. The opposite
was the case for the prognosis. Good prognosis were attained with the data sets which con-
sidered EPP for calibration, while the worst prognosis were given by those considering ux for
calibration. The information that contributes to the best prognoses, could not be determined in
advance. Information diversity for calibration and a good coverage of model domain is impor-
tant for a good prognosis. In order to obtain better prognosis it is preferable to accept higher
calibration errors and obtain optimized parameter values which are more likely to be expected
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Figure 10: Left: sorted average error sum of calibration results with corresponding validation error. Right: Corre-
sponding parameter errors

than excellent calibration fits with unreasonable parameter values. This could be implemented
in an automated optimization algorithm by using the expected value of the parameters as prior
information for calibration [14].
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Abstract. Non-destructive techniques for damage detection became the focus of engineering
interests in the last few years. However, applying these techniques to large complex structures
like civil engineering buildings still has some limitations since these types of structures are
unique and the methodologies often need a large number of specimens for reliable results. For
this reason, cost and time can greatly influence the final results.
Model- Assisted Probability Of Detection (MAPOD) has taken its place among the ranks of
damage identification techniques, especially with advances in computer capacity and modeling
tools. Nevertheless, the essential condition for a successful MAPOD is having a reliable model
in advance. This condition is opening the door for model assessment and model quality prob-
lems.
In this work, an approach is proposed that uses Partial Models (PM) to compute the Probability
Of damage Detection (POD). A simply supported beam, that can be structurally modified and
tested under laboratory conditions, is taken as an example. The study includes both experi-
mental and numerical investigations, the application of vibration-based damage detection ap-
proaches and a comparison of the results obtained based on tests and simulations.
Eventually, a proposal for a methodology to assess the reliability and the robustness of the
models is given.
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1 INTRODUCTION

The main objective of damage identification is to detect the damage in the early stages, so as
to reduce the risks of stability failure and serviceability issues. Since civil engineering structures
possess characteristics that make them different than systems in other engineering fields, this
goal is not easily attained. In most cases, given that each structure is unique, the results from
a certain method applied to one structure are not valid for other structures. These structures
also cannot be moved or isolated in order to perform ideal damage detection tests, such as
those conducted in the laboratory. In addition, the detection tests should be conducted while
the structure is operational, making some areas of the structure inaccessible, and precluding
anything other than non-destructive testing.

Although simulation tools have developed significantly in the last few years, the quality of
models remains a serious problem that faces engineers. This is due to of different sources of
uncertainty. In general, uncertainty can be classified as either: aleatoric or epistemic. The
former one represents the randomness of the phenomenon and the second is related to lack of
the knowledge and the data. This categorization helps deal with uncertainties in the proper way
e.g. to reduce the epistemic uncertainty, further and deeper studies or more data collection is
needed. However, the aleatoric uncertainty can be included in the model stochastically.

In the case of damage identification, uncertainty included in specimens and uncertainty in
experiments are the two main components of total uncertainty. Uncertainties related to spec-
imens include dimensions, supporting conditions and loading conditions. Furthermore, noise
because of sensors can be addressed as an uncertainty included in experiments.

In most cases, it is neither easy nor practical to give an absolute answer for appearance of
damage in a structure. This is due to uncertainties. Furthermore, trying to eliminate the noise
completely requires much time and efforts. Therefore, it is very important to define a minimum
level of confidence which can be the balance between sufficient accuracy and required effort.
Choosing a reliable confidence level can be done based on the acceptable risk criteria.

An overview of previous research, which focused on using statistical information for dam-
age assessment in civil engineering structures using vibrational based inspection can be found
in [1].However, only since 2004 has the MAPOD working group started to develop strategies
to couple the physics-based and empirical understanding guided by draft protocols. This group
was formed by the Air Force Research Laboratory, the FAA Technical Center and NASA. The
motivations of a Model-Assisted Probability of Detection (MAPOD) approach are presented in
[2]. It was mentioned that a wave of new inspection requirements is anticipated in the coming
years to reduce the cost and time spent. The MAPOD approach was defined as an alternate ap-
proach which is sorely needed to reduce the amount of empirical tests. This approach depends
on physics-based models to determine the POD. The POD is based on distributions of signal
(from flaw of the same nominal size) and noise. These distributions are controlled by several
factors that can be predicted by simulation tools such as MAPOD. However, empirical tests are
still needed because many variabilities can not be described by well-understood physical phe-
nomena. It is mentioned that the major goal of current activities is to codify methods that are
less time/cost intensive than in MIL-HDBK-1823 (Nondestructive Evaluation System Reliabil-
ity Assessment). The ideas and strategies to develop the MAPOD approach are introduced. In
[3] the recent work and development as well as future work of the MAPOD working group are
presented. In [4] a modified MAPOD approach is used to detect the damage in the case of an
two-layer airframe structure. In [5] the MAPOD approach is applied to validate the reliability of
an automated ultrasonic inspection used for crack detection at fastener holes in the lower wing
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skins of F-111 aircraft. A transfer function method is used to predict the POD for an angle-
beam ultrasonic inspection of cracks in fastener holes within a complex structure. The MAPOD
for ultrasonic structural health monitoring SHM is discussed in [6] as an effective technique
for monitoring fatigue-induced damage. The paper introduces the differences between the tra-
ditional POD approaches as used for non-destructive evaluation and for SHM. In [7] a new
Model-Assisted probabilistic reliability assessment methodology is described. The feasibility
of applying this approach to typical sensing methods found in SHM systems is discussed. The
POD is used in [8] to assess vibration-based damage identification techniques using different
types of indicators, which depend, in general, on mode shapes. In [9], a POD model is used
with a reliability-based crack growth model to assess fatigue damage in bridges.

In this work, a simply supported beam, that can be modified and tested under laboratory
conditions, is studied including both experimental and numerical investigations, (figure 1). It
has a length of 3300 mm and a cross section of type IPE 80 and typical steel material properties.
The beam is simply supported at 50 mm from each end. In order to perform non-destructive
tests, the beam is backed up with plates of size 150 × 46 × 2.5 mm3. The damage is simulated
by removing one or more of these plates. Three damage cases are studied: case 1: one plate
is removed near the middle of the beam; case 2: a plate is removed near the support of the
beam; case 3 two plates are removed near the middle and a support of the beam. The work uses
vibration-based method for damage detection. 16 accelerometers are used to record acceleration
at the top of the beam.

2 PARTIAL MODELS

2.1 Structure Model

There are different possibilities to model the studied beam. It can be modeled using beam,
shell or solid elements. This is dependent on the uncertainty types that one wants to include in
these models. For example, in reality, supports are at the bottom of the cross section; however, in
the case of using beam elements to simulate the beam, the supports are at the center of the cross
section. Therefore, to include this uncertainty, a more sophisticated model is needed,(figure 2).

2.2 Damage Model

The types of damage that structures can suffer vary depending on different conditions e.g.
the material, operation task, quality of construction, the effect of the surrounding environment,
etc. For instance, in concrete structures damage can appear as a crack which can be harmful or
harmless according to its position, type, propagation opportunity and also the type of structure
itself which will be the final judge of the accepted tolerance e.g. crack tolerance for dams is
more conservative than for normal buildings.

Figure 1: The studied beam sketch showing some dimensions and the distribution of the plates. Dimensions in
mm
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Figure 2: A cross section of the studied beam at place of the support, uncertainty because of support place in case
of using beam elements to model the beam

Non-destructive techniques only allow non-destructive damage. In this example, the non-
destructive damage will be represented by the removal of one or more plates, (figure 1). How-
ever, this damage model is not the real damage that should be detected in the structure.

Nevertheless, if the global model can be validated for different types of non-destructive dam-
age at different locations with differing severities, this will produce a strong argument that the
real damage would be represented correctly using this model. In this work, two types of real
damage are used: decreasing the thickness of the bottom flange of the beam and E modulus
degradation.

2.3 Indicator

In general, the data which is recorded from a damaged structure contains information about
damage as well as noise from different sources of uncertainty. In order to extract this damage
information, appropriate indicators are needed. In general, indicators are categorized according
to the level of damage information that they can provide as following,[1]:

1- Level1: identification of damage;

2- Level2: level1 and the location of damage;

3- Level3: level2 and severity of damage;

4- Level4: level3 and prediction of the remaining service life.

The computational method of POD value is dependent on the level of information that indi-
cators can provide. For instance, if the indicator shows damage in the correct location, it has
truly detected damage. Conversely, if the indicator shows damage, but this damage is in the
false location, it is only a false alarm and this damage has not been detected on the existing
structure.

In general, two types of indicators can be used in the case of the vibration-based method. The
first depends on the mode shapes and their derived features. The second is based on analyzing
the signal directly e.g. stochastic subspace identification method (SSI). In this work, only the
first type will be presented.
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2.3.1 Indicators Based on Mode Shapes

This group of indicators utilizes post-processed data. In other words, the mode shapes should
be calculated either by modal analysis or records analysis. After that, the mode shapes are
processed to find if it is possible to distinguish between damage and noise. Three indicators
are used: mode shapes, mode shape curvatures and model strain energy. The mode shape is
calculated using equation ( 1)

Indj = (φ2
0i − φ2

ji)
2 (1)

where:
Ind: the indicator’s value
j: the damage case
φ0i: the mode shape i of non damaged beam
φji: the mode shape i of the damaged beam case j

Mode shapes curvatures are calculated approximately by finding the second derivative of the
mode shapes with respect to position. The model strain energy indicator is derived from the
Euler-Bernoulli beam of length l as shown in equation ( 2)

Ui =
1

2

∫ l

0
(EI)(

d2φi
dx2

)2dx (2)

where:
U : the strain energy i: index of the mode shape
EI: the structure rigidity
φi is the mode shape number i

Other indicators can be found in the literature, such as Yuen functions, Dynamic Flexibility,
etc...

2.3.2 Indicators Based Signal Analysis

This group of indicators utilizes pre-processed data. Stochastic subspace identification method
(SSI) is an example for this type of indicator. The main advantages of this type of indicator are
that they are more sensitive and present less data analysis uncertainty. However, the level of
information that they provide is low.

2.4 Sensor Position

Since the indicators in this example depend on the quality of the mode shapes, mode shapes
errors can be used as an objective function for the optimization process. The number of sen-
sors used in these experiments is limited by availability in the laboratory and therefore 16 ac-
celerometers are used. Since there are a limited number of accelerometers, the optimization
process involves finding the best 16 nodes that will lead to a minimum value of the objective
function,f , as represented by equation ( 3).
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f = ‖φ133 − φ16‖ (3)

where:
φ133: the mode shapes generated using the total number of nodes of the model
φ16: the mode shapes generated using only 16 nodes

2.5 Excitation

An excitation partial model is used when the experiments are simulated. In this work, only
impulse excitation is used. Since a force sensor is available in the lab, it was possible to deter-
mine the range of the force value and its duration.

2.6 Threshold

Another essential element in calculating POD value is threshold level. Generally, when the
indicator value crosses the threshold, this is a sign the damage exists. This value should be
chosen carefully since the POD will be calculated based on its value. In this work, threshold
is taken as a percentage of the maximum value of the indicator. The following levels are cho-
sen: 70%, 75%, 80%, 85%, 90% and 95%. Furthermore, threshold plays an important role in
evaluating the robustness of the global model, as will be shown later.

3 PRINCIPLES OF SELECTION AND ASSESSMENT METHODOLOGY

Since a large number of partial models can be developed as shown above, the number of
combinations or global models will be much larger. As a result, it is impractical to apply
the assessment process to each global model, especially if the complexity increases meaning
more computational time and higher computer efforts are required. Therefore, it is necessary to
develop a strategy to selectively limit the number of models in order to increase the efficiency
of model quality assessment.

3.1 Model Selection

In the case of damage identification, the number of partial models can be minimized based
on POD value decomposition. The decomposition process can be completed by classifying the
uncertainty’s sources into different independent types. The idea behind the decomposition is
that some sources of uncertainty are easy to estimate and to apply and others are too compli-
cated. As a result, checking models for each independent type of uncertainty helps to reduce
the amount of models each time. In the decomposition stage, the quality of the models is not
assessed but rather the quality of coupling.

In this example, the calculation of POD is decomposed into two independent types. The first
is caused by the uncertainty between the samples or specimens, PODs, and the second is caused
by the uncertainty included in experiments, PODe. PODs is calculated as the ratio between
the number of samples that show damage and the total number of samples. PODe is calculated
as the ratio between the number of the experiments that show damage and the total number of
experiments. The final POD value is computed by multiplying both POD components together.
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3.2 Model Assessment

In general, reliability and robustness are used to assess the quality of studied global models.
However, in case of no existing damage, the model should show low probability of detection
otherwise the model is unreliable. Furthermore, the model is considered reliable if damage is
detected early with a high probability of detection.

The global model is considered robust if the following conditions are satisfied: the POD
increases when damage level increases and changing an input parameter by a small amount
does not lead to failure or unacceptable variation of the outcomes.

4 NUMERICAL RESULTS

In the following sections, only a few results are presented in order to show the application
of the methodology that is given in the previous section. Since uncertainty between samples is
easier to estimate and PODs is more quickly calculated in this case, all possible global models
that can be created by coupling partial models are checked for PODs. Consequently, only few
coupled partial models or global models are needed to be checked for the PODe and finally
assess their quality based on POD curves.

4.1 PODs of Non-destructive Damage

Figure( 3) shows PODs results of two global models. The vertical axis represents PODs

and the horizontal axis represents threshold level. Threshold level is computed as a percentage
of the maximum value that is given by the indicator. Damage is detected when the value of
the indicator coincides with damage over the threshold level at the damage location. At other
locations, the indicator’s value is under this threshold level. The colors represent the type of
beam partial model which is used in this global model. Blue represents the beam elements
model, red represents the shell elements model and green represents the solid elements model.
The results show that the solid elements model is not suitable for this model combination since
the PODs value did not cross 50% in the best case. In addition, for the low threshold level,
coupled partial models with the shell elements model of the beam had low PODs values, which
means that this global model is not robust. However, the beam elements model correlated best
with the other partial models.

Although some coupled partial models produced poor results, the quality of the these partial
models is not necessarily a factor. It just means that the combination(s) used resulted in poor
data. New partial models could be developed to produce better results or one could select only
those models that produced the best results, eliminating all others.

4.2 PODe of Non-destructive Damage

Although it is not easy to determine all sources of uncertainty in the experiments and the
PODe requires more time to calculate, PODs results minimized the amount of partial model
combinations that need to be checked. Only the beam elements model, strain energy and mode
shape curvature will be considered in this part. Damage model and sensor positions remain the
same as in the first part.

In order to excite a large number of mode shapes as much as possible, the beam is excited
about 0.15L from one of its supports. Excitation location remains the same for all tests. A high
frequency rate is used to capture high order mode shapes. The signal is computed where the
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(a) PODs, damage case 1, mode shapes curvature indicator

(b) PODs, damage case 1,strain energy indicator

Figure 3: PODs value, damage case 1
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sensors are supposed to be placed before the addition of noise to it. The noise is considered
white Gaussian noise. The amplitude of the noise is estimated directly from the sensors.

One of model reliability conditions is that the POD value should be low in places where no
damage exists. Therefore, the PODe is calculated at each point where the sensors supposed
to be placed. Figure( 4) shows the results for coupled partial models using the strain energy
indicator for both damage cases 1 and 2. The vertical axis represents PODe and the horizontal
axis represents the length of the beam. Red triangles represent the position of the sensors. It
shows a high PODe value where damage exists. However, in places where no damage exists,
PODe can reach 50%. As a result, the reliabity of the selected global model is low. The reasons
could be that using an inappropriate noise model or uncertainty in the mode shape extraction
and data analysis affected the results. In addition, the number of experiments can influnce the
results.

Figure( 5) shows the PODe for both damage case 1 and 2 using the strain energy indicator.
The vertical axis represents PODe and the horizontal axis represents the threshold level. The
results show that the selected global models are robust where damage exists because the PODe

value does not change significantly by changing the threshold level.

4.3 PODs Curves

As mentioned before, if the global model can be validated for different types of non-destructive
damage in different locations with differing severities, this will result in a strong argument that
the real damage would be represented correctly using this model. Furthermore, in order to
assess the global models, POD curves should be created by replacing non-destructive damage
with real damage detected in a structure. In the case of the E modulus degradation damage
model, the damage increases from 0% to 20% with an interval of 1%. In the case of decreasing
the thickness of the bottom flange,the damage increases from 0% to 80% with an interval of
4%. The PODs is calculated in each step. The same procedure can be followed when creating
PODe curves.

After producing the POD curves, model assessment principles can be applied again to evalu-
ate the final global models not only for a certain damage level, but for the whole damage range.
In figure ( 6) (a), if the E modulus degradation damage model is used, the global model is
not robust since changing the threshold value leads to large variation in PODs values e.g. if
E modulus decreased about 12.5%, the PODs value varies about 60% in the case of differ-
ent threshold levels. The robustness of the model is improved if the model where damage is
simulated by decreasing the thickness of bottom flange is used, figure ( 6) (b).

In figure ( 7) (b), if mode shape curvature is used, the global model is not robust since
the PODs value decreases by increasing the damage level. However, using the strain energy
indicator, instead of mode shape curvature, improved the robustness of the model, figure ( 7)
(a).

Model reliability can be estimated by the level of the damage that can be detected with high
probability. Consequently, the model with results shown in figure ( 6) (b) is more reliable than
the one with results shown in figure ( 7) (a).
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(a) PODe in damage case 1, simulated experiments, strain energy indicator

(b) PODe in damage case 2, simulated experiments, strain energy indicator

Figure 4: Checking model reliability
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(a) PODe, damage case 1, strain energy indicator

(b) PODe, damage case 2, strain energy indicator

Figure 5: PODe value, damage case 1
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(a) PODs curves, damage case 2, mode shapes curvature indicator, beam elements model,
E modulus degradation model

(b) PODs curves, damage case 2, mode shapes curvature indicator, beam elements model,
decrease the thickness of the bottom flange damage model

Figure 6: PODs curves, Damage case 2
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(a) PODs curves, damage case 3, strain energy indicator, beam elements model, decrease
the thickness of the bottom flange damage model

(b) PODs curves, damage case 3, mode shapes curvature indicator, beam elements model,
decrease the thickness of the bottom flange damage model

Figure 7: PODs curves, Damage case 3
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5 EXPERIMENTAL RESULTS

Experiments are performed based on numerical results using 16 accelerometers. A high
frequency rate is used to capture high order modes. An impulse force is applied about 0.15L
from one of the beam supports to excite a large number of mode shapes. The excitation point
remains the same in all tests. The damage of the first and second cases is produced by removing
one plate in the damage area. In the third case, two plates are removed. In order to keep the
mass constant, the plates are placed again on the beam in such way that they do not contribute
to the stiffness anymore.

The recorded data is analyzed using the Stochastic Subspace Identification method (SSI) to
extract the dynamic properties of the beam. After that, the indicators are applied to mode shapes
to calculate the PODe.

5.1 Global Physical Model Quality

In the case of real experiments, as well as in simulated experiments, the reliability of the
model should be checked. Therefore, the PODe is calculated in each point where the sensors
are placed. Figure( 8) shows the results for coupled physical partial models using the strain
energy indicator for both damage cases 1 and 2. The Vertical axis represents PODe and the
horizontal axis represents the length of the beam. Red triangles represent the position of the
sensors. It shows that in damage case 1, the PODe is as high as in simulated experiments but
damage location is differs by more than half meter, or 17% of the length of the beam, to the
left. In damage case 2, the damage location is correct but the PODe is not more than 70%,
while in simulated experiments it is 100%. However, in places where no damage exists, the
PODe can reach 30%. The reason could be data analysis uncertainty. In addition, the number
of experiments can influnce the results.

Figure( 9) shows the PODe for both damage case 1 and 2 using the strain energy indicator.
The vertical axis represents PODe and the horizontal axis represents threshold level. The results
show that the selected global model is robust for damage case 1 but it is not for damage case 2,
since the PODe value changes significantly when the threshold from 70% to 80%.

6 CONCLUSIONS

The application of POD curves to damage detection based on partial models is discussed.
The work proposed an approach to calculate the Probability Of damage Detection (POD) based
on Partial Models (PM). However, the quality of the model is a problem that should be inves-
tigated if a Model assisted tool is used. Therefore, the work proposed a methodology to select
and assess coupled partial models. The methodology is applied to a simply supported beam that
can be modified and tested under laboratory conditions. Non-destructive damage is produced by
removing one or more plates based on studied damage cases. The work uses a vibration-based
method for damage detection. 16 accelerometers are used to record acceleration at the top of
the beam.

The results show that the efficiency of model selection and assessment is increased when
the POD is decomposed into two independent types: PODs and PODe, since the number of
models is minimized. After the validation process, the POD curves can be created by replacing
non-destructive damage with real damage that should be detected. In this work, two types of
damage are used: E modulus degradation and reduction of bottom flange thickness.
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(a) PODe in damage case 1, real experiments, strain energy indicator

(b) PODe in damage case 2, real experiments, strain energy indicator

Figure 8: Checking data quality
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(a) PODe, damage case 1, strain energy indicator

(b) PODe, damage case 2, strain energy indicator

Figure 9: PODe value, damage case 1
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7 OUTLOOK

For future work, more partial models should be included, especially excitation, damping and
noise models. More caution should be taken during the coupling of partial models in order to
reduce coupling problems and their effect on the final results e.g. coupling the impulse which
has a high amplitude with a very short duration with the beam could cause singularity problems.
In addition, further development of the methodology for model selection and assessment based
on the principles presented above is needed in order to deal with larger civil engineering struc-
tures. In addition, coupling numerical and real data should be investigated in order to solve the
inverse problem.
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Abstract

We study the Weinstein equation

∆u− k

x2

∂u

∂xn
+
l

x22
u = 0,

on the upper half space R3+ =
{

(x0, x1, x2) ∈ R3
}
for 4l ≤ (k + 1)2. If

l = 0, the operator x2k2
(

∆u− k
x2

∂u
∂x2

)
is the Laplace-Beltrami operator

with respect to the Riemannian metric ds2 = x−2k2

(∑2
i=0 dx

2
i

)
. In case

k = 1 the Riemannian metric is the hyperbolic distance of Poincaré upper
half space. The Weinstein equation is connected to the axially symmetric
potentials. We compute solutions of the Weinstein equation depending on
the hyperbolic distance and x2. These results imply the explicit mean value
properties. We also compute the fundamental solution. The main tools are
the hyperbolic metric and its invariance properties.

1 Introduction

Weinstein introduced axially symmetric potential theory in [12]. The idea was to
consider the following simple elliptic differential equation with variable coefficients
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in the neighborhood of the singular plane xn = 0

xn4 h+ p
∂h

∂xn
= 0,

where as usual

4h = ∂2h

∂x20
+ ...+

∂2h

∂x2n
.

Note that if p is an integer then a axially symmetric harmonic function in p + 2-
dimensional space satisfies the preceding equation in the meridian plane (see for
example [9])
We consider the solutions of the generalized Weinstein equation

x224 h− kx2
∂h

∂x2
+ lh = 0 (1)

in an open domain whose closer is contained in the upper half space

R3+ = {(x0, x1, x2) | x0, x1, x2 ∈ R, x2 > 0} .

Our general technical assumption is that the constants l, k ∈ R satisfy 4l ≤
(k + 1)2. This equation has been researched for example by Leutwiler and Akin
in [10] and in [1]. We transfer solutions of this equation to solutions of Laplace-
Beltrami equation of the hyperbolic metric in the Poincaré upper half space. In
the main result, we present the fundamental solution of the equation (1) in terms
of the hyperbolic distance function.
We recall that the operator

∆hf = x22∆f − x2
∂f

∂x2

is the hyperbolic Laplace-Beltrami operator with respect to the hyperbolic Rie-
mannian metric

ds2 =
dx20 + dx21 + dx22

x22

in the Poincaré upper half space model.
The hyperbolic distance may be computed as follows (see the proof for example

in [11]).

Lemma 1 The hyperbolic distance dh(x, a) between the points x = (x0, x1, x2) and
a = (a0, a1, a2) in R3+ is

dh(x, a) = arcosh λ(x, a),

where

λ(x, a) =
(x0 − a0)2 + (x1 − a1)2 + x22 + a22

2x2a2
=
|x− a|2

2x2a2
+ 1

and |x− a| is the usual Euclidean distance between the points a and x.
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We also apply the simple calculation rules of the hyperbolic distance stated
next.

Lemma 2 If x = (x0, x1, x2) and a = (a0, a1, a2) are points in R3+ then

|x− a|2 = 2x2a2 (λ(x, a)− 1) , (2)

|x− â|2 = 2x2a2 (λ(x, a) + 1) , (3)

|x− a|2
|x− â|2 =

λ(x, a)− 1
λ(x, a) + 1

= tanh2(
dh (x, a)

2
), (4)

where â = (a0, a1,−a2).

We also note the relation between the Euclidean and hyperbolic balls.

Proposition 3 The hyperbolic ball Bh (a, rh) with the center a = (a0, a1, a2) and
the radius rh is the same as the Euclidean ball with the Euclidean center (a0, a1, a2 cosh rh)
and the Euclidean radius re = a2 sinh rh.

2 The hyperbolic Laplace operator depending
on the hyperbolic distance in R3+

We need the computations of the hyperbolic Laplace operator of functions de-
pending on λ, computed in [2].

Lemma 4 If f is twice continuously differentiable depending only on λ = λ (x, en)
then

4hf (x) =
(
λ2 − 1

) ∂2f
∂λ2

+ 3λ
∂f

∂λ
.

Using this it is relatively easy to compute the result.

Lemma 5 If f is twice continuously differentiable depending only on rh = dh (x, en)
then the hyperbolic Laplace in R3+ is given by

4hf (rh) =
∂2f

∂r2h
+ 2 coth rh

∂f

∂rh
.

Proof. Using rh = arcosh λ(x, en), we compute

∂rh
∂λ

=
1

sinh rh

and
∂2rh
∂λ2

= − cosh rh
sinh3 rh

.
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Hence applying the chain rule we obtain

∂f (rh)

∂λ
=

∂f

∂rh

∂rh
∂λ

=
∂f

∂rh

1

sinh rh
,

∂2f (λ)

∂λ2
=
∂2f

∂r2h

(
∂rh
∂λ

)2
+
∂f

∂rh

∂2rh
∂λ2

=
∂2f

∂r2h

1

sinh2 rh
− ∂f

∂rh

cosh rh

sinh3 rh
,

completing the proof by the preceding lemma.
If we know one strictly positive solution depending on rh, we may compute all

the solutions depending on rh.

Theorem 6 If µ is a strictly positive solution of the equation

4hf + γf =
∂2f

∂r2h
+ 2

∂f

∂rh

cosh rh
sinh rh

+ γf = 0 (5)

depending on rh = dh (x, en) then the general solution of this equation is

f (rh) =

(
C

∫ rh

r0

sinh−2 uµ−2 (u) du+ C0

)
µ (rh)

for some real constants C and C0.

Proof. Assume that µ (rh) is a particular positive solution of (5). Setting f (rh) =
g (rh)µ (rh) we obtain

0 = µ
d2g

dr2h
+ 2

dµ

drh

dg

drh
+ g

d2µ

dr2h

+ 2
cosh rh
sinh rh

g
dµ

drh
+ 2

cosh rh
sinh rh

µ
dg

drh
+ γµg

= µ
d2g

dr2h
+ 2

dµ

drh

dg

drh
+ 2

cosh rh
sinh rh

µ
dg

drh
.

Denoting dg
drh
= h, we deduce

µ
dh

drh
+

(
2
dµ

drh
+ 2

cosh rh
sinh rh

µ

)
h = 0.

Hence we solve
d

drh
(log h+ 2 log µ+ 2 log (sinh rh)) = 0

and therefore
∂g

∂rh
= h = C sinh−2 rhµ

−2 (rh) .
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Consequently, the general solution isn
2−(k+1)2

4

f (rh) =

(
C

∫ rh

r0

sinh−2 uµ−2 (u) du+ C0

)
µ (rh) .

We recall the relation between solutions of (1) and eigenfunctions of the hy-
perbolic Laplace-Beltrami operator.

Proposition 7 ([10]) Let Ω ⊂ R3+ be an open subset Ω of R3+. If u is a solution
of (1) in Ω, then f(x) = x

1−k
2

2 u(x) is an eigenfunction of the hyperbolic Laplace
operator corresponding to the eigenvalue 1

4
((k + 1)2 − 4l − 4) . Conversely, if f

is the an eigenfunction of the hyperbolic Laplace operator corresponding to the

eigenvalue γ in Ω then u(x) = x
k−1
2

2 f(x) is the solution of the equation (1) in Ω
with l = 1

4
((k + 1)2 − 4γ − 4).

The mean value property for the solutions of (1) can be stated in terms of the
hypergeometric functions. We recall their definition:

2F1 (a, b; c;x) =

∞∑
m=0

(a)m (b)m
(c)m

xm

m!
,

where (a)m = a (a+ 1) ... (a+m− 1) and (a)0 = 1. This series converges for x
satisfying |x| < 1. We recall also an important Euler’s integral formula valid for
a, b, c ∈ C satisfying 0 < Re b < Re c

2F1(a, b; c; z) =
1

B(b, c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−adt.

where the Beta funtion has the representation

B (x, y) =
Γ (x) Γ (y)

Γ (x+ y)
.

The mean value property for solutions of (1) with respect to the hyperbolic
surface measure was proved in [8].

Theorem 8 Let l and k be real numbers satisfying 4l ≤ (k + 1)2 and U ⊂ R3+ be
open. If

ψ2,k,l(rh) = e−
1+
√
(k+1)2−4l
2

rh
2F1(1 +

√
(k + 1)2 − 4l

2
, 1; 2; 1− e−2rh)

then ψ2,k,l(rh) is an eigenfunction of the hyperbolic Laplace operator corresponding
to the eigenvalue 1

4
((k + 1)2 − 4l − 4). Moreover, if u : U → R is a solution of

the Weinstein equation

∆u− k

x2

∂u

∂x2
+

l

x22
u = 0
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in U then

u(a) =
a
k−1
2

2

4π sinh2(rh)ψ2,k,l(rh)

∫
∂Bh(a,rh)

u(x)
dσ

x
3+k
2

2

for all hyperbolic balls satisfying Bh (a, rh) ⊂ U .

In our special case R3+, we can give a simple formula for the function ψ2,k,l(rh)
as follows.

Theorem 9 Let l and k be real numbers satisfying 4l ≤ (k + 1)2 and U ⊂ R3+ be
open. Denote

a = 1 +

√
(k + 1)2 − 4l

2

and rh = dh (x, en). Then

ψ2,k,l(rh) = e−arh2F1(a, 1; 2; 1− e−2rh)

=

{
sinh(rh(a−1))
(a−1) sinh rh , if 4l 6= (k + 1)2,

rh
sinh rh

, if 4l = (k + 1)2,

is the eigenfunction of the hyperbolic Laplace operator corresponding to the eigen-
value 1

4
((k + 1)2 − 4l − 4).

For the sake of completeness, we first prove the lemma.

Lemma 10 If |x| < 1 then

2F1(a, 1; 2;x) =

{
1−(1−x)−a+1
x(−a+1) if a 6= 1,
− log(1−x)

x
if a = 1.

Proof. If we replace t with 1− s in Euler’s integral we obtain

2F1(a, b; c;x) =
Γ (c)

Γ (b) Γ (c− b)

∫ 1

0

(1− x+ xs)−a (1− s)b−1 sc−b−1ds

=
(1− x)−a Γ (c)
Γ (b) Γ (c− b)

∫ 1

0

(
1 +

xs

1− x

)−a
(1− s)b−1 sc−b−1ds.

In case a 6= 1 we infer

2F1(a, 1; 2;x) = (1− x)−a
∫ 1

0

(
1 +

xs

1− x

)−a
dt

= (1− x)−a 1− x
x (−a+ 1)

((
1 +

x

1− x

)−a+1
− 1
)

= (1− x)−a x− 1
x (−a+ 1)

(
1

(1− x)−a+1
− 1
)

=
1− (1− x)−a+1

x (−a+ 1) .

89



If a = 1 we compute

2F1(a, 1; 2;x) = (1− x)−a
∫ 1

0

(
1 +

xs

1− x

)−1
dt

= (1− x)−1 1− x
x

log

(
1 +

x

1− x

)
= − log (1− x)

x
.

We are ready to verify the preceding theorem.

Proof. Setting a = 1 +
√
(k+1)2−4`

2
6= 1 we obtain

ψ2,k,l(rh) = e−arh2F1(1 +

√
(k + 1)2 − 4`

2
, 1; 2; 1− e−2rh)

= e−arh
(

e2rh(a−1) − 1
(1− e−2rh) (a− 1)

)
= e−arherh(a−1)erh

erh(a−1)−e−rh(a−1)
2

(erh−e−rh)
2

(a− 1)

=
sinh (rh (a− 1))
(a− 1) sinh rh

.

If a = 1 then

ψ2,k,l(rh) = −e−rh
log e−2rh

(1− e−2rh) =
2rh

(erh − e−rh) =
rh

sinh rh
.

Note also that
lim
rh→0

ψ2,k,l(rh) = 1

and with this extension ψ2,k,l is a continuously differential function.
Substituting the values of ψ2,k,l for the mean value theorem we immediately

obtain the result.

Theorem 11 Let k be a real number and U ⊂ R3+ be open. If u : U → R is a
solution of the Weinstein equation

x22∆u− kx2
∂u

∂xn
= 0

in U then

u(a) =
a
k−1
2

n |k + 1|
8π sinh(rh) sinh

(
rh|k+1|

2

) ∫
∂Bh(a,rh)

x
− k+3

2
2 u(x)dσ

in case k 6= −1and in case k = −1

u(a) =
1

4πa2rh sinh(rh)

∫
∂Bh(a,rh)

x−1n u(x)dσ.
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Similarly, the general solution of the equation (5) has the representation.

Theorem 12 If γ = 1
4
(4 − (k + 1)2) and k 6= −1 the general solution of the

equation (5) is

f (rh) = C1
cosh

(
|k+1|rh

2

)
sinh rh

+ C0
sinh

(
rh|k+1|

2

)
sinh rh

for some real constants C1 and C0. If k = −1 the general solution for γ = 1 is

f (rh) = C1
1

sinh rh
+ C0

rh
sinh rh

.

Proof. Assuming k 6= −1 and substituting

µ (rh) =
sinh

(
rh|k+1|

2

)
sinh rh

in

f (rh) =

(
C

∫ rh

r0

sinh−2 uµ−2 (u) du+ C0

)
µ (rh) ,

we obtain

f (rh) =

C ∫ rh

r0

sinh−2 u
(k + 1)2 sinh−2

(
u|k+1|
2

)
4 sinh−2 u

du+ C0

 2 sinh
(
rh|k+1|

2

)
|k + 1| sinh rh

=

(
C

∫ |k+1|rh
2

|k+1|r0
2

sinh−2 (s) ds+ C0

)
sinh

(
rh|k+1|

2

)
sinh rh

=

(
C coth

(
|k + 1| r0

2

)
− C coth

(
|k + 1| rh

2

)
+ C0

) sinh( rh|k+1|
2

)
sinh rh

.

completing the proof, if we choose the constants properly. The case k =− 1 
is proved similarly.

Corollary 13 The particular solution of (5) with γ = 1
4
(4− (k+ 1)2) outside the

point e2 is

F (x) =
cosh

(
|k+1|dh(x,e2)

2

)
sinh dh (x, e2)

=
cosh

(
|k+1|dh(x,e2)

2

)
|x− cosh dh (x, e2) e2|

and x
k−1
2

2 F (rh) is k-hyperbolic harmonic.

Denote

F (x, a) =
cosh

(
|k+1|dh(x,a)

2

)
sinh dh (x, a)

.

We obtain this function by transforming the preceding function with the transfor-
mation τ (x) = a2x+ Pa.
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Corollary 14 The function Fh (x, a) satisfies the equation

∂2f

∂r2h
+ 2

∂f

∂rh

cosh rh
sinh rh

+ γf = 0

with γ = 1
4
(4− (k+1)2) outside x = a and x

k−1
2

2 Fh (x, a) is k-hyperbolic harmonic
outside x = a .

Proof. Since the hyperbolic distance is invariant under Möbius transformation
mapping the upper half space onto itself, applying τ (x) = a2x+ Pa we infer

dh (τ (x) , a) = dh (x, e2)

and

F (x) =
cosh

(
|k+1|dh(τ(x),a)

2

)
sinh dh (τ (x) , a)

.

Since the hyperbolic Laplace operator is invariant under Möbius transformation
mapping the upper half space onto itself the function

F
(
τ−1 (x)

)
=
cosh

(
|k+1|dh(x,a)

2

)
sinh dh (x, a)

is the eigenfunction of the hyperbolic Laplace operator with the eigenvalue with
γ = 1

4
(4− (k + 1)2), completing the proof.

Lemma 15 The function Fh (x, a) is Lebesgue integrable in the hyperbolic ball
Bh (a, rh) and∫

Bh(a,rh)

x
− 5k+1

2
2 Fh (x, a) dx ≤M (a, rh)

(
(cosh rh − 1)2

6
+
sinh2 rh
2

)
,

for some function M (a, rh) > 0 with a bounded limit when rh → 0.

Proof. It is enough to prove the statement for a = e2. Note that

|x|2 + 1
2x2

= λ (x, e2) = cosh dh (x, e2) .

Since e−rh < x2 < erh in Bh (e, rh) = B (cosh rhe2, sinh rh) we obtain

x
− 1+5k

2
2 cosh

(
|k+1|dh(x,a)

2

)
sinh dh (x, e2)

=
x
− 1+5k

2
2 cosh

(
|k+1|dh(x,a)

2

)
√
λ− 1

√
λ+ 1

≤
x
− 1+5k

2
2 cosh

(
|k+1|rh

2

)
√
λ− 1

≤

√
2e

5k
2
rh cosh

(
|k+1|rh

2

)
√
|x|2 + 1− 2x2

92



in Bh (a, rh) it is enough to consider the integral∫
Bh(er,rh)

dx√
|x|2 + 1− 2x2∫

B(cosh rhe2,sinh rh)

dx√
|x|2 + 1− 2x2

.

Denote c = cosh rhe2. Changing the variables

x0 = r sin θ cosφ,

x1 = r sin θ sinφ,

x2 = r cos θ + c,

we obtain ∫
B(cosh rhe2,sinh rh)

dx√
|x|2 + 1− 2x2

=

∫ sinh rh

0

∫ 2π

0

∫ π

0

r2 sin θdθdφdr√
r2 + 2r (c− 1) cos θ + (c− 1)2

= 2π

∫ sinh rh

0

− 1

c− 1 (r (|r − c+ 1|)− r (r + c− 1)) dr

= 2π

∫ c−1

0

− 1

c− 1 (r (c− 1− r)− r (r + c− 1)) dr

+ 2π

∫ sinh rh

c−1
− 1

c− 1 (r (r − c+ 1)− r (r + c− 1)) dr

= 2π

∫ c−1

0

2r2

c− 1dr + 2π
∫ sinh rh

c−1
rdr

= 2π

(
2

3
(c− 1)2 + sinh

2 rh
2

− 1
2
(c− 1)2

)
= 2π

(
1

6
(c− 1)2 + sinh

2 rh
2

)
,

completing the proof.
We recall the Green formula in some Riemannian manifolds.

Proposition 16 ([1]) Let R ⊂ R3+ be a bounded open set with the smooth bound-
ary contained R3+ and denote the volume element corresponding to the Riemannian
metric

ds2 =
dx20 + dx21 + dx22

x2k2

by dm(k) = x−3k2 dm, the surface elements by dσ(k) = x−2k2 dσ and the outer normal
∂u
∂n(k)

= xk2
∂u
∂n
. where n is the outer normal to the the surface ∂R. Then the Laplace-

Beltrami operator is

4k = x2k2

(
4− k

x2

∂

∂x2

)
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and ∫
R

(
u4kvdm(k) − v4kudm(k)

)
=

∫
∂R

(
u
∂v

∂nk
− v ∂u

∂nk

)
dσ(k)

for any functions u and v that are twice continuously differentiable functions in
an open set containing the closure Ω of Ω.

A function f : Ω→ R is called k-hyperbolic harmonic if

4kf = 0

in Ω. The theory of k-hyperbolic harmonic functions was developed in [3]. Denote

H (x, y) = y
k−1
2

2 x
k−1
2

2

cosh
(
|k+1|dh(x,y)

2

)
sinh dh (x, y)

.

We will show that H (x, y) is the fundamental k-hyperbolic harmonic functions
with a pole in x. We need following lemma.

Lemma 17 Let Ω ⊂ R3+ be open and x a point with Bh (x, rh) ⊂ Ω. Then

lim
rh→0

∫
∂Bh(x,rh)

u∂H(x,y)
∂nk

dσ(k) (y)

4π
= −u (x)

for any hyperbolic balls Bh (x, rh) satisfying Bh (x, rh) ⊂ Ω.

Proof. Using Proposition 3 we infer that in ∂Bh (x, rh) the outer normal at y is

n = (n0, n1, n2) =
(y0 − x0, y1 − x1, y2 − x2 cosh rh)

x2 sinh rh
.

Denote rh = d (x, y). We first compute

∂H (x, y)

∂nk
= yk2

∂H (x, y)

∂n
= yk2 (n, grad v) .

= y
3k−1
2

2 x
k−1
2

2

∂

∂rh

cosh
(
|k+1|rh

2

)
sinh rh

2∑
i=1

ni
∂rh
∂yi

+
k − 1
2

yk−12 n2H (x, y)

= yk2H (x, y)

(
|k + 1|
2

tanh

(
|k + 1| rh

2

)
− coth rh

) 2∑
i=1

ni
∂rh
∂yi

+
k − 1
2

yk−12 n2H (x, y) .

Applying Lemma 1 we infer

∂rh
∂yi

=
∂ arcoshλ (x, y)

∂yi
=
yi − xi − x2 (cosh rh − 1) δin

y2x2 sinh rh
,
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and therefore we conclude
2∑
i=1

ni
∂rh
∂yi

=
1

y2
.

Hence we have

∂H

∂nk
(x, y) = yk−12 H (x, y)

(
|k + 1|
2

tanh

(
|k + 1| rh

2

)
− coth rh +

k − 1
2

n2

)
.

Since Bh (x, rh) = B (xe, x2 sinh rh) for xe = (x0, x1, x2 cosh rh) and uy
3k−3
2

2 is con-
tinuous we obtain

lim
rh→0

|k + 1|x
k−1
2

2

8π

sinh
(
|k+1|rh

2

)
sinh rh

∫
∂Bh(x,rh)

u (y) y
3k−3
2

2 dσ(k) (y) = 0.

Similarly we deduce that

lim
rh→0

k − 1
8π

∫
∂Bh(x,rh)

yk−12 u (y)n2H (x, y)

x2 sinh rh
dσ(k) (y)

= lim
rh→0

(k − 1) x
k+1
2

2

8πx22 sinh
2 rh

∫
∂Bh(x,rh)

u (y) y
3k−1
2

2 (y2 − x2 cosh rh) cosh
|k + 1| rh

2
dσ(k) = 0.

Lastly we infer

lim
rh→0
−
x
k+3
2

2 cosh rh cosh
(
|k+1|rh

2

)
4πx22 sinh

2 rh

∫
∂Bh(x,rh)

u (y)

y
k+3
2

2

dσ (y) = −u (x) ,

completing the proof.

Theorem 18 Let Ω ⊂ R3+ be open and R a bounded open set with a smooth
boundary satisfying R ⊂ Ω. If u is twice continuously differentiable functions in
Ω and x ∈ R then

u (x) =
1

4π

∫
∂R

(
u
∂H

∂nk
−H ∂u

∂nk

)
dσk (y)−

1

4π

∫
R

H4kudm(k)

where dσk, dm(k) and ∂
∂nk
are the same as in Lemma 16. Moreover, if u ∈ C20 (R)

then

u (x) = − 1
4π

∫
R

H4kudm(k).

Proof. Applying Green formula in the set R\Bh (x, rh) we obtain∫
R\Bh(x,rh)

(H4ku− u4kH) dm(k) =

∫
∂R\Bh(x,rh)

(
H
∂u

∂nk
− u ∂H

∂nk

)
dσk

=

∫
∂R

(
H
∂u

∂nk
− u ∂H

∂nk

)
dσk

−
∫
∂Bh(x,rh)

(
H
∂u

∂nk
− u (y) ∂H

∂nk

)
dσk.
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Since H is k-hyperbolic harmonic in R\Bh (x, rh) we obtain∫
R\Bh(x,rh)

H (x, y)4ku (y) dm(k) (y) =

∫
∂R

(
H
∂u

∂nk
− u ∂H

∂nk

)
dσk (y)

−
∫
∂Bh(x,rh)

(
H
∂u

∂nk
− u ∂H

∂nk

)
dσk.

Since ∫
∂Bh(x,rh)

H
∂u

∂nk
dσk

= x
k−1
2

2

cosh
(
|k+1|rh

2

)
sinh rh

∫
∂Bh(x,rh)

∂u

∂nk
y
− 3k+1

2
2 dσ

and ∂u
∂nk

y
− 3k+1

2
2 is bounded in ∂Bh (x, rh) we obtain∫
∂Bh(x,rh)

∣∣∣∣H ∂u

∂nk

∣∣∣∣ dσk ≤ m (x, rh) x
k−1
2

2 4 cosh

(
|k + 1| rh

2

)
π sinh rh

for some founction m > 0 with bounded limit when rh → 0 and therefore

lim
rh→0

∫
∂Bh(x,rh)

H
∂u

∂nk
dσk = 0.

Since the function 4ku (y) is a continuous function and by Lemma 15 H (x, y) is
integrable in a bounded set R we obtain

lim
rh→0

∫
R\Bh(x,rh)

H4kuydm(k) =

∫
R

H4kudm(k).

Combining all the preceding steps and applying Lemma 17 we conclude the result.

Corollary 19 Let Ω ⊂ R3+ be open and R a bounded open set with a smooth
boundary satisfying R ⊂ Ω. If u is k-hyperbolic harmonic in Ω and x ∈ R then

u (x) =
1

4π

∫
∂R

(
u
∂H

∂nk
−H ∂u

∂nk

)
dσk (y)

where dσk, dm(k) and ∂
∂nk
are the same as in Lemma 16.

Note that if k = 1, then

H (x, y) = coth (dh (x, y)) =

∫ ∞
dh(x,y)

− du

sinh2 u

and if k = −1, then

H (x, y) =
1

x2y2 sinh dh (x, y)
=

1

x2y2
√
λ2 − 1

=
2

|x− y| |x− ŷ| .
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These kernels were already used in integral formulas for hypermonogenic functions,
see for example in [2] and [6]. Mean value properties for hyperbolic harmonic
functions were verified in [7] .
We may prove also similar results for eigenfunctions of the hyperbolic Laplace

operator.

Theorem 20 Let Ω ⊂ R3+ be open and R a bounded domain with a smooth bound-
ary satisfying R ⊂ Ω. Denote γ = 1

4
(4 − (k + 1)2. If u is twice continuously

differentiable functions in Ω and x ∈ R then

u (x) =
1

4π

∫
∂R

(
u
∂F

∂nh
− F ∂u

∂nh

)
dσh (y)−

1

4π

∫
R

F (4hu− γu) dmh,

where dσh = dσ
y22
, dmh =

dm
y32
and ∂

∂nh
= y2

∂
∂n
. Moreover. if u ∈ C20 (R) then

u (x) = − 1
4π

∫
R

F (4hu− γu) dmh.

Proof. Using Green formula in the set R\Bh (x, rh) we obtain∫
R\Bh(x,rh)

(F (4hu− γu)− u (4hF − γF )) dmh =

∫
∂R\Bh(x,rh)

(
F
∂u

∂nh
− u ∂F

∂nh

)
dσh

=

∫
∂R

(
F
∂u

∂nh
− u ∂F

∂nh

)
dσh

−
∫
∂Bh(x,rh)

(
F
∂u

∂nh
− u ∂F

∂nh

)
dσh.

From 4hF (x, y)− γF (x, y) = 0 in R\Bh (x, rh) , it follows that∫
R\Bh(x,rh)

F (4hu− γu) dmh =

∫
∂R

(
F
∂u

∂nh
− u ∂F

∂nh

)
dσh

−
∫
∂Bh(x,rh)

(
F
∂u

∂nh
− u ∂F

∂nh

)
dσh.

Since ∂u
∂nk

is bounded in ∂Bh (x, rh) we obtain∫
∂Bh(x,rh)

∣∣∣∣F (x, y) ∂u (y)∂nh

∣∣∣∣ dσh (y) ≤ 4m (x, rh) cosh |k + 1| rh2
πx2 sinh rh

for some function m > 0 with a bounded limit when rh → 0 and therefore

lim
rh→0

∫
∂Bh(x,rh)

F (x, y)
∂u (y)

∂nh
dσh (y) = 0.

Since the function 4hu − γu is a continuous function and by Lemma 15 F (x, y)
is integrable in a bounded set R we obtain

lim
rh→0

∫
R\Bh(x,rh)

F (x, y) (4hu− γu) dmh (y) =

∫
R

F (x, y) (4hu− γu) dmh (y) .

97



The proof is completed when we verify that

lim
rh→0

∫
∂Bh(x,Rh)

u∂F (x,y)
∂nh

dσh (y)

4π
= −u (x) .

This follows from the preceding calculations similarly as earlier proof, since

∂F

∂nh
= F (x, y)

(
|k + 1|
2

tanh

(
|k + 1| rh

2

)
− coth rh

)
and

lim
rh→0

∫
∂Bh(x,rh)

u
∂F (x, y)

∂nh
dσh = − lim

rh→0

cosh
(
|k+1|rh

2

)
cosh rh

sinh2 rh

∫
∂Bh(x,rh)

udσ

y22

= −4πu (x) .

Corollary 21 Let Ω ⊂ R3+ be open and R a bounded open set with a smooth
boundary satisfying R ⊂ Ω. If u is an eigenfunction corresponding to the eigen-
value γ = 1

4
(4− (k + 1)2 in Ω and x ∈ R then

u (x) =
1

4π

∫
∂R

(
u
∂F (x, y)

∂nh
− F (x, y) ∂u

∂nh

)
dσh.
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Abstract. Safety operation of important civil structures such as bridges can be estimated by
using fracture analysis. Since the analytical methods are not capable of solving many compli-
cated engineering problems, numerical methods have been increasingly adopted. In this paper,
a part of isotropic material which contains a crack is considered as a partial model and the
proposed model quality is evaluated. EXtended IsoGeometric Analysis (XIGA) is a new devel-
oped numerical approach [1, 2] which benefits from advantages of its origins: eXtended Finite
Element Method (XFEM) and IsoGeometric Analysis (IGA). It is capable of simulating crack
propagation problems with no remeshing necessity and capturing singular field at the crack tip
by using the crack tip enrichment functions. Also, exact representation of geometry is possi-
ble using only few elements. XIGA has also been successfully applied for fracture analysis of
cracked orthotropic bodies [3] and for simulation of curved cracks [4]. XIGA applies NURBS
functions for both geometry description and solution field approximation. The drawback of
NURBS functions is that local refinement cannot be defined regarding that it is based on tensor-
product constructs unless multiple patches are used which has also some limitations. In this
contribution, the XIGA is further developed to make the local refinement feasible by using T-
spline basis functions. Adopting a recovery based error estimator in the proposed approach for
evaluation of the model quality and performing the adaptive processes is in progress. Finally,
some numerical examples with available analytical solutions are investigated by the developed
scheme.
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1 INTRODUCTION

Increasingly development of computers made the possibility to apply numerical methods
for simulation of civil structures as an alternative to analytical methods which are not feasible
in resolving complex problems. This has attracted many researchers’ interests for developing
more accurate and efficient computational approaches in the last decades.

Fracture analysis of structures is of great importance for estimation of their safety operation.
A reliable and efficient numerical method is required for analysis of cracked part of a structure.

The remeshing necessity and existence of a singular field around a crack tip in simulation
of crack propagation problems led to the development of a new generation of computational
approaches such as meshfree methods [5-14] and the extended FEM (XFEM) [15-20] which
belongs to the class of Partition of Unity Methods (PUM). Moving discontinuous problems such
as crack propagation can be analyzed by these methods without the requrirement of remeshing
or rearranging of the nodal points. In the XFEM, a priori knowledge of the solution is locally
added to the approximation space. This enrichment allows for capturing particular features such
as discontinuities and singularities which are present in the solution exactly.

More recently, a numerical approach called extended isogeometric analysis (XIGA) [1, 2]
has been developed for simulation of stationary and propagating cracks by incorporating the
concepts of the XFEM into the isogeometric analysis [21, 22]. Some superiorities of the isoge-
ometric analysis in comparison with the conventional FEM are: simple and systematic refine-
ment strategies, an exact representation of common and complex engineering shapes, robustness
and higher accuracy. XIGA has also been successfully applied for fracture analysis of cracked
orthotropic bodies [3] and for simulation of curved cracks [4].

XIGA applies NURBS functions for both geometry description and solution field approxima-
tion. The drawback of NURBS functions is that local refinement cannot be defined regarding
that it is based on tensor-product constructs unless multiple patches are used which has also
some limitations. In this contribution, T-spline basis functions are applied in the XIGA to make
local refinement feasible.

Finally, for quality evaluation of the proposed model, some numerical simulations with avail-
able analytical solutions are studied.

2 BASIS FUNCTIONS

2.1 NURBS

Non-uniform rational B-splines (NURBS) are a generalization of piecewise polynomial B-
spline curves. The B-spline basis functions are defined in a parametric space on a knot vector
Ξ. A knot vector in one dimension is a non-decreasing sequence of real numbers:

Ξ = {ξ1, ξ2, . . . , ξn+p+1} (1)

where ξi is the ith knot, i is the knot index, i = 1, 2, . . . , n + p + 1, p is the order of the B-
spline, and n is the number of basis functions. The half open interval [ξi, ξi+1) is called the
ith knot span and it can have zero length since knots may be repeated more than once, and the
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interval [ξ1, ξn+p+1] is called a patch. In the isogeometric analysis, always open knot vectors are
employed. A knot vector is called open if it contains p+ 1 repeated knots at the two ends.

With a certain knot span, the B-spline basis functions are defined recursively as,

N0
i (ξ) =

{
1 if ξi ≤ ξ ≤ ξi+1

0 otherwise (2)

and

Np
i (ξ) =

ξ−ξi
ξi+p−ξiN

p−1
i (ξ) + ξi+p+1−ξ

ξi+p+1−ξi+1
Np−1
i+1 (ξ) p = 1, 2, 3, . . . (3)

where i = 1, 2, . . . , n.

A B-spline curve of order p is defined by:

C (ξ) =
n∑

i=1

Np
i (ξ)Pi (4)

where Np
i (ξ) is the ith B-spline basis function of order p and {Pi} are control points, given in

d-dimensional space Rd.

The non-uniform rational B-spline (NURBS) curve of order p is defined as:

C (ξ) =
n∑

i=1

Rp
i (ξ)Pi (5)

Rp
i (ξ) =

Np
i (ξ)wi∑n

j=1N
p
j (ξ)wj

(6)

where {Rp
i } are the NURBS basis functions, {Pi} are the control points and wi is the ith weight

that must be non-negative. In the two dimensional parametric space [0, 1]2, NURBS surfaces
are constructed by tensor product through knot vectors Ξ1 =

{
ξ11 , ξ

1
2 , . . . , ξ

1
n+p+1

}
and Ξ2 ={

ξ21 , ξ
2
2 , . . . , ξ

2
n+p+1

}
. It yields to:

Rp,q
i,j

(
ξ1, ξ2

)
=

Np
i (ξ

1)M q
j (ξ

2)wi,j∑n
k=1

∑m
l=1N

p
k (ξ

1)M q
l (ξ

2)wk,l
(7)

For more details on NURBS, refer to [23].

2.2 T-splines

T-splines is a generalization of NURBS enabling local refinement [26, 27]. For defining the
T-spline basis functions, an index space called T-mesh is defined. It is similar to the index space
representation of a NURBS, with the difference that T-junctions, which are vertices connecting
three edges, are allowed. An example of T-mesh is illustrated in Fig. 1. It is noted that each line
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Figure 1: A sample of T-mesh.

in the mesh corresponds to a knot value. Then, anchors are defined on the T-mesh to identify
the location of each basis function. They are located at the intersections of knot lines if the
polynomial order is odd, otherwise their location are in the center of the cells. Regardless of
degree, an anchor location is at the center of the support of a function in the index space.

For definition of T-splines, local knot vectors are defined instead of using the global knot
vectors since each basis function has the compact support of (p+ 1) × (q + 1) knots. As il-
lustrated in Fig. 2, local knot vectors in each direction are defined by horizontally or vertically
marching from the anchors backward and forward [27]. Afterwards, each basis function can be
defined using the Eqs. 2, 3 and 7 and its corresponding local knot vectors.

In order to refine the mesh, knot insertion process is performed. It consists of adding new
knots to the present mesh/T-mesh and correspondingly, modifying and adding some control
points. For more information about T-spline and local refinement, readers are referred to [26,
27].

3 EXTENDED ISOGEOMETRIC ANALYSIS

Extended isogeometric analysis (XIGA) is a newly developed computational approach which
uses the superiorities of the extended finite element method (XFEM) within the isogeometric
analysis. It is capable of crack propagation simulation without the remeshing necessity since
element edges are defined independent of the crack location.

Solution field approximation is extrinsically enriched by the Heaviside and branch functions
for crack face and singular field (around the crack tip) modeling, respectively.

uh (ξ1, ξ2) =
∑nen
i=1R

p,q
i (ξ1, ξ2)ui +

∑nH
j=1R

p,q
j (ξ1, ξ2)Haj

+
∑nQ

k=1R
p,q
k (ξ1, ξ2)

∑4
α=1Qαb

α
k

(8)

The first term in the right hand side is standard IGA approximation. {Rp,q
i (ξ1, ξ2)} are the T-

Spline basis functions of orders p and q in ξ1 and ξ2 directions, respectively, at the point (ξ1, ξ2)
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(a) (b)
Figure 2: Schematic view of defining local knot vectors for the anchor Sα: (a) quadratic polynomial order: Ξ1

α ={
ξ12 , ξ

1
3 , ξ

1
6 , ξ

1
7

}
and Ξ2

α =
{
ξ24 , ξ

2
5 , ξ

2
6 , ξ

2
8

}
; (b) cubic polynomial order: Ξ1

α =
{
ξ12 , ξ

1
3 , ξ

1
6 , ξ

1
7 , ξ

1
8

}
and Ξ2

α ={
ξ25 , ξ

2
6 , ξ

2
8 , ξ

2
9 , ξ

2
9

}
.

in the parametric space [0, 1] × [0, 1]. {aj} are the vectors of additional degrees of freedom
which are related to the modeling of crack faces, {bαk} are the vectors of additional degrees of
freedom for modeling the crack tip, nen is the number of nonzero basis functions for a given
knot span, nQ is the number of nen basis functions which have been selected as branch enriched
basis functions. They can be selected using the topological enrichment strategy or geometri-
cal enrichment one. In topological enrichment scheme, the basis functions which contain the
crack tip in their influence domains are selected as the branch enriched basis functions while in
geometrical enrichment method, branch enriched basis functions consist of the basis functions
chosen from the previous strategy and the ones which are selected according to considering a
constant domain around the crack tip. In this contribution, geometrical enrichment method is
adopted and a circular domain with a predefined radius at the center crack tip is considered and
basis functions whose influence domains contain the crack tip and whose anchors located in the
circle are selected as branch enriched basis functions. nH is the number of nen basis functions
that have crack face in their support domains and have not been selected as branch enriched
basis functions. H is the generalized Heaviside function [24],

H (X) =

{
+1 if (X−X∗) .en > 0
−1 otherwise (9)

where en is the unit normal vector of crack alignment in point X∗on the crack surface which is
the nearest point to X (ξ1, ξ2).

In Eq. 8, Qα {α = 1, 2, 3, 4} are the crack tip enrichment functions whose roles are repro-
ducing the singular field around crack tips,

{Qα}4α=1 =

{√
r sin

θ

2
,
√
r cos

θ

2
,
√
r sin θ sin

θ

2
,
√
r sin θ cos

θ

2

}
(10)
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Figure 3: A mode I crack model in an infinite plate.

where (r, θ) are the local crack tip polar coordinates with respect to the tangent to the crack tip
in the physical space.

Readers are referred to [2] for more information about XIGA formulation and implementa-
tion.

4 NUMERICAL EXAMPLES

In this section, two numerical examples are investigated by the proposed approach. The first
one contains a mode I crack while the other includes a mixed mode crack. New knots added for
refinement satisfy the conditions of analysis-suitable T-splines [28]. Basis functions of cubic
order are considered. Gauss quadrature rule with 4x4 Gauss points for normal elements is
utilized. For integration over split and tip elements, sub-triangles and almost polar techniques
with 13 and 7x7 Gauss points for each sub-triangles are adopted.

4.1 Mode I crack model in the infinite plate

An infinite plate including a straight crack under pure fracture mode I is considered, as de-
picted in Figure 3. The plate is in plane strain state. Then, a local finite square domain ABCD
which includes the crack tip in the center is defined. The domain ABCD, which includes the
cl = 5 mm part of the crack, is smaller than the crack length 2a = 200 mm in the infinite plate.
The size of this analytical domain ABCD is 10× 10 mm. Other parameters are: Young’s mod-
ulus E = 107 N/mm2, Poisson’s ratio ν = 0.3 and prescribed uniaxial stress σo = 104 N/mm2.

The analytical solution for the displacement and stress fields in terms of local polar coordi-
nates in a reference frame (r, θ) centered at the crack tip are:

ux (r, θ) =
2(1+ν)√

2π
KI

E

√
r cos θ

2

(
2− 2ν − cos2 θ

2

)

uy (r, θ) =
2(1+ν)√

2π
KI

E

√
r sin θ

2

(
2− 2ν − cos2 θ

2

) (11)
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Table 1: Error norms (in percent) of the three models before and after local refinement using NURBS and T-splines.

model local refined basis functions control points elements DOFs
error norm (%)
L2 energy

I
no NURBS 64 25 272 0.1341 2.4945
yes NURBS 140 77 500 0.0698 2.1441
yes T-spline 112 77 444 0.0706 2.1595

II
no NURBS 324 225 1044 0.0516 1.6823
yes NURBS 680 527 2488 0.0101 0.9486
yes T-spline 442 391 1820 0.0101 0.9252

III
no NURBS 784 625 2592 0.0230 1.2012
yes NURBS 1620 1377 5864 0.0039 0.6358
yes T-spline 972 891 3848 0.0040 0.6238

σxx (r, θ) =
KI√
2πr

cos θ
2

(
1− sin θ

2
sin 3θ

2

)

σyy (r, θ) =
KI√
2πr

cos θ
2

(
1 + sin θ

2
sin 3θ

2

)

σxy (r, θ) =
KI√
2πr

sin θ
2
cos θ

2
cos 3θ

2

(12)

where KI = σo
√
πa is the mode I stress intensity factor. Analytical displacement field (Eq. 11)

is prescribed on the boundaries except for the crack boundary. Unlike homogeneous essen-
tial boundary conditions, inhomogeneous boundaries can not be imposed in a straightforward
approach in isogeometric analysis; because the non-interpolating natures of NURBS and T-
splines do not allow for satisfaction of the kronecker delta property. For imposition of essential
boundary conditions, the least-squares minimization method [1] is applied.

Three models with uniformly distributed elements are considered: model I with 5 × 5 ele-
ments, model II with 15× 15 elements, and model III with 25× 25 elements. For this purpose,
the h-refinement (knot insertion) process is utilized. In order to locally refine the mesh around
the crack, the elements intersected with the crack are chosen for uniform refinement in a 3× 3
mesh. Both NURBS and T-spline basis functions are applied for each model. Mesh and ele-
ments for the model III before and after local refinement are displayed in Fig. 4.

The exact L2 (of displacement) and energy error norms (in percent) of all models are given
in Table 1. It is observed that in some cases the models which are locally refined by using
T-splines result in even more accurate results than those obtained by using NURBS, although
much less number of control points and degrees of freedom are applied.

4.2 Inclined center crack in a square plate under uniaxial tension

Mixed mode stress intensity factors for a square plate with a center inclined crack under
remote uniaxial tensile stress (Fig. 5) are investigated. The plate is in plane stress state, with
L = D = 10 and 2a = 0.7. Since the plate dimensions are large in comparison to the crack
length, the numerical results can be reasonably compared with the analytical solution of infinite
plate. For the predefined loading σo, the exact mixed mode stress intensity factors are:

KI = σo
√
πa cos2 φ, KII = σo

√
πa sinφ cosφ (13)

which φ is the crack inclination angle with respect to the horizontal line.
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(a) (b)

(c) (c)
Figure 4: Mesh and elements of the model III before and after local refinement: (a) mesh/elements before local re-
finement; (b) mesh/elements after local refinement using NURBS; (c) mesh after local refinement using T-splines;
(c) elements (for integration) after local refinement using T-splines.
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Figure 5: Geometry and loading of a square plate with a center inclined crack.

Table 2: Errors (%) of computed mixed-mode SIFs for different crack inclination angles, φ (degree).

KI KII

φ NURBS T-spline NURBS T-spline
0 0.4339 0.4339 - -

15 0.3786 0.3786 0.2912 0.2913
30 0.477 0.477 1.0711 1.07
45 0.4759 0.4759 1.0388 1.0387
60 0.6498 0.6526 1.3027 1.3039
75 0.4746 0.4746 1.1389 1.1389

Since Dirichlet boundary condition is homogeneous in this example, no specific technique
is utilized for imposition of essential boundary conditions. For discretizing the model, firstly
25×25 uniformly distributed elements are constructed using the h-refinement, then the elements
located in [4, 6]× [4, 6] are selected for uniform refinement in a 5× 5 mesh. Both NURBS and
T-spline basis functions are applied for analysis. Model discretizations for models which use
NURBS and T-spline basis functions are illustrated in Figs. 6 and 7, respectively.

Different inclination angles have been modeled using the two aforementioned discretizations.
It is interesting to note that the both resulted in very similar mixed mode SIFs while 2304 control
points and 2025 elements are modeled for the first discretization and 1504 control points and
1465 elements are modeled for the second one. Errors (%) of the computed SIFs are given in
Table 2 and the exact and computed normalized mixed mode SIFs are illustrated in Fig. 8. The
computed SIFs are close to the exact SIFs.

5 CONCLUSION

In this contribution, the XIGA method has been further developed by using the T-spline basis
functions. This method is capable of local refinement which is necessary for adaptive procedure.
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(a) (b)

Figure 6: Discretization of a square plate with a center inclined crack using NURBS: (a) mesh; (b) control points.

(a) (b)

(c)
Figure 7: Discretization of a square plate with a center inclined crack using T-splines: (a) mesh; (b) control points;
(c) elements for integration.
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Figure 8: Analytical and computed normalized mixed mode SIFs for several crack inclination angles

Adopting a recovery based error estimator in the proposed approach (which is in progress by
the authors), can make XIGA a robust and practical method for fracture analysis of structures.
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Abstract. New foundations for geometric algebra are proposed based upon the existing 
isomorphisms between geometric and matrix algebras. Each geometric algebra always has a 
faithful real matrix representation with a periodicity of 8. On the other hand, each matrix algebra 
is always embedded in a geometric algebra of a convenient dimension. The geometric product is 
also isomorphic to the matrix product, and many vector transformations such as rotations, axial 
symmetries and Lorentz transformations can be written in a form isomorphic to a similarity 
transformation of matrices. We collect the idea that Dirac applied to develop the relativistic 
electron equation when he took a basis of matrices for the geometric algebra instead of a basis of 
geometric vectors. Of course, this way of understanding the geometric algebra requires new 
definitions: the geometric vector space is defined as the algebraic subspace that generates the rest 
of the matrix algebra by addition and multiplication; isometries are simply defined as the 
similarity transformations of matrices as shown above, and finally the norm of any element of the 
geometric algebra is defined as the thn  root of the determinant of its representative matrix of 
order nn× . The main idea of this proposal is an arithmetic point of view consisting of reversing 
the roles of matrix and geometric algebras in the sense that geometric algebra is a way of 
accessing, working and understanding the most fundamental conception of matrix algebra as the 
algebra of transformations of multilinear quantities. 
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1    INTRODUCTION 

 In his memoir On multiple algebra [1], Josiah Willard Gibbs explored the algebras proposed 
by several authors in the XIX century in order to multiply multiple quantities (vectors), and he 
reviewed Grassmann’s extension theory, Hamilton’s quaternions and Cayley’s matrices among 
others as well as the relations between them. Many kinds of products of vectors have been 
proposed since then, including Gibb’s skew product of vectors in the room space [2, p. 21]. What 
called strongly my attention was the following phrase of Gibbs [3, p.179]: 

“We have, for example, the tensor of the quaternion1, which has the 
important property represented by the equation: ( ) rqrq TTT = . 

There is a scalar quantity related to the linear vector operator which 
I have represented by the notation Φ  and called the determinant of Φ . It 
is in fact the determinant of the matrix by which Φ  may be represented, 
just as the square of the tensor of q  (sometimes called the norm2 of q ) is 
the determinant of the matrix by which q  is represented. It may also be 
defined as the product of the latent roots3 of Φ , just as the square of the 
tensor of q  might be defined as the product of the latent roots of q . Again, 
it has the property represented by the equation ψΦ=ΨΦ.  which 
corresponds exactly with the preceding equation with both sides squared.” 

That is, he pointed out that the relation between the determinant of the matrix representation of a 
quaternion and its norm was a power. Gibbs said that the determinant was the square, but it is the 
4th power of the present norm for the regular 4×4 matrix representation: 

dkcjbiaq +++= ⇒ ( )222224det dcbaqq +++==     (1) 

I wish to quote another phrase of Gibbs [4, p. 157]: 
“The quaternion affords a convenient notation for rotations. The notation 

1)( −qq , where q  is a quaternion and the operand is to be written in the 
parenthesis, produces on all possible vectors just such changes as a (finite) 
rotation of a solid body.” 

That is, if q  is represented by a matrix, a rotation is a similarity transformation. In fact, many 
vector transformations such as rotations, axial symmetries and Lorentz transformations can be 
written in the form qvqv' 1−=  [5,  6,  7,  8 p. 19], which is isomorphic to a similarity 
transformation of matrices. It can be applied not only to vectors, but also to the other elements of 
geometric algebra. 

While searching a square root of the Klein-Fock equation in order to find the relativistic 
electron equation, Paul Adrien Maurice Dirac [9] surprisingly took a basis of complex matrices 
for the space-time geometric algebra instead of taking geometric elements (vectors) as the 
fundamental entities. Later on, Ettore Majorana [10] found a real 4×4 matrix representation4 
equivalent to Dirac’s matrices. The isomorphism between geometric algebras and matrix algebras 

1 William Rowan Hamilton called tensor to what we take as the norm nowadays (See Elements of Quaternions, vol. 
I, p. 163). 
2 Hamilton called norm to the square of our norm, that is, to the sum of the squares of the components of a 
quaternion. 
3 Latent roots means eigenvalues. 
4 It is curious that the smaller faithful representation of the non-physical Euclidean four dimensional geometric 
algebra 4Cl  is included in the complex matrices ( )C44×M  or, by expansion, in the real ( )R88×M .
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is well known. Each geometric algebra always has a faithful real matrix representation with a 
periodicity of 8 [11]: 

( )R1616,,88, ×++ ⊗≅≅ MClClCl qpqpqp           (2) 

On the other hand, each matrix algebra is embedded in a geometric algebra of a convenient 
dimension, while the geometric product is isomorphic to the matrix product. For instance, the 
algebra of square real 2×2 matrices, ( )R22×M , is isomorphic to the geometric algebra of the 
Euclidean plane 0,2Cl  and also to the geometric algebra of the hyperbolic plane 1,1Cl  in virtue of 
the general isomorphism [12]: 

1,1, −+≅ pqqp ClCl  (3) 

Another example is Majorana’s representation ( )R44×M , which is a real representation of the 
space-time geometric algebra 1,3Cl . 
 Since all Clifford algebras are included in matrix algebras, I wondered whether matrices or 
geometric vectors were the more fundamental concept and if an arithmetic point of view could 
give us advantage over the geometric point of view with which geometric algebras have been 
studied until now. 

2    GEOMETRIC ALGEBRA AB INITIO 

Leopold Kronecker stated [13]: 
“God made the integers, and all the rest is the work of man.” 

I do not wish to be as radical as him5 but let us suppose for a moment that the multiple quantities 
of real numbers are the only tangible reality. Let us search for a rule of multiplication of these 
multiple quantities taking Gibbs’ point of view and without any presupposition about this rule, 
although we expect to have two algebraic properties: the distributive property and the associative 
property. The first one is always required for any kind of vector multiplication. The second one is 
not always required, like in the case of the skew (cross) product, but its presence has clear 
advantages, especially for algebraic manipulations and geometric equation solving [14]. The most 
elemental outlining of the transformations of multiple quantities leads us to matrices. If 

( )nvv L1=v  is a multiple quantity with real components, then we can find any other one 
( )'v'v nL1=v' through a linear transformation represented by a matrix ( )ijm=M : 
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vMv'=    (4) 

The distinction between operator (matrix) and operand (multiple quantity) is fictitious since any 
operand is also an operator. So, the multiple quantity is also an operator and also has a matrix 
representation a column of which is the column here shown. Note that I am talking about 
“multiple quantities” instead of “vectors” because the word “vector” needs a more precise 

5 Perhaps if the development of quantum gravity destroys the fiction of the continuity of room space we shall then 
agree with Kronecker. 
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definition and I wish to avoid confusion between algebraic vectors (elements of a vectorial space) 
and geometric vectors (generators of the Clifford algebra). The composition of two linear
transformation ( )ijm=M  and ( )ijn=N  leads us naturally to the matrix product:
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That is: 

vP'v' = with MNP =  (6) 

and the multiplication rule: 

∑=
k

kjikij mnp   (7) 

Following a similar way, William Rowan Hamilton 
discovered quaternions, as the operators q  which 
transform geometric vectors: 

vqv' = (8) 

and the rules of their product [15]. He was surprised 
by the fact that the transformation of three-
dimensional vectors required four real quantities, a 
quaternion, instead of three quantities, which are the 
inclination θ  of the plane, the declination ϕ , the angle α  between both vectors and the ratio of 
their lengths vv' /  (fig. 1). 

Once stated square matrices as the fundamental concept of geometric algebra, which already 
contain vectors, new definitions must be given in order to work with them. 

3    NEW DEFINITIONS IN GEOMETRIC ALGEBRA 

The necessary new definitions that I propose are the following: 
1) A complete geometric algebra is a square matrix algebra ( )RnnM

22 ×
. Many geometric 

algebras are not complete (such as quaternions or 0,4Cl ) because their smallest faithful 
representation is a subalgebra of a matrix algebra of the same order. The space-time
geometric algebra is a complete geometric algebra because ( )R441,3 ×≅ MCl .

2) The generator vector space (the geometric vector space) is the set of matrices and their linear
combinations (a vectorial subspace) that generate by multiplication the whole geometric 
algebra. The concept is similar to the set of generators of a discrete group, but applied to a 
continuous group. 

3) The norm of every element of a geometric algebra ( )RkkM ×  is the thk  root of the determinant 
of its representative matrix:

Fig. 1. Quaternion operating upon a vector.
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k
kk MM det=×  (9) 

For instance, the subalgebra of quaternions is given by: 
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 whose norm is obtained from the 4th root of the matrix determinant: 
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The norm can be a real number, an imaginary number and also zero since all the complete 
geometric algebras have divisors of zero. According to Frobenius’ theorem [16], the only 
division associative algebras6 are the real numbers, the complex numbers and quaternions. 

4) Isometries are defined as the similarity transformations of matrices:

PMPM' 1−=   with    0det ≠P ⇒ MM' detdet =   (12) 

because they preserve the determinant and hence the norm. 
5) Two elements are said to be equivalent if their matrices can be transformed one into the other

through an isometry, that is, through a similarity transformation. To have the same norm and 
determinant does not imply to be equivalent since similar matrices have the same eigenvalues 
and the determinant is only their product. For instance, in the space-time algebra 

( )R441,3 ×≅ MCl , we have 321 ~~ eee  but they are not equivalent to 0e  although 
1detdetdetdet 0321 ==== eeee . 

6) A unity is a matrix whose square power is equal to I± , and whose determinant is equal to 1
(from dimension 4 on). The unities can be found through tensor product of  the four unities of 

( )R22×M , the smallest complete geometric algebra: 
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For instance, a unity of ( )R44×M is: 



















−

−
=








−

⊗








1000
0100
0010
0001

10
01

10
01

  (14) 

6 Algebras without divisors of zero. 
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Of course, any similar matrix to this one is also a unity. 

4    CONSEQUENCES OF THE NEW DEFINITIONS 

1) Any set of orthogonal unities fulfils the Pythagorean or pseudo-Pythagorean theorem. Let
{ }iE  and M  be respectively a set of orthogonal unities and a linear combination of them:

ji ≠ ⇒ ijji EEEE −= IIE ii χ=±=2 ( )RE nni M ×∈    (15) 
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i

iiEM α  ⇒ ∑∑∑ ==
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For instance, the determinant of a bivector of the space-time geometric algebra 1,3Cl  does not 
fulfil the Pythagorean theorem: 

( ) =+++++ 123123030201det ehegefecebea

( ) ( )22222222 4 hcgbfahgfcba +++−−−++   (19) 

because 01232301 eeee =  and so on. However, if the first or the second tern of components 
vanishes, the norm is then given by the Pythagorean theorem: 

222
030201 cbaecebea ++=++ 222

123123 hgfehegef ++=++   (20) 

because the remaining unit bivectors are orthogonal. It happens that the directions 01e  and 23e
have the same geometric direction. 

2) The expression of isometries as similarity transformation is general and can be applied to any
element of the geometric algebra. Let us suppose for a moment that this expression can only 
be applied to geometric vectors. Then, it can be applied to geometric products of vectors: 

qvqv' 1−=  ⇒ qvvqqvqqvq'v'v 21
1

2
1

1
1

21
−−− == (21) 

and also to exterior products of vectors and their linear combinations, that is, to any element 
of second degree: 

( ) ( ) ( ) qvvqqvvvvq'v'v'v'v'v'v'vv 21
1

1221
1

12212121 2
1

2
1

∧=−=−=∧=∧ −−   (22) 
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and so on for any degree, that is, for any element of the geometric algebra. Nowadays, certain 
isometry operators are written in a form that is only valid for vectors but not for other 
elements of the algebra. For instance, a rotation of angle θ  of a vector in the plane can be 
written as [17, p. 52]: 

( )θθ sincos 12evv' += 2211 evevv += (23) 

but the application of this operator to a complex 
number turns its direction. However, complex 
numbers are geometric products (or quotients) of 
two plane vectors. Both vectors are turned 
through the same angle of rotation θ , so that the 
angle α  between both vectors is preserved, and 
therefore complex numbers must be preserved [7, 
p. 27] (fig. 2). We can only obtain this result with 
the half angle operator: 
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which is a similarity transformation. Now complex numbers are preserved because of their 
commutative property: 
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3) Isometries transform orthogonal vectors into orthogonal vectors, which can be easily proven:

ijji EEEE −=    ⇒ PEPPEPPEPPEP 1111
ijji

−−−− −=

⇒ 'E'E'E'E ijji −=       (26) 

because IPP 1 =− . Both vectors can lie in an Euclidean 
plane or in a hyperbolic plane. In the second case, two 
vectors are orthogonal if we “see” their directions as being 
symmetric with respect to the quadrant bisectors [7, p. 
156]. Fig. 3 shows how an isometry, such as a Lorentz 
transformation, transforms a pair of orthogonal vectors u , 
v  into another pair of orthogonal vectors u' , v'  .  

4) Any product of distinct orthogonal unities is linearly
independent of them and has no intersection with the subspace 
generated by the unities and other products of lower degree. It 
follows immediately from the identity between geometric and 
exterior product:  

ji ≠∀       ijji EEEE −=  ⇒    kiki EEEE ∧∧= LL          ki <<L   (27) 

Fig. 2. Preservation, upon a rotation,
of the angle between two plane vectors
and their lengths, and therefore of their
product or quotient, a complex
number. 

Fig. 3. Transformation of two
orthogonal vectors u, v into
another pair of orthogonal
vectors u’, v’ under an
isometry in a hyperbolic
plane. 
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because the exterior product is the product by the orthogonal component. We can also prove 
this linear independence in another way. For instance, the complete geometric algebra 

( )R22×M  has two orthogonal generator unities 1E  and 2E : 

1221 EEEE −= 12 ±== ii χE  (28) 

Let us suppose that their product is a linear combination of them and the identity: 

2211021 EEIEE ααα ++= (29) 

If we multiply the equality by 1E  on the left and on the right we obtain: 
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If we multiply the equality by 2E  on the left and on the right we obtain: 
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a result which comes in contradiction with the former result. Therefore, this proves that our 
hypothesis that 21EE  is a linear combination of { }21 ,, EEI  is a falsehood, whence it follows 
that the set { }2121 ,,, EEEEI  is a basis of ( )R22×M . 

5) Reflections need a special mention. When talking with Prof. L. Dorst and Prof. H. Pijls during
the ECM 2008 conference in Amsterdam about my supposition that isometries are similarity 
transformations, they replied to me that the expression for reflections is not a similarity 
transformation since [18]: 

avav' 1−−=       (32) 

where v  is a geometric vector and a  is a vector perpendicular to 
the plane of reflection (fig. 4). The first objection to this expression 
is the fact that it can only be applied to vectors but not to other 
elements of the geometric algebra such as bivectors. The 
modification which I have proposed [8, p. 36] is to write it as a 
similarity transformation in the following way: 

aer 0= ⇒ 0
11 ear −− −=       (33) 

avaaevearvrv' 1
00

11 −−− −=−== (34) 

Of course it has a consequence: this operator changes the sign of the time component: 
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0
1
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0
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0 eeaaaeaaeeearer'e −=−==−== −−−− (35) 

Fig. 4. Reflection of a
vector in a plane. 
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That is, a reflection would be an isometry reversing one spatial direction and also the time 
direction. We can discuss widely about whether the reversal of one spatial and the temporal 
components must be linked or not in a reflection. The physical world does not remain 
invariant under reflections because there are physical processes, driven by weak interactions, 
whose mirror image has a very much lower probability [19]. However, physical invariance is 
preserved under the CPT transformation7 [20], that is, if time is also reversed. On the other 
hand, the biological world has chosen one side of the mirror: all the proteins of the superior 
species are built with the L-amino acids while their mirror images, D-amino acids, are absent 
from the most biological structures. Anyway, we may wonder whether a reflection without 
reversal of the time can be a similarity transformation. Let us see how a generic element of 
the space-time geometric algebra 1,3Cl : 

1231230302013210 ekejeiehegefeeedecebaw ++++++++++=

0123123012031023 epeoenemel +++++ (36) 

changes under a reflection in the plane 23e , which produces the reversal 11 ee −→ : 

        1231230302013210 ekejeiehegefeeedecebaw' −−+++−++−+=

0123123012031023 epeoenemel −−−−+ (37) 

The characteristic polynomials of both elements8 are: 
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In fact, it reduces to a change of sign of all the matrix elements in the highest right square and 
in the lowest left square. Both determinants are equal, and the characteristic polynomials are 
identical. Therefore, the existence of a similarity transformation for this reflection cannot be 
discarded although it is necessary that both matrices have the same invariant factors [21]. 
This question must be clarified soon. In the case that this reflection be a similarity 
transformation, the operator may not have a simple form, and I believe that it will be a 
combination of elements with different degree and temporal components. That is the reason 
why reflections cannot be written as similarity transformation in the room space geometric 
algebra 3Cl . 

7 Charge conjugation, parity or spatial inversion, and time reversal. 
8 I have built these determinants with the matrix basis given in [8, p. 11]. Notwithstanding this, all the bases 
of Cl3, 1 are equivalent and they therefore have the same characteristic polynomial (38) although the matrix 
elements can change depending on the chosen basis. 
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6) In a complete geometric algebra ( )RnnM
22 ×

 the maximum number of orthogonal unities is 
nk 2= . It is well known that a geometric algebra generated by a geometric space of

dimension k  has dimension k2  because:
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Then, the dimension of this geometric algebra must be equal to the dimension of the linear 
space of the matrix algebra so that: 

nnk 222 ×= ⇒ nk 2= (41) 

For instance, in ( )R44×M  the maximum number of orthogonal unities is 4 while in ( )R88×M  
the maximum number of orthogonal unities is 6 because 8826 ×= . However, in virtue of the 
isomorphisms 1,1, −+≅ pqqp ClCl  and 4,4, +−≅ qpqp ClCl  for 4≥p  [12], there are two or more 
non-equivalent sets of unities generating these geometric algebras [11]: 

( ) 2,21,344 ClClM ≅≅× R (42) 

( ) 2,43,36,088 ClClClM ≅≅≅× R (43) 

 Those statements outlined in this section but not proven yet should be rigorously 
demonstrated as well as some definitions given in section 3 should be improved in future work. 
The knowledge we have on Clifford algebras will be very helpful in this task. 

5    CONCLUSIONS 

 If we take multiple quantities as the fundamental entities, then the matrix theory follows 
naturally from their transformations, and the matrix product from the composition of 
transformations. In this framework, a geometric algebra is defined as a matrix algebra or 
subalgebra that is closed under addition and multiplication of a set of generating unities obtained 
from tensor product of the unities of ( )R2,2M . A complete geometric algebra is defined as a 
matrix algebra isomorphic to a geometric algebra over the real numbers, which only happens for 

( )RnnM
22 ×

. Searching for a generalization of the norm of a complex numbers or a quaternion, we
wish that the norm of a product of two elements be equal to the product of their norms. The 
unique quantity that fulfils this equality is the determinant, because the determinant of a product 
of two matrices is equal to the product of their determinants. In order to fit this new norm to the 
norms of complex numbers or quaternions, or to the length of a vector, the kth root of the 
determinant must be taken, where kk ×  are the dimensions of the matrix algebra. Since k  is 
always an even number, the norm M  of a matrix M can be a real or an imaginary positive 

number, which fulfils NMNM ±= . This definition of the norm of an element of a geometric 
algebra fills a void in Clifford algebras theory, since the norm of elements with mixed degree 
have not been unambiguously defined until now, except for special cases such as quaternions. 
 On the other hand, an isometry is defined as a matrix similarity transformation, which 
preserves the determinant and therefore the norm. The advantage of this definition is the fact that 
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the same operator can be applied to any element of geometric algebra. A new definition for 
unities is also given as matrices with square power equal to I±  and determinant equal to 1 (for 

4≥n ). In fact, they are obtained by tensor product of the unities of ( )R22×M . Any matrix 
equivalent (through a similarity transformation) to a given unity is also a unity. 
 Two elements (matrices) of a geometric algebra are said to be orthogonal if they 
anticommute. In this case, it is deduced that their norm fulfils the Pythagorean or pseudo-
Pythagorean theorem. In a complete geometric algebra ( )RnnM

22 ×
 there are a maximum of n2  

orthogonal unities. Isometries transform orthogonal vectors into orthogonal vectors. Finally, it is 
shown that these n2  orthogonal unities and their products induce the structure of Clifford algebra 
inside the matrix algebra (which we are calling geometric algebra) and form a basis of the 
algebra. 
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Abstract. We use the recent comprehensive research [15, 17] on the manifolds of square roots
of −1 in real Clifford’s geometric algebras Cl(p,q) in order to construct the Clifford Fourier
transform. Basically in the kernel of the complex Fourier transform the imaginary unit j ∈C is
replaced by a square root of −1 in Cl(p,q). The Clifford Fourier transform (CFT) thus obtained
generalizes previously known and applied CFTs [7,11,12], which replaced j ∈C only by blades
(usually pseudoscalars) squaring to −1. A major advantage of real Clifford algebra CFTs is
their completely real geometric interpretation. We study (left and right) linearity of the CFT
for constant multivector coefficients ∈ Cl(p,q), translation (x-shift) and modulation (ω-shift)
properties, and signal dilations. We show an inversion theorem. We establish the CFT of vector
differentials, partial derivatives, vector derivatives and spatial moments of the signal. We also
derive Plancherel and Parseval identities as well as a general convolution theorem.
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1 INTRODUCTION

Quaternion, Clifford and geometric algebra Fourier transforms (QFT, CFT, GAFT) [6, 12,
13, 16] have proven very useful tools for applications in non-marginal color image processing,
image diffusion, electromagnetism, multi-channel processing, vector field processing, shape
representation, linear scale invariant filtering, fast vector pattern matching, phase correlation,
analysis of non-stationary improper complex signals, flow analysis, partial differential systems,
disparity estimation, texture segmentation, as spectral representations for Clifford wavelet anal-
ysis, etc.

All these Fourier transforms essentially analyze scalar, vector and multivector signals in
terms of sine and cosine waves with multivector coefficients. For this purpose the imaginary
unit i ∈C in eiφ = cosφ + isinφ can be replaced by any square root of −1 in a Clifford algebra
Cl(p,q). The replacement by pure quaternions and blades with negative square [6, 13] has
already yielded a wide variety of results with a clear geometric interpretation. It is well-known
that there are elements other than blades, squaring to −1. Motivated by their special relevance
for new types of CFTs, they have recently been studied thoroughly [15, 17, 21].

We therefore tap into these new results on square roots of −1 in Clifford algebras and fully
general construct CFTs, with one general square root of −1 in Cl(p,q). Our new CFTs form
therefore a more general class of CFTs, subsuming and generalizing previous results. A further
benefit is, that these new CFTs become fully steerable within the continuous Clifford alge-
bra submanifolds of square roots of −1. We thus obtain a comprehensive new mathematical
framework for the investigation and application of Clifford Fourier transforms together with
new properties (full steerability). Regarding the question of the most suitable CFT for a certain
application, we are only just beginning to leave the terra cognita of familiar transforms to map
out the vast array of possible CFTs in Cl(p,q).

This paper is organized as follows. We first review in Section 2 key notions of Clifford
algebra, multivector signal functions, and the recent results on square roots of −1 in Clifford
algebras. Next, in Section 3 we define the central notion of Clifford Fourier transforms with
respect to any square root of −1 in Clifford algebra. Then we study in Section 4 (left and
right) linearity of the CFT for constant multivector coefficients ∈Cl(p,q), translation (x-shift)
and modulation (ω-shift) properties, and signal dilations, followed by an inversion theorem.
We establish the CFT of vector differentials, partial derivatives, vector derivatives and spatial
moments of the signal. We also show Plancherel and Parseval identities as well as a general
convolution theorem.

2 CLIFFORD’S GEOMETRIC ALGEBRA

Definition 2.1 (Clifford’s geometric algebra [10, 19]) Let {e1,e2, . . . ,ep,ep+1, . . ., en}, with n=
p+q, e2

k = εk, εk = +1 for k = 1, . . . , p, εk = −1 for k = p+1, . . . ,n, be an orthonormal base
of the inner product vector space Rp,q with a geometric product according to the multiplication
rules

ekel + elek = 2εkδk,l, k, l = 1, . . .n, (1)

where δk,l is the Kronecker symbol with δk,l = 1 for k = l, and δk,l = 0 for k 6= l. This non-
commutative product and the additional axiom of associativity generate the 2n-dimensional
Clifford geometric algebra Cl(p,q) = Cl(Rp,q) = Clp,q = Gp,q = Rp,q over R. The set {eA :
A ⊆ {1, . . . ,n}} with eA = eh1eh2 . . .ehk , 1 ≤ h1 < .. . < hk ≤ n, e /0 = 1, forms a graded (blade)
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basis of Cl(p,q). The grades k range from 0 for scalars, 1 for vectors, 2 for bivectors, s for
s-vectors, up to n for pseudoscalars. The vector space Rp,q is included in Cl(p,q) as the subset
of 1-vectors. The general elements of Cl(p,q) are real linear combinations of basis blades eA,
called Clifford numbers, multivectors or hypercomplex numbers.

In general 〈A〉k denotes the grade k part of A ∈ Cl(p,q). The parts of grade 0 and k + s,
respectively, of the geometric product of a k-vector Ak ∈Cl(p,q) with an s-vector Bs ∈Cl(p,q)

Ak ∗Bs := 〈AkBs〉0, Ak ∧Bs := 〈AkBs〉k+s, (2)

are called scalar product and outer product, respectively.
For Euclidean vector spaces (n = p) we use Rn =Rn,0 and Cl(n) =Cl(n,0). Every k-vector

B that can be written as the outer product B = b1∧b2∧ . . .∧bk of k vectors b1,b2, . . . ,bk ∈Rp,q

is called a simple k-vector or blade.
Multivectors M ∈ Cl(p,q) have k-vector parts (0 ≤ k ≤ n): scalar part Sc(M) = 〈M〉 =

〈M〉0 = M0 ∈ R, vector part 〈M〉1 ∈ Rp,q, bi-vector part 〈M〉2, . . . , and pseudoscalar part
〈M〉n ∈

∧nRp,q

M =∑
A

MAeA = 〈M〉+ 〈M〉1 + 〈M〉2 + . . .+ 〈M〉n . (3)

The principal reverse of M ∈Cl(p,q) defined as

M̃ =
n

∑
k=0

(−1)
k(k−1)

2 〈M〉k, (4)

often replaces complex conjugation and quaternion conjugation. Taking the reverse is equiva-
lent to reversing the order of products of basis vectors in the basis blades eA. The operation M
means to change in the basis decomposition of M the sign of every vector of negative square
eA = εh1eh1εh2eh2 . . .εhkehk , 1 ≤ h1 < .. . < hk ≤ n. Reversion, M, and principal reversion are all
involutions.

The principal reverse of every basis element eA ∈Cl(p,q), 1 ≤ A ≤ 2n, has the property

ẽA ∗ eB = δAB, 1 ≤ A,B ≤ 2n, (5)

where the Kronecker delta δAB = 1 if A = B, and δAB = 0 if A 6= B. For the vector space Rp,q

this leads to a reciprocal basis el , 1 ≤ l,k ≤ n

el := ẽl = εlel, el ∗ ek = el · ek =

{
1, for l = k
0, for l 6= k . (6)

For M,N ∈Cl(p,q) we get M ∗ Ñ =∑A MANA. Two multivectors M,N ∈Cl(p,q) are orthog-
onal if and only if M ∗ Ñ = 0. The modulus |M| of a multivector M ∈ Cl(p,q) is defined as

|M|2 = M ∗ M̃ =∑
A

M2
A. (7)
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2.1 Multivector signal functions

A multivector valued function f : Rp,q →Cl(p,q), has 2n blade components ( fA : Rp,q →R)

f (x) =∑
A

fA(x)eA, x =
n

∑
l=1

xlel =
n

∑
l=1

xlel. (8)

We define the inner product of two functions f ,g : Rp,q →Cl(p,q) by

( f ,g) =
∫

Rp,q
f (x)g̃(x) dnx =∑

A,B
eAẽB

∫

Rp,q
fA(x)gB(x) dnx, (9)

with the symmetric scalar part

〈 f ,g〉=
∫

Rp,q
f (x)∗ g̃(x) dnx =∑

A

∫

Rp,q
fA(x)gA(x) dnx, (10)

and the L2(Rp,q;Cl(p,q))-norm

‖ f‖2 = 〈( f , f )〉=
∫

Rp,q
| f (x)|2dnx =∑

A

∫

Rp,q
f 2
A(x) dnx, (11)

L2(Rp,q;Cl(p,q)) = { f : Rp,q →Cl(p,q) | ‖ f‖< ∞}. (12)

The vector derivative ∇ of a function f : Rp,q →Cl(p,q) can be expanded in a basis of Rp,q

as [23]

∇=
n

∑
l=1

el∂l with ∂l = ∂xl =
∂
∂xl

, 1 ≤ l ≤ n. (13)

2.2 Square roots of −1 in Clifford algebras

Every Clifford algebra Cl(p,q), s8 = (p− q) mod 8, is isomorphic to one of the following
(square) matrix algebras1 M (2d,R), M (d,H), M (2d,R2), M (d,H2) or M (2d,C). The first
argument of M is the dimension, the second the associated ring2 R for s8 = 0,2, R2 for s8 = 1,
C for s8 = 3,7, H for s8 = 4,6, and H2 for s8 = 5. For even n: d = 2(n−2)/2, for odd n:
d = 2(n−3)/2.

It has been shown [15,17] that Sc( f ) = 0 for every square root of −1 in every matrix algebra
A isomorphic to Cl(p,q). One can distinguish ordinary square roots of −1, and exceptional
ones. All square roots of −1 in Cl(p,q) can be computed using the package CLIFFORD for
Maple [1, 3, 18, 20].

In all cases the ordinary square roots f of −1 constitute a unique conjugacy class of dimen-
sion dim(A )/2, which has as many connected components as the group G(A ) of invertible
elements in A . Furthermore, we have Spec( f ) = 0 (zero pseudoscalar part) if the associated
ring is R2, H2, or C. The exceptional square roots of −1 only exist if A ∼=M (2d,C). The man-
ifolds of square roots of −1 in Cl(p,q), n = p+q = 2, compare Table 1 of [15], are visualized
in Fig. 1.

For A = M (2d,R), the centralizer (set of all elements in Cl(p,q) commuting with f ) and
the conjugacy class of a square root f of −1 both have R-dimension 2d2 with two connected
components. For the simplest case d = 1 we have the algebra Cl(2,0) isomorphic to M (2,R),
pictured in Fig. 2 for d = 1.

1Compare chapter 16 on matrix representations and periodicity of 8, as well as Table 1 on p. 217 of [19].
2Associated ring means, that the matrix elements are from the respective ring R, R2, C, H or H2.
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Figure 1: Manifolds [17] of square roots f of −1 in Cl(2,0) (left), Cl(1,1) (center), and Cl(0,2)∼=H (right). The
square roots are f = α+b1e1 +b2e2 +βe12, with α,b1,b2,β ∈ R, α = 0, and β 2 = b2

1e2
2 +b2

2e2
1 + e2

1e2
2.

Figure 2: Two components of square roots of −1 in M (2,R)≡Cl(2,0), see [17] for details.
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For A =M (2d,R2) =M (2d,R)×M (2d,R), the square roots of (−1,−1) are pairs of two
square roots of −1 in M (2d,R). They constitute a unique conjugacy class with four connected
components, each of dimension 4d2. Regarding the four connected components, the group of
inner automorphisms Inn(A ) induces the permutations of the Klein group, whereas the quotient
group Aut(A )/Inn(A ) is isomorphic to the group of isometries of a Euclidean square in 2D.
The simplest example with d = 1 is Cl(2,1) isomorphic to M(2,R2) = M (2,R)×M (2,R).

For A = M (d,H), the submanifold of the square roots f of −1 is a single connected con-
jugacy class of R-dimension 2d2 equal to the R-dimension of the centralizer of every f . The
easiest example is H itself for d = 1.

For A = M (d,H2) = M (d,H)×M (d,H), the square roots of (−1,−1) are pairs of two
square roots ( f , f ′) of −1 in M (d,H) and constitute a unique connected conjugacy class of
R-dimension 4d2. The group Aut(A ) has two connected components: the neutral component
Inn(A ) connected to the identity and the second component containing the swap automorphism
( f , f ′) 7→ ( f ′, f ). The simplest case for d = 1 is H2 isomorphic to Cl(0,3).

For A = M (2d,C), the square roots of −1 are in bijection to the idempotents [2]. First,
the ordinary square roots of −1 (with k = 0) constitute a conjugacy class of R-dimension
4d2 of a single connected component which is invariant under Aut(A ). Second, there are
2d conjugacy classes of exceptional square roots of −1, each composed of a single connected
component, characterized by the equality Spec( f ) = k/d (the pseudoscalar coefficient) with
±k ∈ {1,2, . . . ,d}, and their R-dimensions are 4(d2 − k2). The group Aut(A ) includes conju-
gation of the pseudoscalar ω 7→ −ω which maps the conjugacy class associated with k to the
class associated with −k. The simplest case for d = 1 is the Pauli matrix algebra isomorphic to
the geometric algebra Cl(3,0) of 3D Euclidean space R3, and to complex biquaternions [21].
See Table 2.2 for representative exceptional (k 6= 0) square roots of −1 in conformal geometric
algebra Cl(4,1) of three-dimensional Euclidean space [17].

k fk ∆k(t)
2 ω = e12345 (t − i)4

1 1
2(e23 + e123 − e2345 + e12345) (t − i)3(t + i)

0 e123 (t − i)2(t + i)2

−1 1
2(e23 + e123 + e2345 − e12345) (t − i)(t + i)3

−2 −ω =−e12345 (t + i)4

Table 1: Square roots of −1 in conformal geometric algebra Cl(4,1)∼= M (4,C), d = 2, with characteristic poly-
nomials ∆k(t). See [17] for details.

With respect to any square root i ∈ Cl(p,q) of −1, i2 = −1, every multivector A ∈ Cl(p,q)
can be split into commuting and anticommuting parts [17].

Lemma 2.2 Every multivector A∈Cl(p,q) has, with respect to a square root i∈Cl(p,q) of −1,
i.e., i−1 =−i, the unique decomposition

A+i =
1
2
(A+ i−1Ai), A−i =

1
2
(A− i−1Ai)

A = A+i +A−i, A+i i = iA+i, A−i i =−iA−i. (14)
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3 THE CLIFFORD FOURIER TRANSFORM

The general Clifford Fourier transform (CFT), to be introduced now, can be understood as a
generalization of known CFTs [12] to a general real Clifford algebra setting. Most previously
known CFTs use in their kernels specific square roots of −1, like bivectors, pseudoscalars, unit
pure quaternions, or blades [6]. We will remove all these restrictions on the square root of −1
used in a CFT.

Definition 3.1 (CFT with respect to one square root of −1) Let i ∈Cl(p,q), i2 =−1, be any
square root of −1. The general Clifford Fourier transform (CFT) of f ∈ L1(Rp,q;Cl(p,q)), with
respect to i is

F i{ f}(ω) =
∫

Rp,q
f (x)e−iu(x,ω)dnx, (15)

where dnx = dx1 . . .dxn, x,ω ∈ Rp,q, and u : Rp,q ×Rp,q → R.

Since square roots of −1 in Cl(p,q) populate continuous submanifolds in Cl(p,q), the CFT
of Definition 3.1 is generically steerable within these manifolds. In Definition 3.1, the square
roots i ∈Cl(p,q) of −1 may be from any component of any conjugacy class.

4 PROPERTIES OF THE CFT

We now study important properties of the general CFT of Definition 3.1.

4.1 Linearity, shift, modulation, dilation, and powers of f ,g

Regarding left and right linearity of the general two-sided CFT of Definition 3.1 we can
establish with the help of Lemma 2.2 that for h1,h2 ∈ L1(Rp,q;Cl(p,q)), and constants α,β ∈
Cl(p,q)

F i{αh1 +βh2}(ω) = αF i{h1}(ω)+βF i{h2}(ω), (16)
F i{h1α+h2β}(ω) = F i{h1}(ω)α+i +F−i{h1}(ω)α−i

+F i{h2}(ω)β+i +F−i{h2}(ω)β−i . (17)

For i power factors in ha,b(x) = iah(x)ib, a,b ∈ Z, we obtain as an application of linearity

F i{ha,b}(ω) = iaF i{h}(ω)ib. (18)

Regarding the x-shifted function h0(x) = h(x− x0) we obtain with constant x0 ∈ Rp,q, as-
suming linearity of u(x,ω) in its vector space argument x,

F i{h0}(ω) = F i{h}(ω)e−iu(x0,ω). (19)

For the purpose of modulation we make the special assumption, that the function u(x,ω) is
linear in its frequency argument ω . Then we obtain for hm(x) = h(x)e−iu(x,ω0), and constant
ω0 ∈ Rp,q the modulation formula

F i{hm}(ω) = F i{h}(ω+ω0). (20)
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Regarding dilations, we make the special assumption, that for constants a1, . . . ,an ∈R\{0},
and x′ = ∑n

k=1 akxkek, we have u(x′,ω) = u(x,ω ′), with ω ′ = ∑n
k=1 akωkek. We then obtain for

hd(x) = h(x′) that

F i{hd}(ω) =
1

|a1 . . .an|
F i{h}(ωd), ωd =

n

∑
k=1

1
ak
ωkek. (21)

For a1 = . . .= an = a ∈ R\{0} this simplifies under the same special assumption to

F i{hd}(ω) =
1
|a|n F i{h}(1

a
ω). (22)

Note, that the above assumption would, e.g., be fulfilled for u(x,ω) = x ∗ ω̃ = ∑n
k=1 xkωk =

∑n
k=1 xkωk.

4.2 CFT inversion , moments, derivatives, Plancherel, Parseval

For establishing an inversion formula, moment and derivative properties, Plancherel and
Parseval identities, certain assumptions about the phase function u(x,ω) need to be made. One
possibility is, e.g., to assume

u(x,ω) = x∗ ω̃ =
n

∑
l=1

xlω l =
n

∑
l=1

xlωl, (23)

which will be assumed for the current subsection.
We then get the following inversion formula

h(x) = F i
−1{F i{h}}(x) = 1

(2π)n

∫

Rp,q
F i{h}(ω)eiu(x,ω)dnω, (24)

where dnω = dω1 . . .dωn, x,ω ∈ Rp,q. For the existence of (24) we need F i{h} ∈ L1 (Rp,q;
Cl(p,q)).

Additionally, we get the transformation law for partial derivatives h′l(x) = ∂xl h(x), 1≤ l ≤ n,
for h piecewise smooth and integrable, and h,h′l ∈ L1 (Rp,q; Cl(p,q)) as

F i{h′l}(ω) = ωl F
i{h}(ω)i, for 1 ≤ l ≤ n. (25)

The vector derivative of h ∈ L1 (Rp,q; Cl(p,q)) with h′l ∈ L1 (Rp,q; Cl(p,q)) gives therefore

F i{∇h}(ω) = F i{
n

∑
l=1

elh′l}(ω) = ωF i{h}(ω)i. (26)

For the transformation of the spatial moments with hl(x)= xlh(x), 1≤ l ≤ n, h,hl ∈ L1 (Rp,q;
Cl(p,q)), we obtain

F i{hl}(ω) = ∂ωl F
i{h}(ω)i, (27)

and for the spatial vector moment
F i{xh}(ω) = ∇ω F i{h}(ω)i, (28)

Moreover, for the functions h1,h2,h ∈ L2 (Rp,q; Cl(p,q)) we obtain the Plancherel identity

〈h1,h2〉=
1

(2π)n 〈F
i{h1},F i{h2}〉, (29)

as well as the Parseval identity

‖h‖= 1
(2π)n/2

∥∥F i{h}
∥∥ . (30)
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4.3 Convolution

We define the convolution of two multivector signals a,b ∈ L1(Rp,q;Cl(p,q)) as

(a⋆b)(x) =
∫

Rp,q
a(y)b(x− y)dny. (31)

We assume that the function u is linear with respect to its first argument. The CFT of the
convolution (31) can then be expressed as

F i{a⋆b}(ω) = F−i{a}(ω)F i{b−i}(ω)+F i{a}(ω)F i{b+i}(ω) (32)

5 CONCLUSIONS

We have established a comprehensive new mathematical framework for the investigation and
application of Clifford Fourier transforms (CFTs) together with new properties. Our new CFTs
form a more general class of CFTs, subsuming and generalizing previous results. We have
applied new results on square roots of −1 in Clifford algebras to fully general construct CFTs,
with a general square root of −1 in real Clifford algebras Cl(p,q). The new CFTs are fully
steerable within the continuous Clifford algebra submanifolds of square roots of −1. We have
thus left the terra cognita of familiar transforms to outline the vast array of possible CFTs in
Cl(p,q).

We first reviewed the recent results on square roots of −1 in Clifford algebras. Next, we
defined the central notion of the Clifford Fourier transform with respect to any square root of −1
in Clifford algebra. Finally, we investigated important properties of these new CFTs: linearity,
shift, modulation, dilation, moments, inversion, partial and vector derivatives, Plancherel and
Parseval formulas, as well as a convolution theorem.

Regarding numerical implementations, usually 2n complex Fourier transformations (FTs) are
sufficient. In some cases this can be reduced to 2(n−1) complex FTs, e.g., when the square root
of −1 is a pseudoscalar. Further algebraic studies may widen the class of CFTs, where 2(n−1)

complex FTs are sufficient. Numerical implementation is then possible with 2n (or 2(n−1))
discrete complex FTs, which can also be fast Fourier transforms (FFTs), leading to fast CFT
implementations.

A well-known example of a CFT is the quaternion FT (QFT) [4, 5, 8, 9, 13, 16, 22], which is
particularly used in applications to partial differential systems, color image processing, filtering,
disparity estimation (two images differ by local translations), and texture segmentation. Another
example is the spacetime FT, which leads to a multivector wave packet analysis of spacetime
signals (e.g. electro-magnetic signals), applicable even to relativistic signals [13, 14].

Depending on the choice of the phase functions u(x,ω) the multivector basis coefficient
functions of the CFT result carry information on the symmetry of the signal, similar to the
special case of the QFT [4].

The convolution theorem allows to design and apply multivector valued filters to multivector
valued signals.
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Abstract. Numerical simulations in the general field of civil engineering are common for the
design process of structures and/or the assessment of existing buildings. The behaviour of these
structures is analytically unknown and is approximated with numerical simulation methods like
the Finite Element Method (FEM). Therefore the real structure is transferred into a global
model (GM, e.g. concrete bridge) with a wide range of sub models (partial models PM, e.g.
material modelling, creep). These partial models are coupled together to predict the behaviour
of the observed structure (GM) under different conditions. The engineer needs to decide which
models are suitable for computing realistically and efficiently the physical processes determin-
ing the structural behaviour. Theoretical knowledge along with the experience from prior design
processes will influence this model selection decision. It is thus often a qualitative selection of
different models.
The goal of this paper is to present a quantitative evaluation of the global model quality ac-
cording to the simulation of a bridge subject to direct loading (dead load, traffic) and indirect
loading (temperature), which induce restraint effects. The model quality can be separately
investigated for each partial model and also for the coupled partial models in a global struc-
tural model. Probabilistic simulations are necessary for the evaluation of these model qualities
by using Uncertainty and Sensitivity Analysis. The method is applied to the simulation of a
semi-integral concrete bridge with a monolithic connection between the superstructure and the
piers, and elastomeric bearings at the abutments. The results show that the evaluation of global
model quality is strongly dependent on the sensitivity of the considered partial models and their
related quantitative prediction quality. This method is not only a relative comparison between
different models, but also a quantitative representation of model quality using probabilistic sim-
ulation methods, which can support the process of model selection for numerical simulations in
research and practice.
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1 EVALUATION METHOD FOR GLOBAL MODEL QUALITY ASSESSMENT

Global models (GM) for numerical simulation approaches utilize different model classes (M)
with subordinate partial models (PM). Material descriptions, creep, and/or shrinkage models are
defined as possible M for concrete structures within this paper. Interactions and couplings of
their PM are necessary for determining an appropriate structural behaviour. Therefore, the fol-
lowing evaluation method enables to assess the Global Model Quality. For detailed information
the author recommends KEITEL et al. [11].

1.1 Sensitivity according a model class

The first step is to quantify whether the model class M has an influence on a certain target
value. This is evaluated by using Sensitivity Analysis [12] which, in general, is the study of
how the output of a model (Y ) is related to the model input (X). By using discrete random
variables for selecting the model class, the Sensitivity Study in this case is not an estimation
of uncertainty, but a quantified value of the influence of the model class (Xi). The First Order
Sensitivity Index is:

Si =
V (E (Y |Xi))

V (Y )
. (1)

This index Si illustrates the exclusive influence of model Xi. Due to interactions in complex
engineering problems higher order Sensitivity Indices are needed. The Total Effect Index is
defined as:

ST i = 1− V (E (Y |X∼i))

V (Y )
. (2)

A finite number of possible model class combinations ncomb are necessary for the indices:

ncomb = 2nM (3)

with nM random variables (model classes). A measure of the interaction between Xi and other
model classes is the difference between Si and ST i. High values of these Sensitivity Indices
highlight a significant influence of this partial model class on the response of the global model.
Models with values smaller than a given threshold (here: ST i ≤ 0.03) shall be neglected for the
next evaluation method step. In other words, no further investigations about their Partial Model
Quality are performed.

1.2 Sensitivity according the choice in a model class

The second method step quantifies the importance of selecting a partial model from one
model class. It is also based on Sensitivity Studies [11, 12]. The choice of each PM within a
model class is controlled by Xi. The Total Effect Sensitivity Index indicates how this choice
leads to a variation of the global model response according to a certain output value. Low values
show that different partial models within the same model class give a similar contribution to the
structural response value and do not significantly affect these response values. These indices
are used as weighting factors for the importance of the quality of a PM in a model class.

1.3 Quality of coupled partial models

The Global Model Quality (MQGM ) of coupled partial models is quantified by a path on a
graph (graph theory see [3, 4, 9, 10]) with the vertex as the quality of the partial model MQPM
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and the edges as the coupling quantities. A number between 0 and 1 expresses this quality. 0
signifies a poor and 1 a high MQPM . These quantitative values come from the evaluation of the
PM itself, using Uncertainty, Complexity or Robustness criterias [8]. Assuming a perfect data
coupling between each model classes the model quality of a global structural model is defined
as [11]:

MQGM =

nM,red∑

i=1

SMC
Ti ·MQPMj

nM,red∑
i=1

SMC
Ti

. (4)

PMj is one partial model of the model class Mi. The variable nM,red is the number of non-
negligible partial model classes influecing the global response, determined by method step one.
This Global Model Quality Evaluation method is applied to a reinforced and prestsressed semi-
integral concrete bridge below.

2 APPLICATION TO SEMI-INTEGRAL CONCRETE BRIDGE

2.1 Geometry, material properties and loading

The geometry of the longitudinal and vertical direction of the bridge and the prestressing
steel is shown in Fig. 1. The cross sections of the superstructure and the pier are shown in
Fig. 2a and Fig. 2b and the material properties are listed in Table 1.
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Table 1: Material properties for the superstructure and the piers

Unit Superstructure Piers

Concrete C50/60 C35/45
CEM - II 52.5N II 42.5N
Ec0m [MN/m2] 35,500 33,300
Ecm [MN/m2] 32,800 28,300
fcm [MN/m2] 58 43
fctm [MN/m2] 4.1 3.2

Steel Y1770 B500B
Es [MN/m2] 190,000 200,000
fy [MN/m2] 1,500 500

The commonly decoupled connection between the piers and the superstructure (differential
bridge) is adjusted to a coupled semi-integral bridge. Therefore the overall structural load-
deformation behaviour is affected by the interaction within the piers and superstructure, partic-
ularly in case of restraint effects. Hence, the interference between the partial models is investi-
gated.
The structural behaviour is simulated under quasi-permanent loading [5] for 100 years of ser-
vice life (see Table 2).

Table 2: Loading for quasi-permanent loading according [5]

Loading category Loading value

dead load (Gk) Gk1 = 142 kN/m (superstructure)
Gk2 = 24 kN/m (pavement)
Gk3 = 6.75 kN/m (piers)

prestressing (Pk) σpk = 1295 MN/m2

imposed traffic (Qk1) Qk1,UDL = 46.4 kN/m, Qk1,TL = 400 kN (span 1)
Ψ2,1 = 0.20

temperature load (Qk2) T0 = 10◦C, Tmin = -24◦C, Te,min = -16◦ C,
∆TN = -26K, ∆TM = -8.8K
Ψ2,2=0.50

2.2 Considered partial models

The material description (Model Class A) for the concrete compression range is modelled
with linear-elastic relation between strains and stresses. Because of the prestressing and the
quasi-permanent loading, the compression stresses are smaller than σc ≤ 0.40 · fcm. There-
fore, linear-elastic material behaviour can be assumed. In the range of tensile concrete parts the
concrete can either sustain stresses until fctm (A-1: linear-elastic material modelling) or crack-
ing shall be considered through the application of a tension-stiffening model as βct · fctm until
εct ≤ εsy (A-2: tension-stiffening model).
In order to describe the time-dependent increase of the creep compliance two creep models
(Model Class B) are investigated. These are the models according to Model Code 2010 (B-1:
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MC 10 [2]) and GARDNER and LOCKMAN (B-2: GL2000 [7]).
Geometrical nonlinearities (Model Class D) can affect displacement values and section forces.
The nonlinear kinematic (D-1) and the p-∆ (D-2) approaches are considered in this model
class.
Restraint effects in concrete structures may occur as a result of imposed deformations such as
thermal actions (Model ClassE). In the standard code EN 1991 [6] specific values are stated for
temperature conditions and temperature distributions. One possibility to take thermal actions
on bridges into account is to assume constant temperature (∆TN ) and linearly shift values over
the cross section height (∆TM ). Alternatively, thermal actions can also be considered by the
temperature (∆TN ) and nonlinear varying values (∆T) over the cross section height. Combina-
tion factors for the concurrent occurrence of both temperature parts are included to account for
their coincident probability. Four temperature distributions are considered as partial models in
the model class temperature:

• E-1 TEMP 1 constant with linear shifting 0.35 ·∆TN + ∆TM

• E-2 TEMP 2 constant with linear shifting ∆TN + 0.75 ·∆TM

• E-3 TEMP 3 constant with nonlinear distribution 0.35 ·∆TN + ∆T

• E-4 TEMP 4 constant with nonlinear distribution ∆TN + 0.75 ·∆T

The creep εc,cr(t), shrinkage εc,sh(t) and temperature εc,t(t0) strains are expressed by additional
strain components of the concrete, which leads to the total strains of the concrete:

εc,tot(t) = εc,el(t) + εc,pl(t) + εc,da(t) + εc,cr(t) + εc,sh(t) + εc,t(t0) (5)

with εc,el(t), εc,pl(t) and εc,da(t) as the time-dependent elastic, plastic and damage strains.

2.3 Structural response values for the quantification

In case of the first step in the evaluation method, the Sensitivity is quantified for the vertical
deformations in all spans, horizontal deformations at each bridge axis, concrete compression
and prestressing steel tensile stress in the superstructure, concrete and reinforcement stresses
in the piers and axial and bending moment section forces at different positions. The 8 model
classes lead to 256 model combinations (ncomb = 28) independent of the target values for the
structural behaviour.

2.4 Sensitivity according the model class

The discrete random variables control, whether the model class is activated or deactivated.
In terms of the material behaviour, either tension-stiffening or purely linear-elastic material is
modelled. In terms of creep or shrinkage, either creep or shrinkage strains are computed or ne-
glected. In terms of geometric nonlinearity, either the second order or the first order kinematic
is used. Finally, in terms of temperature, either temperature strains occurring from constant and
shifting parts are considered or zero. Table 3 shows the First Order and Total Effects Sensitivity
Indices for a selection of target values.

The creep phenomenon increases the strains for the quasi-permanent loading for 100 years
design life. The vertical displacements in the superstructure are almost exclusively sensitive to
this model class. Non activated creep modelling will reduce the predicted vertical displacement
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Table 3: Sensitivity indices for the model classes according target values, first row for each
target value: First Order Effect SMi , second row for each target value: Total Effects SMTi

Model Class σ-ε σ-ε creep creep shrink. shrink. geom. tem-
super- piers super- piers super- piers kine- pera-
struct. struct. struct. matic ture
A A B B C C D E

Vertical dis. 0.000 0.000 0.975 0.001 0.000 0.012 0.000 0.000
span 1 0.000 0.000 0.976 0.012 0.001 0.012 0.000 0.001
Horizontal dis. 0.000 0.000 0.076 0.000 0.850 0.000 0.000 0.074
axis C 0.000 0.000 0.076 0.000 0.850 0.000 0.000 0.074
concrete stress 0.000 0.004 0.054 0.265 0.002 0.022 0.000 0.514
superstr. span 2 0.000 0.023 0.098 0.355 0.072 0.025 0.000 0.580
concrete stress 0.000 0.003 0.014 0.296 0.548 0.004 0.000 0.045
pier axis C 0.000 0.013 0.016 0.382 0.620 0.004 0.000 0.059
bending moment 0.000 0.003 0.132 0.170 0.001 0.023 0.000 0.424
right axis B 0.000 0.016 0.316 0.230 0.047 0.025 0.000 0.622
Axial force superstr. 0.000 0.002 0.006 0.164 0.732 0.001 0.000 0.047
right axis B 0.000 0.010 0.008 0.208 0.770 0.001 0.000 0.056
Bending moment 0.000 0.003 0.018 0.207 0.663 0.000 0.000 0.057
pier bottom axis C 0.000 0.016 0.020 0.252 0.700 0.001 0.000 0.070
Axial force 0.000 0.001 0.000 0.091 0.631 0.016 0.000 0.217
pier bottom axis C 0.000 0.004 0.024 0.110 0.647 0.016 0.000 0.245

significantly. The creep phenomenon regarding the vertical displacements can thus not be ne-
glected.
In case of horizontal displacements, the major impact occurs from the shrinkage model class.
Shrinkage strains must be included without any reduction factors. Temperature strains for the
quasi-permanent loading are reduced by the combination factor Ψ2,2 = 0.50. This leads to:

• Shrinkage MC10 εc,sh(36510 d) = −4.204 e−4

• ∆TN = −26 K εc,t(36510 d) = −26 K · 1.0 e−5 · 0.5 = −1.300 e−4

and therefore to higher sensitivity of the shrinkage phenomenon according the horizontal dis-
placement.
The difference between Si and ST i such as the concrete stress in span 2 clarify a strong inter-
action between model classes (ST i − Si > 0.05). The deformation behaviour of the piers and
superstructure affect each other and therefore the coupling of their model classes has a strong
influence on the structural response. The influence of choice of different partial models in each
model class is quantified for the bolted structural response value in the first column of Table 3
(horizontal displacement at the axis c, concrete stress in the superstructure in span 2, bending
moment right axis B).

2.5 Sensitivity according the model choice in a model class

The analysis of the Total Effect Sensitivity Index enables the quantification of the model
choice importance (comparable as weighting factors). For example, the prognosis of the models
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MC10 and GL2000 for creep and shrinkage are different, and the influence of it can be computed
by Sensitivity Analysis. Table 4 shows these weighting factors, which quantify the impact of
model selection according to the chosen structural response values.

Table 4: Total Effect Sensitivity Indexes SMC
Ti for the model choice according the important

model classes for different target values, * model classes with no significant influence according
the target value

Model Class σ-ε σ-ε creep creep shrink. shrink. geom. tem-
super- piers super- piers super- piers kine- pera-
struct. struct. struct. matic ture
A A B B C C D E

Horizontal dis.
* * 0.405 * 0.496 * * 0.099

axis C
concrete stress
superstr. span 2 * * 0.121 0.341 0.007 * * 0.622

bending moment
right axis B

* * 0.285 0.490 0.010 * * 0.252

2.6 Global Model Quality

The Partial Model Quality for the creep models is analysed by uncertainty analysis includ-
ing model and parameter uncertainty and is stated in [11]. The Partial Model Quality of the
shrinkage models is assessed on the variation of the error of the prediction. This uncertainty
is CVMC10 = 0.481 and CVGL2000 = 0.433 [1]. In relation to the lowest model uncertainty of
CVB3 = 0.374 the Partial Model Quality is defined as:

• MC10 MQMC10
PM = 0.374/0.481 = 0.78

• GL2000 MQGL2000
PM = 0.374/0.433 = 0.86

Linear and nonlinear temperature models [6] are quantified by their prognosis of the induced
strains. The complexity of the nonlinear temperature distributions is higher in comparison to
the linear approaches. It can be assumed, that their Partial Model Quality is highest (of the
considered) and the linear distributions are quantified relatively by the model outputs for the
concrete stress in span 2, which is selected for the next method step (Global Model Quality
Evaluation).
The important model classes with their respective partial models are shown in Fig. 3. The unim-
portant model classes are excluded for the Global Model Quality Evaluation. The influence of
the model selection in every model class is expressed by the Total Effect Sensitivity Index (bot-
tom of Fig. 3). Partial Model Qualities mentioned above, are expressed in the vertices. The
coupling (edges) is without any loss of data information.
The grey highlighted partial models express one admissible path through the graph. Because
of practical reason, the structural engineer would not chooce a different creep model for the
superstructure and the piers. Thats why the possible combinations is reduced ensuing from
ntheoreticalM,red = 32 to npracticalM,red = 16. The selected combination of partial models in the global
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Figure 3: Global Model Quality Evaluation according the concrete stress in span 2 for the
application of a semi-integral bridge, count model combination i = 7 regarding Table 5
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model (see Fig. 3) will lead to the following Global Model Quality:

MQGM =
0.12 · 0.76 + 0.341 · 0.78 + 0.007 · 0.86 + 0.622 · 1.00

0.121 + 0.341 + 0.007 + 0.622
= 0.90 (6)

For any other possible model combination the resulting Global Model Quality MQGM is stated
in Table 5. Selecting a different Partial Model for the prediction of the creep phenomenon
will mainly lead to a changed Global Model Quality. This sensitivity is forced by the high
difference of the creep compliance between the MC10 and GL2000 creep model, which is
expressed by the associated Partial Model Quality. The target value for this evaluation is the
concrete compression strength in span 2 of the semi-integral concrete bridge. The additional
strain occurring from both shrinkage models has a minor influence (very low SMC

Ti ), according
this target value, in relation to the other effects. In this case, selecting a different shrinkage
model, ensues an unchanged MQGM .
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Table 5: Global Model Quality MQGM,i for the possible model combinations, application of a
semi-integral concrete concrete, target value: concrete stress in span 2, X... Partial Model PMi

is activated, � ... Partial Model PMi is deactivated

Count Creep Creep Shrinkage Temperature MQGM,i

i Superstr. Piers Piers Overall
MC10 GL2000 MC10 GL2000 MC10 GL2000 TEMP1 TEMP2 TEMP3 TEMP4

1 X � X � X � X � � � 0.82
2 X � X � X � � X � � 0.85
3 X � X � X � � � X � 0.90
4 X � X � X � � � � X 0.90
5 X � X � � X X � � � 0.82
6 X � X � � X � X � � 0.85
7 X � X � � X � � X � 0.90
8 X � X � � X � � � X 0.90
9 � X � X X � X � � � 0.89

10 � X � X X � � X � � 0.91
11 � X � X X � � � X � 0.97
12 � X � X X � � � � X 0.97
13 � X � X � X X � � � 0.89
14 � X � X � X � X � � 0.91
15 � X � X � X � � X � 0.97
16 � X � X � X � � � X 0.97

3 CONCLUSIONS

The evaluation method for accessing the Global Model Quality for coupled partial mod-
els [11] is applied on a semi-integral bridge. Sensitivity Analyses quantify in the first step the
influence of the phenomenona (model classes) like creep, shrinkage, material description, ge-
ometrical nonlinearities and temperature distributions. They depend on the structural output
value (displacements, stresses, section forces). In a second step the impacts of the model choice
of a partial model in the same model class are analysed. Global Model Quality is evaluated by
a path through the graph of partial models whereby each possible combination of the models
will lead to a changed Global Model Quality.
The structural application of a semi-integral bridge shows the applicability of the evaluation
method and quantifies the important model classes and the model selection process. The Global
Model Qualities are useful to compare different simulations in a quantitative manner.
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Abstract.  
In the design of the reinforced concrete beams loaded by the bending moment, it is assumed 
that the structure can be used at a level of load, that there are local discontinuities - cracks. 
Designing the element demands checking two limit states of construction, load capacity and 
usability. Limit states usability include also the deflection of the element. 
Deflections in the reinforced concrete beams with cracks are based on actual rigidity of the 
element. After cracking there is a local change in rigidity of the beam. The rigidity is variable 
in the element’s length and due to the heterogeneous structure of concrete, it is not possible to 
clearly describe those changes. Most standards of testing methods tend to simplify the 
calculations and take the average value of the beam’s rigidity on its entire length. The rigidity 
depends on the level of the maximal load of the beam. Experimental researches verify the value 
by inserting the coefficients into the formulas used in the theory of elasticity. The researches 
describe the changes in rigidity in the beam’s length more precisely. The authors take into 
consideration the change of rigidity, depending on the level of maximum load (continuum 
models), or localize the changes in rigidity in the area of the cracks (discrete models). 
This paper presents one of the discrete models. It is distinguished by the fact that the left side of 
the differential equation, that depends on the rigidity, is constant, and all effects associated 
with the scratches are taken as the external load and placed on the right side of the equation. 
This allows to generalize the description. 
The paper presents a particular integral of the differential equation, which allow analyzing the 
displacement and vibration for different rigidity of the silo’s walls, the flow rate and type of the 
flowing material. 
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1    INTRODUCTION 
In construction statics, beam deflections are inversely proportional to their rigidity. 

The dependence, though, is true in the case of material, the rigidity of which does not 
depend on the load level and des not change in time. Such a dependence is, for instance, to a 
large extent true for the steel beams. 

In the case of another kind of material, such as concrete or reinforced concrete, the 
rigidity is reduced as a result of loading of the beam. Initially, the extended sections get 
plasticised, and finally, in the extension stress zone cracks appear. In the cracked sections, 
the beam rigidity is considerably decreased. It causes a noticeable, disproportionate 
deflection increase. 

The computational methods most frequently include it directly through  
implementing a function changing the rigidity into the formula (the continuum method). In 
the presented method, always a constant primal stiffnes of the element is assumed, and  it 
enables calculating the increase of deflections caused by the cracks in the structure and 
rheological effects (the discrete method). 

In the following chapters, the assumptions made for the calculations and the method 
of their practical use is presented. 

2. MODELS OF CALCULATING RIGIDITY IN THE REINFORCED CONCRETE 
BEAMS 

In the construction statics, the differential equation of a deflected axis is derived 
from the geometrical dependences and balance equations. For small shifts, the differential 
equation of the deflection line of the bent beam is: 
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ξ
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∂
∂
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2

2

2

2

2

,,11
                   (1) 

Deflections of cracked reinforced concrete beams depend on factual element’s 
rigidity. After cracking a local change of rigidity occurs. The rigidity changes along the 
element length. For reasons of inhomogeneity of structure of concrete an explicit description 
of these changes is impossible. Most of the codes’ methods are aimed at simplicity of 
calculations and assume mean value of rigidity in whole length of a beam. It depends on 
load level of a beam. The experimental studies verify the computational value of rigidity by 
introducing coefficients to the formulae applying in theory of elasticity. The investigative 
theories describe changes of rigidity along a beam length in more precise way. Authors take 
rigidity changes into account depending on load level (continual models) or localize rigidity 
changes near by cracks (discrete models) – figure 1. 

According to EC 2 and most of the Authors the rigidity change of bending beam is 
taken into account with the term describing rigidity: 
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Fig. 1. The beam’s rigidity according to the different Authors and EC2 

In terms of quality, different is a proposal implied by the Borcz theory, according to 
which the left side of the differential equation does not depend on the maximum load of the 
beam. The form of the left side is identical with the one of the classical elasticity theory (the 
linearly elastic material and the infinite strength). The model takes into account both the 
permanent deformations in the material, the rheological deformations, and the maximum 
load of a section. The model is presented in chapter 3. 

3. MODELS OF CALCULATING RIGIDITY IN THE REINFORCED CONCRETE 
BEAMS ACCORDING TO BORCZ 

3.1. The bent element 
According to Borcz the rigidity of beam after cracking is the same as before. Each 

effects connected with cracking are assumed as external load. 
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   (3) 

ri – pitch angle in the area of the crack, ( )rζξδ ξξ −,  – the second Dirac delta derivative. 

Part of a deflection resulting from the existing cracks is expressed on the right side of 
the equation (3) as the change of angular displacement in the place of crack occurrence. In 
the place of crack, elastic strains and plastic deformations are localized. The model has been 
to some extent experimentally verified. 

148



 

 

In the model of Borcz general solution of the equation (3) does not depend on the 
occurrence of cracks in element. It allows to apply the solution of classic theory of elasticity 
for static analysis of reinforced concrete structure with cracks. 

After fourfold integration, equation (3) will assume the form of a polynomial,the 
constant results of which result from the boundary conditions: 
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v(ξ) - special integral of the differential equation h(ξ–ζi) – Heaviside’s function 

The curve formula: 

 ( ) ( ) ( )[ ] ( ){ }∑ −− −+−++−−=
i

iiii vrrvT
EJ
L

M
EJ
L

v ζξδζξ
ξ

ξ ξξξξξξ ,,, 100

2

0 , (5)  

and after substitution with the coordinates of the crack: 
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After implementation of equation (6) into equation (3): 
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 Differentiating the shift resulting from it (7) in relation to ξ one gets vector{u(ξξξξ)}. The 
solution canalso be expressed in a form of a matrix as a sum of the solution of the homogenous 
and the cracked structure model: 

 {u(ξ)} = [FE(ξ) + Fres(ξ)] {u0} + {u’(ξ)}     (8)  

( )[ ]

























−−

−−

=

2

2

222

232

000

00
22

10

62
1

L

LL
EJ

L
EJ

L
EJ

L
EJ

L
L

E

ξ

ξξ

ξξξ

ξF  - matrix for the elastic system   (9)  

( )[ ]

( ) ( ) ( ) ( )

( ) ( )























−−−−

−−−−−−

= ∑∑

∑∑

0000

0000

00

00

11

11

res i
iii

i
ii

i
iiii

i
iii

hrhr

hrhr

ζξζζξ

ζξζξζζξζξ

ξF  

     matrix complementation by the non-elastic deformations  (9a) 

149



 

 

 ( )[ ]

( ) ( )( )( ) ( )

( ) ( )( ) ( )
( )
( ) 






















−+−+

−−+−+

=′ ∑

∑
−

−

ξ
ξ

ζξζξϕ

ζξζξζξ

ξ ξξ

ξξ

1

1

1101

1101

,

,

T
M

hvrr

hvrrv

i
iiii

i
iiiii

u    (10)  

The transfer matrix is derived from the substitution of the matrix values [FE(ξ)] ; 
[Fres(ξ)] at the end of the bracket for ξ = 1: 
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the non-elastic deformations (12)  

If a beam has only one continuum bracket, four starting conditions can be calculated 
using the system of equations: 

  v Fvk 0=         (13)  

where: { }v 0 = v M T0 0 0 0Φ  - parameters at the beginning of the section; 

 { }v k = v M Tk k k kΦ  - parameters at the end of the section; 

F is a matrix which in general is a sum of the elastic bar solution effects and of the 
permanent bar deformation effects: 

 F F FE res= +          (14)  

3.2. Compressed element 
The task can also be extended by the case in which, axial force is introduced into the 

structure (eg. prestressing reinforcement or a pillar). To the equation of the bent axis of the 
bar, a formula describing influence of the axial force is introduced: 
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The solution then has a form of recurrence formulae [2]: 

 ( ) ( )ξξ 1−= nNn vRv         (16)  
where: RN – recurrence factor of the equation (15). 
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The transfer matrix is derived from the substitution of the general differential 
equation: 
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where: EJ
Nl

k
2

=          (18)  

    The unknown value v,ξξ (ζi-) is calculated from the recurrence formula: 

 v,ξξ (zi
-) = Ai v,ξξ (0) + Bi v,ξξξ (0) - Ci ,   (19)  

the derivative of which is presented in detail in [2]. Matrices Ai ; Bi ; Ci are formed by 
substituting the i column of matrix A with vectors {a}; {b}; {c}. Matrix A is a triangular 
matrix.  

 A = [aij]i=1, ... n 
 {a} = (aj)j=1, ... n 
 {b} = (bj)j=1, ... n 
 {c} = (cj)j=1, ... n 
where: 
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Hence, the following recurrence formulae can be derived for the matrices' determinants: 
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By means of the presented formulae, the algorithms for the numerical calculations 
can be formulated. The transfer matrix of the entire structure then will be: 

 v H H v vk n n 1 n 1 2 1 1 0 glob 0= =− −C C C C CK      (23)  
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where: Ci – transfer matrix for the pillar (4.81): 
b = l / l’ ; 

 a = EJ / EJ’ 
 l’ ; EJ’ - randomly selected comparative values 

To solve the system of equations (23), known boundary conditions at both ends of 
the system are used. For a one-element articulated ends bar, the system of equations is: 
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           (24)  
 c12 j0 + c14 T0 = c15 
           (25)  
 c32 j0 + c34 T0 = c35 

The critical force informs about the instability of the structure. The state will 
correspond with the indeterminacy of the equation system, which can be expressed by 
condition: 

 
( ) ( )
( ) ( ) 0det

3432

1412 =








kckc
kckc

       (26)  

The equation has a lot of elements on critical values kn , from which values of critical 
foces  Nkr can be derived. For a one-element articulated boundary conditions bar, the age 
equation has a form: 
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after transformation: 
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where: Bi – defined by a recurrence formula. 

3.3. A dynamically loaded element 
Similar solution is observed in the task of determining the proper vibration of the bar 

and the generalized shifts and internal forces. They are obtained from a general differential 
equation describing vibration of the bar with the elastic and permanent dislocations [3]: 
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The solution is obtained in a form of recurrence formulae: 

 ( ) ( )tvRtv nKn ,, 1 ξξ −=           (30)   
where: RK – the recurrence factor of the equation (29). 

For one element, the homogenous equation is: 
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For the set vibration it can be assumed that the solution has a form of a ratio (variables 
separation method). The solution has a form : 

 ve(x,t) = T(t) Ve(x)        (31) 

At the harmonic vibration: 

 T(t) = eiwt         (32)  

where: w – circular frequency of the harmonic vibration of the bar 

The timeless equation can then have a form of: 
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VkV ξξξξ         (33)  

EJ
ml

k
2

24 ω=
         (34) 

The general integral of the differential equation (33) is: 

 Ve(ξ) = A cos kξ + B sin kξ + C ch kξ + D sh kξ    (35) 

Based on the solution, it is possible to build a function which will also be a solution 
of the differential equation (33). The solution can be obtained using the shift method, the 
force method, or the mixed method. In the static task, the integral of a differential equation 
expressed by means of the initial parameters was presented. Now, a solution by means of the 
shift method is shown. Constant equations are then kinematic boundary conditions: 

 Ve(ξ) = di Z1(kξ) + ji Z2(kξ) + dj Z3(kξ) + jj Z4(kξ)   (36)  
where: di = Ve(0) 

 ji = Ve,x(0) 

153



 

 

 dj = Ve(1) 
 jj = Ve,x(1) 
The solution of the amplitude equation with their derivatives can be shown in a form of a 
matrix: 

 Ve(ξξξξ) = Z(kξξξξ) de        (37)  
where: Ve(ξξξξ) = {V(ξ); V,x(ξ); M(ξ); T(ξ)}e 

 de = [{ di ; ji ; dj ; jj }e]T. 

Matrix of the shape can be described by: 
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whereas Krylow's functions: 
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       (40)  

are in a form of tables and have the following values: 

K(0) = U(0) = T(0) = 0; S(0) = 1;       (41)  
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K,xxxx(kx) = k K,xxx(kx) = k2 T,xx(kx) = k3 S,x(kx) = k4 K(kx) 

The transfer matrix in the static task enables the determination of deformations and 
forces at the end of the bracket by means of the initial parameters, whereas here the static 
values in any point of the bracket are expressed by means of deformations at its ends. In 
order to maintain a uniform solution it is necessary to determine the generalized 
deformations and forces at the ends of the bracket and find a mutual relation between them: 

 Ve(0) = Z(0) δδδδe         (42)  

 Ve(1) = Z(k) δδδδe         (43)  

Determining vector δδδδe from fomula (42) and substituting it in equation (43) one obtains: 

 δδδδe = Z-1(0) Ve(0)         (44)  
 Ve(1) = Z(k) Z-1(0) Ve(0)        (45)  
The transfer matrix is then: 

 F = Z(k) Z-1(0)        (46)  
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where: a = EJe / EJ’ ; 

 b = le / l’ ; 

 EJ’ ; l’ - comparative rigidity and length 

4. SUMMARY 
Presented method allows to analyse the construction based on the solution of the 

elementar differential equation 

 G,xxxx = δ(ξ–ζ) 

If the function G (ξ - ζ) will be multiplied (inside the integral) by the right side of the 
differential equation, than we obtain a solution that takes into account the impact of the 
permanent and rheologycal deformations. 

  ( ) ( ) ( ) ξξζξξ dpGv O
∫=
1

0
1 ,  

where: pO(ξ) – load and impact of the permanent and rheologycal deformations. 
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This presentation of problem allows in a wider aspect to use the solutions from the classical 
theory of elasticity for materials with variable characteristics. 

 

REFERENCES: 

[1]. Borcz A.: Teoria konstrukcji żelbetowych, wybrane badania wrocławskie.t.2. 
Wyd. Politechniki Wroclawskiej. Wrocław 1986 

[2]. Kiedroń K.: Siła krytyczna ściskanych słupów żelbetowych. Archiwum Inżynierii 
Lądowej t.XXVII, z.3/1981, s.221-231. 

[3]. Łuczak-Romanów R., Metoda obliczania drgań prętów żelbetowych z rysami, 
praca doktorska, Wrocław 1980. 

[4]. Ubysz A.: Plastic strains and self-stresses in reinforced concrete, bar construction. 
Edit. TU Wrocław. Wrocław 1999 

156



19th International Conference on the Application of Computer
Science and Mathematics in Architecture and Civil Engineering

K. Gürlebeck, T. Lahmer and F. Werner (eds.)
Weimar, Germany, 04–06 July 2012

DEPENDENCY OF THE INFLUENCE OF INPUT PARAMETERS OF
BVI MODELS ON THE INITIAL EXCITATIONS AND SPEED RANGES

OF THE VEHICLE

G. Karaki∗

∗Civil Engineering Department, Birzeit University
Birzeit, P.O. Box 14, West Bank

E-mail: gkaraki@birzeit.edu

Keywords: sensitivity analysis, functional input, joint meta-modeling, bridge-vehicle interac-
tion.

Abstract. Bridge vibration due to traffic loading has been subject of extensive research in the
last decades. Such studies are concerned with deriving solutions for the bridge-vehicle interac-
tion (BVI) and analyzing the dynamic responses considering randomness of the coupled model’s
(BVI) input parameters and randomness of road unevenness. This study goes further to examine
the effects of such randomness of input parameters and processes on the variance of dynamic
responses in quantitative measures. The input parameters examined in the sensitivity analy-
sis are, stiffness and damping of vehicle’s suspension system, axle spacing, and stiffness and
damping of bridge. This study also examines the effects of the initial excitation of a vehicle on
the influences of the considered input parameters. Variance based sensitivity analysis is often
applied to deterministic models. However, the models for the dynamic problem is a stochastic
one due to the simulations of the random processes. Thus, a setting using a joint meta-model;
one for the mean response and other for the dispersion of the response is developed. The joint
model is developed within the framework of Generalized Linear Models (GLM). An enhance-
ment of the GLM procedure is suggested and tested; this enhancement incorporates Moving
Least Squares (MLS) approximation algorithms in the fitting of the mean component of the joint
model. The sensitivity analysis is then performed on the joint-model developed for the dynamic
responses caused by BVI.
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1 INTRODUCTION

Structural systems can be represented by various mathematical models implemented and
solved using complex computer codes, which may be referred to as numerical models. Devel-
oped numerical models are often employed to identify influential input parameters that affect
responses of interest. This identification is carried out by methods of sensitivity and uncertainty
analyses. Such studies can be used for model validation, model calibration, and decision making
processes. Variance sensitivity analysis is one of the efficient methods to study global sensitiv-
ities where main and higher order effects of input parameter can be quantitatively measured.
Furthermore, sampling-based techniques for estimating the variance-based sensitivity indices
are frequently used for complex engineering problems for their ease in implementation. How-
ever, their main drawback is the demand of high computational time. Therefore, meta-models
are used as an alternative for the complex computer codes, and the sensitivity analysis is per-
formed efficiently on fitted meta-models [1]. Such a procedure applies to deterministic models
that produces always the same output for the same set of input. Unfortunately, this is not the
case in all engineering applications where random processes or unknown input parameters may
be over-looked.

Stochastic computer codes are the ones were simulations of random processes are included
in every run of the analysis, thus, the output values depend on the realizations of these ran-
dom processes. Applying variance-based sensitivity analysis for such models is a challenge
and has attracted the attention of researchers in the recent years. Tarantola et al. [2] suggested
a solution to consider the effects of random processes by introducing a scalar input parameter
(ξ ∼ U(0, 1)) controlling the simulation of random processes and including them in the com-
puter model, this require performing the sensitivity analysis directly on the numerical model,
which means high computational time. More recently, [3] introduced building a joint model
for the output of stochastic computer codes. The joint model is then used for the sensitivity
analysis. The procedure for joint modeling followed by [3] is within the framework of general-
ized linear models. Later the same authors suggested non-parametric models, e.g. generalized
additive models and joint Gaussian process modeling, as they proved to be more efficient in
estimating the sensitivity indices [4]. A similar idea is to be used and tested for the engineering
problem at hand.

The engineering problem of interest is bridge-vehicle interaction. There has been an in-
creasing attention to develop procedures for solving the bridge-vehicle interaction, which is
encouraged by the advent computational power of digital computers and the increasing number
and weights of vehicles traveling on bridges. Therefore, researchers and modelers had been
concerned with deriving solutions of the dynamic problem of bridge-vehicle interaction. F.
Yang et al. [5] and [6] reviewed the different methods with their corresponding mathematical
and computational descriptions. Moreover, probabilistic studies had also been employed to
assess the effects of random input parameters and road unevenness on the dynamic response.
Hwang and Nowak [7] presented a procedure to calculate statistical parameters for the dynamic
loading of bridges. These parameters were based on surveys and tests and included vehicle
mass, suspension system, tires and road roughness, which were simulated by stochastic pro-
cesses. Kirkegaard and Nielsen [8, 9] studied the randomness of vehicle input parameters and
the randomness of road unevenness in two separate studies. One conducted for vehicle input
parameters and the other for the effects of random road profiles on the dynamic response of
highway bridges. Moreover, solutions for the statistical characteristics of a bridge’s response
to the passage of a vehicle over a random rough surface have been of interest in a number of

158



research works, such as [11, 12, 13]. More recently, [14] considered both the randomness of
the vehicle input parameters and road unevenness, and calculated the statistical characteristics
of the bridge response by using the random variable functional moment method.

This study aims to extend probabilistic studies and use them for purposes of sensitivity and
uncertainty analyses. One of the main challenges of such an analyses is considering the effect of
road unevenness on the variance of the bridge displacements. Further, the effect of the initial ex-
citations on the influence of vehicle and bridge dynamics on variances of bridge displacements
is also examined.

The first section of the paper deals with the general description of the enhanced generalized
linear models and their use to determine the sensitivity indices followed by presenting the main
solution algorithm of the bridge-vehicle interaction. An academic example is illustrated to vali-
date the presented approach followed by the application on the influences of vehicle dynamics,
bridge dynamics and initial excitations on the variance of a bridge’s response.

2 ENHANCED GENERALIZED LINEAR MODELS

The numerical models of interest are the ones that are stochastic in nature, e.g. having
functional inputs which cannot be captured by scalar ones. For such a problem and where no
replications is preferred for computational time reduction, it is useful to model both the output’s
mean and variance jointly, which leads to the use of generalized linear models. Generalized
linear models generalizes linear regression by allowing the linear model to relate to the response
variable using a link function and by allowing the variance at each observation point to be a
function of its prediction at the same position. Each generalization model has three components;
response variable distribution, linear predictor, link function. A full description of the such
models and their extension can be found in [15, 16]. In short the followings describe the mean
and dispersion components of the joint model.

E(Yi) = µi, ηi = g(µi) = Σjxijβj; (1)
var(Yi) = φiv(µi),

(2)

where (Yi)i = 1, . . . , n are random variables with mean µi; xij are samples of covariate vectors
Xj; β are the regression coefficients; ηi is the linear predictor of the mean; g(.) is the link
function; φi is the dispersion parameter, and v(.) is the variance function. The dispersion is
assumed to vary and dependent on the predicted mean values, hence a model is built for φi:

E(di) = φi, ξi = h(φi) = Σjuijγj; (3)
var(di) = τvd(φi),

(4)

where (di)i = 1, . . . , n are estimates of dispersion, error of prediction is used; uij are samples of
covariate vectors Uj; γ are the regression coefficients; ξi is the linear predictor of the dispersion;
h(.) is the link function; τ is a constant, and vd(.) is the variance function for dispersion. The
choice of the linear predictor has a strong effects on the joint model and its quality. In the case
where the distribution for the responses of the mean model is chosen to be normal, an identity
link function follows the choice of this distribution and (1) becomes E(y) = µ, which is the
general formulation of simple linear regression.
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This paper is concerned with enhancing the procedure of generalized linear models by using
local approximation algorithms for the predictor of the mean. Not only a weighting function
dependent on the variance distribution is introduced to estimate the regression coefficients β
but also a weighting function dependent on the position of the approximation point relative to
the observation (support) points is used. Moving least squares (MLS) is proposed to be the
predictor in GLM procedure.

Furthermore, the base of the variance model is the squared residuals ε2i = (yi−Xiβ)2 for the
i = 1, 2, . . . , n, where n is number of observations. For the mean component of joint model,
the meta-models coefficients β are evaluated as

β = (X ′V −1X)−1X ′V −1y, (5)

where V ar(ε) = Vn×n with σ2
i = eùiγ . It can be noticed that the maximum likelihood (MLE)

estimator of β involves γ through V matrix and the MLE of γ clearly involves β since the data
in the variance involves β. As a result an iterative procedure is carried out.

The enhanced GLM procedure using MLS is as follows:

1. Ordinary linear regression models is used to obtain β0 for the mean model yi = X ′iβ0 + εi

2. β0 is used to compute n residuals, εi = yi −X ′iβ0

3. The residuals ε2i are used as data to fit the variance model with regressors u and a log link
function, the regression coefficients γ are determined

4. The variance weighting matrix V is formulated to be used in updating β0 to β1 for the
iteration step

5. The moving least squares (MLS) is concurrently applied on the approximation point

6. Step 2 is repeated with the updated data, and analysis is continued till convergence

The Gaussian weighting function is used for MLS algorithm, which is an exponential function
described as

wG(s) = e−s
2/α2

, (6)

with α as a shape factor and s = ‖x− xi‖ /D, where s is the normalized distance between the
approximation point and the supporting point considered andD is the influence radius. Further-
more, for the above procedure cross validation is used to find the residuals, which eliminates
the over-fitting of noise in the fitting

3 SENSITIVITY INDICES

Sensitivity analysis is the study of how uncertainties or variances in the output of a model
is apportioned to uncertainties or variances of the inputs. Variance based methods have been
chosen due to their independence from the investigated model, and the influence of groups or
sets of input parameters may be examined. Moreover, such an analysis provides the impor-
tance ranking of the input parameters as well as quantifying their contribution to the output
variance [17]. The main idea of variance-based methods is to estimate the amount of variance
that would disappear if the true value of the input parameterXi is known. This can be described
by the conditional variance of Y fixing Xi at its true value V (Y |Xi), and is obtained by varying
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over all parameters, except Xi. Since the true value of Xi in complex engineering problems
is unknown, the average of the conditional variance for all possible values of Xi is used, i.e.
E(V (Y |Xi)). Having the unconditional variance of the output V (Y ) and the expectation of the
conditional variance E(V (Y |Xi)), the following relation holds, which is known as the law of
total variance:

V (Y ) = V (E(Y |Xi)) + E(V (Y |Xi)), (7)

From equation (7) the variance of the conditional expectation V (E(Y |Xi)) is determined. This
term is often referred to as the main effect, as it estimates the main effect contribution of the Xi

to the variance of the output. Normalizing the main effect by the unconditional variance V (Y )
results in:

Si =
V (E(Y |Xi))

V (Y )
(8)

The ratio Si is known as a first order sensitivity index [18], which is also known as the im-
portance measure [19]. The value of Si is less than 1, further the sum of all first order indices
corresponding to multiple input parameters is an indicator of the additivity of the model. The
model is considered additive when the sum equals to one (no interactions between the input
parameters), and non-additive when the sum is less than one. Hence, the difference 1 −∑Si
is an indicator for the presence of interactions between the input parameters. For example, the
interaction between two parameters Xi and Xj on the output Y in terms of conditional variance
is expressed as:

Vij = V (E(Y |Xi, Xj))− V (E(Y |Xi))− V (E(Y |Xj)), (9)

where V (E(Y |Xi, Xj)) describes the joint effect of the pair (Xi, Xj) on Y . This is known as
a second order effect. Higher order effects can be computed in a like manner. The total effect
index ST i is used to represent the total contribution of the input parameter Xi to the output, i.e.
the first order effects, in addition to all higher order effects.

The above formulations applies to deterministic computer codes, where the same set of data
produces the same output repeatedly. However, such a statement cannot be said when consid-
ering functional inputs, e.g. random processes, for the numerical models at hand, which are
called stochastic models as mentioned before.

The work of [4] suggested the family of generalized linear models (GLM) and generalized
additive models (GAM) to model the mean and dispersion of model’s output and use the joint
model to estimate the sensitivity indices. This general approach is adopted in this study using
GLM with moving least squares MLS as the fitting algorithm of the mean component of join
model, having the identity as the link function.

The procedure starts with assuming the existence of an uncontrollable input parameter Xε in
addition to the scaler inputs X = (X1, X2, . . . , Xk). Thus, the output of the numerical models
can be written as Y = f(X, Xε). The joint meta-models using enhanced GLM are used to
formulate the relation for the mean (fm) and dispersion (fds) with respect to the scaler inputs
(X), which can be written as [4]:

fm(X) = E(Y |X) (10)
fds(X) = V (Y |X) (11)

The total variance of Y is defined by (7), hence, the sensitivity indices for the scalar inputs
can be estimated on the mean component of the joint model using classical sampling meth-
ods having Si = Vi(fm)/V (Y ). At the same time the dispersion component of the joint
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model fds is developed. E(V (Y |X)) presents the expected value of the variance caused by
Xε and its interaction with X, thus, the total effect sensitivity index of Xε is estimated as
STε = E(V (Y |X))/V (Y ).

4 MODELING OF BVI

The engineering problem of interest is the vibration of bridges caused by a moving heavy
vehicle. A general description of the vehicle and the bridge models as well as the used solution
algorithms are explained.

4.1 Vehicle model

The equations of motion for the vehicle can be written in the following general form:

MvÜv + CvU̇v + KvUv = Pv, (12)

where Mv is the mass matrix of the vehicle, Cv is the damping matrix of the vehicle, Kv is
the stiffness matrix of the vehicle, Pv is the dynamic force vector of the vehicle, and Uv is
the generalized coordinate vector describing the dynamics of the vehicle model (degrees of
freedom).

The chosen vehicle model is an eight-degree-of-freedom model representing a typical con-
figuration of a common heavy truck traveling on road networks [20]. The vehicle consists of
a two-axle tractor and a three-axle semi-trailer linked by a hinge. It is assumed that the three
axles of the semi-trailer share the rear static load equally since load-sharing mechanisms are
common in multi-axle heavy vehicle suspensions [21]. The generalized coordinates used to
describe the vehicle dynamics are tractor vertical displacement yT , tractor pitch angle θT , semi-
trailer vertical displacement yS , semi-trailer pitch angle θS , tractor front unsprung mass vertical
displacement y1, tractor rear unsprung mass vertical displacement y2, and semi-trailer unsprung
masses vertical displacements y3, y4, and y5, as shown below:

Uv =
{
yT θS θS y1 y2 y3 y4 y5

}T (13)

The mass, damping and stiffness matrices can be found in [20].
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Figure 1: Schematic for the five-axle vehicle model

The interaction force F int
i can be expressed as:

F int
i = kti [yi(t)− yb(xi, t)− ri(t)] , i = 1, 2, 3, 4, 5 (14)

where yb(xi, t) and ri(t) are the displacements of the bridge and road unevenness respectively,
at the contact point corresponding to the ith axle at instant t.
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The vibration of such a heavy vehicle has two distinctive frequency ranges; the first range is
1.5 Hz to 4 Hz, representing the sprung mass bounce involving some pitching, and the second
range is 8 Hz to 15 Hz, representing the unsprung mass bounce involving suspension pitch
modes [21].

4.2 Bridge model

The equations of motion of the bridge considering time varying forces can be expressed in
the following matrix notation:

MbÜb + CbU̇b + KbUb = Pb , (15)

with Mb, Cb, Kb are the mass, damping and stiffness matrices of the bridge, Üb, U̇b, Ub are the
accelerations, velocities and displacements of the bridge, and Pb is the vector of forces acting
on each bridge node at time t, which has two components, as shown below:

Pb = Fg + Fint , (16)

where Fg is the force acting on the bridge due to the weight of the vehicle, which is independent
of the interaction, and Fint is the time-variant force acting on the bridge, which depends on the
interaction between the bridge and the vehicle. The damping of the bridge is assumed to be
viscous, which means that it is proportional to the nodal velocities.

4.3 Bridge-vehicle interaction

The equations of motion for the vehicle and the bridge are written as (12) and (15), re-
spectively. Assuming perfect contact, the solution of these equations is governed by satisfying
the compatibility equation and imposing the equality of displacement at the contact point, as
expressed below:

yw(xi, t) = yb(xi, t) + ri(t) , (17)

where yw(xi, t) is the displacement of the tire of the vehicle at ith contact point at instant t. In
addition, the force equilibrium conditions at the contact point i must be satisfied, which can be
shown as:

P i
b = F g

i + F int
i , (18)

where F g
i is the static weight of the ith axle and F int

i is the interaction force at the ith axle. The
ith contact point usually does not coincide with the a DOF of the bridge model. Therefore, the
forces F g

i and F int
i are converted to equivalent nodal forces associated with the bridge’s DOF.

The solution algorithm described in [10] is used in the analysis. It is a non-iterative solution
conditioning over a sufficiently small time step. With such a time step, the force acting on the
vehicle at the current time step is estimated from the previous step. The choice of the time
step should be small enough to capture the highest desired frequency of the bridge, the vehicle
passage, and the excitation from road unevenness. Moreover a factor of 1

10
is introduced into

the ∆t selected to secure reasonable integration accuracy.
In general, many DOFs are involved in the FE model of the bridge system, but only the first

modes of vibration make the significant contribution to the dynamic response. Therefore, the
modal superposition method has been used to solve the equations of motion of the bridge, which
reduces the computational effort considerably, which is regarded as advantageous [22].
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4.4 Road unevenness

Road unevenness is often treated as a realization of a stationary Gaussian homogeneous
random process described by its power spectral density function in space domain Sf0f0(κ) with
κ as the wavenumber [23].

However, the dynamic analysis is performed in time domain, and a description of the road
unevenness in time domain is needed. Therefore, the temporal power spectral density function
Sf0f0(ω) is to be computed. Assuming a constant speed for the vehicle v, Sf0f0(ω) and Sf0f0(κ)
can be related using the following:

Sf0f0 (ω = vκ) =
1

v
Sf0f0(κ) (19)

When performing the analysis in time domain, one can deduce that the excitation of the
vehicle due to road unevenness can be described as non-stationary when the vehicle speed is
time dependent [25]. Even when the speed is constant and the vehicle excitation is stationary,
the dynamic responses of the bridge are non-stationary due to the movement of the vehicle [11].
This observation is of importance in deriving the stochastic characteristics when the dynamic
problem is solved in frequency domain.

The model for generating realizations of road unevenness is a series of cosine terms with
random phase angles, and described in (20).

f(t) =

Nd−1∑

k=0

[Ckcos(ωkt+ Φk)] , (20)

ωk = ωl + k∆ω ,

k = 0, 1, 2, . . . , Nd − 1 ,

where Φks are independent random phase angles uniformly distributed in the range [0, 2π] and
Cks are random variables following Rayleigh distribution with a mean value of βk

√
π
2

and a
variance of β2

k(2− π
2
) taking βk as

√
SFF (ωk)∆ω. SFF is the one sided power spectral density

function (PSD) used to describe the road unevenness. Further, the realized road surfaces reflect
the prescribed probabilistic characteristics of the random process accurately as the number Nd

gets larger.
It is noticed from (20) that the PSD is discretized into temporal frequency bands of a width of

∆ω, and the corresponding discretized frequencies are used in the realization of the stochastic
process. However, the entire frequency domain of the PSD cannot be used in the realization for
mathematical and physical reasons [26]. For the realizations of road surfaces, cut-off frequen-
cies are needed. The discretizing frequency band is defined as

∆ω = (ωu − ωl)/Nd , (21)

with ωu and ωl (rad/s) as the upper and the lower cut-off frequencies. The long wavelength
irregularities correspond to low frequency components in the time domain and short wavelength
irregularities correspond to high frequency components [27].
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5 NUMERICAL EXAMPLES

5.1 Ishigami test function

The described joint modeling combined with sensitivity analysis have been applied to Ishigami
function [24]:

Y (X1, X2, X3) = sin(X1) + a sin(X2)2 + bX4
3 sin(X1), (22)

where a = 7, b = 0.1, and Xi ∼ U [−π; π] for i = 1, 2, 3. The sensitivity indices for this
function are well documented in [1]. A similar setting that of [4] is used in this example. The
input parameters X1 and X2 are considered as the known input parameters, whereas X3 is an
uncontrollable or unknown input parameter which is not considered in the joint modeling of the
function’s output.

For Joint modeling support samples are obtained by running a Monte Carlo simulation. One
thousand samples of (X1, X2, X3) are simulated to obtain the support observations. Latin hy-
percube is used for efficiency in sampling. A joint model using the enhanced GLM procedure
is applied, the properties of the fit for the mean and dispersion of the joint models are given
in Table 1. As mentioned before, cross validation has been used in the determinations of the
predictions errors which are used in GLM procedure. Fig. 2 depicts the better fit when GLM
procedure is used in building the meta model.

Table 1: Properties of the fitted joint model for Ishigami function

Formula

Joint GLM enhanced with MLS fm = f(X1, X
2
2 , X

3
1 , X

4
2 )

radiusMLS = 0.77, αMLS = 0.4

fd = f(X2
1 , X

3
2 )
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(b) using GLM procedure with MLS

Figure 2: Comparison between fitting the data with and without GLM procedure: • observations (supports)
4 approximated

The sensitivity indices are calculated using the developed joint model, thousands of samples
are run on the joint model to ensure convergence in the estimation of the sensitivity indices. A
comparison between the exact indices [1], estimated by [4], and the procedure suggested here
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are shown in Table 2. The results by [4] were estimated using generalized additive models
that employs spline smoothing algorithms based on 100 repetitions of the joint models fitting
process. Whereas, the suggested enhanced GLM with MLS has been performed using 10 repe-
titions of the joint models fitting process.

Table 2: Exact and estimated sensitivity indices

SI Exact [1] Joint GAM [4] Joint GLMMLS

S1 0.314 0.310 0.32
S2 0.442 0.452 0.41

ST3 0.244 0.236 0.22

It can be noticed from Table 2 that an agreement in the estimated indices exists, which
proves the efficiency of the application of the proposed joint models and their use in estimating
the sensitivity indices.

5.2 Effects of bridge-vehicle interaction

The engineering problem at hand is the effects of bridge and vehicle dynamics on the bridge
displacements considering the excitations of the vehicle due to road unevenness, which can be
described as an uncontrollable parameter rendering the dynamic model to stochastic.

The vehicle model presented by [20] is used. The characteristics of the vehicle are found
in [29]. The bridge model is a single span simply supported beam model for the Pirton Lane
Highway bridge in Gloucester (United Kingdom) [21]. The bridge has a length L = 40m, an
estimated mass per unit length of m = 12000 kg/m and a bending stiffness of EI = 1.26 ×
105 MNm2. The bridge’s first natural frequency is f1 = 3.20 Hz with a modal damping ratio
ζ1 = 0.02.

Road unevenness is considered in the dynamic analysis, its realization follows (20) where
ωl = 1.74 rad/s and ωu = 75.54 rad/s with ∆ω = 0.104 rad/s. The dynamic model’s output is
the displacements at mid-span that are normalized by the corresponding static displacements,
which is known as the Dynamic Incremental Factor (DIF).

A sensitivity analysis is carried out to identify the influence of the input parameters of the
vehicle dynamics; stiffness (kt) and damping (ct) of suspension system and spacing of fifth
axle (S), and the bridge dynamics; flexural stiffness (EI) and damping ratio (ζ). Further, the
excitation of the vehicle by the road profile of the approach leading to the bridge is examined
and its effects on the variance of the dynamic response is studied.

In order to build the joint model, 1000 random vectors of input parameters are generated and
the dynamic model is run for each sample to obtain the support observations. The uncontrollable
input parameter Xε represents the random processes of road unevenness. For the scaler input
parameters (X), the first order indices are determined from the mean component of joint model,
whereas, for Xε the total effect index is estimated. The results are presented for two speeds,
these are critical speeds derived for the examined bridge and vehicle models, which had been
documented in a previous work by the author [30]. The critical speeds for the vehicle are
57km/h and 84km/h; these speeds cause the highest dynamic effects on the bridge.

Two scenarios are examined; one considers the vehicle traveling over the bridge with initial
excitation (WI), and another ignores the initial excitation (WoI). The corresponding sensitivity
indices are presented in Table 3. It can be noticed that the initial excitation has a limit influence
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on the identified input parameters from the vehicle and bridge dynamics affecting the variance
of the bridge’s displacement. Whereas, studying the effect of the speed on the sensitivity indices
in Table 4 one can see that higher speeds shadow the influence of vehicle dynamics and power
the influence of road unevenness on the variance of the bridge’s displacement. In other words,
the higher the speed, the higher is the amplification in the dynamic response, however, the
scatter of the output is also higher. Such an observation is of significance in the modeling of
the dynamic problem as more attention must be given when higher speeds are considered in the
analysis as higher variations in the response are expected.

Table 3: Estimated sensitivity indices estimated for the displacements due to a vehicle traveling at 57km/h

1st order 1st order
WoI WI

ks 0.14 0.16
cs 0.03 0.02
S 0.00 0.02
EI 0.09 0.09
ζ 0.01 0.03

STε 0.72 0.68

Table 4: Estimated sensitivity indices estimated for the displacements considering the initial excitations by the
approach

1st order 1st order
vcr=57km/h vcr=84km/h

ks 0.16 0.05
cs 0.02 0.03
S 0.02 0.01
EI 0.09 0.05
ζ 0.03 0.10

STε 0.68 0.80

6 CONCLUSIONS

The study is concerned with performing sensitivity analysis for responses retrieved from
stochastic models of bridge-vehicle interaction. The main presented and tested methods are
based on building a joint model using GLM procedure and enhancing the fitting by suggesting
MLS approximation algorithms within the framework of GLM. Hence, a meta-model is built for
the mean and the dispersion jointly. The described method is applied on an academic example
and proved efficient. Later it has been used for the engineering problem of interest. It can
be said that considering the initial excitation of the vehicle by road unevenness of the bridge’s
approach has a limited effect on the identified parameters from the vehicle and bridge dynamics
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affecting the variances of the bridge’s displacement. However, the speed has a prominent effect
as higher speeds leads to higher amplifications in the bridge’s displacements accompanied with
higher variances caused mainly by the uncontrollable parameter of road unevenness, which has
been qualitatively measured.
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Abstract. The process of analysis and design in structural engineering requires the 
consideration of different partial models, for example loading, structural materials, structural 
elements, and analysis types. The various partial models are combined by coupling several of 
their components. Due to the large number of available partial models describing similar 
phenomena, many different model combinations are possible to simulate the same aspects of a 
structure. The challenging task of an engineer is to select a model combination that ensures a 
sufficient, reliable prognosis. In order to achieve this reliable prognosis of the overall 
structural behavior, a high individual quality of the partial models and an adequate coupling of 
the partial models is required.  
Several methodologies have been proposed to evaluate the quality of partial models for their 
intended application, but a detailed study of the coupling quality is still lacking. This paper 
proposes a new approach to assess the coupling quality of partial models in a quantitative 
manner. The approach is based on the consistency of the coupled data and applies for uni- and 
bidirectional coupled partial models. Furthermore, the influence of the coupling quality on the 
output quantities of the partial models is considered.  
The functionality of the algorithm and the effect of the coupling quality are demonstrated using 
an example of coupled partial models in structural engineering.  
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1    INTRODUCTION 
The models used in structural engineering to design for serviceability and the ultimate limit 

state are composed of several partial models (PM) and their couplings (C). A partial model 
describes a component of the global model, e.g. loading, material, or the level of abstraction. 
For each class of PMs, e.g. the material behavior of steel, several possibilities of modeling are 
available. If the material model is relevant for the structural behavior, the structural engineer 
needs to decide, whether a linear or a non-linear material model should be used and whether 
further effects, e.g. long-term behavior, have to be considered. Apart from the selection of 
appropriate partial models the coupling of the individual PMs is a key issue. Some partial 
models might interact with each other, thus a coupling is substantial and the quality of this 
coupling influences the quality of the global model. 

In recent years, strategies to estimate the quality of partial models, [1], [2], and to quantify 
the influence of the partial models on the global model prognosis [3] have been developed. 
Furthermore, the quantification of the prognosis quality of a global model, neglecting the 
influence of coupling quality, is described in [3]. The assessment of software coupling has been 
shown in [4], but does not apply to partial models directly. Altogether, the evaluation of partial 
model coupling and its influence on the prognosis of a global model has not been addressed so 
far.  

In the scope of this paper a method to quantify the quality of data coupled partial models is 
presented. The basis of the procedure is the consistency of data belonging to the coupled partial 
models. Besides the pure data integrity the influence of the coupling on the partial models’ 

output is taken into account within the framework of the evaluation algorithm.  

In the next section some basic principles and methods are introduced. Section three presents 
the method of evaluation and section four gives an example of coupling quality evaluation. 
Finally, conclusions are drawn.  

2    BASIC METHODS AND PRINCIPLES 

2.1    Graphical Representation of Coupled Partial Models 
Global models used in engineering consist of several partial models. Figure 1 depicts a 

structure of a simply supported beam, connected to a clamped column with a footing. On the 
left side the overall structure is presented all in one, on the right side the structural parts are 
decoupled. The partial models that are exemplarily depicted are: load models for dead load, live 
load, and wind load, material models, models of geometric non-linear kinematics, and soil.  

Stein, Lahmer, and Bock [5] show that a global model can be represented schematically by a 
graph, consisting of vertices – symbolizing the partial models – and edges – symbolizing the 
coupling. This idea is extended within the scope of this paper. The global model in Figure 1, 
represented by the graph in Figure 2, is separated into its structural components; beam, column, 
and foundation. Due to the numerical calculation, a discretization of the structural parts is 
necessary, for example using 1D-beam or 3D-volume elements. Each of the structural parts 
consist of several classes of partial models, which are arranged according to the sequence of the 
analysis. These classes of partial models may include several different representations – partial 
models - of a phenomenon, for example material behavior. Only one partial model of a class 
can be used at the same time when modeling a global system.  
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 Figure 2: Representation of coupled partial models by a graph 

Figure 1: System of coupled partial models (PM), complete coupled system (left), decoupled system (right) 

Within Figure 2 the coupling of partial models or structural parts is illustrated by arrows. 
These coupling are distinguished into unidirectional and bidirectional coupling [4]. If 
unidirectional coupling is applied, for example coupling beam and column, the output of the 
beam, in this case support forces, is the input of the column, but the output of the column, in 
this case deformations, is not the input of the beam. In case of bidirectional coupling, the output 
(deformations) of the column is also considered as input (pre-deformations of the support) of 
the beam. For some model combinations bidirectional coupling is essential, e.g. coupling of the 
material model. The output of the material model, the stresses, is required for the calculation of 
the column, thus backward coupling is substantial. 

2.2    Sensitivity Analysis applied to Partial Models 
Sensitivity analyses quantify the influence of input parameters on the output of a model. As 

proposed in [3], variance-based global sensitivity analysis can also be used to study the 
influence of partial models on the output of the global model. This procedure detects the most 
influential classes of the partial models. Consequently, when evaluating the quality of the 
global model, the individual quality of the partial models with high influences on the system’s 
behavior is crucial for the overall prognosis quality. This algorithm to quantify the influence of 
classes of partial models is the basis of this investigation of coupling quality and is described in 
the following.  
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Each of the classes of partial models i, j is represented by a uniformly distributed, discrete 
random parameter 

   ,...0,1,0,1  ji XX . (1) 

A value of Xi=0 denotes the deactivated class of partial models i, for example geometric non-
linearity is not included, and Xi=1 denotes the activated class of partial models i. The global 
model Y is calculated for all possible combinations of the number of Np partial model classes, 
which is in case of the discrete parameters a total of  

pNN 2 (2) 

combinations. The first-order sensitivity index quantifies the exclusive influence of the 
parameter Xi and is defined as follows [6]:  
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Herein, V (E (Y|Xi)) is the variance of the expected value of the model response Y when 
conditioning to Xi and V (Y) is the variance of the system response when all parameters vary 
simultaneously. If the sum of all Si is close to one, the model is purely additive and no 
interactions of parameters exist. A sum smaller than one denotes that parts of the variance 
cannot be explained when the interactions of parameters or coupling effects are neglected. 

In order to take into account coupling effects, the total-effects sensitivity index STi was 
introduced [7]  
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with the variance of the expected value V ( E(Y|X~i)) for the case that all parameters but Xi itself 
are fixed, denoted as X~i. Besides the exclusive influence of the parameter Xi on the variance of 
the response, the STi index considers the interaction of Xi with all other parameters X~i. 

Differences among first-order and total-effects sensitivity indices indicate interaction of 
parameter Xi with all other parameters X~i. When using high-order indices these interactions 
can be directly apportioned to specific parameters/classes of partial models. The definition of 
the high-order index of parameter Xi and Xj is the following [8]: 
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wherein V ( E(Y|Xi,Xj)) is the variance of the expected value of Y when conditioning to Xi and 
Xj simultaneously. High-order indices can be calculated for all combinations of input 
parameters. Summing up all high-order indices of a single variable results in the total-effects 
indices. 

In the present case of discrete input parameters all first-order, total-effects, and high-order 
indices can be calculated directly from the results of model Y for the N combinations of input 
parameters without the usual need of specific sensitivity estimators, which require high 
computational effort. 
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3    COUPLING QUALITY 

3.1    Quality of Data Coupling 
Within the scope of this paper, coupling is defined as data coupling and the quality of 

coupling is related to the quality of data transfer. Let  and  be quantities appearing in both 
partial models k and l at the same point on the structure, for example forces or displacements. A 
perfect data coupling ensures consistent data in both models, e.g. k l, which refers to data
coupling quality of cqf

,k-l=1. The index f denotes the forward coupling according to the
sequence of partial models within the graph, whereas b denotes the backward-coupling, for 
example cqb

,l-k. As the differences in transferred data increases, the quality of the coupling
decreases down to a quality of zero when no data is transferred. This leads to the following 
definition of data coupling quality:
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The data coupling quality depends on the quantity being compared. As a coupling might 
consist of numerous data, the mean quality of Nf forward and Nb backward transferred data is 
derived with 
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An example of coupling is the data transfer of the support forces of the column to the 
foundation in Figure 1, when both structural parts are analyzed seperately. The forward 
quantities normal force, shear force, and bending moment are transferred to the foundation, and 
the backward quantities  deformation in vertical direction uz and horizontal direction ux as well 
as the rotation y, that occur due to the flexibility of the soil, are transferred back to the column 
support and are considered pre-deformations of the column at the support. 

3.2    Influence of Coupling on Data 
Independent from the quality of data coupling, the question of the influence of coupling on 

the data needs to be answered. For this reason, variance-based sensitivity analysis according to 
Section 2 is applied. In the current section the sensitivity of the forward coupled data quantities 
with respect to the partial models is explored, which is in contrast to the usual algorithms used 
when the sensitivity of certain structural quantities of the global system is determined.  

 For this analysis the partial models need to be distinguished based on their position in the 
sequence of the analysis: partial models arranged before the investigated coupling, denoted as 
PM≤k, and models arranged after the investigated coupling, denoted as PM≥l. If the coupling 
quality of column-foundation needs to be determined for the graph in Figure 2, PM≤k refers to 
all models directly linked to the beam and the column, and PM≥l refers to all models directly 
linked to the foundation.  

Using high-order indices, the influence of partial models on the transferred data can be 
apportioned to each model and to several groups of models. In the present case we are 
interested in the sensitivity of the transferred data with respect to all PM≤k and all PM≥l. The 
sum of high-order indices for the groups of models becomes  
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In 
kPM

S no first-order or higher-order indices referring to any PM≥l are included. This value 

is a measure of the importance of forward coupling for quantity . In contrast to 
this, 

lPM
S indicates the importance of backward coupling and includes all first-order for PM≥l 

and all high-order terms referring to any PM≥l. The need for bidirectional coupling increases 
with an increasing influence of backward coupling. Hence, the coupling quality is more and 
more dependent on the quality of the backward coupling. 

3.3    Quality of Partial Model Coupling 
In order to derive the quality of PM coupling, the data coupling quality and the influence of 

coupling are combined. The final application of the derived coupling quality is the 
consideration of it within the framework of model evaluation, thus the quality of coupling is 
defined with this motive. In order to do so, the coupling quality depends on the position of the 
output quantity in the graph, for which the influence of coupling is investigated for.  

When the coupling quality is evaluated for coupled PMs that are after the investigated 
output quantity in the sequence of the analysis, a backward coupling is essential; otherwise no 
information of the partial models arranged after the coupling can be transferred back to the 
PMs that are before in the sequence of the analysis. In this case, quality of coupling becomes  

.
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If one of the forward or backward data coupling quality is zero, the total quality of coupling 
becomes zero as well. 

When coupling quality is evaluated for coupled PMs that are arranged before the 
investigated output quantity, the backward coupling might influence the coupled quantities to 
some extent, but it is not obligatory. In this case the quality is defined as  
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The forward data coupling quality cqf
 is directly linked to the sensitivity indices of . For

backward data coupling quality this is not possible, because it cannot be determined which of 
the backward coupling quantities  has an influence on . Furthermore, the number of forward 
and backward coupling quantities might differ. Hence, the mean value of sensitivity indices of 
 is multiplied with the mean of backward data coupling quality .

b

klcq 
  

4    EXAMPLE 

4.1    Partial Models and First Results 
In the following, an example depicted in Figure 3 is analyzed with respect to coupling 

quality. The considered partial models are: live load beam (PM1), non-linear material behavior 
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 Figure 3: Example of coupled partial models 

of the steel columns (PM2), geometric non-linear behavior of the steel column (PM3), and 
elastic behavior of soil (PM4). Coupling positions of the structural parts are between beam and 
column, denoted as 1, and between column and foundation, denoted as 2. Further parameters 
are depicted in the figure. 

First, the system is calculated considering perfect model coupling and the resulting major 
forces, moment, displacements, and rotations of the three structural parts are given in Table 1. 
From these numbers the qualitative influence of the several classes of partial models is derived, 
e.g. the influence of geometric non-linearity PM3 on the bending moment at column support, 
My2,c.  

Second, Table 2 shows the results of different couplings of the structural parts, distinguished 
into uni- and bidirectional coupling. Furthermore, bidirectional coupling with a limited number 
of iterations between the structural subsystems is given. From these numbers the relationship 
between the couplings are found. For example the support force of the beam Fz1,b is 
independent from these couplings. This is in contrast to the support moment of the column 
My2,c, which depends on the type of column-foundation foundation.  

XPM1 XPM2 XPM3 XPM4 Fz1,b Fz2,c My2,c ux1,c y2,c y2,f 
[kN] [kN] [kNm] [mm] [E-3] [E-3] 

0 0 0 0 150 150 16.0 5.5 0.0 0.0 
1 0 0 0 450 450 16.0 5.5 0.0 0.0 
1 0 1 0 450 450 19.3 7.3 0.0 0.0 
1 0 0 1 450 450 16.0 9.9 -0.86 -0.97 
1 0 1 1 450 450 21.7 13.8 -1.06 -1.06 
1 1 1 1 450 450 21.7 13.8 -1.06 -1.06 

Table 1: Results for different model classes, perfect bidirectional coupling 
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coupling b-c coupling c-f Fz1,b Fz1,c My2,c My2,f y2,c y2,f 
[kN] [kN] [kNm] [kNm] [E-3] [E-3] 

unidirectional unidirectional 450 450 19.3 19.3 0.00 -0.97 
bidirectional unidirectional 450 450 19.3 19.3 0.00 -0.97 

unidirectional bidirectional 450 450 21.7 21.7 -1.06 -1.06 
bidirectional bidirectional 450 450 21.7 21.7 -1.06 -1.06 

bidirectional 
bidirectional, only 1 

iteration 450 450 21.5 21.5 -0.97 -1.05 

Table 2: Results for different coupling types, all partial models considered 

4.2    Influence of Partial Models 
The influence of the partial models is determined by means of sensitivity analysis according 

to [3], applying a perfect data coupling. The resulting high-order sensitivity indices for selected 
output quantities are given in Table 3. The output Fz1,b depends only on PM1 live load beam, 
thus no interaction effects with other PMs occur. Contradictory to this, My2,c depends on several 
partial models and an interaction of these PMs is quantified by the high-order indices, for 
example an interaction of live load PM1 and geometric non-linearity PM3 with S13=0.181. The 
quantity My2,c depends also on the soil model PM4. This effect can only occur when backward 
coupling from the foundation to the column exists, thus a higher demand for this coupling is 
present, in contrast to the beam-column coupling. 

Fz1,b Fz2,c My2,c ux1,c y2,f 

S1 1.000 1.000 0.181 0.035 0.002 

S2 0.000 0.000 0.000 0.000 0.000 

S3 0.000 0.000 0.536 0.104 0.005 

S4 0.000 0.000 0.037 0.801 0.984 

S13= S31 0.000 0.000 0.181 0.035 0.002 

S14= S41 0.000 0.000 0.014 0.005 0.002 

S34= S43 0.000 0.000 0.037 0.014 0.005 

S134= S314= S413 0.000 0.000 0.014 0.005 0.002 

ST1 1.000 1.000 0.389 0.081 0.007 

ST2 0.000 0.000 0.000 0.000 0.000 

ST3 0.000 0.000 0.768 0.158 0.013 

ST4 0.000 0.000 0.102 0.826 0.992 

 SPM≤k 1.000 1.000 1.079 0.209 1.011 

 SPM≥l 0.000 0.000 0.181 0.856 0.000 

 ST 1.000 1.000 1.260 1.065 1.011 

Table 3: Sensitivity indices of specific model responses 
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coupling b-c cqf
Fz1 cqb

uz1 
 1.

1
PM

FzS 
2

1
PM

FzS  
 








2

1 22
1

f PM
f

S  CQb
b-c CQc

b-c

unidirectional 1.00 0.00 1.00 0.00 0.00 0.00 1.00 
bidirectional 1.00 1.00 1.00 1.00 

Table 4: Results for coupling quality beam-column 

coupling c-f cqf
My2 cqb

y2 
 3.

2
PM

MyS 
4

2
PM

MyS  
 








3

1 43
1

f PM
f

S  CQc
c-f CQf

c-f

unidirectional 1.00 0.00 
1.08 0.18 0.06 

0.00 0.94 
bidirectional 1.00 1.00 1.00 1.00 
bidirectional, 

only 1 iteration 1.00 0.92 0.92 0.99 

Table 5: Results for coupling quality column-foundation 

4.3    Coupling Quality 
Within this section the coupling quality is estimated considering all four partial models of 

the example.  Different couplings of beam-column and column-foundation are investigated. 
The further couplings, e.g. the material behavior with the kinematics, do not provide any data 
loss and have a quality of one. The qualities for specific quantities are given in the Tables 4 and 
5. As mentioned earlier, the quality of partial model coupling CQ depends on the quantity of
interest, in particular on the position of the quantity of interest within the sequence of the 
analysis. Hence, CQ is calculated for the different involved partial models/structural parts, 
denoted for example as CQc for coupling quality of the column.

The coupling beam-column consists of two output quantities of the beam, Fz1,b and Fx1,b, and 
two output quantities of the column, uz1,b and ux1,c. The forward coupling quality is always one, 
as the output quantities of the beam are directly applied to the column and no data loss occurs. 
In case of unidirectional coupling the data coupling quality of the backward coupling is zero. 
Analyzing the sensitivity indices reveals that the output quantity Fz1,b depends only on PM1, 
thus no backward coupling is necessary when CQ is analyzed for the column and this results to 
CQc

b-c=1.0 according to Eq. (10). When analyzing the quality for quantities of the beam
according to Eq. (9), values of CQb

b-c=0.0 and CQb
b-c=1.0 for the unidirectional and

bidirectional case are obtained. The zero coupling quality for unidirectional interaction results 
from necessity of backward coupling for the beam in order to take into account output 
quantities of the column. 

The coupling column-foundation consists of three output quantities of the column, Fz2,c, Fx2,c 
and My2,c, as well as three output quantities of the foundation, uz2,f, ux2,f and y2,f. The forward 
coupling quality is still always one and the backward coupling quality is always zero in case of 
unidirectional coupling. As already mentioned, My2,c depends to some extent on PM4. This is 
pointed out when comparing the sum of the sensitivity indices of all PM≤3 before and all 
PM≥4 after the coupling, 1.08 and 0.18. Hence, the coupling quality of the partial models 
depends on the quality of the forward and backward coupling even for response quantities that 
are after the coupling. The data coupling quality of the support moment is given in Table 5. The 
resulting coupling qualities are also shown in this Table 5 for two response quantities: first 
belonging to the column CQc

c-f, which is before coupling and calculated according to Eq. (9),
and second for the foundation CQf

c-f, which is after the coupling analyzed according to
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Eq. (10). The value of CQc
c-f is zero in the unidirectional case, as no information of PM4 can be

transferred back to the column. When analyzing CQf
c-f it is observed that a unidirectional

coupling still leads to a quality of CQf
c-f=0.94, as the output quantities of the column are mainly

defined by the forward coupling and only relatively small parts of the output quantities are 
influenced by the backward coupling. In case of bidirectional coupling with only one iteration 
between the structure of the column and foundation, a high value of CQf

c-f=0.99 is determined,
thus one iteration already gives satisfying results.   

5    CONCLUSIONS 
This paper presented a method to calculate data coupling quality and to quantify the 

influence of coupling on the output data in the case of coupled partial models. By doing so the 
determination of coupling quality of partial models in the context of a global system is 
acconted for. 

The method provides a useful tool to determine the necessity to couple partial models in a 
uni- or bidirectional manner. Hence, the algorithm allows for a reduction of complexity of 
global systems when bidirectional coupling is less important. Furthermore, the understanding 
of the system’s behavior increases when the results of the method are analyzed. 

The defined coupling quality can be considered within a framework of model evaluation in 
order to provide a total measure for the quality of coupled partial models. This global measure 
should take into account the influence of partial models on the global response, the quality of 
the partial models, and the quality of their coupling.   
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Abstract

The aim of this paper we discuss explicit series constructions for the
fundamental solution of the Helmholtz operator on some important
examples non-orientable conformally flat manifolds. In the context of
this paper we focus on higher dimensional generalizations of the Klein
bottle which in turn generalize higher dimensional Möbius strips that
we discussed in preceding works. We discuss some basic properties of
pinor valued solutions to the Helmholtz equation on these manifolds.

1 Introduction

Clifford and Harmonic analysis deal with the analysis of the Dirac operator
resp. the Laplace operator on manifolds in n variables. A lot of progress has
been made for orientable manifolds over the past three decades. In partic-
ular, much attention has been paid to orientable conformally flat manifolds
with spin structures, such as oriented cylinders and tori as their simplest
representants.

In contrast to the cases of the oriented tori and cylinder that we discussed
extensively in a series of papers, see for example, [8, 3, 5], which indeed are
all examples of spin manifolds, we cannot construct the fundamental solution
of the Helmholtz equation on higher dimensional generalizations of the non-
oriented Klein bottle in terms of spinor valued sections that are in the kernel
of D − iα.

One obstacle is the lack of orientability. This does does not allow us to
construct spinor bundles over these manifolds. Secondly, it is not possible
either to construct non-vanishing solutions in the class Ker D − iα in Rn

that have the additional pseudo periodic property to descend properly to
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these manifolds. A successful way is to start directly from special classes
of harmonic functions that take values in bundles of the +Pin(n) group or
−Pin(n) group.

By means of special classes of pseudo-multiperiodic harmonic functions
we develop series representations for the Green’s kernel of the Helmholtz
operator for some n-dimensional generalizations of Klein bottle with values
in different pin bundles. These functions represent a generalization of the
Weierstraß ℘-function to the context of these geometries.

This functions that can be used to present Green type integral formulas
that provide us with the basic stones for doing harmonic analysis in this
geometrical context. This has been worked out in detail in [6].

The case of the Klein bottle has interesting particular features. In con-
trast to the Möbius strips considered earlier in our paper [7] the Klein bottle
is a compact manifold.

The compactness allows us to prove that every solution of the Helmholtz
operator having atmost unsessential singularities can be expressed as a finite
linear combination of the fundamental solution and a finite amount of its
partial derivatives. The proof of this statement represents also a central
topic in our forthcoming paper [6].

In this paper here we focus ourselves to establish that the only entire
solution of the Helmholtz equation on the Klein bottle is reduced to the
constant function f ≡ 0.

2 Pin structures on conformally flat mani-

folds

Conformally flat manifolds are n-dimensional Riemannian manifolds that
possess atlases whose transition functions are conformal maps in the sense of
Gauss. For n > 3 the set of conformal maps coincides with the set of Möbius
transformations. In the case n = 2 the sense preserving conformal maps are
exactly the holomorphic maps. So, under this viewpoint we may interpret
conformally flat manifolds as higher dimensional generalizations of holomor-
phic Riemann surfaces. On the other hand, conformally flat manifold are
precisely those Riemannian manifolds which have a vanishing Weyl tensor.

As mentioned for instance in the classical work of N. Kuiper [10], concrete
examples of conformally flat orbifolds can be constructed by factoring out a
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simply connected domain X by a Kleinian group Γ that acts discontinuously
on X. In the cases where Γ is torsion free, the topological quotient X/Γ,
consisting of the orbits of a pre-defined group action Γ×X → X, is endowed
with a differentiable structure. We then deal with examples of conformally
flat manifolds.

In the case of oriented manifolds it is natural to consider spin structures.
In the non-oriented case, this is not possible anymore. However, one can
consider pin structures instead. For details about the description of pin
structures on manifolds that arise as quotients by discrete groups. we refer
the reader for instance to [1]. See also [2] and [4] where in particular the
classical Möbius strip and the classical Klein bottle has been considered.

A classical way of obtaining pin structures for a given Riemannian mani-
fold is to look for a lifting of the principle bundle associated to the orthogonal
group O(n) to a principle bundle for the pin groups ±Pin(n). As described
in the above cited works, the group +Pin(n) := Pin(n.0) is associated to
the Clifford algebra Cln,0 of positive signature (n, 0). The Clifford algebra
Cln,0 is defined as the free algebra modulo the relation x2 = qn,0(x) (x ∈ Rn)
where qn,0 is the quadratic form defined by qn,0(ei) = +1 for all basis vec-
tors e1, . . . , en of Rn. For particular details about Clifford algebras and their
related classical groups we also refer the reader to [14]. Next we recall that
the group −Pin(n) := Pin(0, n) is associated to the Clifford algebra Cl0,n
of negative signature (0, n). Here the quadratic form qn,0 is replaced by the
quadratic form q0,n defined by q0,n(ei) = −1 for all i = 1, . . . , n. Topologically
both groups are equivalent, however algebraically they are not isomorphic, cf.
for example [4]. The more popular Spin(n) group is a subgroup of ±Pin(n)
of index 2. Here we have Spin(n) := Spin(0, n) ∼= Spin(n, 0). Spin(n) con-
sists exactly of those matrices from ±Pin(n) whose determinant equals +1.
The groups ±Pin(n) double cover the group O(n).

So there are surjective homomorphisms ±θ :± Pin(n) →± Pin(n) with
kernel Z2 = {±1}. Adapting from Appendix C of [13], where spin structures
have been discussed, this homomorphism gives rise to a choice of two local
liftings of the principle O(n) bundle to a principle ±Pin(n) bundle. The
number of different global liftings is given by the number of elements in
the cohomology group H1(M,Z2). See [11] and elsewhere for details. These
choices of liftings give rise to different pinor bundles over M . We shall explain
their explicit construction on the basis of the examples that we consider in
the next section.
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3 n-dimensional generalizations of the Klein

bottle

In this main section we present basic series constructions for the fundamental
solution of the Helmholtz operator on a class of higher dimensional gener-
alizations of the Klein bottle. For simplicity we consider an n-dimensional
normalized lattice of the form Λn := Ze1 + · · ·+ Zen.

We introduce higher dimensional generalization of the classical Klein bot-
tle by the factorization

Kn := Rn/ ∼∗

where the equivalence relation ∼∗ is defined by the map

(x+
n−1∑

i=1

miei + (xn +mn)en) 7→ (x1, · · · , xn−1, (−1)mnxn).

The manifolds Kn can be described as the set of orbits of the group action
Λn × Rn → Rn where the action here is defined by

v ◦ x := (
k−1∑

i=1

xiei +
k−1∑

i=1

miei + ((−1)mkxk +mk)ek, xk+1, . . . , xn−1, xn),

where v = m1e1 + · · · + mnen is a lattice point from Λn. Here, and in the
remaining part of this section, x denotes a shortened vector in Rn−1. In the
case n = 2 we re-obtain the classical Klein bottle. Notice that in contrast
to the Möbius strips treated in our previous paper [7], here the minus sign
switch occurs in one of the component on which the period lattice acts, too.
As for the Möbius strips we can again set up distinct pinor bundles. See also
[2] where pin structures of the classical four-dimensional Klein-bottle have
been considered.

By decomposing the complete n-dimensional lattice Λn into a direct sum
of two sublattices Λn = Ωl⊕Λn−l we can construct in analogy to the oriented
torus case treated in [8], 2n distinct pinor bundles by considering the maps

(x+
n−1∑

i=1

miei, xn +mn, X) 7→ (x1, · · · , xn−1, (−1)mnxn, (−1)m1+···+mlX).

In order to describe the fundamental solution of the Helmholtz operator on
the Klein bottlr we recall from standard literature (see for instance [15]) that
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the fundamental solution to the Klein-Gordon operator ∆−α2 in Euclidean
flat space Rn is given by

Eα(x) = − iπ

2ωnΓ(n/2)
(
1

2
iα)

1
2
n−1|x|1− 1

2
nH

(1)
n
2
−1(iα|x|). (1)

In this formula, ωn stands for the surface measure of the unit sphere in Rn

while H
(1)
m denotes the first Hankel function with parameter m. Furthermore,

we choose the root of α2 such that α > 0. Then, as proposed in [6] we may
introduce the following generalized version of Weierstrass ℘-function adapted
to this class of Klein bottles by

℘Kn
α (x) :=

∑

v∈Λn

Eα(
n−1∑

i=1

(xi +mi)ei, (−1)mnxn + xm). (2)

By similar arguments as applied in the cases of the Möbius strips described
in [7] one may establish

Theorem 3.1. Consider the decomposition of the lattice Λn = Λl ⊕ Λn−l
for some l ∈ {1, . . . , n} and write a lattice point v ∈ Λn in the form v =
m1e1 + · · ·+mlel +ml+1el+1 + · · ·+mnen with integers m1, . . . ,mn ∈ Z. Let
E (q) be the pinor bundle on Kn defined by the map

(x+
n−1∑

i=1

miei, xn +mn, X) 7→ (x1, · · · , xn−1, (−1)mnxn, (−1)m1+···+mlX).

The fundamental solution of the Helmholtz operator on Kn (induced by p∗(∆−
α2) ) for sections with values in the pinor bundle E (q) can be expressed by

E ′α,q(x
′) = p∗

( ∑

v∈Λl⊕Λn−l

(−1)m1+···+mlEα(
n−1∑

i=1

(xi +mi)ei, (−1)mnxn + xm)

)
,

(3)
where p∗ denotes the projection from Rn to Kn = Rn/ ∼∗. The symbol ′

represents the image under p∗.

The detailed proof is given in our forthcoming paper [6]. To recall the
main idea of proof, without loss of generality we may consider the trivial bun-
dle, as the arguments can easily be adapted to the other bundles that we also
considered, namely by taking into account the parity factor (−1)m1+···+ml .
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This parity factor has no influence on the convergence property of the series.
Now one can apply the same argumentation as applied for the Möbius strips
to estimate each term of the series which turn out to be asymptotically ex-
ponentially decreasing, as a consequence of the Bessel functions. Further, it
is a simple exercise to establish that the function ℘Kn

α is an element from Ker
∆− α2 in Rn\Λn.

An important feature however is to show:

Lemma 3.2. For all k := k1e1 + · · ·+ knen ∈ Λn we have

℘Kn
α (x+ k) = ℘Kn

α (x1, . . . , xn−1, (−1)knxn).

Proof. To prove this statement it is important to use the following decom-
position

℘Kn
α (x) =

∑

(m1,...,mn)∈Zn

Eα(x1 +m1, . . . , xn−1 +mn−1, (−1)mnxn +mn)

=
∑

(m1,...,mn−1)∈Zn−1,mn∈2Z

Eα(x1 +m1, . . . , xn−1 +mn−1, xn +mn)

=
∑

(m1,...,mn−1)∈Zn−1,mn∈2Z+1

Eα(x1 +m1, . . . , xn−1 +mn−1,−xn +mn).

First we note that

℘Kn
α (x1 + k1, . . . , xn−1 + kn−1, xn) = ℘Kn

α (x1, . . . , xn)

for all (k1, . . . , kn−1) ∈ Zn−1. This follows by the direct series rearrangement

℘Kn
α (x1 + k1, . . . , xn−1 + kn−1, xn)

=
∑

(m1,...,mn)∈Zn

Eα(x1 + k1 +m1, . . . , xn−1 + kn−1 +mn−1, (−1)mnxn +mn)

=
∑

(p1,...,pn)∈Zn

Eα(x1 + p1, . . . , xn−1 + pn−1, (−1)pnxn + pn)

where we put pi := mi+ki ∈ Z for i = 1, . . . , n−1 and pn := mn. Notice that
rearrangement is allowed because the series converges normally on Rn\Λn.

It thus suffices to show

℘Kn
α (x1, . . . , xn−1, xn + 1) = ℘Kn

α (x1, . . . , xn−1,−xn).
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We observe that

℘Kn
α (x1, . . . , xn−1, xn + 1)

=
∑

(m1,...,mn)∈Zn

Eα(x1 +m1, . . . , xn−1 +mn−1, (−1)mn(xn + 1) +mn)

=
∑

(m1,...,mn−1)∈Zn−1,mn∈2Z

Eα(x1 +m1, . . . , xn−1 +mn−1, xn +mn + 1︸ ︷︷ ︸
odd

)

+
∑

(m1,...,mn−1)∈Zn−1,mn∈2Z+1

Eα(x1 +m1, . . . , xn−1 +mn−1,−xn +mn − 1︸ ︷︷ ︸
even

)

=
∑

(p1,...,pn−1)∈Zn−1,pn∈2Z+1

Eα(x1 + p1, . . . , xn−1 + pn−1, xn + pn)

=
∑

(p1,...,pn−1)∈Zn−1,qn∈2Z

Eα(x1 + p1, . . . , xn−1 + pn−1,−xn + qn)

= ℘Kn
α (x1, . . . , xn−1,−xn).

The fact that

℘Kn
α (x1, . . . , xn−1, xn + kn) = ℘Kn

α (x1, . . . , xn−1, (−1)knxn)

is true for all kn ∈ Z now follows by a direct induction argument on kn.

With this property we may infer that ℘Kn
α descends to a well-defined pinor

section on Kn by applying the projection p∗(℘Kn
α ). The result of this pro-

jection will be denoted by E ′α(x′). E ′α(x′) is the canonical skew symmetric
periodization of Eα(x) that is constructed in such a way that it descends to
the manifold. Therefore, the reproduction property of E ′α(x′ − y′) on Kn
follows from the reproduction property of the usual Green’s kernel Eα(x−y)
in Euclidean space, where we apply the usual Green’s integral formula for
the Helmholtz operator.

Remarks. The fundamental solution of the Helmholtz operator on the
usual Klein bottle in two real variables (for pinor sections with values in the
trivial bundle) has the form

p∗

(∑

v∈Λ2

Eα((x1 +m1), (−1)m2x2 +m2)

)
.

In terms of this formula for the fundamental solution of the Helmholtz op-
erator on the manifolds Kn we can deduce similar representation formulas
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for the solutions to the general inhomogeneous Helmholtz problem with pre-
scribed boundary conditions on these manifolds as presented in the context
of the Möbius strips in [7]. This is also a topic treated in detail in [6].

The fact that the manifolds Kn are compact manifolds has some inter-
esting special function theoretical consequences. As also shown in our forth-
coming paper [6], one can express any arbitrary solution of the Helmholtz
equation with unessential singularities on these manifolds as a finite sum of
linear combinations of the fundamental solution E ′α and its partial deriva-
tives.

In this paper we restrict ourselves to show that there are no non-vanishing
entire solutions to the Helmholtz equation on the Klein bottle. To establish
the latter statement one first has to show

Lemma 3.3. Let α 6= 0. Suppose that f : Rn → C is an entire solution of
(∆− α2)f = 0 on the whole Rn. If f additionally satisfies

f(x1 +m1, · · · , xn +mn) = f(x1, . . . , xn−1, (−1)mnxn) (4)

for all (m1, . . . ,mn) ∈ Zn, then f vanishes identically on Rn.

Proof. Since f satisfies the relation

f(x1 +m1, · · · , xn +mn) = f(x1, . . . , xn−1, (−1)mnxn),

it takes all its values in the n-dimensional period cell [0, 1]n−1× [0, 2], because

f(x1 +m1, x2 +m2, . . . , xn−1 +mn−1, xn + 2mn) = f(x1, x2, . . . , xn−1, xn)

for all (m1, . . . ,mn) ∈ Zn. The set [0, 1]n−1 × [0, 2] is compact. Since f is an
entire solution of (∆−α2)f = 0 on the whole Rn, it is in particular continuous
on [0, 1]n−1× [0, 2]. Consequently, f must be bounded on [0, 1]n−1× [0, 2] and
therefore it must be bounded over the whole Rn, too.

Since f is an entire solution of (∆− α2)f = 0, it can be expanded into a
Taylor series of the following form, compare with [3],

f(x) =
∞∑

q=0

|x|1−q−n/2Jq+n/2−1(α|x|)Hq(x).

This Taylor series representation holds in the whole space Rn.
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Here, Hq(x) are homogeneous harmonic polynomials of total degree q.
These are often called spherical harmonics, cf. for example [12].

Since the Bessel J functions are exponentially unbounded away from the
real axis, f can only be bounded if all spherical harmonics Hq vanish identi-
cally. Hence, f ≡ 0.

Notice that all constant functions f ≡ C with C 6= 0 are not solutions of
(∆− α2)f = 0. As a direct consequence we obtain

Corollary 3.4. There are no non-vanishing entire solutions of (∆−α2)f = 0
on the manifolds Kn (in particular on the Klein bottle K2).

This is a fundamental consequence of the compactness of the manifolds
Kn. Notice that this argument cannot be carried over to the context of the
manifolds that we considered in the previous section, since those are not
compact.

Remark. The statement can be adapted to the harmonic case α = 0. In
this case one has a Taylor series expansion of the simpler form

f(x) =
∞∑

q=0

Hq(x),

where only the spherical harmonics of total degree q = 0, 1, . . . are involved.
The only bounded entire harmonic functions are constants. Applying the
same argumentation leads to the fact that the only harmonic solutions on
Kn are constants.
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strips embedded in R4, to sppear in Advances in Applied Clifford Alge-
bras (2012).

[8] R.S. Kraußhar and J. Ryan, Some conformally flat spin manifolds,
Dirac operators and Automorphic forms, J. Math. Anal. Appl. 325 (1),
2007, 359–376.

[9] V.V. Kravchenko, and P. R. Castillo: On the kernel of the Klein-
Gordon operator, Zeitschrift für Analysis und ihre Anwendungen 17
No. 2 (1998), 261–265.

[10] N.H. Kuiper, On conformally flat spaces in the large, Ann. Math., (2)
50, 1949, 916–924.

[11] H. B. Lawson, Jr and M.-L. Michelson, Spin Geometry, Princeton Uni-
versity Press, Princeton, NJ, 1989.

[12] C. Müller, Spherical Harmonics, Lecture Notes in Mathematics 17,
Springer, New York, 1966.

[13] P. Petersen, Riemannian Geometry, Graduate Texts in Mathematics,
171, Springer Verlag, New York, 1997.

[14] I. Porteous, Clifford Algebras and Classical Groups, Cambridge Uni-
versity Press, Cambridge, 1995.

[15] Zhenyuan Xu, Helmholtz equations and boundary value problems, in:
Partial differential equations with complex analysis, Pitman Res.
Notes, Math. Ser. 262 Longman Sci. Tech., Harlow, 1992, 204–214.

190



19th International Conference on the Application of Computer 

Science and Mathematics in Architecture and Civil Engineering 

K. Gürlebeck, T. Lahmer  and F. Werner (eds.) 

Weimar, Germany, 04–06 July 2012 

SOLAR UPDRAFT POWER TECHNOLOGY 

FROM STRUCTURAL ENGINEERING TO MULTI-PHYSICS 

SIMULATION 

Wilfried B. Krätzig 

Krätzig & Partner Ingenieurgesellschaft mbH, Buscheyplatz 9-13, D-44801 Bochum 

wilfried.b.kraetzig@kraetzigundpartner.de 

Keywords: Solar energy, solar chimneys, numerical simulations, multi-field coupling. 

Abstract. After an introduction the lecture will start with an explanation of the working 

scheme of solar updraft power plants, in the course of the manuscript abbreviated by SUPPs. 

Some of the response problems of the solar chimney are elucidated, the high tower-like 

construction in the centre of a SUPP. After this, we change to fluid-thermodynamic simulations 

of the entire plant to derive a software tool for the determination of the power harvest. Further, 

as an important part the transition of the solar irradiation into heat-flux in the collector is 

modelled. All together, elements of different physical fields are combined, such as 

thermodynamics, fluid-mechanics and electro-magnetism, which alone are represented by 

linear or quasi-linear fields. However, by combining of these single fields the then coupled 

problem turns out to become highly nonlinear, followed by numerical expenditures. Finally, 

some computed results demonstrate the applicability of the derived software. 
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1    INTRODUCTION 

Our material world is multi-physics, using a modern caption. One of the great achievements 

in the history of science was the separation of observed physical phenomena into sub-theories, 

which then were treated independently, like mechanics, optics, theory of heat, electricity. This 

separation went along with many simplifications, keys to application of physics in modern 

technology. As an example: Structural engineers use linear elasticity for their strength 

problems, mostly neglecting thereby inelastic behaviour, geometrical non-linearities, or 

thermo-effects of deformation. 

But for more complex problems and in modelling attempts closer to reality, we find many 

sub-problems coupled, so-called multi-field coupling. Often strong nonlinearities arise thereby, 

which make multi-physics-problems in general numerically difficult. This shall be demon-

strated to the reader by example of an advanced type of solar power plants, so-called SUPPs. 

How did the author come to be engaged with numerical models of these SUPPs, Solar 

Updraft Power Plants? One of the reasons was my life-long involvement with natural draft 

cooling towers in many parts of the world. There thin RC shell structures offer extremely 

complex engineering problems in their design, and it is a high challenge for me and my 

colleagues from Krätzig & Partners to design and analyze structures of such extreme height [7]. 

From these power plant components it is only a small step to solar updraft energies. The 

energy irradiated from the sun onto the earth exceeds the entire world energy demand for more 

that a factor of 10 000. So for all engineers it should be an enthusiastic challenge to find new 

ways to exploit solar energies, and to make it useful for human energy demands. 

Fig. 1: Computer vision of SUPPs with 1000 m high solar chimneys 

2    WORKING SCHEME OF SOLAR UPDRAFT POWER PLANTS: SUPPs 

The general working principle of SUPPs will be explained in the lecture. Such plant like in 

Fig. 1 essentially consists of the collector area (CA), the turbo-generators as power conversion 

units (PCUs), and the solar chimney (SC). In the CA, a large glass-covered area like a 
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greenhouse, solar irradiation heats the ground absorber. By this process, the air inside the 

collector warms up, expands, and streams towards its elevated centre. There, in the PCUs, the 

kinetic energy of the flow of warm air is partly transformed into electric power. Source of this 

kinetic energy is the buoyancy of the warm air in the SC, the plant’s engine, creating a pressure 

sink at the PCUs’ outlet. This draws permanently fresh air into the collector from the CA rim 

creating a continuous flow of air through the power plant. 

As elucidated, SUPPs are wind power generators [1] which produce their required wind 

themselves by use of thermal conversion of solar irradiation [12, 13]. Thus the first job of the 

glass roof over the CA thereby is to let a maximum of short wave solar irradiation (UV 

radiation) pass through, heating up the absorber - in simplest case the soil - to highest possible 

temperatures. From the absorber soil, the internal airflow is warmed up. Thus the second scope 

of the collector glass roof is to prevent the heat of the internal airflow (IR radiation) to escape 

into the outer ambient environment: Altogether, a high-tech glass coating problem! 

SUPPs are supposed to work efficiently in locations with solar irradiation of >2.0 

MWh/m²a, occurring between the tropics of the globe. But also countries on the north rim of 

the Mediterranean Sea, like Southern Italy, Southern Spain or South Turkey, with irradiation 

values of ≈1.95 MWh/m²a offer fair locations. The efficiency of a SUPP depends on the size of 

the CA (air temperature) and on the height of the SC (air pressure difference). For example, a 

plant with CA diameter of 7000 m and SC height of 1000 m in a North African location is 

estimated to deliver a maximum of electric power of ≈200 MWp, on mid-days in summer, and 

an annual energy output of 650 GWh/a. 

The paper will explain this working principle, show the best locations world-wide and give 

elucidations for the gained electric work over day and year. 

3    RESPONSE PROBLEMS OF SOLAR CHIMNEYS 

This part of the lecture will concentrate on the solar chimney SC, the huge tower structure in 

the centre of a SUPP [4]. Some of the pre-designed SC are pictured on Fig. 2, in comparison to 

the world-highest natural draft cooling tower in Niederaussem/Germany and the world-highest 

skyscraper, the Burj Chalifa in Dubai. The SC consists of a thin shell structure, fabricated of 

RC, and stiffened by a suitable number of stiffening rings. To increase their stiffnesses, the 

latter should be pre-stressed. 

At first, the loads acting on the chimney are explained [6]. Clearly, besides dead weight D 

most important is the wind-loading W, but also service temperatures T and possible seismic 

forces E act on the structure. Concentrating on wind loads, they are decisive for the safety 

estimation of the structure, and have carefully determined in wind-tunnels [9, 10]. 

The already mentioned stiffening rings shall constraint the original shell-like stress 

distributions towards more beam-like ones. The lecture will demonstrate this for a typical wind 

load distribution, showing that small stiffening members leads to high meridional tension 

forces for the design state of failure  D + 1.50 W, which require large amounts of reinforcement 

steel. Larger stiffening rings with a wider cranking are much more favourable, but costly and 

enormously difficult to construct. 

The paper then will investigate, if a more realistic shell modelling including the crack-

formation for determination of the internal forces on the nonlinear way from load initiation to 

structural failure will lead to more favourable internal forces and thus to less reinforcement. In 

the lecture this crack evolution is demonstrated in detail. As a result, we observe much smaller 

reinforcements compared to a linear elastic model (around 15%), but the arising crack-widths 
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are much larger than for elastic models (around 300%!). However, since the RC codes world-

wide have no crack-limitations in the design state of failure, this seems to be a concept for 

saving steel without reducing the structural safety [8]. 

Fig. 2: From the world-highest structures to pre-designs of future SUPPs 

4    BASIC FLUID-THERMODYNAMIC SIMULATION OD SUPPS 

Coding a simulation software which shall portray the service states of a SUPP, the following 

physical problems have to be combined: 

• The solar heat transfer from the sun into the collector air;

• The heated air movement through the collector;

• The work extraction in the turbines;

• The updraft of heated air in the chimney, coupled by the air velocity at the turbine outlets.

The future computer model for this purpose is based on one-dimensional flow-tube theory, and 

we apply the following assumptions: 

• The collector bottom is horizontal with equal ambient air pressure everywhere;

• All fluid-thermodynamics is approximated as one-dimensional;

• This present model is approximated as stationary.

Beginning with the mass flow through the CA, we start our derivation with a collector ring 

cell with ground/top surfaces �Acoll i = π (ri+1
2

– ri
2
). Its nodal points  i, i+1  describe cross-

sections  Ai = 2 π ri hi, Ai+1 = 2 π ri+1 hi+1  of the air stream, in which ri, ri+1 denote distances 

from the chimney axis, hi, hi+1 the respective collector heights. The fluid-thermodynamics in 

the collector is then described by the following basic conditions [3]: 

• Conservation of mass: mɺ  = const., (1) 

• Conservation of momentum: 0ApApumum
1icoll1iicolli1ii =−+−

+++ ..
ɺɺ , (2) 

•Conservation of energy: .T�cm=Q� ipi
ɺɺ (3) 

Herein, mɺ  stands for the mass flow rate of air (kg/s) through the plant, u for the air velocity 

(m/s), p for the stagnation air pressure (N/m²), iQ� ɺ  for the specific heat flux increase (W), and 

iT∆  for the temperature increase (K). cp abbreviates specific heat capacity of the air (J/kg K). 

The solar irradiation G (W/m²) is coupled with the heat flux increment iQ� ɺ  in the cell ring 

element, and by the total heat flux iQɺ  as follows: 
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iiii.collii QQ,AGQ ɺɺɺ ∆Σ=∆α=∆ . (4) 

Herein αi denotes the efficiency of the collector ring cells �Acoll.i in transforming solar 

irradiation G into collector heat flux iQ� ɺ . Presently αi is still unknown, it will be determined 

in the next chapter and may be assumed for the moment by guessed values. 

For the solar chimney SC we use the following conditions: 

• Conservation of mass: mɺ  = const., (5) 

• Conservation of momentum: The SC transforms the heat of the air, gathered in the CA 

by solar irradiation, with temperature increase �Tturb and pressure pturb into kinetic energy, 

using the difference in air density as buoyancy: 

dh)}h(ρ÷)h(ρ{g=p� ∫
H

0

io . (6) 

Herein ρo(h) and ρi(h) stand for the height-depending mass density of the air (kg/m³) outside 

and inside the chimney, g for the gravitational acceleration (m/s²). Obviously, both density 

profiles influence the chimney’s buoyancy. With the standard barometric pressure dependence 

on height, air assumed as an ideal gas, and �T assumed as constant over h, we evaluate 

equation (6) over tower height H and find: 

�p = g ρ0 H  �T/ (T0 + �T). (7) 

The 0-indexed quantities characterize the plant’s ambience at chimney foot. BERNOULLI’s 

equation finally delivers the important formula for the maximum air velocity at the chimney’s 

entrance: 

)/(max TTTHg2u 0 ∆+∆= . (8) 

If we now consider all flow losses in the collector and in the solar chimney [4], we are finally 

able to find the electric power delivered by the turbines: 

Peff = ηturb �pturb ρ/mɺ  = ηturb κ 2um 2 /max
ɺ . (9) 

Herein ηturb stands for the turbines’ efficiency, and κ characterizes their working point. 

These formulae form for given irradiation G and thus collector efficiency αi from equation (4), 

a nonlinear initial value problem – coupled to the buoyancy velocity at the chimney entrance - 

for the mass flow of air mɺ . The single physical constituents stem from fluid-mechanics and 

thermodynamics. Solving all equations in a discretized concept for finite collector ring cells by 

application of increments of mɺ  and suitable iterations, Peff can be determined. This solution 

process uses an optimization solver and is described in the oral presentation. 

5. RADIATION AND HEAT POWER INTERACTION IN THE COLLECTOR

The collector efficiency αi, a function of the radial distance r from chimney axis, is still 

unknown and has now to be determined. For this aim, the complicated physical process of 

transformation of solar irradiation G into temperature increase ∆T(r) - equations (3) and (4) - of 

the collector air flux mɺ  has to be modelled. This requires knowledge in the fields of 

thermodynamics and of radiation optics. 

Between the different collector components - single or double glass sheets, the air flow, 

possible heat storage devices and the soil absorber – there exist manifold exchanges of heat and 
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radiation, which have to be taken into account in the formulation of the heat balance equations 

of all single collector components. For this sophisticated task, in which optical parameters of 

the translucent as well as opaque materials and the heat transfer coefficients of all components 

play an important role, we refer the interested reader to [5]. 

Fig. 3. Generated power Pel for typical months July to December, 750/3500-plant 

For a short introduction into this task we apply the simplest collector construction, namely 

one sheet of glass (Temperature: T1), the heated air-flow (T2) and the soil absorber (T3), 

distinguishing the following thermal transfers q, all depending on their respective temperatures: 

qrou gl thermal transfer by radiation (qr) from outer air (ou) into glass (gl), …, 

qcou gl thermal transfer by convection (qc) from outer air into glass, …, 

sisu gl solar irradiation from the sun into glass sheet. 

In the oral lecture all 11 thermal transfers will be identified, and it will be demonstrated that for 

this simple collector construction we arrive at three coupled algebraic heat balance conditions, 

depending on fourth (qr) and first (qc) powers of the mentioned temperatures T1, T2 and T3. 

Such highly nonlinear algebraic conditions have to be solved for each collector cell element 

�Acoll.i iteratively, simultaneously with the solution process of the above mentioned nonlinear

initial value problem for the entire SUPP. This requires considerable computing effort, and for 

even more complicated collector constructions (double glazing, water-filled heat reservoirs), 

this generally is the bottle-neck of high computing times [3, 11]. 

Interesting again is that each of the sub-problems, the convective heat transfers and the 

radiation heat transfers, are (quasi-)linear if separated, but the coupled problem is highly 

nonlinear [11]. For solution of the nonlinear algebraic equations of each cell, again an 

optimization solver is applied. 

6. SIMULATION RESULTS: POWER AND ENERGY HARVEST

In the lecture we then will present certain analyzed results as examples, e.g.: 

• Temperature distributions of the glazing, the soil and the internal air over the collector

distance r from rim to turbine entrance; 
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• The collector distributions of the degrees of efficiency αI for different collector constructions,

like single glazing, double glazing, blackened soil, and water covered soil; 

• The power harvest of a certain analyzed SUPP over typical solar days for half a year, Fig. 3.

Finally, to approach the real world of power generation again, results for detailed cost 

calculations for two power plants are presented. These calculations demonstrate the high 

efficiency of SUPPs: A plant with a SC of 750m of height and a CA diameter of 3 500m of 

diameter delivers electricity for levelled electricity costs LED of less than 0.10 € /kWh [2]. 
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Abstract. Areas with various defects and damages, which reduce carrying capacity, were 
examined in a study of metal chimneys. In this work, the influence of the local dimples on the 
function of metal chimneys was considered. Modeling tasks were completed in the software 
packages LIRA and ANSYS. Parameters were identified, which characterize the local dimples, 
and a numerical study of the influence of local dimples on the stress-strain state of shells of 
metal chimneys was conducted. A distribution field of circular and meridional tension was 
analyzed in a researched area. Zones of influence of dimples on the bearing cover of metal 
chimneys were investigated. The bearing capacities of high-rise structures with various 
dimple geometries and various cover parameters were determined with respect to specified 
areas of the trunk. Dependent relationships are represented graphically for the decrease in 
bearing capacity of a cover with respect to dimples. Diameter and thickness of covers of metal 
chimneys were constructed according to the resulting data. 
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1  INTRODUCTION 

A survey of a series of metal chimneys showed that many chimneys operate with various 
defects and damages, thus reducing the load carrying capacity. This paper shows the influence 
of local dimples on the function of metal chimneys. Parameters were identified, which 
characterize the local dimples. Additionally, results of numerical research on the influence of 
local dimples on the stress-strain state of cylindrical shells of metal chimneys are provided. 
The researched areas consist of distribution fields of circular and meridional tension. Zones of 
influence of the concavity on the bearing shell of metal chimneys and also the carrying 
capacity of high-altitude areas of the trunk of cylindrical structures with different geometry 
and the concavity of the various parameters of the investigated cylindrical shell were 
identified. Loss of stability (buckling) was investigated for studied sites. Diagrams of 
dependence of reduction of bearing capacity of cylindrical shells from the extent of concavity, 
diameters, and thickness of shells of metal chimneys, were constructed from the received 
data. 

2 RESEARCH TOPIC 

2.1 Relevance of the Research 

Metal chimneys are used in different industries, but are particularly widespread in the 
energy industry. A metal chimney is a high-rise sheet construction, intended for the removal 
of exhaust gases into the atmosphere for further dispersion. Geometric deviations include 
concavity and the eccentricity of docking drawer side and ellipse form, which reduce the 
carrying capacity. These areas are the foci of this study of metal chimneys. These geometric 
deviations or their combination can cause a decrease in efficiency, or lead to the destruction of 
the site or of the whole structure. These effects can not only have great financial impact, but 
they can also result in casualties. The existing principles of design for metal chimneys as 
compressed-bent rods does not account for the influence of geometric variations on the stress-
strain state. By modeling the chimney shell as a cantilever rod, we cannot take into account 
the reduced tension in the area with geometric deviation. For example, reducing the cross 
section and then calculating the resistance of the steel indirectly.  

It is difficult to estimate the influence of geometric variations on the stress-strain state of 
such structures in the normative literature [1, 2, 3], but there are indications of the need for 
such accounting in the design of structures. This fact requires a precise professional 
knowledge of the real work and the stress-strain state of this type of structure. Research in this 
area would develop new and improved engineering methods for calculating local stresses and 
considering their influence on the overall stress-strain state of the structure. 

2.2  The Object of the Research 

 The objects of the research are areas of chimneys with geometrical deviation in the form of 
dimples. As a constructive solution, metal chimneys are divided into free-standing elements, 
supported by braces or rigid braces, or in a lattice frame (extraction tower). The main types of 
constructive solutions for metal chimneys are shown in Figure 1.  
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а) b) c) d) 

Figure 1. The main types of constructive solutions for metal chimneys. а) freestanding; b) with braces; c) with 
rigid braces; d) in a lattice frame; 

 Geometric deviation of this type of structure translates to deviation of the actual shape of 
the object from the ideal (reference). This research will consider one of the types of geometric 
deviations - the concavity of the shell of metal chimneys. 
 Concavity of shell structures for the deviation is defined by the deviation of the actual 
profile from the ideal. When this occurs, points of the real profile from the adjacent segment 
expand from the edges to the middle. (Figure 2) 

Figure 2. General view of the site with the dimple of the shell of metal chimney 
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The concavity is characterized by the following parameters: 
- An angle of coverage of the concavity (α°) 
- Opening width of the concavity (b) 
- Depth of the lesion (f) 

2.3 Purpose of the Study 

 Analysis of the influence on the local concavity of the stress-strain state of metal chimneys 
and the improvement of engineering methods of calculation of such structures, taking into 
account the local concavity. 

2.4 Research Task 

 To characterize the geometric parameters of the concavity;
 To determine the influence of geometry of the concavity on the stress-strain state of

cylindrical shells;
 To determine the carrying capacity of the trunk sections of high-rise structures with

different concave geometry, and with various parameters of the investigated
membranes.

2.5 Method of Study 

 This paper will examine the influence of the concavity of the high shell and the shell of 
medium length, which, according to [7] chimneys with a ratio of length L to the radius r and 
equals L/r > 20 relate to. Metal chimney with a height of 60 m with different parameters of 
the diameter and thickness of the shell was investigated in this work. 
 To solve this problem, computational schemes in the software packages Lira (The Ukraine) 
and ANSYS (USA) have been developed. The calculation was performed taking into account 
the wind load with characteristic value, which equals 600 Pa according to [4], and also taking 
into account the self-weight of the structure. 

Four settlement schemes were compared to determine the stress-strain state of the stack. 
 The first computational scheme is adopted as a cantilever rod with an analytical calculation 
according to [4]; 

The second computational scheme is adopted as the dimensional sheet structure with 
analytical calculations according to [4]; 
 The third computational scheme is adopted as the dimensional sheet structure in the form 
of a perfect shell in the software package ANSYS. 
 The fourth computational scheme is adopted as the dimensional sheet structure in the form 
of a perfect shell with a local dimple.  
 Local dimple takes the size 150x150mm and depth of the concavity equal to the shell 
thickness (t). The location of the dimple - 0.5m from the base of the compressed shell of the 
chimney - was chosen as the most unfavorable (Figure 3) according to calculations by the 
third calculation scheme (Figure 4). 
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Figure 3. The zone with the proof stress (calculation 
of Ansys) 

Figure 4. The general form and location of the 
dimple 

 Analysis of the stress-strain state of the four calculation schemes showed the next proof 
stress given in Table 1. 

Table 1. The proof stresses in the chimney for different variants of calculation 

Core model Sheet 
construction 

Sheet 
construction 

(Ansys) 

Sheet 
construction + 

dimple 
Ø, mm t, mm σ, MPa σ, MPa σ, MPa σ, MPa 
2400 6 193,1 167,8 179,2 315,2 

8 146,5 125,1 134,2 275,4 
3000 6 125,3 105,1 116,4 209,1 

8 95,6 81,2 87,5 170,8 

 Stresses by the third calculation scheme were taken as a standard, because the 
computational scheme was most appropriate for the ideal structure. Modeling the chimney as 
a cantilever rod, the technique presented in [4] is therefore used to calculate the chimney at 
the design stage. This calculation shows excessive stress of about 10% margin. In the zone of 
the local dimple, bursts of local stresses were observed. The stresses of these bursts were 
twice as high as the standard calculation scheme and were not included in the calculation of 
the first and second design schemes. 

3 FEATURES OF THE STRESS DISTRIBUTION IN THE CONCAVITY ZONES 

 The software package LIRA was used for the numerical investigation of the influence of 
the concavity on the stress-strain state of the metal chimneys. Qualitative changes in the 
stresses of the concave chimney shell were obtained (Figure 5). On the basis of these results, 
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the stress distribution on the ring of the shell was constructed (Figure 6) and the height of 4 m 
of the computational model of a cylindrical shell (Figure 7). 

Characteristic of the object: D – 3м, α° = 10° 

а) b) 

Figure 5. Changes in stresses on the concave part of the shell. а) circular strain  ; b) meridional strain 

а) b) 

Figure 6. The stress distribution on the ring of a cylindrical shell.а) circular strain  ; b) meridional strain 
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a) b) 

Figure 7. The stress distribution on the height of the computational model membranes. а) circular strain  ; b) 
meridional strain 

 From these results, we can see that local stress peaks occur in concaved areas of the 
chimneys’ shell. We also can conclude that the stress peaks at an angle of coverage of the 
concavity of α° = 10°, observed at a distance of 0.2m to 0.8m from the boundary concavity. 

3.1 The Stress-strain State Chimneys with a Concave Shell 

 Establishing the dependencies of influence of various factors on the stress-strain state of 
parts of high-rise structures with a concave shell. 

Matrix of research: 

D, м 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 3.9 4.2 

t, мм 4 6 8 10 12 14 16

10 20 30 40 50 60 

1. Dependence of the stress σpr on the diameter (Dshell) of the computational model on the
site with the concave shell (Figure 8). 
 The initial parameters of the calculation: Dshell = 1.2 – 4.2m with a step 0.3m,tshell= 10mm, 
α° = 10°. 
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Figure 8. Change in stress (σpr) from the diameter of the computational model 

2. Dependence of the stress σpr of thickness (tshell) of calculation model in the section with
the concavity of the shell (Figure 9). 

The initial parameters of the calculation: Dshell =2,1м; tshell = 4 –16mm with a step 2mm. 

Figure 9. Change the stress (σpr) from the thickness of the computational model 

3. The dependence of the stress variation from the angle of coverage of the concavity (α°)
(Figure 10) 
 The initial parameters of the calculation: Dshell=2.1м; tshrll= 10мм, α° = 10° – 60° with a 
step 10°. 
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Figure 10. Change in stress (σpr) from the angle coverage of the concavity 

The calculations revealed that: 
1. The influence of concavity is reduced with increasing diameter of the computational

model; approximating curve has a quadratic dependence of the results given by the 
formula σpr = a+bDshell +cDshell

 2.
2. The influence of concavity is reduced with increasing thickness of the computational

model; approximating curve of the results has the dependence: σpr =atshell
 b.

3. The local stresses in the shell increases with increasing angle of coverage of the
concavity; approximating curve of the results has the dependence: σpr = aα°

b.

4. CONCLUSIONS

1. Parameters characterizing the concavity are defined - angle of coverage of the

concavity (α°), width of opening concavity (b) and lesion depth (f). 

2. On the basis of numerical studies of the work of shells of metal chimneys, the

dependences between changes of stress from the size of concavity, diameter and 

thickness of the shell were obtained. We also established that:  

 At the concavity of the shell with an angle of coverage of the concavity from 10° to 60°,

reduces stresses in the local area by factors of 1.4 - 3.9.
 At changing of the diameter of the computational model from 1.2 m to 4.2 m and the

angle of coverage of the concavity α° = 10°, results in a 2.5 decrease in the local area
reduced.

 Changing the thickness of the computational model from 4mm up to 16mm and the
angle of coverage of the concavity α° = 10°, decreased the stress in the local area by a
factor of 5.7.

3. It is necessary to analyze the impact of the concavity on the stability of the shell

in order to create engineering techniques that consider the influence of concavity on 

the stress-strain state while examining the high-rise structures. 
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4. Bursts of local stresses exceed the stress on the three different design schemes by

about 2 orders of magnitude in the zone of local dimple. These stresses are not 

included in the calculation by the regulatory procedure of Building Code. Thus, 

taking into account the local stresses, while projecting the chimneys with random 

dimples, is an urgent scientific task. 
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Abstract. Many structures in different engineering applications suffer from cracking. In order
to make reliable prognosis about the serviceability of those structures it is of utmost impor-
tance to identify cracks as precisely as possible by non-destructive testing. A novel approach
(XIGA), which combines the Isogeometric Analysis (IGA) and the Extended Finite Element
Method (XFEM) is used for the forward problem, namely the analysis of a cracked material,
see [1]. Applying the NURBS (Non-Uniform Rational B-Spline) based approach from IGA to-
gether with the XFEM allows to describe effectively arbitrarily shaped cracks and avoids the
necessity of remeshing during the crack identification problem. We want to exploit these ad-
vantages for the inverse problem of detecting existing cracks by non-destructive testing, see e.g.
[2]. The quality of the reconstructed cracks however depends on two major issues, namely the
quality of the measured data (measurement error) and the discretization of the crack model.
The first one will be taken into account by applying regularizing methods with a posteriori stop-
ping criteria. The second one is critical in the sense that too few degrees of freedom, i.e. the
number of control points of the NURBS, do not allow for a precise description of the crack. An
increased number of control points, however, increases the number of unknowns in the inverse
analysis and intensifies the ill-posedness. The trade-off between accuracy and stability is aimed
to be found by applying an inverse multilevel algorithm [3, 4] where the identification is started
with short knot vectors which successively will be enlarged during the identification process.
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1 INTRODUCTION

Many materials like concrete or brittle smart materials suffer from cracking caused due to
intensive dynamic loadings. Cracked piezoelectric specimens have e.g. been investigated by X-
Ray inspection, see Figure 1. Due to the very thin and often sharp forms of the cracks, discrete

Figure 1: Cracks inside anisotropic smart materials

crack models are advantagueous to smeared crack approaches. Often, the cracks result from
some extensional and rare loads, e.g. impacts due to accidents or on buildings after earthquakes
while thinking of civil engineering objects. Now after a structure or specimen has been dam-
aged, it is of high importance to know the degree of the damage (e.g. the length and shape of a
crack) to derive whether the structure still has full capacity or not. By non-destructive testing,
e.g. applying moderate loads, one can compare the behavior of the damaged structure to the
behaviour of an undamaged one in means of displacements, accelerations, modal values and
draw conclusions about the severity of the damage.

Previous works on identifying discrete cracks are e.g. reported in [2] where the authors use an
XFEM approach and apply genetic algorithms to detect the cracks from some measurements on
the boundaries of the specimens where the cracks are assumed to be straight lines. This may in
many cases be a sufficient approximation. In some cases however, see e.g. Figure 1, the cracks
exhibit some curved forms.

The aim of this work is to develop a strategy to uniquely identify cracks of arbitrary shape. In
this work we propose an efficient strategy which shall allow to identify cracks without branch-
ing. The model itself consits of an extended isogeometric analysis which allows to model
moving cracks without the need of remeshing.
For the identification one has to consider the ill-posedness of the problem, which will be done
by applying regularizing iterative methods in a multilevel setting.

2 XIGA ANALYSIS

Recently, two papers appeared which treat the combination of the Extended Finite Element
Method with Isogeometric Analysis [1, 5]. In these works advantages of the XFEM and IGA
approaches to a so called Extended Isogeometric Analysis (XIGA) are brought together. While
XFEM is capable of describing discontinuities by enriching the shape functions along the crack
by the Heaviside function and analytical solutions around the crack tip, the IGA allows for
a very flexible geometrical description of both, the computational domain and the crack [6].
Further, the IGA has been shown to be superior to classsical FEM in terms of robustness and
accuracy for may problems.
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The approximated displacement field uh in case of an XIGA is given by

uh(ξ1, ξ2) =
nen∑

i=1

Rps,qs
i (ξ1, ξ2)ui +

nH∑

j=1

Rps,qs
j (ξ1, ξ2)Haj (1)

+

nQ∑

k=1

Rps,qs
k (ξ1, ξ2)

4∑

α=1

Qαb
α
k ,

where R are the spline based ansatz functions of order ps and qs and (ξ1, ξ2) coordinates in
parametric space. With nen, nH , nQ the numbers of non-zero basis functions, the number of nen
basis functions that have a crack face (but no crack tip) and the number of nen basis functions
around the crack tip are denoted, respectively.
The H - Heaviside function is a common tool in XFEM analysis, taking values +1 if the point
under consideration is above the crack and−1 in the opposite case. For the crack tip enrichment
functions the following basis is appropriate

Q(r, θ) = {Q1, Q2, Q3, Q4} =

{√
r sin

θ

2
,
√
r cos

θ

2
,
√
r sin θ sin

θ

2
,
√
r sin θ cos

θ

2

}
,

where polar coordinates are considered with r =
√
x2

1 + x2
2 being the distance to the crack and

θ = arctan(x2/x1), see Figure 2.

Figure 2: A two dimensional medium with a crack, previously published in [1].

The NURBS - functions {Rp
i } are defined as

Rp
i (ξ) =

Ni,p(ξ)wi∑n
ii=1Nii,p(ξ)wii

(2)

with the recursive definition of the B-spline basis functions

Ni,0(ξ) =

{
1 if ξi ≤ ξ ≤ ξi+1

0 otherwise (3)

and

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ), for p = 1, 2, 3, .... (4)
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For more details we refer to [1]. The physical model is a two-dimensional elastostatic problem
derived from the following equilibrium equations

BTσ + b = 0 in Ω,

together with natural boundary conditions

σn = T , on Γt

and essential boundary conditions
u = u, on Γu

compare with Fig. 2
A point on a crack is modelled with the help of NURBS curves C. Those are defined by a set
of N control points πi := (Xi,1, Xi,2), i.e.

C(ξ) =
N∑

i=1

Ri(ξ)(πi)

The vector of control points handling the geometrical description of the crack is denoted by
pN := (π1, ..., πi, ....πN). This vector will the sought-for quantity in the inverse crack analysis.

3 CRACK IDENTIFICATION

In the sequel it will be assumed that some structure suffered from cracking due to an extreme
load. The task is now, to identify the position and form of the crack, i.e. the exact determination
of the entries of the set of control points pN of the crack by measurements on the boundary of
the structure which is assumed to be stressed by moderate loads which do not cause the crack
further to grow. We define the following forward operator which maps the control points to
displacements on the boundary of the structure

F : X → Y (5)
pN 7→ (u1, u2)|Γ. (6)

Assuming that yδ contains measured data with data error level δ, the inverse problems corre-
sponds to solving for pN in

F (pN) = yδ. (7)

In (5) X denotes the parameter space, i.e. the space of all possible crack forms and Y the
space of measurements (here displacements) which are assumed to in L2(Ω). In the sequel, the
forward operator or parameter-to-solution map F is assumed to be continuous, differentiable
and its Frechét derivative F ′ to be Lipschitz continuous and normalized such that ||F ′(p)|| ≤
1, ∀ p ∈ D(F ). For the measured data we further assume, that the following condition holds

||y − yδ|| ≤ δ,

where y are exact data and δ is an upper bound of the data error, assumed to be estimable.
Solving equations of type (7) is not only an inverse but also an ill-posed problem, as existence
and uniqueness of the solution are not guaranteed. Additionally, high instability may be intro-
duced due to errors in the data, i.e. small perturbations in the data lead to large perturbations
and oscillations in the solution.
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This requires the three strategies:

• As existence is not guaranteed, a solutions in the sense of ,,least-squares” is sought-for,

• As uniqueness is not guaranteed, a close initial guess of the solution needs to be provided,

• As stability is not guaranteed, regularizing methods have to be applied.

3.1 Identification procedure and regularization

In order to solve (7) iterative regularizing methods will be applied. The regularization fol-
lows two strategies

1. Regularization by discretization, see e.g. [7, 8]

2. Regularization by early stopping (a posteriori discrepancy principles), see e.g. [8, 9].

Now, for the solution of (7) modified Landweber Methods are run on finite dimensional sub-
spaces XN of X , i.e. XN := ProjNX of X , where ProjN denotes an orthogonal projection,
i.e.

XN ⊆ X, with X0 ⊆ X1 ⊆ ... ⊆ XN and
⋃

N∈N
XN = X. (8)

Let the union ∪N∈NXN be dense in X . The initial guess is denoted by p0
0 and the first iterate at

level N by p0,δ
N , p† denotes the exact solution. The following local condition is assumed to hold

on each discrete subspace XN

||F (p)− F (ProjNp
†)− F ′(p)(p− ProjNp†)|| ≤ ηN ||F (p)− F (ProjNp

†)|| (9)

for all p ∈ XN ∩ Bρ/2(ProjNp
†) ⊆ D(F ) with ηN ≤

1

4
.

Iterations on every level are defined as follows

pk+1,δ
N = pk,δN + ωk,δN sk,δN , sk,δN := ProjNF

′(pk,δN )∗(yδ − F (pkN)) (10)

where the step-size ωk,δN is chosen as

ωk,δN :=
||yδ − F (pk,δN )||2
||sk,δN ||2

, (11)

which renders the discrete classical Landweber iteration a discrete version of the minimal error
method, see also [10, 11, 12]. The method can be regarded as a gradient-type iteration with
optimal step-length choice. Convergence results and regularizing properties are worked out in
[4, 13] under the given conditions, where an application of the same strategy to recover material
nonlinearities approximated by cubic splines is reported. Instead of the minimal error update
sk,δN an update according to quasi Newton - Methods (Broyden, BFGS) is easily implemented
(as we work in finite dimensional spaces). A convergence theory for Broyden’s method for
ill-posed problems is given in [8], for the BFGS method corresponding results are not known to
the author.

The multilevel algorithm is now implemented as follows

1. Start the iterations (10) with an initial guess on the coarsest level (e.g. 2 control points
for a straight line approximation of the crack).
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2. Run the iterations until an inner discrepancy principle of the type

||F (pk+1,δ
N )− yδ|| ≤ C̃1(δ + ||(ProjN − I)p†||) (12)

becomes active or until a maximal number of iterations is reached.

3. Refine, i.e. include additional control points for the crack description and switch to the
next finer level.

4. Use the last iterate from the preceding level as initial value, i.e. p0,δ
N+1 := p

k∗(N,δ),δ
N .

5. Continue the iterations (10) on the new level.

6. Stop, if on level N the outer discrepancy principle

||yδ − F (p
k∗(N,δ),δ
N )|| ≤ Cδ ≤ ||yδ − F (pk,δN )||, C > 2

1 + ηN
1− 2ηN

> 2.

tells to stop or when a maximal number of iterations is reached.

The inner discrepancy principle (12) contains both, an estimate on the data error δ and an
estimate of the approximation error as we work on finite dimensional subspace of the true crack
forms. For details, see [10, 13].
Quantities like the number of control points, the degree of the splines and measures on the
curvature of p† allow to estimate the term ||(ProjN − I)p†||.
Additional refinements are possible, e.g. the refinement of the number of control points used
for the XIGA analysis and increase in the spline orders ps, qs.
Remark: The assumed error in the data are genereally not only due to measurement errors but
also due to shortcomings of the model. However, in the language of inverse problem theory
both measurement and model error are simultaneously estimated by the data error δ.

4 NUMERICAL RESULTS

First numerical results are presented in the following. The shape and loading of the double
cantilever beam is according to Fig. 3, where a plane stress state is considered with elasticity
modulus E = 3.0 × 107N/mm2 and Possion’s ratio ν = 0.3. Vertical tensile loads are applied
for X = 0, X = 1

4
L and X = 1

2
L. Derivatives of the forward operator with respect to changes

in the input parameters (the coordinates of the control points) are computed numerically. A
derivation of the linearization and the adjoint operator of it, is work in progress, with which
the parameter-updates skN can be implemented more efficiently. Nevertheless, the numerical
approach already helps to get an understanding of model-based reconstruction of crack having
arbirtrary shapes. For the inner iterations a maximal number of 10 is prescribed. After four
refinements, the algorithm stops in case of no data noise, else according to the discrepancy
principle. The initially assumed crack, the exact crack and its reconstruction are shown in
Figure 4. Figure 5 replots Figure 4 under different scaling together with intermediate solutions
at the switch of a coearser to the next finer level.
The following table summarizes error norms (l2) for the reconstructed crack and the corespond-
ing residuals for different data noise levels δ.
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Figure 3: Geometry and loading of the double cantilever beam, previously published in [1].
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Figure 4: Initial, Exact and Reconstructed Crack
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Figure 5: Same as Figure 4 with reconstructed crack a level 4 with intermediate solutions at the end of the iterations
on levels 1, 2, 3.
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δ in % ||pkN − ProjNp†|| ||F (pkN)− yδ||
0 0.49 0.00075
0.5 0.51 0.00114
1 0.53 0.0015
2 0.62 0.0018
5 1.1 0.0024

Table 1: Errors in parameter and image space between reconstructed and exact solution for different noise level
terms

5 SUMMARY, CONCLUSIONS AND OUTLOOK

The combination of the Isogeometric Analysis with the Extended Finite Element Method
provides a tool which is extremely useful for inverse crack analysis. The flexibility in geometric
descriptions of crack and computational domain and the missing need of remeshing make it
a very efficient tool. From the numerical examples, instability during the reconstruction of
crack is a critical issue. More pronounced seems however the question of unique identifiability.
Analytic answers to this are of utmost importance, in particular for designing the experiment
properly. Application of BFGS Newton’s method to ill-posed problems needs to be analysed.
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1. BINARY AND TERNARY NON-COMMUTATIVE GALOIS
EXTENSIONS 
 We introduce a concept of non-commutative Galois extension of binary type and 
ternary type and state some basic facts on the extensions ([6]). 

Basic notations on non-commutative Galois extensions   . 
Let A  be an algebra and 'A  be a subalgebra of A . We make the following definition: 

DEFINITION 1  . 
(1) We take an element A with the following condition 1k . The following 
subalgebra ][' A of A is called non-commutative Galois extension of k-nary type: 

The extension is called proper when )1,..,1('  kA   . In this paper we are 

}'|{]1[' 1

0
AA kk  



 


    

Abstract. A concept of non-commutative Galois extension is introduced and binary 

and ternary extensions are chosen. Non-commutative Galois extensions of Nonion 

algebra and su(3) are constructed. Then ternary and binary Clifford analysis are 

introduced for non-commutative Galois extensions and the corresponding Dirac 

operators are associated.   
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concerned with only proper extensions without mentioning it. .
(2)We assume that                 are subalgebras in a common algebra 3A . 
When the ismorphism is given by the following multiplication operator: 

,]['][': 21  AA  )(),'()( 321 AA   , it is called -equivalent. . 
(3) We assume the same condition in (2). When the isomorphism is given by the 
Adjoint  operator:           . it is called Ad-        
equivalent.  
(4) When ]['][' 21  AA   holds, they are called identical each other. When 2

21   , then 
we have the identical extension: ]['][' 21  AA  . . 
REMARKS (1) To define the Galois extension structure, we put some additional 
condition on the algebra: for example,             holds with some A for any 

1,..,2,1,,  klA   . In this paper we are concerned with the algebra with this 
condition.
(2) The Galois extension is not unique depending on the choice of  . We are concerned 
with the Galois extension which does not depend on the choice )1( .

Examples of binary and ternary extensions                               . 
Next we proceed to examples of binary and ternary extensions. We obtain binary and 
ternary Clifford algebras from Galois extensions ]1[' kA  (see S.4).   .
Example 1(Complex numbers)                                            . 
The first one is the complex number field ]1[ R : 























R

RR

21
12

21

2121

,|

},|11{]1[








Example 2 (Quaternion number)                                          . 
The quaternion number field can be obtained by the non-commutative Galios extension 
of the complex number field       : 

numbers ]1[3R  

)( 3AgAd g   









































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Example 3 (Cubic root numbers) . 
We give a basic ternary Galois extension. The simplest example is the complex cubic 
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In the next section we give ternary extensions in Nonion algebra. 

Successive extensions   . 
We consider successive Galois extensions. We take an extension: ][ 101 AA  and 
make an extension ][ 212 AA  . Then we have the successive extension ]])[[( 2102 AA   
as follows:                       .We can also make the tensor product extension. 
Namely we can define             by                        . The example 
2 is the tensor product extension. 

2. THE GALOIS EXTENSION STRUCTURE ON NONION
ALGEBRA  
 We introduce a concept of Nonion algebra N  and discuss ternary Galois extension 
structures on it. We begin with the definition of Nonion algebra ([1],[4]):   

DEFINITION 2 . 
(1)The matrix algebra which is generated by the following 3 matrices over ]1[3R     
is called Nonion algebra: 

 
    

(2) The matrix algebra which is generated by the following 3 matrices over the real field 
R is called basic algebra B: 

    

 

binary extension of N : 

Then we can prove the following proposition: 
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(3)The algebra generated by )( 32 TorT  is called cubic algebra and is denoted by B’: 
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(4) The algebra N~ generated by the following four elements over ]1[3R  is called the 
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PROPOSITION 3   .
(1)The following 9 elements constitute linear basis of Nonion algebra: 

  

(2) The following 6 elements are linear basis of B : 
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(3) The following 3 elements are linear basis of 'B  
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(4) 'B  is a subalgebra of N , and B  is a subalgebra of N~ . 

PROOF 
The proofs are direct calculations by use of the following product tables. 

The explicit construction of binary extension of Nonion algebra 
The binary extension N~ of N  is given as follows: 

Then we can give the linear basis of N~ as follows: 
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As for the non-commutative Galois structure of Nonion algebra, we can prove the 
following theorem: 

 THEOREM I                                                 . 
(1) Nonion algebra is the Galois extension of the algebra 'B : ][' BN   by 

.)1()3,2,1(,),3,2( 3   iQQiR iii

(2) The Galois extension           can be expressed as           . 

Hence we have the following commutative diagram: 

PROOF 
(1)We notice that B’ is the commutative Galois extension: ]1[' 3RB  .   
Choosing                        , we make the Galois extension       . Then 
we see that this is identical with N . 
(2) We notice that B  is the non-commutative Galois extension of 'B :         , 
where       . Choosing      , we make the Galois extension . Then we see that it is 

identical with        

THEOREM II   . 
We can prove the following assertions for    
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(1) We have the following ternary Galois extensions which are called basic extension: 
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We notice that the extension is unique . Namely we have . 
][][][][ 321 QAQAQARAN 

(2) )3,2,1,(, jiQQ ji  give a part of generators of the Galois group of : 

  

 

(3) The Ajoint operation gives a part of generators of Galois group of ]'[3 BIN n
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3.THE GALOIS EXTENSION STRUCTRE ON su(3) 
In this section we discuss the structure of the Galois extension on su(3). 
(1) At first we write up the basis of the algebra ([5]).  
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(3) We consider the linear subspace 1L  generated by the following 3 elements:

Namely putting                                 where 
we have Galois extensions ( -equivalent): 
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Also we introduce the following two linear subspaces 2L  and 3L :

     

  

REMARK We notice the following relation )'''(3/1 338 eef  . Hence we see that 

321 ''..,,, eee  constitute the basis of su(3) omitting one of 333 '',', eee  . 

Then we can prove the following theorem: 

THEOREM III   . 
We have the binary and ternary Galois extension structures on su(3): 

(1) We have the following Adjoint strucutre on          . 
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where              After the central extension, we have the Clifford algebra which 
is isomorphic to Quaternion algebra. For the case of    and           we have the 
same assertions. Hence we can define the binary non-commutative Galois structure 
on           . We notice that we can introduce three Dirac operators . This is directly 
connected the three quarks for the Gell-Mann quark model ([5]).

(3) )3,2,1(}'',',{ ieee iii constitute the ternary Galois extensions by use of the 
following Adjoint operators: 
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(4) Hence su(3) has the following non-commutative Galois extension: 

    (1)   

(2) )3,2,1( iLi
 is isomorphic to su(2) and it is a binary Galois 

extension            over        . 

(3) su(3) is a ternary Galois extension       over )2(suB   
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PROOF : The assertions follow from the direct calculations and may be omitted. 

4. A METHOD OF NON-COMMUTATIVE GALOIS EXTENSION
TO BINARY AND TERNARY CLIFFORD ANALYSIS 

In this section we introduce concepts of binary and ternary Clifford algebras and discuss 
the relationship between the Clifford analysis and non-commutative Galois extensions. 
We introduce Dirac operators and Klein-Gordon operators for the both Clifford 
algebras. 

(1) Binary Clifford algebras and Galois extensions                       . 
We show that a special class of binary Galois extensions introduces binary Clifford 
algebras. We call the usual Clifford algebra as binary Clifford algebra. Namely we put 
the following definition: 

DEFINITION 4     .
An algebra with generators           )2( pn  is called binary Clifford algebra, 
when we have the following commutation relations: 

.),..,2,1,(12 njiTTTT jiijji    

Then we can introduce the following operators on the n-dimensional Euclidean space: 

The operator is called Dirac operator and its conjugate operators when they satisfy the 
following condition: 
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Next we proceed to the connections between non-commutative Galois extensions and 
binary Clifford algebras. At first we notice that non-commutative Galois extensions do 
not necessarily define a Clifford algebra (see example below). Hence we can make the  

following definition: 

DEFINITION 5 . 
We take a successive binary non-commutative Galois extension : )2}(,...,,{ 21

p
n nTTT  . 

A pair },{ ba TT is called Clifford pair, when they satisfy the following condition: 

EXAMPLE: We see that we have only one Clifford pair },{ 41 ee for CC  Also we 
see  

   

Then we can prove the following theorem: 

THEOREM V   . 
When a Clifford algebra A  with generators )2}(,...,,{ 21

p
n nTTT  is given, then there 

exists a sequence of successive non-commutative binary Galois extensions which 
defines the Clifford algebra. Namely we have the following: 

 

PROOF: We prove the assertion by the induction. The quaternion numbers are 
obtained by the non-commutative Galois extension from the complex numbers. Next we 
choose a Clifford algebra with generators: )2}(,...,,{ 21

p
n nTTT  . Putting 

  .  

 
(2) Ternary Clifford algebras and Galois extensions                        .   
Next we proceed to the construction of the ternary Clifford analysis by Galois extensions. 

defines a Clifford algebra with the commutation relations:

 we can make a successive binary Galois extension:                     which also 
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DEFINITION 6 . 
An algebra which is generated by },,{ 321 TTT  is called ternary Clifford algebra when it 
satisfies the following commutation relations:

 

Next we proceed to the derivation of field operators from a ternary Galois extension. 

Choosing         , we introduce the following three operators on the 3-dimensional 
Euclidean space: 

 

The operators are called Dirac operator and its conjugate operators when they satisfy the 
following condition: 

The operator is called the ternary Klein Gordon operator. 

(3) Binary and ternary Dirac operators for Nonion algebra:   . 
We begin with introducing the following concept of ternary Clifford triple: 

DEFINITION   . 
We take a successive ternary non-commutative Galois extension : )3(},...,,{ 21

p
n nTTT  . 

A triple },,{ cba TTT is called Clifford triple, when it generate the ternary Clifford algebra: 

At first we are concerened with the binary and ternary Dirac operators on B. 

PROPOSITION 8 . 
From the linear basis },,{ 321 TTT of the algebra B’, we can introduce the binary and 
ternary Dirac operators: 

         
     
      

PROOF: The proof is a direct calculation by use of the table and may be omitted. 
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We can prove the following theorem: 
THEOREM V  
(1) The ternary triples },,{ 321 XXX  which are generated by the linear basis can be 
listed as follows: 

Hence the ternary Dirac operator is defined by the Clifford triple },,{ 321 XXX : 

(2) Binary and ternary Dirac operators on su(3)   .
Next we proceed to the Dirac operators for su(3). From the Clifford structure 
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we can introduce the binary Dirac operators: Making the central extension by   , we 
have the Dirac operators for },,,{ 3210 eeee  : 

 

We can obtain the binary Dirac operators for }',',','{ 3210 eeee  in a similar manner. . 
Next we proceed to the introduction of the ternary Dirac operator for },,,{ 3210 eeee .
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APPLICATION TO THE THEORY OF ELEMENTARY PARTICLE 
We give two applications of a method of non-commutative Galois theory to the theory 
of elementary particles. The details will be given in another paper.    

(1) The generation of elementary particles can be described by use of the Galois 
extensions. At the very beginning of the universe, there exists only one photon. This 
can be given the identity matrix. Then particles and anti-particles are produced and 
mesons are created. This process can be descried by binary extensions. Then the 
quark-baryon phase transitions happened and baryons are born. This process can be 
described by the successive binary and ternary Galois extensions . We notice that 
the following corresponding between the binary and ternary extensions. 

. 

(2) The second application is the construction of quark models. We can realize the 
Gell-Mann model by use of the Galois extension structure on su(3). In fact we can 
introduce three quarks by },,,{ 3210 eeee , }',',','{ 3210 eeee  and }'','','',''{ 3210 eeee . Then 
we can realize the Gell-Mann model by use of the binary and ternary Galois 
extensions.  
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Abstract. It is well known that complex quaternion analysis plays an important role in the
study of higher order boundary value problems of mathematical physics. Following the ideas
given for real quaternion analysis, the paper deals with certain orthogonal decompositions of
the complex quaternion Hilbert space into its subspaces of null solutions of Dirac type oper-
ator with an arbitrary complex potential. We then apply them to consider related boundary
value problems, and to prove the existence and uniqueness as well as the explicit representation
formulae of the underlying solutions.
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1 INTRODUCTION AND STATEMENT OF RESULTS

Complex quaternion analysis is an active research subject by itself and it is thought to play an
important role in the treatment of 3D and 4D boundary value problems of mathematical physics.
A thorough treatment is listed in the bibliography, e.g. K. Gürlebeck and W. Sprößig [4, 6], V.
Kravchenko and M. Shapiro [13], V. Kravchenko [14], M. Shapiro and N. Vasilevski [22, 23],
and A. Sudbery [30]. This function theory, which involves the study of complex quaternion
functions, may also provide the foundations to generalize the classical theory of holomorphic
functions of one complex variable onto the multidimensional situation.

During the last years much effort has been done in the study of orthogonal decompositions
of quaternion and Clifford Hilbert spaces, starting for example with the works of S. Bernstein
[1, 2], B. Goldschmidt [3], K. Gürlebeck and W. Sprößig [4, 5, 6], V. Kravchenko and M.
Shapiro [11, 12], E.I. Obolaschvili [16, 17, 18], J. Ryan [19, 20], M. Shapiro and L.M. Tovar
[24], F. Sommen and Z. Xu [25], W. Sprößig [26, 28], I. Stern [29], and Z. Xu [33]. Their
investigations provide powerful tools to study certain elliptic boundary value problems of partial
differential equations within the framework of quaternion and Clifford analyses. So that this
research domain has interacted elegantly in numerous problems of mathematical physics (cf. [9,
27, 32]). Those works include, among others, the Laplace, Helmholtz, Maxwell, Schrödinger,
Klein-Gordon, Lamé and Stokes (later Navier-Stokes) equations. However, as far as we know,
relatively little effort has been done to establish orthogonal decompositions involving complex
quaternion Hilbert spaces. Clearly it would be appropriate for us to explore this connection in
detail.

This paper is organized as follows. In Section 2 we describe the fundamental solution of the
operators D±α = D ± α, where D denotes the classical Dirac operator and α is an arbitrary
complex constant. As a first step towards we are able to define the Teodorescu and Cauchy-
Fueter operators Tα and Fα, which have the same properties as the operators T and F related to
the operator D. Let G be a symmetric domain in R3 with a piecewise smooth Liapunov bound-
ary Γ. In Section 3 we deduce a proper orthogonal decomposition (with complex potential) of
the complex quaternion Hilbert space L2(G,CH):

L2(G,CH) = kerDα ∩ L2(G,CH)⊕CH Dα

◦
W 1

2 (G,CH). (1)

Here
◦
W 1

2(G,CH) is the complex quaternion analogue to the Sobolev space
◦
W 1

2(G) of functions
that vanish on Γ.

We are at liberty to define and give in an explicit manner the corresponding orthoprojections
Pα and Qα onto the subspaces of this decomposition. Further investigation shows a closed
connection of such decomposition to the following problem:

(−∆ + 2Re(α)D + |α|2)u = f in G

u = g on Γ.

In the case of the unique solvability the solution of these boundary value problem can be repre-
sented explicitly. Lastly, Section 3 links decomposition (1) to the following Dirichlet problem:

n∏

i=1

(l)

Dαi
Dαi

u = f in G;

u = g0, Dα1Dα1u = g1, . . . , Dαn−1Dαn−1 . . . Dα1Dα1u = gn−1 on Γ
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where
∏(l) denotes the left product of the underlying sequences. We shall apply the decompo-

sition (1) to prove the existence and uniqueness, and a representation formula for the solution
of this boundary value problem, leaving aside for the moment the question of whether the be-
haviour of the problem is regular and stable. We will follow mainly the notations introduced in
[15]. For more details see [4, 26].

2 PRELIMINARIES

We begin by recalling some basic algebraic facts about real and complex quaternions neces-
sary for the sequel. Let {e0, e1, e2, e3} be an orthonormal basis of the Euclidean vector space R4

with the (quaternionic) product given according to the multiplication rules: e2
1 = e2

2 = e2
3 = −1;

e1e2 = e3, e2e3 = e1, and e3e1 = e2. This noncommutative product generates the algebra of
real quaternions denoted by H. We put e0 = 1, the latter being the identity element. The real
vector space R4 will be embedded in H by identifying the element a = (a0, a1, a2, a3) ∈ R4

with the element a =
∑3

j=0 ajej of the algebra. Throughout our presentation, we denote the
algebra of quaternions with complex coefficients by CH, where its elements are in the form
a = a1 + ia2, where a1 and a2 are real quaternions, and iej = eji, (j = 1, . . . , 3). In this
sense real numbers, complex numbers, and real quaternions can be regarded as special cases
of complex quaternions. It is fairly known as the algebra of complex quaternions (terminology
due to W. Hamilton).

The conjugation corresponding to CH is readily given by

aCH := a1 − ia2 =
3∑

j=0

(
a1
jej − ia2

jej
)
, a1

j , a
2
j ∈ R.

We consider functions defined onG and taking values in the algebra of complex quaternions.
A complex quaternion-valued function f : G −→ CH or, briefly, an CH-valued function will
take the following form

f(x) = f0(x) + f1(x)e1 + f2(x)e2 + f3(x)e3 =: f0(x) + f(x),

where fl (l = 0, 1, 2, 3), are complex-valued functions defined on G. The spaces L2(G,CH),
W k

2 (G,CH) and C0,β(Γ,CH) are defined componentwise respectively as the Lebesgue space
of all CH-valued functions whose square is Lebesgue integrable in G, the Sobolev space of
k-times differentiable CH-valued functions whose k-th derivative belongs to L2(G,CH), and
the Hölder continous CH-valued function space with the exponent β.

We now turn our attention to some simple considerations that are necessary in our study
of orthogonal decompositions in complex quaternion Hilbert spaces. Let us denote by D =∑3

k=1 ∂kek the classical Dirac operator, and let G be a symmetric domain relative to the origin
with a piecewise smooth Liapunov boundary Γ.

In the complex quaternion Hilbert space L2(G,CH) we consider the following inner product
using the complex quaternion conjugation:

(u, v)CH :=

∫

G

u(x)
CH
v(x)dGx, u, v ∈ L2(G,CH).
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Recall the basic fact that two elements u and v are called orthogonal if and only if (u, v)CH = 0.
We proceed by finding the orthogonal decomposition for the Dirac type operator Dα = D + α
[10], where α is an arbitrary complex constant. First of all, we describe the fundamental solution
of this operator from the well known fundamental solution of the Helmholtz type operator
∆ + α2I . As usual, I denotes the identity operator.

Recall from [8, 10] (cf. [9, 31]) that in case α ∈ C the fundamental solutions of the
Helmholtz type operator are given, respectively, by

Θα(x) := − 1

4π|x|e
−iα|x|, Θ̃α(x) := − 1

4π|x|e
iα|x|,

for x ∈ R3 \ {(0, 0, 0)}. In greater detail, from the factorization of the Helmholtz operator

∆ + α2 = (D + α)(−D + α)

it follows (−D+α)Θα ∈ ker(D+α), and−(D+α)Θα ∈ ker(D−α). We have, in effect, the
following fundamental solutions of the Dirac type operators D±α := D ± α related to Θα(x):

Kα(x) = (α +
x

|x|2 + iα
x

|x|)Θα(x), K−α(x) = (−α +
x

|x|2 + iα
x

|x|)Θα(x),

and Θ̃α(x):

K̃α(x) = (α +
x

|x|2 − iα
x

|x|)Θ̃α(x), K̃−α(x) = (−α +
x

|x|2 − iα
x

|x|)Θ̃α(x).

We proceed by finding the complex quaternion conjugations of the above functions. Keeping in
mind that the functions Θα and Θ̃α contain the scalar variable |x| and complex numbers only,
then their complex quaternion conjugations are defined as follows:

Θα(x)
CH

= Θ̃α(x), Θ̃α(x)
CH

= Θα(x).

That leads to the complex quaternion conjugations of the fundamental solutions Kα(x) and
K̃α(x):

Kα(x)
CH

= K̃α(−x), K̃α(x)
CH

= Kα(−x).

In the sequel, let Γ′ be an arbitrary parallel surface to Γ. Following [7, 6], the set of functions
ϕl := Kα(y − xl) is complete in ker(D + α) ∩ L2(G,CH), where {xl} is a dense set on Γ′.
We proceed by introducing the operators Tα and Fα with the fundamental solution described
beforehand as its kernel:

(Tαu)(x) := −
∫

G

K̃α(x− y)u(y)dGy, (Fαu)(x) :=

∫

Γ

K̃α(x− y)n(y)u(y)dΓy.

They are known as the Teodorescu transform and Cauchy-Fueter type operator, respectively.
As usual, n(y) =

∑3
k=1 nkek is the outer normal on Γ at the point y. We must bear in mind that

the Plemelj-Sokhotzki formulae (see e.g. [6, 26]) remain true for the operator Fα. As an aside,
we may then define the so called Plemelj projections Pα andQα [6, 26] onto the space of square

232



integrable functions that have a Dα−holomorphic extension into the domains G or R3 \G, and
vanish at infinity.

Ultimately, let u ∈ C0,β(Γ,CH) (0 < β ≤ 1), it holds

n.t.− lim
t→x, t∈G

(Fαu)(t) = (Pαu)(x),

and

n.t.− lim
t→x, t/∈G

(Fαu)(t) = −(Qαu)(x)

where the notation n.t.-limit means nontangential limit.

Remark 2.1. From the above-mentioned relations of the fundamental solutions Kα and K̃α, the
kernel of the Teodorescu transform and Cauchy-Fueter type operator can also be chosen by Kα

with similar results.

3 AN ORTHOGONAL DECOMPOSITION FORMULA WITH COMPLEX POTEN-
TIAL

Let G denote an arbitrary symmetric domain relative to the origin. We begin by introducing
an orthogonal decomposition (Theorems 3.1 below) of the complex quaternion Hilbert space
L2(G,CH) into its subspaces of null solutions of the corresponding Dirac operator invoking
orthogonality with complex potential.

Using the classical Hopf maximum principle [21], it follows the result.

Theorem 3.1. The Hilbert space L2(G,CH) permits the following orthogonal decomposition:

L2(G,CH) = kerDα ∩ L2(G,CH)⊕CH Dα

◦
W 1

2 (G,CH).

Proof. Following the ideas given in [6, 26], we set X1 := kerDα ∩ L2(G,CH) and X2 :=
L2(G,CH)	CH X1. For each function u ∈ X2 there exists a function v ∈ W 1

2 (G,CH) so that
u = Dαv. For an arbitrary ϕ ∈ X1 we then have

0 = (u, ϕ)CH :=

∫

G

uCHϕdGy =

∫

G

(D + α)v
CH
ϕdGy =

∫

G

Dv
CH
ϕdGy +

∫

G

vCHαϕdGy

=

∫

G

D(v1 + iv2)
CH
ϕdGy +

∫

G

vCHαϕdGy

=

∫

G

3∑

k=1

3∑

j=0

∂kekv1
j ej + i∂kekv2

j ej
CH
ϕdGy +

∫

G

vCHαϕdGy

=
3∑

k=1

3∑

j=0

∫

G

(∂kejv
1
j ek − i∂kejv2

j ek)ϕdGy +

∫

G

vCHαϕdGy

= −
3∑

k=1

3∑

j=0

∫

G

(ejek∂kv
1
j − iejek∂kv2

j )ϕdGy +

∫

G

vCHαϕdGy
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=
3∑

k=1

3∑

j=0



∫

G

(ejv
1
j∂kekϕ− iejv2

j∂kekϕ)dGy −
∫

Γ

(ejekv
1
jnkϕ− iejekv2

jnkϕ)dΓy




+

∫

G

vCHαϕdGy

=

∫

G

vCHDϕdGy +

∫

G

vCHαϕdGy −
∫

Γ

vCHn(y)ϕ(y)dΓy

=

∫

G

vCHDαϕdGy +

∫

Γ

vCHn(y)
CH
ϕ(y)dΓy =

∫

Γ

ϕCHn(y)v(y)dΓy

CH

.

If we substitute ϕ := Kα(y − xl), and use the relation Kα(y − xl)CH = K̃α(xl − y) then

(Fαv)(xl) = 0, xl ∈ Γ′. That means trΓv ∈ imPα ∩ W
1
2

2 (Γ,CH). Hence, there exists a

function h ∈ kerDα ∩W 1
2 (G,CH) so that trΓh = trΓv. So far, let w := v − h ∈

◦
W 1

2 (G,CH)

then u = Dαv = Dαw ∈ Dα

◦
W 1

2 (G,CH).

Many results that follow, and in particular the following theorem for the existence of two
orthoprojections onto the occurring subspaces, are related in one way or another to the previous
orthogonal decomposition.

Theorem 3.2. There exist the orthoprojections

Pα : L2(G,CH) 7−→ kerDα ∩ L2(G,CH),

Qα : L2(G,CH) 7−→ Dα

◦
W 1

2 (G,CH) ∩ L2(G,CH)

with Qα = I −Pα. Furthermore we have

Pα = Fα(trΓTαFα)−1trΓTα

with kerPα = Dα

◦
W 1

2 (G,CH), and imPα = kerDα ∩ L2(G,CH).

Proof. We refer to [4, 6, 15] for the proof.

We are now able to consider the related boundary value problem expressed as follows:

DαDαu = f in G,

u = g on Γ

where DαDα = −∆ + 2Re(α)D + |α|2 does not contain any complex term. The following
theorem can be proved.

Theorem 3.3. Let f ∈ W k
2 (G,CH) and g ∈ W k+ 3

2
2 (Γ,CH), then the Dirichlet problem

(−∆ + 2Re(α)D + |α|2)u = f inG,

u = g on Γ
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has the unique solution

u = Fαg + TαPαDαh+ TαQαTαf,

where h denotes a W k+2
2 (G,CH)-extension of g.

Proof. We seek to show that this function satisfies the Dirichlet problem. The first equation can
be rewritten as DαDαu = f . In addition, notice that

DαTα = I, DαQα = Dα, DαPα = 0, DαFα = 0.

A direct computation shows that

DαDαu = DαDαFαg +DαDαTαPαDαh+DαDαTαQαTαf

= DαTαf = f.

This function satisfies also the boundary condition. The proof of the uniqueness may be found
in [6].

In particular, if α is a pure complex number that means α := iλ (λ ∈ R) a similar result as
in [15] can be obtained:

L2(G,CH) = kerDiλ ∩ L2(G,CH)⊕CH D−iλ
◦
W 1

2 (G,CH).

Following the ideas given in [6, 26] we can now consider more general boundary value problems
(of order 2n) in R3 involving complex potentials. For the convenience, we denote the left- and
right-products of the sequences respectively by

m∏

i=k

(l)

Ai := AmAm−1 . . . Ak ,

m∏

i=k

(r)

Ai := AkAk+1 . . . Am .

In the sequel, let αi (i = 1, . . . , n) be arbitrary complex numbers, then we have:

Theorem 3.4. Let f ∈ L2(G,CH) and gi ∈ W
2n− 4i+1

2
2 (Γ,CH) (i = 0, . . . , n − 1) then the

Dirichlet problem

n∏

i=1

(l)

Dαi
Dαi

u = f in G;

u = g0, Dα1Dα1u = g1, . . . , Dαn−1Dαn−1 . . . Dα1Dα1u = gn−1 on Γ

has the unique solution u ∈ W 2n
2 (G,CH) given explicitly by the formula

u = r1(g0) + Tα1Qα1Tα1r2(g1) + . . .+
n−1∏

i=1

(r)

Tαi
Qαi

Tαi
rn(gn−1) +

n∏

i=1

(r)

Tαi
Qαi

Tαi
f,

where with k = 1, . . . , n

rk(gk−1) := Fαk
gk−1 + Tαk

Fαk
(trΓTαk

Fαk
)−1 Qαk

gk−1.
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In general, if we assume that (αk, βk) (k = 1, . . . , n) are pairs of complex numbers, which
are chosen such that the boundary value problems

Dαk
Dβku = fk inG,

u = gk−1 on Γ (k = 1, . . . , n),

are uniquely solvable, and Pαkβk ,Qαkβk are projections defined by

Pαkβk = Fαk
(trΓTβkFαk

)−1 trΓTβk ,

Qαkβk = I −Pαkβk .

In this sense the previous theorem can be generalized and stated as follows:

Theorem 3.5. Let f ∈ L2(G,CH) and gi ∈ W
2n− 4i+1

2
2 (Γ,CH) (i = 0, . . . , n − 1), then the

unique solution of the Dirichlet problem

n∏

i=1

(l)

Dαi
Dβiu = f in G;

u = g0, Dα1Dβ1u = g1, . . . , Dαn−1Dβn−1 . . . Dα1Dβ1u = gn−1 on Γ

has the explicit representation

u = r1(g0) + Tβ1Qα1β1Tα1r2(g1) + . . .+
n−1∏

i=1

(r)

TβiQαiβiTαi
rn(gn−1) +

n∏

i=1

(r)

TβiQαiβiTαi
f,

where

rk(gk−1) := Fβkgk−1 + TβkFαk
(trΓTβkFαk

)−1Qβkgk−1.
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Abstract. This paper is focused on the first numerical tests for coupling between analytical so-
lution and finite element method on the example of one problem of fracture mechanics. The cal-
culations were done according to ideas proposed in [1]. The analytical solutions are construc-
ted by using an orthogonal basis of holomorphic and anti-holomorphic functions. For coupling
with finite element method the special elements are constructed by using the trigonometric in-
terpolation theorem.
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1 INTRODUCTION

The finite element methods is the most popular numerical method for solving partial diffe-
rential equations in computational mechanics. For many problems it shows high accuracy of
results, but for problems which contain different types of singularities (like for instance cracks,
gaps, corners) one should make some adaptation and improvement to get an acceptable result.
Another approach is to use analytical method for the near-field of the singularity (crack-tip
region) and classical finite element method in the far-field.

One of possible modifications of finite element method for singular problems is the eXtended
Finite Element Method (XFEM) [2]. In the XFEM the classical finite element approximation is
enriched in certain region of interest (the crack-tip region) by using special set of the enrichment
functions. But for many problems we have to refine a lot to get desired accuracy, this increased
time costs and reduced the rate of convergence.

In the linear elastic fracture mechanics the analytical solution of the crack-tip has been de-
veloped by using methods of complex function theory. Based on the Formulas of Kolosov the
near-field solution of the crack can be represented by only two holomorphic functions Φ(z) and
Ψ(z), z ∈ C [5]. Analytical solution based on the complex function theory gives us a high
accuracy of solution in the neighborhood of singularity.

A combination of finite element method with analytical solution was proposed by Piltner in
[6] and [7]. He has constructed a special elements containing the crack or the hole by using
Formulas of Kolosov and coupled it with finite element mesh by nodes on the boundary of
this element. The boundary displacements between two adjacent nodes are chosen as piecewise
linear or quadratic functions. This approach gives us advantages of analytical solution near
singularity, but coupling with finite elements is realized in such a way, that we have a break on
the boundary, because, in general, the analytical solution is not necessary the piecewise linear
or quadratic functions on the boundary between two methods.

Our idea is to continue work in direction proposed in [1] for method of coupling between
analytical solution and finite element method. The main goal of this approach is to get the
continuous coupling between analytical solution and finite element method through the whole
interaction interface. For that reason we construct a special element which contain analytical
solution and transmission or coupling elements. Advantages of such combination can be high
accuracy of solution without special refinement, following investigation of model, like for in-
stance error estimations, rate of convergence evaluations. The purpose of this article is to present
first numerical results.

In the following section we introduce the global geometrical settings and explain the struc-
ture of the special element. The numerical examples are shown and discussed in the Section
3.

2 GEOMETRICAL SETTINGS AND SPECIAL ELEMENT

2.1 Global settings and notations

We work in the field C of one complex variable, where we identify each point of the complex
plane C with the ordered pair z = (x, y) ∈ R2, x, y ∈ R or equaivalently with the complex
number z = x+ iy ∈ C, where i denotes the imaginary unit.

For constructing the exact solution to the differential equation we will work with the complex
linear Hilbert space of square-integrable C-valued functions defined in Ω, that is denoted by
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L2(Ω,C), with the corresponding inner product [3]

〈f, g〉L2(Ω,C) =

∫

Ω

f ḡ dσ, f, g ∈ L2(Ω,C), (1)

where dσ denotes the Lebesgue measure in R2, the functions f and g are C-valued function
such that

f(z) = f0(x, y) + if1(x, y), z ∈ Ω

and the coordinates fj : Ω→ R (j = 0, 1) are real-valued functions defined in Ω.
For continuously real-differentiable functions fj : Ω→ C, the operator

D =
∂

∂x
+ i

∂

∂y
(2)

is called Cauchy-Riemann operator. The conjugate Cauchy-Riemann operator we denote by

D =
∂

∂x
− i ∂

∂y
. (3)

Also we introduce the polar coordinates by x = r cosϕ, y = r sinϕ and arrive to the repre-
sentation of the complex number

z = reiϕ = r(cosϕ+ i sinϕ), 0 ≤ r <∞, 0 ≤ ϕ < 2π.

1

2

3

4

5

678

9

10 11 12

Ω

ΩD

ΓAD

ΩA ϕ
r A

I

BC

II

D

E

III

F G

IV

H

x

y

Figure 1: Geometrical setting of special element

Let now Ω ⊂ C be a bounded simply connected domain containing the singularity at the
origin (see Figure 1). The domain Ω is decomposed in the two sub-domains Ω = ΩA ∪ ΩD
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separated by the fictitious joint interface ΓAD = ΩA ∩ ΩD. The discrete numerical domain,
denoted by ΩD, is modeled by two different kinds of elements: the CST-element of class C0 (in
example elementsA−H) and the Coupling-element of classC0−C∞ (in example elements I−
IV ), that couple the discrete domain ΩD with the analytical domain ΩA. We call the sub-domain
ΩA analytical in that sense, that the constructed solutions are exact solutions to the differential
equation in ΩA. The idea behind this special element is to get the continuous connection through
the interface ΓAD by modifying of one side osculating triangles.

2.2 Exact solution to the homogeneous Lamé equation

Inside of ΩA we are going to use the exact polynomial solutions to the homogeneous Lamé
by using a basis of holomorphic and anti-holomorphic polynomials. The idea behind is the
factorization of the Laplace operator by the Cauchy-Riemann (2) operator and its conjugate (3).
First we recall the classical matrix representation of the Lamé equation.

In linear elasticity theory the pysical state of each continuum model is described by three fun-
damental equations: the equilibrium equations, the constutive equations and the strain-displacement
relations. Solving these three equations with respect to unknown displacement vector u =
[u1(x, y), u2(x, y)]T we get the Lamé (or Navier) equation in vector form [4]:

(λ+ µ)∇(∇ · u) + µ∇2u = −p, (4)

where λ and µ are material constants (Lamé constants). Also, we can rewrite equation (4) in the
classical matrix formulation

−p = DeEDku (5)

where p = [px, py]
T denotes the vector of the outer forces and

De = (Dk)
T =

[
∂,x 0 ∂,y
0 ∂,y ∂,x

]

are the adjoint differential operators of equilibrium and kinematics respectively. The matrix

E = G




κ+1
κ−1

−κ−3
κ−1

0

−κ−3
κ−1

κ+1
κ−1

0

0 0 1


 , where κ =





3− 4ν plane strain state
3− ν
1 + ν

plane stress state

includes material parameters for a linear elastic, homogeneous and isotropic material in the
usual notations.

For complex representation of the Lamé equation we identify the displacement vector u with
the complex valued function u = u1(x, y) + iu2(x, y) ∈ Ω in the bounded simply connected
domain Ω ⊂ C. A purely complex representation of the homogeneous form of (5) is given by

0 = DM̃−1Du, (6)

where D denotes the Cauchy-Riemann operator and M̃ a multiplication operator which is, ac-
ting on a function u = u0 + iu1, defined by

M̃u =
κ+ 1

κ− 1
u0 + iu1.
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Proposition 1 For a fixed n ∈ N0 the 4n+ 2 polynomials of the system

{fk(z)}k=0,...,n, =
{
ϕk(z) + 1

2
(M0 − 1)D(Mpϕk(z))

}
k=0,...,n,{

f̂l(z)
}
l=0,...,n,

=
{
ψl(z) + 1

2
(M0 − 1)D(Mpψl(z))

}
l=0,...,n,

(7)

are exact solutions to the homogeneous Lamé equation (6). The operator Mp is defined by

Mph(z) = xSch(z) + yVech(z) = xh0(x, y) + yh1(x, y).

In the formulas (7) systems ϕk(z) and ψk(z) are the holomorphic and anti-holomorphic
polynomials

{ϕk(z)}k=0,...,n, =
{√

k+1

rk+1
a π

zk
}
k=0,...,n,

{ψl(z)}l=0,...,n, =
{√

l+1

rl+1
a π

zl
}
l=0,...,n,

(8)

2.3 Construction of the coupling element

The numerical domain ΩD consists of two different kinds of elements. In the far-field of the
analytical inclusion we use CST-elements of class C0, where the primary variables are linearly
interpolated and the secondary variables are constantly represented. The second kind of the used
elements are the so called Coupling elements, that connect the discrete domain ΩD modeled
by CST-elements with the analytical domain ΩA. For these special curved triangles we have
following restrictions:

• C0 continuity on two boundaries with CST-elements;

• at least C0 through the joint interface ΓAD with the analytical domain.

To satisfy these condtions we introduce the special coupling element of polynomial degree
n = c(m+ 1)− 1 on ΓAD. The parameters c and m define a discrete point grid for the identity
coupling element Tc,mn , where c ∈ N, c ≥ 2 denotes the number of coupling elements used to
discretize the joint coupling interface ΓAD. The second parameter m ∈ N0 is concerned to the
number of nodes used additionally on the boundary ΓAD.

To construct the coupling element we are going to use the Discrete Fourier Analysis in C,
which based on the following trigonometric interpolation theorem.

Theorem 1 For given observations Y0,Y1, . . . ,Yn exist a unique function

tn(ϕ) =
n∑

k=0

cke
ikϕ (9)

that satisfies the interpolation conditions tn(ϕj) = Yj, j = 0, . . . , n. The coefficients ck are
given by

ck =
1

n+ 1

n∑

j=0

Yje
−ijϕk , (10)

ϕk = k 2π
n+1

denote the n+ 1 equidistant interpolation nodes on the interval ϕ ∈ [0, 2π).
Using (9) and (10) we rearrange the trigonometric interpolation formula and obtain

tn(ϕ) =
n∑

k=0

Sk(ϕ)Yk, Sk(ϕ) =
1

n+ 1

n∑

j=0

e−i(jϕ−kϕj), Sk(ϕ),Yk ∈ C. (11)
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Proposition 2 For a fixed discretization (c,m) and n = c(m+1)−1 ∈ N the geometry mapping
Xc,m
n (ξ, η) ∈ C for the (n+ 2)-node identity coupling element Tc,mn is given by

Xc,m
n (ξ, η) =

n+1∑

q=0

Nq(ξ, η)Yq, (12)

where

Nq(ξ, η) =

{
η

n+1

∑n
j=0 e

2πij
(m+1)ξ−q
c(m+1) : q < n+ 1

1− η : q = n+ 1

The orientation of the axes ξ and η of local coordinate system of the coupling element is
shown in figure 2.

x

y

Yn+1Yn+2

. . . . . .

ΓAD

ξ

ϕ
r

Tc,mn

η

Y1

. . .

YmYm+2

. . .

Y2m+1

. . .

. . .
. . .

Y(c−1)(m+1)+1

. . .
Yc(m+1)−1

Y0

Ym+1

Y2(m+1)

Y(c−1)(m+1)

ξ = 0

η = 1

ξ = 1

η = 1

ξ = 0 . . . 1

η = 0

Figure 2: (n+ 2)-node identity coupling element Tc,mn

2.4 Coupling of ΩA and ΩD

The solution of the original boundary value problem in Ω determines the values of unknown
displacements U0, . . . ,Un at the nodes on the fictitious joint interface ΓAD. To interpolate these
unknown values at the nodes we use the interpolation formula (9). The point is that then the
displacement are continuous also along the arcs between the nodes.

3 FIRST NUMERICAL EXAMPLES

Based on the theory which was presented in the previous section, now we would like to show
first numerical tests. A general design model is shown in figure 3.

We have an arbitrary square domain Ω and we discretize it accordantly with scheme proposed
in the Section 2. We start our tests with 37 Finite Elements (32 CST-elements, 4 Coupling
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elements and 1 analytical domain), and after we make gradually refinment of our finite element
mesh up to 973 Elements. The special elements are always located at the origin, but we would
like to underline, that is not a restriction. We can use several special elements in one finite
element mesh. Also is not restricted to use the special element only of square shape.

q

Γu

Γp

ΓnΓn

Figure 3: a general design model

All calculation are performed with the boundary condtions:

u = 0 on Γu,
py = −q on Γp,
σxx = 0 on Γn.

(13)

The material is supposed to be linear isotropic and the problem is considered under plain
strain state. For values of material constant and applying loads we used synthetic data, because
at the present moment the goal is to investigate general behaviour of the method and to under-
stand possible ways for improvement.

The displacement field for 973 Elements is presented in figure 4
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Figure 4: Displacement field for 973 elements

The figure 4 shows the approximation of the displacement field for given boundary conditi-
ons. Another important result is that we can easily see how the special element can be integrated
to the global finite element mesh. Also, we would like to underline that location and number of
special elements are not restricted: we can construct a mesh with several special elements, for
instance in case of multiple cracks. The changing of the condition number of the global stiffness
matrix with refinement is shown in figure 5

Figure 5: Condition number

We see that the condition number is growing as linear function
To study the flexibility of the method we would like to change a shape of the special element

from square to rectangle. The displacement field for 973 Elements is presented in figure 6
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Figure 6: Displacement field for 973 elements for rectangle

The figure 6 shows the approximation of the displacement field for given boundary condi-
tions. The changing of the condition number of the global stiffness matrix with refinement is
shown in figure 7

Figure 7: Condition number

Again we see, that the condition number is growing as linear function. Finally, figure 8 shows
the comparison of condition numbers between square and rectangle shapes.
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Figure 8: Comparison of condition numbers

As we can see, the condition numbers are growing always as a linear function of total amout
degrees of freedom, and, in fact, doesn’t depend on the shape of the super element.

4 CONCLUSIONS

The first numerical results for coupling between analytical solution and finite element me-
thod were presented. For the shape preserving geometry mapping and continuous coupling of
the displacement field the special element was constructed. The behaviour of the condition num-
ber during refinement procedure was shown. Flexibility and possible points for improvement
were discussed.
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Abstract. This paper presents a robust model updating strategy for system identification of
wind turbines. To control the updating parameters and to avoid ill-conditioning, the global sen-
sitivity analysis using the elementary effects method is conducted. The formulation of the objec-
tive function is based on Müller-Slany’s strategy for multi-criteria functions. As a simulation-
based optimization, a simulation adapter is developed to interface the simulation software AN-
SYS and the locally developed optimization software MOPACK. Model updating is firstly tested
on the beam model of the rotor blade. The defect between the numerical model and the refer-
ence has been markedly reduced by the process of model updating. The effect of model updating
becomes more pronounced in the comparison of the measured and the numerical properties of
the wind turbine model. The deviations of the frequencies of the updated model are rather
small. The complete comparison including the free vibration modes by the modal assurance
criteria shows the excellent coincidence of the modal parameters of the updated model with the
ones from the measurements. By successful implementation of the model validation via model
updating, the applicability and effectiveness of the solution concept has been demonstrated.
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1 INTRODUCTION

The renewable energy sources have gained high attention due to the current energy crisis
and the urge to get clean energy. Wind energy as a strong contender, therefore, is becoming
more and more popular. As the wind turbine structure, however, suffers from inevitable ageing
and degradation resulting from operational actions, continuous system identification based upon
long term monitoring is indispensable. By that, the current state of the structure can be deter-
mined and possible failures can be revealed in time. To this end, an adequate numerical model is
mandatory to predict the structural behavior. This model needs to be validated by a continuous
model updating to ensure a reliable and accurate estimation of the structural behavior.

According to [1], the model updating methods can be broadly classified into direct meth-
ods, which are essentially non-iterative ones, and iterative methods. A number of methods that
were first to emerge belong to the direct category. These methods update directly the elements
of stiffness and mass matrices and are one step procedures. Although the resulting updated
matrices reproduce measured modal data exactly, they do not generally maintain structural con-
nectivity and the corrections suggested are not always physically meaningful [2]. The methods
in the second category are referred to as iterative methods. Iterative methods use changes in
physical parameters to update the finite element models and, thereby, generate models that are
physically realistic. From earlier work on finite element model updating it is evident that finite
element model updating is essentially an optimization method. Here, the design variables are
the uncertain parameters in the model. The objective is to minimize the distance between the
predicted data by the model and the measured data. Some applications of the iterative optimiza-
tion methods are reviewed in [3, 4, 5, 6, 7].

However, some key issues in the iterative optimization method of model updating are not
fully matured, especially for continuous system identification, e.g. how to control the updating
parameters and to avoid ill-conditioning; how to master the sophisticated simulation-based op-
timization and solve the non-standard optimization problem. To solve these problems, a robust
model updating strategy is proposed in this paper, including four main aspects as described in
the next section.

2 PROPOSED MODEL UPDATING STRATEGY

2.1 Updating parameter determination

Specifying the updating parameters is one of the most difficult yet most critical steps in
the whole updating process. The number of updating parameters should be large enough to
cover all the relevant uncertain parameters, but as low as possible to avoid ill-conditioning. An
initial selection of the parameters depends on clearly engineering insight of the model. Such
parameters typically are associated to unknown material parameters, approximated geometrical
parameters, uncertain boundary conditions, parts with a high level of uncertainty (e.g. joints,
localized mass), and etc. They can be described by a vector x in Equation 1.

x =
(
X1 . . . Xk

)
=




material parameters
geometrical parameters

boundary conditions
. . .


 (1)
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To ensure well-conditioned problem, the number of the updating parameters should not ex-
ceed the number of the measured responses. It needs to be limited to the variation of a few
key model parameters that account for the observable errors. To identify the impact of different
parameters on the model errors, the sensitivity analysis can be conducted. The traditional sen-
sitivity analysis, which is also called local sensitivity analysis, is derivative-based approach and
only efficient for linear models. As for nonlinear and non-additive models, the global sensitivity
analysis should be used, since this method explores the whole space of the input parameters and
includes the interaction effect among parameters as well.

There are several different methods that belong to the class of global sensitivity analysis,
as described in detail by [8]. The choice of the proper sensitivity analysis technique depends
on such considerations as: the computational cost of running the model; the number of input
factors; features of the model (e.g. linearity, additivity). Considering a modest model compu-
tational expense (e.g. up to 10 minutes per run) and dozens of parameters (e.g. 20 to 100),
the elementary effects (EE) method is recommended as a simple but effective way to identify
the few important factors among the many contained in the model and cope with nonlinearity
and interactions. The fundamental idea behind this method is owed to Morris, who introduced
the concept of elementary effects in 1991 [9]. While adhering to the concept of local varia-
tion around a base point, the EE method makes an effort to overcome the limitations of the
derivative-based approach by introducing wider ranges of variations for the inputs and averag-
ing a number of local measures so as to remove the dependence on a single sample points. An
elementary effect is defined as [8]:

EEi =
Y (X1, X2, . . . , Xi−1, Xi + ∆, . . . , Xk)− Y (X1, X2, . . . , Xk)

∆
(2)

The sensitivity measures, µ and σ, proposed by Morris, are respectively the mean and the
standard deviation of the elementary effects calculated from finite randomly sampled inputs.
The mean µ assesses the overall influence of the factor on the output. The standard deviation
σ estimates the ensemble of the factor’s effects, whether nonlinear and/or due to interactions
with other factors. Campolongo et al. [10] proposed replacing the use of the mean µ with µ∗,
which is defined as the mean of the absolute values of the elementary effects. The use of µ∗

can prevent cancellation effects when the model is nonmonotonic or has interaction effects. µ∗

is a practical and concise measure to use, especially when there are several output variables.
Campolongo et al. [10] have also shown that µ∗ is a good proxy of the total sensitivity index
ST of the variance-based method [8]. With the aid of the global sensitivity analysis, the few
decisive key parameters can be selected as updating parameters for the following process.

2.2 Objective function formulation

The objective function used in model updating evaluates the defect between the model pre-
dicted and the measured data. Typical measurements include the modal model (natural frequen-
cies and mode shapes) and the frequency response functions (FRF). Based on Müller-Slany’s
strategy [11], the error expressions εi(x) between the numerical and measured dynamic proper-
ties are components of the vector objective function f [ε(x)] in Equation 3. To express errors of
natural frequencies and mode shapes, the modal frequency shift [12] and the modal assurance
criterion (MAC) [13] can be utilized.
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f [ε(x)] =




ε1(x)
ε2(x)
ε3(x)
ε4(x)
. . .




=




error expression of total mass
error expression of natural frequencies

error expression of mode shapes
error expression of FRF

. . .




(3)

It is worth noting that the measured and analytical natural frequencies and mode shapes must
relate to the same mode, that is, they must be paired correctly. Arranging the natural frequencies
in ascending order of magnitude is not sufficient, because the mode orders may not be correct
when two modes are close together in frequency, and the finite element model normally provides
more degrees of freedom than those can be identified from measurements. The approach to
pair the modes is by using the modal assurance criterion (MAC). For a reference mode, the
corresponding numerical mode should have the largest MAC value.

After formulating the individual objective functions separately, the linear weighting sum
method (LWS) [14], which is based on the concept of aggregation functions, is adopted to
combine the multi-objective functions into a scalar objective function of Equation 4, using
appropriate weighting factors wi so that the relative importance of the individual objectives can
be reflected:

f(x) =
k∑

i=1

wiεi(x) (4)

With the objective function having been formulated, the model updating is established by
solving the constrained multi-criteria optimization problem of Equation 5, in which h(x)is the
constraint function, while xL and xU are the lower and upper bounds, respectively.

min
x∈Σ
{f(x) | h(x) = 0},Σ := {x ∈ Rn | xL ≤ x ≤ xU} (5)

2.3 Optimization algorithm selection

It is crucial to choose a suitable algorithm for the optimization involved in the model up-
dating, because the existence and correctness of the solution as well as the convergence speed
largely depend on the nature of the optimization problem. The optimization problem in the
model updating has a number of properties, which makes it hard to solve:

• The interdependence between residuals and the updating parameters is highly nonlinear;
therefore the common derivative-based approaches are not fully applicable.

• Since a multi-criteria objective function has been formulated, a large number of local
minima have to be taken into consideration.

• Due to the complexity of the real-world problem, as a rule, the objective function is not
continuously differentiable.

• The presence of numerical noise introduces additional difficulties.

For these reasons, the deterministic techniques, which are efficient for smooth problems, turn
out not to be applicable here because of their gradient-based characteristic. Instead, the evo-
lutionary algorithms (EAs), known as derivative free methods, can be considered as a reliable
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alternative in such situations. Bäck and Schwefel [15] and Eiben [16] give overviews on EAs.
EAs have several advantages compared to gradient-based methods for complex problems. They
require only little knowledge about the problem being solved, and they are easy to implement,
robust, and most important, inherently parallel. Since most real-world problems involve simul-
taneous optimization of several concurrent objectives, parallel approaches are advantageous.
EAs are well suited to multi-objective optimization problems as they are fundamentally based
on multi-membered biological processes which are inherently parallel.

2.4 Optimization process implementation

The model updating process constitutes a simulation-based optimization. In the simulation-
based optimization, all or some of the objective and constraint functions depend on the simu-
lation result. In each optimization iteration, the output from simulation is used to compute the
objective and constraint functions. If the objective function does not meet the convergence cri-
teria, new values for updating parameters are created according to the logic of the optimization
method and used to reform the FE model. Then, the simulation is invoked again to compute new
output. Hence, in simulation-based optimization, optimization and simulation work together as
a whole.

The respective simulations are commonly accomplished using commercial finite element
software because they are powerful numerical analysis tools providing high reliability and nu-
merous capabilities. In the present work, the applied simulation tool is the commercial finite
element software ANSYS 11. Regarding the optimization problem, the complex real world
structures often lead to optimization problems difficult to solve. In most of the cases, the ex-
isting simulation software offers no direct support for nonlinear optimization or has no pow-
erful optimization tools. For instance, the optimization methods provided by ANSYS are en-
tirely derivative-oriented, making it impossible to solve non-standard optimization problems,
like nonlinear or discontinues optimization problems. Therefore, in the present work, the java-
based optimization framework, MOPACK, is applied to solve the simulation-based optimization
problem. MOPACK is the abbreviation for multi-method optimization package and has been
implemented by Nguyen et al. [17]. It contains numerous robust optimization strategies, includ-
ing deterministic methods and stochastic methods. More details about the available methods in
MOPACK can be found in [17]. In particular, the graphical user interface (GUI) of MOPACK
provides sophisticated tools for visualization and pre and post-processing. Another important
issue is that MOPACK is extensible such it can be enriched with new methods and applications.

To solve the simulation-based optimization problem with the aid of MOPACK, intensive in-
teractions are required between the external simulation software ANSYS and the optimization
framework MOPACK. Therefore, a simulation adapter is developed for running the optimiza-
tion using external solvers in the simulation software and the optimization framework simul-
taneously [18]. The integration of multiple software in the optimization procedure makes the
proposed model updating approach robust for complex structural optimization problems.

3 TEST IMPLEMENTATION

The proposed approach is substantiated on a real world wind turbine located in Dortmund,
Germany, which has a gearless system and a 40m-diameter rotor. A complete numerical model
of the investigated wind turbine is constructed using ANSYS 11.0. This FE model contains
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a concrete foundation, a steel tower with flanges, rotor blades and a simplified nacelle. Beam
models with coarsely discretized meshes are used for the tower and the blades in order to reduce
the development time and to allow parameters to be easily changed and items to be added.

Instead of considering the complete model, it is more reasonable to validate the model com-
ponents in the first step, in particular the blade model, because several estimations had to be
made due to lack of information from the manufacturer.

(a) (b)

Figure 1: (a) Illustration of the blade geometry (b) Parameters of the cross section

There is no measurement carried out on the blade in the current research project [19], for-
tunately, a test article of almost the same physical properties has been built and dynamically
tested in [20]. Therefore the first five eigenfrequencies provided by [20] are taken as validation
criteria for the current blade model.

Before formulating the optimization problem, sensitivity analysis is conducted on the fol-
lowing six geometrical parameters of the blade cross section:

• X1: thickness t1 of the skin;

• X2: thickness t2 of the two shear webs;

• X3: thickness t3 of the top and bottom spar caps.

• X4: ratio r1 between the height H and the chord length L at position B;

• X5: ratio r2 between the distance of the two shear webs b and the chord length L;

• X6: ratio r3 between the height H and the chord length L at position C;

Some assumptions have been made to reasonably simplify the problem: The parameters
t1, t2, t3 and r2 are considered as constants along the blade. A cosine shape function is used
between position A and B to transform the shape smoothly, while a linear shape function is used
between position B and C. All parts of the cross section are assumed to consist of GRP (Glass
fibre Reinforced Plastic) material having the same modulus of elasticity and shear and the same
material density.

By implementing the elementary effects method, three sensitivity measures µ∗, µ and σ are
calculated to reveal the influences of the six parameters on the output, which is multiple output
including the first five eigenfrequencies. The barplots of µ∗, µ and σ for the multiple output
are shown in Figure 2 to Figure 4. As above mentioned, the value of µ∗ indicates the total
sensitivity, therefore it can be concluded that the flapwise modes are sensitive to parameters X4
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and X5, while the edgewise modes are sensitive to parameters X1 and X6. The influences of
the parameters on the output is monotonic because the distributions of µ∗ and µ are the same.
According to the values of σ, parameters X1, X5 and X6 have large interactions with other
parameters.

Figure 2: Barplot of µ∗ for the first five eigenfrequencies

Figure 3: Barplot of µ for the first five eigenfrequencies

Figure 4: Barplot of σ for the first five eigenfrequencies

Since the number of the initially selected parameters is not large in this case, all of the six
parameters are considered in the optimization process. The total weight of the blade serves as a
constraint, and the first five eigenfrequencies are computed to compose the objective function.
In addition, the modal assurance criterion (MAC) is applied to pair the modes correctly.

Referring to the optimization algorithm, the differential evolution (DE) method, which be-
longs to the class of EAs, is employed in the present test. The DE is a fairly fast and reasonably
robust method with the capability of handling nondifferentiable, nonlinear and multimodal ob-
jective functions. It is originally described in [21]. Books [22, 23, 24] have been published on
theoretical and practical aspects of using DE in parallel computing, multi-objective optimiza-
tion and constrained optimizations. The crucial idea behind the DE is using vector differences
for perturbing the vector population.
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The simulation-based optimization of the blade model has been successfully implemented.
Table 1 lists the natural frequencies of the blade model and the deviations (in the parentheses)
from the reference before and after model updating. It can be noticed that the defect between the
FE model and the reference model has been significantly reduced within the process of model
updating.

blade mode shape reference frequency FE model
f [Hz] before updating after updating

1 1st flapwise mode 1.64 Hz 1.503 Hz (8.35%) 1.617 Hz (1.41%)
2 1st edgewise mode 2.94 Hz 3.313 Hz (12.68%) 2.648 Hz (9.94%)
3 2nd flapwise mode 4.91 Hz 5.158 Hz (5.05%) 4.790 Hz (2.45%)
4 3rd flapwise mode 9.73 Hz 12.054 Hz (23.88%) 10.428 Hz (7.18%)
5 2nd edgewise mode 10.62 Hz 15.708 Hz (47.91%) 12.607 Hz (18.71%)

Table 1: Model updating results of the blade model

To validate the complete wind turbine model, an agent-based monitoring system has been
established on the tower of the investigated wind turbine for continuous measurement and au-
tomated signal processing [25]. By virtue of operational modal analysis (OMA), the modal
properties of the wind turbine have been identified from the measured acceleration time histo-
ries using the commercial OMA software ARTeMIS Extractor [26]. As listed in Table 2, the
first 6 mode shapes are configured in the global coordinate system, whose origin is at the bot-
tom of the tower, X axis is parallel to the rotation plane, Y axis is perpendicular to the rotation
plane and Z axis is up. In association with the updated blade model, the complete FE model of
the wind turbine provides modal properties quite close to those identified from on-site measure-
ment. Small deviations of frequencies and high MAC values demonstrate very good consistency
between the numerical and measured modes. Considering a certain extent of deviation like 5%
(normally not avoidable in OMA result due to measurement errors), the FE model can be taken
as a very good approximation for representing the dynamic behavior of the real world wind
turbine structure.

mode shape measured f [Hz] FE model f [Hz] deviation MAC
1 1st bending in X-Z plane 0.3753 0.3595 4.22% 0.9993
2 1st bending in Y-Z plane 0.3779 0.3611 4.44% 0.9994
3 2nd bending in Y-Z plane 2.217 2.242 1.11% 0.9951
4 2nd bending in X-Z plane 2.171 2.380 9.63% 0.9981
5 3rd bending in Y-Z plane 5.837 5.598 4.09% 0.9724
6 3rd bending in X-Z plane 5.857 6.223 6.25% 0.9944

Table 2: Comparison of the measured and numerical modal properties

4 CONCLUSION

The model updating problem serving as a pivot for system identification has been solved
by a novel procedure using simulation-based multi-criteria optimization. The crucial aspects

257



of the solution concept include: updating parameter determination by global sensitivity anal-
ysis; objective function formulation using multi-criteria; optimization process implementation
on the basis of an interface between the MOPACK package and the simulation software; and
employment of the evolutionary algorithms for complicated optimization problems. The pro-
posed solution concept has been successfully implemented on a real world wind turbine. The
numerical models have been validated by measuring the dynamic response of the rotor blade
test article, and of the wind turbine in operation.

In continuous system identification, the numerical model could be successively updated if the
system has been subjected to structural modification (damage), which opens new opportunities
for modern residual lifetime estimation.
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1 INTRODUCTION

The aim of our contribution is to call attention to the relation between totally regular variables
and Appell sequences of hypercomplex holomorphic polynomials (sometimes simply called
monogenic power-like functions) in Hypercomplex Function Theory. After their introduction
in 2006 by two of the authors of this note (see [1] and the discussion in [2]) on the occasion of
the 17th IKM, the latter have been subject of investigations by different authors with different
methods and in various contexts. The former concept, introduced by R. Delanghe in [3] and later
also studied by Gürlebeck ([4], [5]) for the case of quaternions, has some obvious relationship
with the latter, since it describes a set of linear hypercomplex holomorphic functions whose
integer powers are also hypercomplex holomorphic. Due to the non-commutative nature of the
underlying Clifford algebra, being totally regular variables or Appell sequences are not trivial
properties as it is for the integer powers of the complex variable z = x + iy. Simple examples
show also, that not every totally regular variable and its powers form an Appell sequence and
vice versa. Under some very natural normalization condition the set of all para-vector valued
totally regular variables which are also Appell sequences will completely be characterized. In
some sense the result can also be considered as an answer to a remark of Habetha in [6] on
the use of exact copies of several complex variables for the power series representation of any
hypercomplex holomorphic function.

2 BASIC NOTATIONS

As usual, let {e1, e2, . . . , en} be an orthonormal basis of the Euclidean vector space Rn with
a non-commutative product according to the multiplication rules

ekel + elek = −2δkl, k, l = 1, . . . , n,

where δkl is the Kronecker symbol. The set {eA : A ⊆ {1, . . . , n}} with

eA = eh1eh2 · · · ehr , 1 ≤ h1 < · · · < hr ≤ n, e∅ = e0 = 1,

forms a basis of the 2n-dimensional Clifford algebra C`0,n over R. Let Rn+1 be embedded in
C`0,n by identifying (x0, x1, . . . , xn) ∈ Rn+1 with

x = x0 + x ∈ A := spanR{1, e1, . . . , en} ⊂ C`0,n.

Here, x0 = Sc(x) and x = Vec(x) = e1x1 + · · · + enxn are, the so-called, scalar and vector
parts of the paravector x ∈ A. The conjugate of x is given by x̄ = x0 − x and its norm by
|x| = (xx̄)

1
2 = (x20 + x21 + · · ·+ x2n)

1
2 .

To call attention to its relation to the complex Wirtinger derivatives, we use the following
notation for a generalized Cauchy-Riemann operator in Rn+1, n ≥ 1:

∂ :=
1

2
(∂0 + ∂x), ∂0 :=

∂

∂x0
, ∂x := e1

∂

∂x1
+ · · ·+ en

∂

∂xn
.

C1-functions f satisfying the equation ∂f = 0 (resp. f∂ = 0) are called left monogenic (resp.
right monogenic). We suppose that f is hypercomplex-differentiable in Ω in the sense of [7, 8],
that is, it has a uniquely defined areolar derivative f ′ in each point of Ω (see also [9]). Then,
f is real-differentiable and f ′ can be expressed by real partial derivatives as f ′ = ∂f where,
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analogously to the generalized Cauchy-Riemann operator, we use ∂ := 1
2
(∂0 − ∂x) for the

conjugate Cauchy-Riemann operator. Since a hypercomplex differentiable function belongs to
the kernel of ∂, it follows that, in fact, f ′ = ∂0f = −∂xf which is similar to the complex case.

In general, C`0,n-valued functions defined in some open subset Ω ⊂ Rn+1 are of the form
f(z) =

∑
A fA(z)eA with real valued fA(z). However, in several applied problems it is very

useful to construct A-valued monogenic functions as functions of a paravector with special
properties. In this case we have

f(x0, x) =
n∑

j=0

fj(x0, x)ej

and left monogenic (∂f = 0) functions are also right monogenic functions (f∂ = 0), a fact
which follows easily by direct inspection of the corresponding real system of first order partial
differential equations (generalized Riesz system).

We use also the classical definition of sequences of Appell polynomials [?] adapted to the
hypercomplex case.

Definition 2.1 A sequence of monogenic polynomials (Fk)k≥0 of exact degree k is called a
generalized Appell sequence with respect to ∂ if

1. F0(x) ≡ 1,

2. ∂Fk = kFk−1, k = 1, 2, . . . .

The second condition is the essential one while the first condition is the usually applied normal-
ization condition which can be changed to any constant different from zero.

2.1 TOTALLY REGULAR VARIABLES AND GENERALIZED HYPERCOMPLEX
APPELL SEQUENCE

To overcome the problem that an integer power of a hypercomplex variable

z = x0 + x1e1 + . . .+ xnen ∈ A := spanR{1, e1, . . . , en} (1)

is not hypercomplex holomorphic, Delanghe introduced in [3] the concept of a totally regu-
lar variables as a linear hypercomplex holomorphic functions whose integer power also are
hypercomplex holomorphic. The general Clifford algebra valued case of linear hypercomplex
holomorphic functions studied by Delanghe, resulted in very complicated conditions for be-
ing totally regular. Restricted to the para-vector case they proved to be only sufficient. Later
Gürlebeck ([4], [5]) studied the case of quaternion valued (H - valued) variables in the form of

z =
3∑

k=0

xkdk (2)

with dk ∈ H and not necessarily linearly independent.
He found a necessary and sufficient condition expressed by the rank of a reduced coefficient

matrix and equivalent with the commutativity of the coefficients dk.
Here we study only the case of linear paravector valued functions of 3 real variables, subject

to a normalization condition with respect to the real variable x0. The normalization condition
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is given in terms of the value of the hypercomplex derivative by demanding that z′ = 1. This is
motivated by the fact that at the same time we are looking for the characterization of all totally
regular variables whose integer powers form an Appell sequence in the sense of 2.1 as we know
it from the complex case for z = x+ iy.

That not every totally regular variable and its powers form an Appell sequence and vice versa
can be shown by some simple examples. For instance, z = z1 = x1 − x0e1 is a totally regular
variable, because

z1 =
1

2
(∂0 + ∂x)z1 = 0

,
but since we have also that

z′1 =
1

2
(∂0 − ∂x)z1 = −e1

the sequence zn = (z1)
n = (x1 − x0e1)n is not an Appell sequence in the sense of 2.1.

From the other side, the standard Appell sequence considered in [1] of the form

Pnk (x) =
k∑

s=0

(
k

s

)
cs x

k−s
0 xs (3)

with the generalized central binomial coefficient given by

ck :=
1

2k

(
k

bk
2
c

)
, (4)

where b . c is the usual floor function, is an Appell sequence which does not consist of totally
regular variables.
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Marienstraße 13B, 99421 Weimar, Germany

Email: schwarz@uni-weimar.de

Keywords: Model quality, Coupled frame-wall systems, global/partial models

Abstract. Civil engineers take advantage of models to design reliable structures. In order to
fulfill the design goal with a certain amount of confidence, the utilized models should be able
to predict the probable structural behavior under the expected loading schemes. Therefore,
a major challenge is to find models which provide less uncertain and more robust responses.
The problem gets even twofold when the model to be studied is a global model comprised of
different interacting partial models. This study aims at model quality evaluation of global
models with a focus on frame-wall systems as the case study. The paper, presents the results
of the first step taken toward accomplishing this goal. To start the model quality evaluation of
the global frame-wall system, the main element (i.e. the wall) was studied through nonlinear
static and dynamic analysis using two different modeling approaches. The two selected models
included the fiber section model and the Multiple-Vertical-Line-Element-Model (MVLEM). The
influence of the wall aspect ratio (H/L) and the axial load on the response of the models was
studied. The results from nonlinear static and dynamic analysis of both models are presented
and compared. The models resulted in quite different responses in the range of low aspect ratio
walls under large axial loads due to different contribution of the shear deformations to the top
displacement. In the studied cases, the results implied that careful attention should be paid
to the model quality evaluation of the wall models specifically when they are supposed to be
coupled to other partial models such as a moment frame or a soil-footing substructure which
their response is sensitive to shear deformations. In this case, even a high quality wall model
would not result in a high quality coupled system since it fails to interact properly with the rest
of the system.
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1 INTRODUCTION

In the field of civil engineering the goal is to design structures that, with a certain amount
of confidence, will be able to fulfill their purpose of construction i.e. withstand loading and
deformation schemes the structure is expected to undergo during its lifetime. In other words a
civil engineer aims at designing reliable structures by examining the probable response of the
structure under expected loading conditions. Such terms are normally observed in the civil en-
gineering technical literature due to the facts that the human knowledge about the nature of the
phenomena underlying the structural behavior is limited and that many phenomena even have
randomness as their inherent characteristic. Consequently, any model which is an abstraction of
the phenomena to be studied, also faces deficiencies in terms of knowledge i.e. uncertainties.
Finding models that can be employed as tools to further design reliable structures has therefore
turned into a challenge. As a solution, model quality criteria are defined which allow for mak-
ing decisions over a range of plausible models. Since most of the engineering models, when
possible, are discretized into smaller distinct but coupled parts (so called partial models) to ease
their study, the model quality evaluation originally starts from the partial models and their cou-
pling. The ongoing study, conducted by the first author, aims at evaluating the global model
quality of coupled partial models for damage assessment purposes considering the quality of
the partial models and their coupling. To find a general solution coupled reinforced concrete
(RC) frame-wall systems are studied as an example of widely used coupled structural systems.
In the present study, the model quality evaluation process is started by investigating the wall
models since the wall element is the crucial partial model in the coupled system. Based on a lit-
erature survey, two of the well known modeling approaches, namely the fiber section model and
the Multiple-Vertical-Line-Element-Model (MVLEM) were chosen for further studies. To take
the first step, the model responses under cyclic deformation-controlled loading are compared
to a selected observed response. To further investigate the differences, the models responses
are then compared through static and dynamic analysis. Finally, the results are discussed and
conclusions are derived.

2 MODEL QUALITY EVALUATION OF COUPLED SYSTEMS

The main challenge in the model quality evaluation process is to prove the model to be an
appropriate representative of the real structural system for its intended purpose of use. The dif-
ficulty gets even twofold in the absence of adequate observed data from real and experimental
systems to validate the global model. For the specific case of a frame-wall system, for instance,
almost negligible amount of experimental data is available for the coupled system (particularly
in interaction with the soil-footing substructure). Although, an extensive number of experi-
ments can be found in the literature individually focused on wall or frame elements. So, one of
the primary challenges in the field of frame-wall systems, is to validate the global model when
there is only a chance to validate its partial models against experimental data. In fact RC struc-
tural walls have gained considerable attention in the construction/rehabilitation of new/existing
buildings in regions with medium to high seismic hazard. This is mainly because: they pro-
vide structures with lateral stiffness, strength and ductility if properly designed/constructed and
they have shown reasonable performance during the past earthquakes. In the most common
building configuration, the RC walls are combined with a gravity resisting system (usually RC
moment frames or slabs) to form an integrated lateral/vertical load-carrying system. In such
frame-wall structures the most lateral resisting of the system is supplied by the walls. There-
fore, their modeling and design becomes a critical issue, since the structural performance under
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Damage is concentrated in the wall. 
System undergoes small displacements.

Damage is extended to the frame. 
System undergoes large displacements.

Fixed-base structure Flexible-base structure

Figure 1: Structural response of a coupled frame-wall system in the presence/absence of the couplings (Originally
from [1])

seismic actions relies mainly on their performance. Nevertheless, it has been learned from the
past earthquakes that the wall performance can be significantly affected by the interactions with
other substructures (see Figure 1).

So far, it is quite well understood that neglecting the coupling effects may lead to a misesti-
mation of the structural response/damage. In spite of being aware of this, however, it has been a
common practice to ignore the interaction among the substructures in frame-wall systems. The
absence of adequate observed data for the global model to be validated on one hand and the
complexity of the available models which does not allow for parametric studies on the global
model on the other hand may be the main reasons. For instance, many researchers have focused
on the study of RC walls ([28, 11, 13, 19, 5, 12, 6, 18, 15, 24] among the others) whereas quite
a few have investigated the coupled frame-wall systems particularly in interaction with the soil-
foundation substructure ([23, 3, 16, 27, 21, 26, 4] among the others). Evidently, there is still a
crucial need to quantitatively measure the importance of coupling effects by means of tools like
the sensitivity analysis. Based on the results from a sensitivity analysis one can decide whether
or not the global model under study can be reduced to its partial models by disregarding some
uninfluential parameters/aspects/interactions.

3 MODELING APPROACHES

The global model of the system to be studied is constructed by means of coupling different
partial models. The choice of a specific modeling approach not only depends on the capabilities
of the resulting partial model in representing a part of the whole system, but also on its capacity
to interact properly with the rest of the system. In other words, when dealing with global
models, the high quality of a partial model does not necessarily signify that its application
will lead to a high quality of the global model. In fact, in cases where the desired degree of
coupling to the other partial models can not be reached, the overall quality may even decrease.
Finally, one also has to consider the amount of computational time and effort to be supplied
when selecting a model out of a number of plausible models.

In the superstructure of a RC frame-wall system at least two partial models can be distin-
guished, namely: the wall and the frame. According to the technical literature, the numerical
modeling of RC frame elements has been well developed ([7, 17, 25, 8] among the others). Dis-
tributed and lumped plasticity elements are widely being used to analyze and design RC frames.
Distributed plasticity models are mainly based on the fiber section concept which allows for the
interaction between flexural and axial behaviors. Models based on this concept provide pow-
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erful tools for the analysis of RC frame elements in which the shear deformations are roughly
ignorable. The main challenge, however, is to find an appropriate model for the wall element.

Numerous micro/macro models have also been proposed for structural walls ([10] reviews
a selected number of the available models). According to the technical literature, the most
efficient models, in terms of the capabilities and accuracy on one hand and the required compu-
tational time and cost on the other hand, are based on the fiber section concept. This modeling
method is considered as a micro-modeling approach and thus is able to predict both local and
global damages in the wall. The main drawback is that since fibers only undergo axial defor-
mations the model fails to detect shear deformations. This may result in unrealistic predictions
of the wall response in the case of squat walls (i.e. aspect ratios less than 2.0, as a practical
criteria). Not to mention that the model also fails to consider some observed phenomena like
neutral axis shift. To further develop the method macro models have been proposed which not
only benefit from the fiber section concept but also from some additional features that cover the
shortcomings of the fiber section method. “Multiple Vertical Line Element Model (MVLEM)”
is one of the well known solutions. Fibers are individually defined as ’vertical line elements’
over the section and a shear spring is added to allow for deformations under shear actions.
Although in this case, no interaction between the flexural and shear behaviors is considered
which seems to be inconsistent with experimental observations according to [19]. Nevertheless,
the MVLEM constructed through the above-mentioned procedure provides a powerful tool to
predict RC wall behavior under lateral loadings.

The basic concept for creating the MVLEM is to separate the flexural and shear behaviors
of the wall element (see Figure 2). Here the two modes of deformation are assumed to be
uncoupled. The flexural and axial behaviors of the wall (and their corresponding interaction)
are represented by the contribution of fibers whereas the shear spring constitutes the behavior
under shear actions. Relative rotation of the upper bound of the wall to its base is defined by
considering a center of rotation. The point is located on the central column of the element at a
specific height ch where h is the height of the wall (see Figure 3). c is practically set to be 0.4
for common applications [28]. It is however recommended to include more elements along the
height of the wall where significant nonlinear behavior is expected. This is to avoid curvature
misestimations in the regions where it is highly variable [8]. Although, the total number of
divisions along the height or the length of the wall does not have a significant effect on the
overall behavior of the wall. Nevertheless, by adding more elements it is more likely that one
can detect the desired local behavior/damage [15, 20].

Flexure ShearDeformation

Figure 2: Schematic deformation decoupling of a RC wall element in MVLEM [19]
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Figure 3: Center of rotation in MVLEM [19]

Quite well known material models are available for concrete (e.g. Kent-Scott-Park model
with tensile strength) and steel (e.g. Menegotto-Pinto model) to define the vertical line ele-
ments’ sectional force-deformation relationships under axial actions. There are also a handful
of choices for the hysteretic behavior to be assigned to the shear spring i.e. the sectional force-
deformation relationship under shear actions ([16, 9, 19, 29, 15]). Here, the major concern is to
represent the low hysteretic energy absorbtion capability in shear. Mostly, this is done by means
of origin-oriented or pinching hysteretic materials. In this study a pinching hysteretic material
with a trilinear backbone curve was used. Its behavior under cyclic loading is determined by
means of some predefined rules. The cracking and yield properties of the backbone curve were
calculated according to [16, 22]. The aforementioned hysteretic material allows for pinching of
force and deformation, damage due to ductility and energy, and degraded unloading stiffness
based on ductility. More details about hysteretic materials can be found in [14].

To study the MVLEM the results from static monotonic and cyclic as well as dynamic anal-
ysis of the model were compared to the corresponding results of a fiber section model. Both
models were created and analyzed using the OpenSees platform. The fiber section model con-
sisted of a single column defined with nonlinearBeamColumn element to which a fiber section
was assigned. Concrete02 (Kent-Scott-Park model with linear tension softening) and Steel02
(Giuffre-Menegotto-Pinto model) were chosen to represent the constitutive material relation-
ships of the concrete and the reinforcing steel, respectively. In order to consider the deforma-
tions due to shear, the force-deformation relationship of the section under shear actions was
separately calculated as discussed before and was added to the previously defined fiber section.
To create the MVLEM, two MVLEM sets were stacked along the height of the wall each hav-
ing half the height of the wall. Each of the MVLEM sets consisted of 11 truss elements to
which fiber sections with the same material properties as those of the fiber section model were
assigned. The truss elements were connected by means of rigid beams at their end nodes. The
central columns were divided into two rigid parts at 40% of their heights. Horizontal (shear) and
vertical springs were defined to connect the two parts of each central column. The shear spring
properties were calculated in the same manner as those of the fiber section model. The two
models created through the abovementioned procedures are schematically shown in Figure 4.
The numerical results will be presented in the following section.
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Figure 4: The two studied models: the fiber section model and the MVLEM

4 NUMERICAL RESULTS: MVLEM VS FIBER SECTION MODEL

To take the first step, the MVLEM was verified/validated against observed response of a
selected wall specimen to check its potential for further studies. For this purpose, the specimen
WSH3, one of the 6 wall specimens tested within an experimental program conducted at the
ETH Zurich [6], was chosen as the reference experimental model. During the test the specimens
were subjected to a deformation-controlled quasi-static cyclic loading. Details about the loading
schemes can be found in [6]. The WSH3 with a height of 4.56m had a rectangular section of
2.0m length and 0.15m thickness. The reinforcement layout is shown in Figure 5. Compressive
strength (f ′c) and modulus of elasticity (Ec) for concrete were reported to be 39.2 MPa and 35.2
GPa, respectively. Also, the yield strength of steel (fy) for boundary and web reinforcements
were respectively recorded to be 601.0 MPa and 569.2 MPa. Additional information about the
sectional and material properties can be found in [6]. It is worth mentioning that throughout the
rest of the study the sectional and material properties are kept unchanged. Comparison of the
results from this step are presented in Figure 6. Very good agreement can be seen between the
three responses (i.e. MVLEM, fiber section model and the experimental results). The model
was therefore qualified to be used for further sensitivity/uncertainty studies.

15
0

10030 100 125 125 125 125 125 145 145 125 125 125 125 125 100 100 30

2000

6o1222 o 8

o4.2@ 75

o6 @ 150

o6@ 75

o6 @ 150

o6@ 75
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Figure 5: Reinforcement layout for the WSH3 specimen [6]
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Figure 6: Static cyclic analysis results of the two studied models compared to the experimental results for the
WSH3 specimen from [6]

In the next step, sensitivity analysis was used to find out the influence of the wall aspect
ratio (H/L) and the amount of the axial load (P ) on the response of the wall. The mentioned
parameters are known to have noticeable effects on the response of wall elements. The two vari-
ables were assumed to have uniformly distributed probability densities over their entire ranges
([1.0−3.0] for the wall aspect ratio and [100.0−1500.0]kN for the axial load). Latin Hypercube
Sampling method was used to generate 400 samples for the pushover analysis and 100 samples
for the dynamic analysis from the marginal probability distributions of the variables. Figure 7
shows the distribution of the studied samples in the case of the dynamic analysis. In the next
sections the nonlinear static and dynamic analysis results from the two studied models will be
presented, compared and discussed.
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Figure 7: Distribution of the studied samples for the dynamic analysis with regard to the variables
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4.1 Static Monotonic Analysis (Pushover)

Primarily, gravity analysis was performed for each model under the sampled axial load.
A displacement-controlled pushover analysis was then performed until the top displacement
(controlled displacement) reached 2% of the height for each model (2% drift was roughly taken
as the failure drift). The resulting pushover curves (i.e. base shear vs top displacement curves)
of both the MVLEM and the fiber section model are shown in Figure 8 for 400 samples. As it
is obvious from the figure, the models have resulted in similar response curves in the case of
less stiff walls (i.e. walls with aspect ratios greater than 2.0). However, failure in fiber section
models with aspect ratios less than 2.0 signifies a noticeable difference between the two models.
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Figure 8: Pushover curves of the studied models

To further investigate the reason for the unlike failure of the fiber section model the contri-
bution of the shear and flexural deformations to the total top displacement was studied. Figures
9 and 10 compare the shear and flexure-induced top displacements of the two models at the last
step of the pushover analysis with regard to the wall height and the axial load value. According
to Figure 9, shear deformations predicted by the MVLEM are at least two times those predicted
by the fiber section model. Under larger axial loads the difference between the estimated shear
deformations by the two models becomes even more than a factor of two. In addition, in the
case of highly vertically loaded walls with aspect ratios close to 1.5 contribution of the shear
deformations to the total top displacement in the MVLEM can be dramatically more than that
of the fiber section model. In contrast, the flexural deformations in the MVLEM account for an
ignorable portion of the top displacement in the same range (see Figure 10). It can be concluded
that for the walls with aspect ratios close to 1.5 which are bearing large axial loads the fiber sec-
tion model significantly overestimates the contribution of the flexural deformations to the top
displacement on one hand and underestimates the contribution of the shear deformations, on
the other hand. As a result of noticeable flexural deformations the fiber section model reaches
failure at early steps of the pushover analysis. Failure due to shear is not captured in any of the
models because no significant strength reduction was considered in the trilinear backbone curve
used to define the force-deformation relationship in shear. The above discussion implies that in
the studied cases even if both models result in high model qualities in the prediction of the top
displacement, they may result in quite different global model qualities when coupled to other
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partial models which are sensitive to shear deformations.
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Figure 9: Scatter of the normalized shear-induced top displacement of the studied samples with regard to the
variables
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Figure 10: Scatter of the normalized flexure-induced top displacement of the studied samples with regard to the
variables

4.2 Dynamic Analysis

44 ground motions were selected according to the far-field record set of FEMAp695 [2]
to perform the dynamic analysis. The record set includes twenty-two records (44 individual
components) taken from the PEER NGA database. Details about the ground motions can be
found in [2]. In sum, 100 samples were chosen which implies a total 440 number of nonlinear
dynamic analysis. As in the case of the pushover analysis, each model was imposed to the
sampled axial load before the dynamic analysis was performed. The fundamental periods of the
models were then computed and used to calculate the spectral accelerations of the models for
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each of the 44 selected ground motions. Scatter of the MVLEM fundamental period normalized
to that of the fiber section model with regard to the wall height and the axial load value is shown
in Figure 11. Clearly, the two models produce almost the same fundamental periods. Only in
the range of lower wall aspect ratios the MVLEM estimates the period slightly larger than the
fiber section model. The resulting spectral accelerations are also compared for the two models
in Figure 12. According to the figure, the most scatter comes from the samples with lower
aspect ratios and higher axial loads. As in the case of the pushover analysis, the two models
tend to behave differently in this range of the variables due to unlike contribution of the shear
deformations to the overall response. The two models were then subjected to the 44 selected
ground motions to further compare the dynamic analysis results. Figure 13 depicts the scatter of
the resulting maximum top displacement of the MVLEM normalized to that of the fiber section
model with respect to the studied variables. Again, the low aspect ratio region accounts for the
most differences between the two models’ responses. The larger scatter however comes from
larger axial load values.
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Figure 11: Scatter of the normalized fundamental period of the studied samples with regard to the variables
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5 CONCLUSIONS

In order to take the first step in the model quality evaluation of coupled frame-wall systems,
the main partial model of the system i.e. the wall element was studied through nonlinear static
and dynamic analysis. Fiber section model and the Multiple-Vertical-Line-Element-Model
(MVLEM) were selected from two major modeling categories (micro- and macro-modeling
approaches respectively). To check the potential of the models in the prediction of the wall re-
sponse, comparison to a selected observed response was made. The models produced responses
in close agreement with the observed behavior. Later, the influence of the wall aspect ratio
(H/L) and the axial load on the response of the models was investigated through sensitivity
analysis. In case of the pushover analysis, the models resulted in quite similar behavior for high
aspect ratio walls under low axial loads. However, a dramatic difference was seen between the
model responses in the range of low aspect ratio walls under high levels of axial load due to
the unlike contribution of the shear deformations to the total top displacement. In the afore-
mentioned range of the variables, the fiber section reached flexural failure at early steps of the
pushover analysis since the flexural deformations had to increase significantly in order to fill
in for the less contribution of the shear deformations to the top displacement. In the studied
cases, this implies that careful attention should be paid to the model quality evaluation of the
wall models specifically when they are supposed to be coupled to other partial models. Other
partial models may include a moment frame or a soil-footing substructure which their response
can be sensitive to shear deformations. If this is the case then even a high quality wall model
would not result in a high quality coupled system since it fails to interact properly with the rest
of the system. Based on the above discussion, one may be able to define coupling capabilities
as one of the properties of a given model. Finally, the dynamic analysis results were presented
and compared. According to the results, as in the case of the pushover analysis the most differ-
ences between the models’ responses is concentrated in the range of low aspect ratios and large
axial loads. Further check of the model responses with other models (numerical and physical)
is required in order to infer conclusions about the quality of the models. This is the focus of an
ongoing research by the first author.
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Abstract. Due to the complex interactions between the ground, the driving machine, the
lining tube and the built environment, the accurate assignment of in-situ system parameters
for numerical simulation in mechanized tunneling is always subject to tremendous difficulties.
However, the more accurate these parameters are, the more applicable the responses gained
from computations will be. In particular, if the entire length of the tunnel lining is examined,
then, the appropriate selection of various kinds of ground parameters is accountable for the
success of a tunnel project and, more importantly, will prevent potential casualties. In this
context, methods of system identification for the adaptation of numerical simulation of ground
models are presented. Hereby, both deterministic and probabilistic approaches are considered
for typical scenarios representing notable variations or changes in the ground model.
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1 INTRODUCTION

In July 2010 a new collaborative research center (SFB 837) started at Ruhr-Universitt Bochum
Germany, entitled Interaction Models in Mechanized Tunneling. The center consists of 14 sub-
projects and it is funded by the German Research Foundation (DFG). This paper is part of the
work conducted in the subproject C2 Methods of System Identification for the Adaptation of
Numerical Simulation Models.

The ground model is central to computational tunneling, where a realistic ground model is
crucial for predicting the distributions and magnitudes of the strains and, consequently, reduc-
ing the surface settlements caused by the TBM propagation. Based upon the information of
bore holes sunken in the target area of the tunnel alignment, the ground model describes the
detailed spatial distribution of the constitutive soil properties along with the geometry of the
stratification. Customary bore holes, however, provide only an approximate insight into the real
world geologic realities. As a consequence, only the realization of the system identification
approach can result in improved and more sophisticated numerical predictions of the spatiotem-
poral ground behavior induced by driving the tunnel.

For system identification, a numerical simulation model is required. This model, how-
ever, represents a complex, mechanically-hydraulically coupled and a three dimensional initial
boundary value problem. Also, it is characterized by various physical nonlinearities as well as
various construction stages. For application in a later reference tunnel project, numerical simu-
lation models are needed which enable the appropriate forward computation of typical scenarios
describing relevant variations or changes in the ground model with respect to prescribed output
states.

Figure 1: Subsoil scenarios for the forward computation.

According to Figure 1, the following scenarios have been defined:

• Scenario #1: advance in homogeneous soil.

• Scenario #2: advance in two homogeneous sub-soils where the parameters and inclination
of the second one are unknown.
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• Scenario #3: advance in a homogeneous subsoil with a cubic impediment (unknown in
position, dimension and material parameters) in front of the tunnel face.

• Scenario #4: advance in an inhomogeneous subsoil with unknown parameters and spatial
distribution.

2 METHODOLOGY

Methodologically, the solution of a system identification problem is based on the concate-
nation of observations (measurements) and computations (numerical results) using the inverse
analysis procedure. By that, the defect between the measurement-based properties and the com-
puted ones is being minimized.

2.1 2.1 Deterministic Approach

In deterministic inverse analysis, the selected numerical model is calibrated by iteratively
changing a subset of its parameters until the discrepancies between the calculated/simulated
responses and the observed/measured data reach a predefined minimum [1]. This procedure is
illustrated in Figure 2.

Figure 2: Scheme of inverse analysis procedure.

In the first step of the procedure, a priori estimation or guess of the unknown parameter set
is given or a reasonable range of each parameter is defined. After that, the forward model (nu-
merical simulation) is called for the initial guess of the parameters. Subsequently, the obtained
numerical results are compared with the observed/measured data in field. The discrepancy
between the two sets of data is quantified by an objective function which is to be minimized ap-
plying an optimization algorithm. The set of parameters which minimizes the objective function
is the best estimated set of the unknown model parameters. The objective function considered
in this approach is the least squares criterion:
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f(m) =
N∑

i=1

(diobs − gi(m))2 (1)

where gi is the calculated value for the point i, m is the set of the model parameters, and diobs is

the observed value at the same point.

2.2 Probabilistic Approach

Customarily, the uncertainties associated with the geotechnical applications can be catego-
rized as follows [2]:

• Natural variability (aleatory/objective uncertainty) associated with the inherent random-
ness of natural processes, like wind flow and geologic layers. In this case samples are
taken and inferences are drawn.

• Knowledge uncertainty (epistemic/subjective uncertainty) caused by the lack of data or
information about events and processes, and of understanding the physical laws, where
the following subcategories may be distinguished:

– Site characterization uncertainty.

– Model uncertainty.

– Parameter uncertainty.

In order to include the aforementioned uncertainties (inherent in the forward model and the
measured data) and the prior knowledge about the unknown parameters (indicating the trend
of the parameters), a Probabilistic Approach based on Bayes Theorem (Thomas Bayes, 1702-
1761) is incorporated in the inverse problem considered here. This approach yields a solution
that provides suitable uncertainty measures [3] as follows:

• The prior information of the model parameters and the uncertainties in the observed data
are represented in terms of two independent probability density functions (PDFs), ρM(m)
and ρD(D) respectively, with a joint PDF:

ρ(m,d) = kρM(m)ρD(d) (2)

where k is the normalization constant.

• The effect of the modeling uncertainties is mapped by a PDF referred to as the forward
model probability:

Θ(m,d) = θ(d|m)µM(m) (3)

where µM(m) is the homogeneous probability density over the model space M .

• Combining the prior information and the forward model probability by the conjunction
operation gives the probabilistic solution (see Figure 3):
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σ(m,d) = k
ρ(m,d)Θ(m,d)

µ(m,d)

= k
ρM(m)ρD(d)θ(d|m)µM(m)

µM(m)µD(d)

= k
ρM(m)ρD(d)θ(d|m)

µD(d)
(4)

where µD(d) is the homogeneous probability density over the data space D.

Figure 3: Conceptual depiction of the general probabilistic solution of an inverse problem.

• Once the posteriori probability in the DxM space has been defined, the posteriori proba-
bility in the model space is given by the marginal probability density:

σ(m) = k

∫

D

σ(m,d)dd

= k

∫

D

ρM(m)ρD(d)θ(d|m)

µD(d)
dd

= kρM(m)

∫

D

ρD(d)θ(d|m)

µD(d)
dd

= kρM(m)L(m) (5)

hereby, L(m) is the likelihood function which gives a measure of how good a model m

is in explaining the data.

By assuming Gaussian PDFs for both data and model uncertainties, we have

ρD(d) = k exp(−0.5(d− dobs)
TC−1

D (d− dobs)) (6)
θ(d|m) = k exp(−0.5(d− g(m))TC−1

M (d− g(m))) (7)

and the likelihood function becomes Gaussian having a covariance matrix CL = CD + CM :

L(m) = k exp(−0.5(dobs − g(m))TC−1
L (dobs − g(m))) (8)

If no prior information about the model parameters is available and the components of the
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observed and calculated data (dobs,g(m)) are independent as well as identically distributed
with standard deviations SD and SM , respectively, the probabilistic solution simply becomes:

σ(m) = kL(m)

= k(S2
D + S2

M)−N/2 exp

[
− 1

2

∑N
i=1(d

i
obs − gi(m))2

S2
D + S2

M︸ ︷︷ ︸
J(m,SD,SM )

]
(9)

where J(m, SD, SM) is the misfit function or least squares cost function.

For fixed values of SD and SM over the model and the data spaces, maximizing the likelihood
function equals minimizing the least squares cost function. Thus, the probabilistic approach
converts to the deterministic approach.

The probabilistic solution is numerically evaluated by direct sampling. Generation of re-
alizations of the probabilistic density solution σ(m) is accomplished by using Monte Carlo
Markov Chain method along with the Metropolis acceptance rules [4] and [5]: Given the target
probability distribution σ(m|d), we consider a Markov chain with a given sample mn. The
next sample mn+1 is obtained from mn as follows:

• Generate a candidate sample m from a jumping probability density function P (m∗|mn).

• Calculate

α = min

[
1,
σ(m∗|d)P (mn|m∗)

σ(mn|d)P (m∗|mn)

]

• Generate a uniformly distributed sample U ∈ (0.0; 1.0).

• If U ≤ α accept mn+1 = m∗ otherwise mn+1 = mn.

Repeating this sequence shows that the generated Markov Chain converges to the probability
distribution function σ(m|d).

2.3 Sensitivity Analysis

Due to the highly nonlinear problem nature of geotechnical applications with respect to both
the physical and the geometrical characteristics, the numerical simulation is normally compu-
tationally expensive. In order to make the inverse analysis efficient as well as robust, it is favor-
able to reduce the number of the parameters to be identified by performing a sensitivity analysis.
This analysis evaluates the importance of each unknown model parameter with respect to the
system response resulting in a decrease of the number of the forward calculations.

In this paper, a variance based global sensitivity analysis, which explores the space of the
input parameters, has been utilized. In this analysis two different sensitivity measures have been
introduced, the first index, first order sensitivity index [6], measures only the decoupled effect
on the system response,

Si =
Vmi

(Em∼i
(g(m)|mi))

V (g(m))
(10)
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where V (g(m)) is the unconditional variance of the model output and Vmi
(Em∼i

(g(m)|mi)) is

the variance of conditional expectation with m∼i indicating the matrix of all parameters but mi.

In order to consider the coupling effects of the input parameters, the second index, total effect
index [7], has been introduced,

ST i = 1− Vm∼i
(Emi

(g(m)|m∼i))

V (g(m))
(11)

where Vm∼i
(Emi

(g(m)|m∼i)) measures the first order effect of m∼i on the system response

that does not include any influence corresponding to mi.

For the estimation of the first and total sensitivity indices a numerical procedure introduced
by [8] have been utilized.

2.4 Model Approximation

The forward calculation, which is a three dimensional finite element simulation, needs a sig-
nificant computation time. Therefore, and due to the large number of the forward calculations
that are included in the optimization process of the deterministic approach, or the sampling
procedure of the probabilistic approach, or even in the global sensitivity analysis being adopted
in this work, using a meta-model that substitutes the finite element simulation runs is unavoid-
able. For this purpose, an approximation method based on polynomial regression has been
implemented.

Customarily, g(m) the system output can be represented by the approximated value and an
error ε

g(m) = ĝ(m) + ε = pT (m)β + ε (12)

where β is the vector of the unknown regression coefficients, and p is the vector of the polyno-

mial basis functions

pT (m) = [1 m1 m2 m3 ...m
2
1 m

2
2 m

2
3 ...m1m2 m1m3 ...m2m3 ...]. (13)

The regression coefficients are estimated according to [9]:

β̂ = (PTP)−1PTg (14)

where P is a matrix containing the basis polynomials of the support points and g is the system

responses of the support points.

For the assessment of the approximation quality, the Coefficient of Determination

R2 = 1−
∑n

j=1(gj − ĝj)2∑n
j=1(gj − ḡj)2

according to [10] has been introduced, where, the closer the R2 value to one is, the better the
approximation is.
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3 APPLICATION

We use a three dimensional finite element model for scenario #1 of the tunnel excavation
(Figure 1), using the FE-code PLAXIS 3D, version 2010. Since the geometry, the material
properties, the initial and excavation conditions are in total symmetric with respect to a verti-
cal plane parallel to the tunnel axis (X-axis), only one-half of the model needs to be analyzed
(see Figure 4). The chosen slurry shield Tunnel Boring Machine TBM being 9 m long is simu-
lated, along with the tunnel lining, by circular plate elements assuming linear elastic behavior.
The ground is modeled by the Hardening Soil Model [11]. In Table 1, the parameters of the
considered constitutive models are presented. More details about the model can be seen in [12].

Figure 4: The geometry and properties for a three dimensional model using Plaxis 3D.

In order to identify the ground model (HS-Model) parameters, the following steps have been
carried out:

• The model has been run for the parameter values stated in Table 1. Hereby, the vertical
displacements at the two pointsO12 and S12 (see Figure 4) have been saved as observation
measurements dobs for the whole excavation phases. Subsequently, the HS-Model param-
eters (i.e. φ, c, Eref

oed , E
ref
50 , E

ref
ur with the conditions Eref

oed = Eref
50 , E

ref
oed ≤ Eref

ur /2) are
considered as unknowns that need to be estimated from the data set dobs.

• An objective function, representing the discrepancy between the observed and calculated
measurements, has been adapted based on the least squares criterion (Equation 1).

• Model approximation for the system response at the observation points O12 and S12 have
been carried out using polynomial regression. The coefficients of determination show a
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parameter Soil Tunnel lining TBM-Shield
Hardening Soil Model Linear Elastic Linear Elastic

φ[◦] 35 - -
ψ[◦] 5 - -

c[kN/m2] 10 - -
Eref

50 [kN/m2] 35000 - -
Eref
oed [kN/m2] 35000 - -

Eref
ur [kN/m2] 105 - -

P ref [kN/m2] 100 - -
m[−] 0.7 - -
Rf [−] 0.9 - -
νur[−] 0.2 - -

γunsat[kN/m
3] 17 - -

γsat[kN/m
3] 20 - -

Rinter[−] 0.6 - -
E[kN/m2] - 3.107 21.107

ν[−] - 0.1 0.3
γ[kN/m3] - 24 38
d[m] - 0.2 0.35

Table 1: Material properties for the models used in tunnel simulation for scenario #1.

good approximation for the forward model

R2
O12

= 0.98759 R2
S12

= 0.9997.

• A variance based sensitivity analysis has been implemented for deciding which parame-
ters have to be identified. As a result, a parameter with small values for Si and ST i has a
negligible effect on the considered system response; and can be excluded from the iden-
tification. The analysis has shown that the four decisive parameters of the model need to
be identified, Figure 5.

• The subsequent identification process has been performed following the inverse analysis
procedure presented in Figure 2, where two different optimization algorithms have been
applied, (i) Particle Swarm Optimization PSO [13], and (ii) Differential Evolution Algo-
rithm [14]. In both cases, the objective function is minimized until the parameters match
their real world values to a large extend (see Figure 6).

• In the probabilistic approach, we are currently still considering the simple case in which
a homogeneous PDF for the a priori information about the model parameters is assumed.
Also, Gaussian PDFs are used for both data and model uncertainties, according to Equa-
tion 8. The covariance matrix of the measured data (CD) depends usually on sensing
devices used in recording the observations. In [15] different devices with their covariance
matrices are presented that can be used in our case, as well. For the present example,
the forward model is assumed to be exact and the influence of the data (measurements)
uncertainty is investigated in two cases with the assumption that the observation errors
are independent and identically distributed. In the first case, the standard deviation of
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(a) (b)

Figure 5: First order and total effect sensitivity indices of the soil parameters.

Figure 6: Quality of results; forward solver = back analysis solver.
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the observations error SD is given a relatively small value in comparison to the system
response at the observing points, and in the second case, a relatively higher value for SD
is considered. Using Monte Carlo Markov Chain method for sampling the probabilistic
solution

σ(m) = kL(m)

= k(S2
D)−N/2 exp

[
− 1

2

∑N
i=1(d

i
obs − gi(m))2

S2
D

]
(15)

for both cases. Analysing the generated samples gives the results in Table 2 and Table 3.

Where, the uncertainty of the parameters increases with the data uncertainty. In addition
to that, the parameters with higher sensitivity measures can be identified better than those
of lower sensitivity measures.

parameter Exact value Mean µ Standard deviation σ Coefficient of Variation CoV = σ/µ
Eref
ur 100000 102040 12809 0.1255
c 10 310.989 2.757 0.2508
φ 35 333.85 2.1886 0.0655

Eref
oed 35000 31941 5101 0.1597

Table 2: Statistical characteristics of the generated samples for the first case (relatively small data uncertainty).

parameter Exact value Mean µ Standard deviation σ Coefficient of Variation CoV = σ/µ
Eref
ur 100000 121065 18765 0.155
c 10 310.6 2.82 0.2665
φ 35 335.85 3.715 0.1036

Eref
oed 35000 35649 7419 0.208

Table 3: Statistical characteristics of the generated samples for the second case (relatively large data uncertainty).

By drawing the relative frequency diagram of two parameters for the tow cases, the dis-
tribution of parameters within their bounds is illustrated, Figure 7.

4 CONCLUSIONS ANS OUTLOOKS

The two presented identification approaches, deterministic and probabilistic, are able to es-
timate the ground model parameters from observations. Where, the second approach is able
to capture and quantify parameter uncertainties that result from uncertainties associated with
measurement data. Different and more specific investigations are going to be considered in
the probabilistic approach for representing more realistic and general cases of uncertainties.
Furthermore, the captured and quantifies uncertainties are going to be utilized in the model as-
sessment process that enables choosing the most adequate ground model for the forward model
representing the tunnel excavation.
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Figure 7: Relative frequencies due to data uncertainties.

5 ACKNOWLEDGEMENTS

This work is part of the subproject C2 in the Collaborative Research Center SFB 837, funded
by the German Research Foundation DFG. We greatly appreciate their valuable support.

REFERENCES

[1] T. Schanz, M. M. Zimmerer, M. Datcheva, and J. Meier, “Identification of constitutive
parameters for numerical models via inverse approach,” Journal of Felsbau, vol. 2, pp. 11–
21, 2006.

[2] G. Baecher and J. T. Christian, Reliability and Statistics in Geotechnical Engineering.
England: Wiley, 2003.

[3] A. Tarantola, Inverse Problem Theory and Methods for Parameter Estimation. Philadel-
phia: siam, 2005.

[4] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, “Equation of state
calculations by last computing machines,” J. Chem. Phys., vol. 21(6), pp. 1087–1092,
1953.

[5] W. K. Hastings, “Monte carlo sampling methods using markov chains and their applica-
tions,” Biometrika, vol. 57(1), pp. 97–109, 1970.

[6] I. M. Sobol, “Sensitivity estimates for nonlinear mathematical models,” Mathematical
Modelling and Computational Experiment, vol. 1, pp. 407–414, 1993.

[7] T. Homma and A. Saltelli, “Importance measures in global sensitivity analysis of nonlinear
models,” Reliability Engineering and System Safety, vol. 52, pp. 1–17, 1996.

[8] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, and
S. Tarantola, Global Sensitivity Analysis. The Primer. John Wiley & Sons, Ltd, 2008.

291



[9] R. Myers and D. C. Montgomery, Response Surface Methodology. John Wiley& Sons,
Ltd, 2002.

[10] D. C. Montgomery and G. C. Runger, Applied Statistics and Probability for Engineers.
John Wiley & Sons, Ltd, 2003.

[11] T. Schanz, P. Vermeer, and P. Bonnier, “The hardening soil model: Formulation and ver-
ification,” Beyond 2000 in Computational Geotechnics-10 years of PLAXIS, Rotterdam,
1999.

[12] V. Zarev, T. Schanz, and M. Datcheva, “Three-dimensional fe-analysis of mechanized
tunneling in urban areas,” in 13th Inter. Conf. on Civil, Structural and Environmental
Engineering Computing, (Greece), 2011.

[13] J. Kennedy and R. Eberhard, “Particle swarm optimization,” in IEEE International Con-
ference on Neural Networks, NJ, USA, 1995.

[14] R. Storn and K. Price, “Differential evolution- a simple and efficient adaptive scheme for
global optimization over continuous spaces,” tech. rep., ICSI, 1995.

[15] A. Ledesma, A. Gens, and A. E.E., “Estimation of parameters in geotechnical
backanalysis-1. maximum likelihood approach,” Journal of Computers and Geotechnics,
vol. 18(1), pp. 1–27, 1996.

292



19th International Conference on the Application of Computer
Science and Mathematics in Architecture and Civil Engineering

K. Gürlebeck, T. Lahmer and F. Werner (eds.)
Weimar, Germany, 04–06 July 2012

COMPLETE ORTHOGONAL SYSTEMS OF 3D SPHEROIDAL
MONOGENICS

J. Morais∗ and S. Georgiev

∗Departamento de Matemática
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Abstract. In this paper we review two distinct complete orthogonal systems of monogenic
polynomials over 3D prolate spheroids. The underlying functions take on either values in the
reduced and full quaternions (identified, respectively, with R3 and R4), and are generally as-
sumed to be nullsolutions of the well known Riesz and Moisil Théodoresco systems in R3. This
will be done in the spaces of square integrable functions over R and H. The representations of
these polynomials are explicitly given. Additionally, we show that these polynomial functions
play an important role in defining the Szegö kernel function over the surface of 3D spheroids. As
a concrete application, we prove the explicit expression of the monogenic Szegö kernel function
over 3D prolate spheroids.
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1 INTRODUCTION

Quaternion analysis is thought to generalize onto the multidimensional situation the classical
theory of holomorphic functions of one complex variable, and to provide the foundations for
a refinement of classical harmonic analysis. The rich structure of this function theory involves
the analysis of monogenic functions defined in open subsets of R3, which are nullsolutions
of higher-dimensional Cauchy-Riemann systems. In this paper we review two distinct com-
plete orthogonal systems of monogenic polynomials over 3D prolate spheroids. We show that
these polynomial functions play an important role in defining the monogenic Szegö kernel func-
tion over 3D spheroids. The underlying spheroidal prolate functions (C. Flammer [12], E.W.
Hobson [21], N.N. Lebedev [24]) were introduced by C. Niven in 1880 while studying the con-
duction of heat in an ellipsoid of revolution, which lead to a Helmholtz equation in spheroidal
coordinates. The prolate spheroidal harmonics are special functions in mathematical physics
which have found many important practical applications in science and engineering where the
spheroidal coordinate system is used. They usually appear in the solutions of Dirichlet problems
in spheroidal domains arising in hydrodynamics, elasticity and electromagnetism. For the solv-
ability of boundary value problems of radiation, scattering, and propagation of acoustic signals
and electromagnetism waves in spheroidal structures, spheroidal wave functions are commonly
encountered. Recently, there has been a growing interest in developing numerical methods us-
ing prolate spheroidal functions as basis functions [2, 3, 41, 42, 43]. These applications have
stimulated a surge of new techniques and have reawakened interest in approximation theory,
potential theory, and the theory of partial differential equations of elliptic type for spheroidal
domains. Higher dimensional extensions of the prolate spheroidal functions were first studied
by Slepian in [35], which provided many of their analytical properties, as well as properties
that support the construction of numerical schemes (see also A.I. Zayed [44]). Very recently,
K.I. Kou et al. [23] introduced the continuous Clifford prolate spheroidal functions in the finite
Clifford Fourier transform setting. These generalized spheroidal functions (for offset Clifford
linear canonical transform) were successfully applied for the analysis of the energy concentra-
tion problem introduced in the early-sixties by D. Slepian and H.O. Pollak [34].
Since the foundations of the theory of approximation of monogenic functions by Fueter [13, 14],
the study of orthogonal polynomials in application to certain boundary value problems for ellip-
tic partial differential equations has been of great importance in connection with certain prob-
lems of mathematical physics. In our view much of the older theory has progressed considerably
upon the study of monogenic polynomial approximations in the context of quaternion analysis.
For a detailed historic survey and extended list of references on monogenic approximations
we refer to [17]. Most relevant to our study are the intimate connections between monogenic
functions and spheroidal structures, and the potential flexibility afforded by a spheroid’s non-
spherical canonical geometry. Developments are described in the sequence of papers by H.
Malonek et al. in [1, 26, 27] (cf. [9]) and J. Morais et al. in [18, 19, 20, 30]. In light of this,
in [29, 31] (cf. [16]) a very recent approach has been developed to discuss approximation prop-
erties for monogenic functions over 3D prolate spheroids by Fourier expansions in monogenic
polynomials of which could be explicitly expressed in terms of products of Ferrer’s associ-
ated Legendre functions multiplied by Chebyshev polynomial factors (see Theorem 3.1 below).
Within the scope of this paper we shall be fully concerned with the polynomials introduced in
these notes. Studies have shown that the underlying spheroidal monogenics play an important
role in defining the monogenic Szegö kernel function for 3D spheroids [32].
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2 PRELIMINARIES

2.1 The Riesz and Moisil-Théodoresco systems

As is well known, a holomorphic function f(z) = u(x, y) + iv(x, y) defined in an open domain
of the complex plane, satisfies the Cauchy-Riemann system





∂u

∂x
=

∂v

∂y

∂u

∂y
= −∂v

∂x

.

As in the case of two variables, we may now characterize two possible analogues of the Cauchy-
Riemann system in an open domain of the Euclidean space R3. More precisely, consider the
pair f = (f0, f

∗) where f0 is a real-valued continuously differentiable function defined on an
open domain Ω ⊂ R3 and f ∗ = (f1, f2, f3) is a continuously differentiable vector-field in Ω for
which

(R)

{
div f ∗ = 0

rot f ∗ = 0
. (2.1)

Recall that the 3-tuple f ∗ is said to be an M. Riesz system of conjugate harmonic functions in
the sense of E.M. Stein and G. Weiß [36, 37], and system (R) is called the Riesz system [33].
The Riesz system has a physical relevance as it describes the velocity field of a stationary flow
of a non-compressible fluid without sources nor sinks.
The Moisil-Théodoresco system is represented by [28] (cf. [22])

(MT)

{
div f ∗ = 0

grad f0 + rot f ∗ = 0
, (2.2)

and it is closely related to many mathematical models of relevance in spatial physical problems
such as the Lamé and Stokes systems. Both systems are historical precursors that generalize the
classical Cauchy-Riemann system in the plane. Obviously (2.1) may be derived from (2.2) by
taking f0 = 0.

2.2 Quaternion analysis

To start with, the (R)- and (MT)-systems may be obtained consistently by working with the
quaternion algebra. Let H := {z = z0 + z1i + z2j + z3k : zl ∈ R, l = 0, 1, 2, 3} be the Hamil-
tonian skew field, where the imaginary units i, j, and k are subject to the multiplication rules

i2 = j2 = k2 = −1;

ij = k = −ji, jk = i = −kj, ki = j = −ik.

The scalar and vector parts of z, Sc(z) and Vec(z), are defined as the z0 and z1i + z2j + z3k
terms, respectively. Like in the complex case, the conjugate of z is the reduced quaternion
z = z0 − z1i − z2j − z3k, and the norm |z| of z is defined by |z| =

√
zz =

√
zz =√

z2
0 + z2

1 + z2
2 + z2

3 .
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The paravector space is the linear subspace defined byA := spanR{1, i, j} ⊂ H, with elements
of the form x := x0 +x1i+x2j. Of course, it is assumed here thatA is a real vectorial subspace,
but not a subalgebra of H. Now, let Ω be an open subset of R3 with a piecewise smooth
boundary. We say that

f : Ω −→ H, f(x) = [f(x)]0 + [f(x)]1i + [f(x)]2j + [f(x)]3k (2.3)

is a quaternion-valued function or, briefly, an H-valued function, where the components [f ]l
(l = 0, 1, 2, 3) are real-valued functions defined in Ω. By now, it is clear that the form of
a paravector-valued function may be derived from (2.3) by taking [f(x)]3 = 0. Continuity,
differentiability, integrability, and so on, which are ascribed to f are defined componentwise.
We will work with both the real- (resp. quaternionic-) linear Hilbert space of square integrable
A- (resp. H-) valued functions defined in Ω, that we denote by L2(Ω;A;R) (resp. L2(Ω;H;H)).
In this assignment, the scalar and quaternionic inner products are defined by

< f ,g >L2(Ω;A;R) =

∫

Ω

Sc(f g) dV (2.4)

and

< f ,g >L2(Ω;H;H) =

∫

Ω

f g dV ,

where dV denotes the Lebesgue measure on Ω. For continuously real-differentiable A-valued
functions f , the reader may be familiar with the (reduced) quaternionic operator

D =
∂

∂x0

+ i
∂

∂x1

+ j
∂

∂x2

,

which is called generalized Cauchy-Riemann operator on R3. From this operator we obtain the
usual Dirac operator

∂ = i
∂

∂y1

+ j
∂

∂y2

+ k
∂

∂y3

via the equality ∂ = −jDi, and the identification

x = x0 + x1i + x2j ∈ A → y = x2i + x1j + x0k ∈ H.

Namely, a continuously real-differentiable A-valued function f is said to be monogenic in Ω if
Df = 0 = fD in Ω, which is equivalent to the Riesz system

(R)





∂[f ]0
∂x0

− ∂[f ]1
∂x1

− ∂[f ]2
∂x2

= 0 ,

∂[f ]0
∂x1

+
∂[f ]1
∂x0

= 0,
∂[f ]0
∂x2

+
∂[f ]2
∂x0

= 0,
∂[f ]1
∂x2

− ∂[f ]2
∂x1

= 0 .

This system can also be written in abbreviated form:
{

div f = 0

curl f = 0
.
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For the interpretation of the (R)-system in viewpoint of H ∼= C`+
0,3 we refer to [10]. Follow-

ing [25], the solutions of the system (R) are customary called (R)-solutions. The subspace
of polynomial (R)-solutions of degree n will be denoted by R+(Ω;A;n). We also denote by
R+(Ω;A) := L2(Ω;A;R) ∩ kerD the space of square integrable A-valued monogenic func-
tions defined in Ω.
The analysis of functions with values in H requires a different treatment. Namely, an H-valued
function f is called left (resp. right) monogenic in Ω if f is in C1(Ω;H) and satisfies ∂f = 0
(resp. f∂ = 0) in Ω. Throughout the text we only use left H-valued monogenic functions
that, for simplicity, we call monogenic. Nevertheless, all results accomplished to left H-valued
monogenic functions can be easily adapted to right H-valued monogenic functions. For any
H-valued function f it is worthy of note that the equation ∂f = 0 is equivalent to the system

(MT)





∂[f ]1
∂x0

+
∂[f ]2
∂x1

+
∂[f ]3
∂x2

= 0

∂[f ]0
∂x0

− ∂[f ]2
∂x2

+
∂[f ]3
∂x1

= 0

∂[f ]0
∂x1

+
∂[f ]1
∂x2

− ∂[f ]3
∂x0

= 0

∂[f ]0
∂x2

− ∂[f ]1
∂x1

+
∂[f ]2
∂x0

= 0

or, in a more compact form:
{

div (Vec(f)) = 0

grad [f ]0 + rot (Vec(f)) = 0.

For the interpretation of the (MT) system in viewpoint of H ∼= C`+
0,3 we also refer to [11].

To state our general results we shall need some further notation. The solutions of the (MT)-
system are called (MT)-solutions, and the subspace of polynomial (MT)-solutions of degree
n is denoted by M+(Ω;H;n). In [38], A. Sudbery proved that dimM+(Ω;H;n) = n + 1.
We also denote byM+(Ω;H) := L2(Ω;H;H) ∩ ker ∂ the space of square integrable H-valued
monogenic functions defined in Ω.

3 COMPLETE ORTHOGONAL SYSTEMS OF MONOGENIC POLYNOMIALS OVER
3D PROLATE SPHEROIDS

3.1 Prolate spheroidal monogenics

A prolate spheroid is generated by rotating an ellipse about its major axis. For the prolate
spheroidal coordinate system (µ, θ, φ) the coordinate surfaces are two families of orthogonal
surfaces of revolution. The surfaces of constant µ are a family of confocal prolate spheroids,
and the surfaces of constant θ are a family of confocal hyperboloids of revolution.
In prolate spheroidal coordinates (see e.g. E.W. Hobson [21], N.N. Lebedev [24]), the Cartesian
coordinates may be parameterized by x = x(µ, θ, φ), µ ∈ [0,∞), θ ∈ [0, π), and φ ∈ [0, 2π),
such that

x0 = ca cos θ, x1 = cb sin θ cosφ, x2 = cb sin θ sinφ,
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where c is the prolatness parameter, and a = coshµ, b = sinhµ, are respectively, the semimajor
and semiminor axis of the generating ellipse. Using these transformation relations the surfaces
of revolution for which µ is the parameter consist of the confocal prolate spheroids:

S :
x2

0

c2 cosh2 µ
+

x2
1 + x2

2

c2 sinh2 µ
= 1. (3.1)

Accordingly, the surface of S is matched with the surface of the supporting spheroid µ = α
if we put c2 cosh2 α = a2, and c2 sinh2 α = b2. Then we obtain the prolatness parameter
c =

√
a2 − b2 ∈ (0, 1), which means that c is the eccentricity of the ellipse with foci on the

x0-axis: (−c, 0, 0), (+c, 0, 0).

In [29] J. Morais found it necessary to focus the discussion on spaces of square integrable
functions over R. With this outcome in mind, a complete orthogonal set

{En,l,Fn,m : l = 0, . . . , n+ 1, m = 1, . . . , n+ 1}
of polynomial nullsolutions of the well known Riesz system has been developed over 3D prolate
spheroids. The mentioned spheroidal monogenics are explicitly given by1

Theorem 3.1. Monogenic polynomials of the form

En,l (µ, θ, φ) :=
(n+ l + 1)

2
An,l(µ, θ)Tl(cosφ)

+
1

4 (n− l + 1)
An,l+1(µ, θ) [Tl+1(cosφ)i + sinφUl(cosφ)j]

+
1

4
(n+ 1 + l)(n+ l)(n− l + 2)An,l−1(µ, θ) [−Tl−1(cosφ)i + sinφUl−2(cosφ)j] ,

and

Fn,m (µ, θ, φ) :=
(n+m+ 1)

2
An,m(µ, θ) sinφUm−1(cosφ)

+
1

4 (n−m+ 1)
An,m+1(µ, θ) [sinφUm(cosφ)i− Tm+1(cosφ)j]

− 1

4
(n+ 1 +m)(n+m)(n−m+ 2)An,m−1(µ, θ) [sinφUm−2(cosφ)i + Tm−1(cosφ)j] ,

for l = 0, . . . , n+ 1 and m = 1, . . . , n+ 1, with the notation

An,l(µ, θ) :=

dn−l
2 e∑

k=0

(2n+ 1− 2k) (n+ l)2k

(n+ 1− l)2k+1

P l
n−2k(coshµ)P l

n−2k(cos θ) (3.2)

such that An,−1 = − 1
n(n+1)2(n+2)

An,1 form a complete orthogonal system for the interior of the
prolate spheroid (3.1) in the sense of the scalar product (2.4). Here P l

n denotes the Ferrer’s as-
sociated Legendre functions of degree n and order l of the first kind, Tl and Ul are the Chebyshev
polynomials of the first and second kinds, respectively. Also, we set Pn(coshµ) = P 0

n(coshµ)

and P l
n(coshµ) = (−1)l(sinhµ)l dl

dtl
[Pn(t)]

∣∣∣
t=coshµ

.

1The first author wishes to thank Mr. N.M. Hung, who has found a misprint in the expressions of the polyno-
mials introduced in [29], and who has shown great interest in questions related to them.
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We shall now be able to extend these results to a quaternionic Hilbert subspace; in particular, we
exploit a complete orthogonal system of polynomial nullsolutions of the Moisil-Théodoresco
system over 3D prolate spheroids. In continuation of [29] (cf. [16]) we designate the new n+ 1
(prolate) spheroidal monogenics by

Sn,l := En,l+1 i + Fn,l+1 j, l = 0, . . . , n, (3.3)

namely functions with respect to the variables µ, θ, and the azimuthal angle φ of the quaternion
form:

Sn,l (µ, θ, φ) :=
1

2
(n+ 2 + l) (n+ 1 + l) (n− l + 1)An,l(µ, θ)Tl(cosφ)

+
1

2
(n+ 2 + l)An,l+1(µ, θ)Tl+1(cosφ) i

+
1

2
(n+ 2 + l)An,l+1(µ, θ) sinφUl(cosφ) j

− 1

2
(n+ 2 + l) (n+ 1 + l) (n− l + 1)An,l(µ, θ) sinφUl−1(cosφ)k

with the subscript coefficient function An,l(µ, θ) given by (3.2). It is easily verified that the
polynomials Sn,l are the zero functions for l ≥ n+ 1.

Remark 3.2. For the usual applications we define these n + 1 polynomials in a spheroid which
has an infinite boundary, because P l

n(coshµ) becomes infinite with µ. Of course, the results
can be extended to the case of the region outside a spheroid as well. One has merely to replace
the Ferrer’s associated Legendre functions by the Legendre functions of second kind [21].

These n+ 1 polynomials satisfy the first order partial differential equation

0 = c ∂Sn,l

= i

(
cos θ sinhµ

sin2 θ + sinh2 µ

∂Sn,l

∂µ
− sin θ coshµ

sin2 θ + sinh2 µ

∂Sn,l

∂θ

)

+ j

(
sin θ coshµ cosφ

sin2 θ + sinh2 µ

∂Sn,l

∂µ
+

cos θ sinhµ cosφ

sin2 θ + sinh2 µ

∂Sn,l

∂θ
− sinφ

sin θ sinhµ

∂Sn,l

∂φ

)

+ k

(
sin θ coshµ sinφ

sin2 θ + sinh2 µ

∂Sn,l

∂µ
+

cos θ sinhµ sinφ

sin2 θ + sinh2 µ

∂Sn,l

∂θ
+

cosφ

sin θ sinhµ

∂Sn,l

∂φ

)
.

We further assume the reader to be familiar with the fact that ∂ is a square root of the Laplace
operator in R3 in the sense that

∆3Sn,l = −∂2Sn,l

=
1

c2(sin2 θ + sinh2 µ)

(
∂2Sn,l

∂µ2
+
∂2Sn,l

∂θ2
+ cothµ

∂Sn,l

∂µ
+ cot θ

∂Sn,l

∂θ

)

+
1

c2 sin2 θ sinh2 µ

∂2Sn,l

∂φ2
.

Remark 3.3. It is of interest to remark at this point that the Laplacian in (prolate) spheroidal
coordinates reduces to the classical Laplacian in spherical coordinates if a = b, which occurs
as µ appoaches infinity, and in which case the two foci coincide at the origin.
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In [31] it is shown that the above-mentioned polynomails are (MT)-solutions and form a com-
plete orthogonal system over the interior of 3D prolate spheroids. The principal point of interest
is that the orthogonality of the polynomials in question does not depend on the shape of the
spheroids, but only on the location of the foci of the ellipse generating the spheroid. It is shown
a corresponding orthogonality over the surface of these spheroids with respect to a suitable
weight function.

Theorem 3.4 (see [31]). The monogenic polynomials Sn,l(µ, θ, φ) (l = 0, . . . , n) form a com-
plete orthogonal system over the surface of a prolate spheroid in the sense of the product

∫

∂S
f gω dσ , (3.4)

where ∂S is the surface of S and dσ denotes the area element on ∂S, and with weight function

ω := |c2 − (ca cos θ + i cb sin θ)2|1/2(sin2 θ + sinh2 µ) (a > b)

equal to the square root of the product of the distances from any point inside of the spheroid to
the points (c, 0, 0) and (−c, 0, 0), and their norms are given by

‖Sn,l‖2
L2(∂S;H;H) = π (n+ 2 + l)

(n+ 2 + l)!

(n− l)!
×

[
(n+ 1 + l)(n− l + 1)P l

n(coshα) sinhα coshαP l
n+1(coshα)

− (n+ 1 + l)2(n− l + 1)

2n+ 3
[P l
n(coshα)]2 sinhα

+ P l+1
n (coshα) sinhα coshαP l+1

n+1(coshα)

− (n+ 2 + l)

2n+ 3
[P l+1
n (coshα)]2 sinhα

]
.

3.2 Properties

This subsection summarizes some basic properties of the prolate spheroidal monogenics.

Proposition 3.5 (see [32]). The monogenic polynomials Sn,l (l = 0, . . . , n) satisfy the following
properties:

1. Sn,l(0, 0, 0) =





(n+2)(n+1)2

2

∑dn2 e
k=0

(2n+1−2k) (n)2k
(n+1)2k+1

, l = 0

0 , l > 0
;

2. Sn,l(µ, θ, π) = (n+2+l)
2

(−1)l
[
(n+ 1 + l)(n− l + 1)An,l(µ, θ)− An,l+1(µ, θ)i

]
;

3. limφ−→2π Sn,l(µ, θ, φ) = (n+2+l)
2

[
(n+ 1 + l)(n− l + 1)An,l(µ, θ) + An,l+1(µ, θ)i

]
;

4. Sn,1(µ, θ, φ) = (n+3)
2

[
n(n+ 2)An,1(µ, θ) + An,2(µ, θ)ie−kφ

]
e−kφ;

5. The polynomials Sn,l are 2π-periodic with respect to the variable φ.
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3.3 Numerical examples

This subsection presents some numerical examples showing approximations up to degree 10 for
the image of a prolate spheroid under a special spheroidal monogenic mapping. To begin with,
a direct observation shows that for each degree n ∈ N0 the polynomial Sn,0 is monogenic from
both sides (∂Sn,0 = Sn,0∂ = 0) and is such that [Sn,0]3 = 0, i.e. Sn,0 : S −→ A. We use this
insight to motivate our numerical procedures for computing the image of a 3D prolate spheroid
under Sn,0. We did not go further than n = 10, as our program becomes very time-consuming.
Figures 1−3 visualize approximations of degrees 3, 7 and 10 for the image of a prolate spheroid
with semi-axes a = 4 and b =

√
15, and centered at the origin.

Fig. 1: Fig. 2: Fig. 3:

3.4 A special Fourier expansion by means of spheroidal monogenics

This subsection discusses a suitable Fourier expansion for monogenic functions over 3D prolate
spheroids in terms of orthogonal monogenic polynomials. To begin with, note that for each
degree n ∈ N0 the set

{Sn,l : l = 0, . . . , n} (3.5)

is formed by n + 1 = dimM+(S;H;n) monogenic polynomials, and therefore, it is complete
inM+(S;H;n). Furthermore, based on the orthogonal decomposition

M+(S;H) = ⊕∞n=0M+(S;H;n),

and the completeness of the system in each subspaceM+(S;H;n), it follows the result.

Theorem 3.6. For each n, the set (3.5) forms an orthogonal basis in the subspaceM+(S;H;n)
in the sense of the product (3.4) with weight function

ω := |c2 − (ca cos θ + i cb sin θ)2|1/2(sin2 θ + sinh2 µ)

such that a > b. Consequently,

{Sn,l : l = 0, . . . , n; n = 0, 1, . . .} (3.6)

is an orthogonal basis inM+(S;H).
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From now on we shall denote by S∗n,l (l = 0, . . . , n) the new normalized basis functions Sn,l

in L2(S;H;H) endowed with the inner product (3.4). Yet clearly we can easily write down the
Fourier expansion of a square integrable H-valued monogenic function over prolate spheroids
in R3. Next we formulate the result.

Lemma 3.7. Let f ∈M+(S;H). The function f can be uniquely represented with the orthogo-
nal system (3.6):

f(x) =
∞∑

n=0

n∑

l=0

S∗n,l a∗n,l , (3.7)

where for each n ∈ N0, the associated (quaternion-valued) Fourier coefficients are given by

a∗n,l =

∫

∂S
S∗n,l f ω dσ (l = 0, . . . , n)

with weight function

ω := |c2 − (ca cos θ + i cb sin θ)2|1/2(sin2 θ + sinh2 µ)

such that a > b.

4 MONOGENIC SZEGÖ KERNEL FUNCTION OVER 3D SPHEROIDS

Due to the absence of a direct analogue of the famous Riemann mapping theorem for higher
dimensions, at first glance it seems extremely difficult to get closed formulae for the Szegö ker-
nel on monogenic functions. However, in 2002 D. Constales and R. Kraußhar [4] provided an
important breakthrough in this research direction. As far as we know, before their work explicit
formulae for the Bergman kernels were only known for very special domains, such as for in-
stance the unit ball and the half-space. In several papers [5, 6, 7, 8], the authors were able to give
explicit representation formulae for the monogenic Bergman kernel for block domains, wedge
shaped domains, cylinders, triangular channels and hyperbolic polyhedron domains which are
bounded by parts of spheres and hyperplanes. Recently R. Kraußhar et al. also managed to
set up explicit formulae for the Bergman kernel of polynomial Dirac equations, including the
Maxwell-, Helmholtz- and Klein-Gordon equations as special subcases, for spheres and annular
shaped domains.
With the help of the above-mentioned polynomials we may now obtain an explicit representa-
tion for the monogenic Szegö kernel function over 3D prolate spheroids. Now, since the right
linear setM+(S;H) is a subspace of L2(S;H;H), to each ξ ∈ S , if K(x, ξ) is a positive defi-
nite Hermitian quaternion element inM+(S;H), then it can be easily shown that there exists a
uniquely determined Hilbert space of functions admitting the reproducing kernel K(x, ξ), and
such that

f(ξ) =

∫

∂S
f K(x, ξ)ω dσ(x),

for any f ∈ M+(S;H). The function K(x, ξ), with (x, ξ) ∈ S × S , is called the monogenic
Szegö kernel function of S with respect to ξ, and is given by

K(x, ξ) =
∞∑

n=0

n∑

l=0

S∗n,l
∫

∂S
S∗n,lK(x, ξ)ω dσ(x).
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Next we formulate our main result.

Theorem 4.1 (see [32]). The monogenic Szegö kernel of S
K : S × S −→ H

is given explicitly by the formula

K
(

(µ, θ, φ), (η, β, ϕ)
)

=
1

4

∞∑

n=0

n∑

l=0

(n+ 2 + l)2(n+ 1 + l)(n− l + 1)

‖Sn,l‖2
L2(∂S;H;H)

(A+B + C +D),

with the subscript coefficient functions

A = (n+ 1 + l)(n− l + 1)An,l(µ, θ)An,l(η, β)
{

cos[l(φ− ϕ)]− sin[l(φ+ ϕ)k]
}
,

B = −An,l+1(µ, θ)An,l+1(η, β)

(n+ 1 + l)(n− l + 1)

{
cos[(l + 1)(φ− ϕ)] + sin[(l + 1)(φ− ϕ)]k

}
,

C = An,l(µ, θ)An,l+1(η, β)
{

cos[lφ− (l + 1)ϕ]i− sin[lφ− (l + 1)ϕ]j
}
,

D = An,l+1(µ, θ)An,l(η, β)
{

cos[(l + 1)φ+ lϕ]i + sin[(l + 1)φ+ lϕ]j
}
.

for l = 0, . . . , n.

Ultimately, we recall some of the basic properties of K.

Proposition 4.2 (see [32]). The monogenic Szegö kernel function K satisfies the following prop-
erties:

1. K
(

(0, 0, 0), (0, 0, 0)
)

=





1
2

(n+2)2(n+1)4

‖Sn,0‖2
L2(∂S;H;H)

∣∣∣
∑dn2 e

k=0
(2n+1−2k) (n)2k

(n+1)2k+1

∣∣∣
2

l = 0

0 l > 0

;

2. The function K is 2π-periodic with respect to the variables φ and ϕ.
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Stieltjes transform (CFST) and of its important properties. Additionally, we introduce the defi-
nition of convolution of Clifford functions of bounded variation.
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1 INTRODUCTION

1.1 Function of bounded variation and its Fourier-Stieltjes transform

The concept of functions of bounded variation plays an important role in probability theory.
Among the known attempts made in this direction, the most notable ones are due to Beurling
[1], Bochner [2, 6], and Cramér [10].

Let σ(x) be a nondecreasing real or complex-valued function of the real variable x, having
bounded variation on the whole real axis:

∫
R |dσ(x)| < ∞. It is well known that σ(x) has at

most an enumerable set of discontinuity points. In such a point we define

σ(x) =
1

2
[σ(x+ 0) + σ(x− 0)].

For any function σ(x) as above, the expression

f(t) =

∫

R
eitxdσ(x), −∞ < t <∞ (1)

defines the Fourier-Stieltjes transform of σ(x). The Fourier-Stieltjes transform (FST) is a well-
known generalization of the classical Fourier transform, and is frequently applied in certain
areas of theoretical and applied probability and stochastic processes contexts.

There has recently been much interest in the construction of higher dimensional counterparts
of the Fourier-Stieltjes transform in the framework of quaternion and Clifford analyses [13, 14].
It is the object of the present paper to give an overview on the (real) Clifford Fourier-Stieltjes
transform (CFST), and on some of its important properties [13]. The underlying functions are
continuous functions of bounded variation defined in Rm and taking values in a Clifford algebra.
We also introduce the definition of convolution of Clifford functions of bounded variation. The
convolution is related to pairs of functions belonging to a certain class in the same way as in the
classical case.

The used methods also allow a generalization to the case of Clifford functions that satisfy
higher dimensional generalizations of Cauchy-Riemann or Dirac systems. We leave the details
of this slight generalization to the interested reader.

1.2 Some basic concepts of Clifford analysis

In the present subsection, we review some definitions and basic algebraic facts of a special
Clifford algebra of signature (0,m). For more details, we refer the reader to [7, 16].

Let {e1, e2, . . . , em} be an orthonormal basis of the Euclidean vector space Rm with a product
according to the multiplication rules:

eiej + ejei = −2δi,j, i, j = 1, . . . ,m,

where δi,j is the Kronecker symbol. Whence, the set {eA : A ⊆ {1, . . . ,m}} with eA =
eh1eh2 . . . ehr , 1 ≤ h1 < . . . < hr ≤ m, and eφ = 1 forms a basis of the 2m-dimensional Clifford
algebra Cl0,m over R. Any Clifford number a in Cl0,m may thus be written as a =

∑
A eAaA,

aA ∈ R, or still as a =
∑m

k=0[a]k, where [a]k =
∑
|A|=k eAaA is the so-called k-vector part of

a (k = 0, 1, . . . ,m). The real vector space Rm will be embedded in Cl0,m by identifying the
element (x1, . . . , xm) ∈ Rm with the Clifford vector x given by

x := e1x1 + · · ·+ emxm.
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It is worth noting that the square of a vector x is scalar-valued and equals the norm squared
up to a minus sign: x2 = −|x|2. Throughout the paper, we consider Cl0,m-valued functions
defined in Rm, i.e. functions of the form

f : Rm −→ Cl0,m, f(x) =
∑

A

fA(x)eA, (2)

where fA are real-valued functions defined in Rm. Properties (like integrability, continuity or
differentiability) that are ascribed to f have to be fulfilled by all components fA.

Let

L1(Rm;Cl0,m) := {f ∈ Rm −→ Cl0,m :

∫

Rm
|f(x)|dσ(x) <∞}

denote the linear Hilbert space of integrable Cl0,m-valued functions defined in Rm. The left-
sided Clifford Fourier transform (CFT) of f ∈ L1(Rm;Cl0,m) is given by [9]

F(f) : Rm −→ Cl0,m, F(f)(ω) :=

∫

Rm
e(ω,x) f(x) dσ(x), (3)

where the kernel function

e : Rm × Rm −→ Cl0,m, e(ω,x) :=
m∏

i=1

e−em+1−i ωm+1−i xm+1−i .

For i = 1, . . . ,m, xi will denote the space and ωi the angular frequency variables. It is of
interest to remark at this point that the product in (3) has to be performed in a fixed order since,
in general, e(ω,x) does not commute with every element of Cl0,m.

Under suitable conditions, the original signal f can be reconstructed from F(f) by the in-
verse transform. The inverse (left-sided) Clifford Fourier transform of g ∈ L1(Rm;Cl0,m) is
defined as follows:

F−1(g) : Rm −→ Cl0,m, F−1(g)(x) =
1

(2π)m

∫

Rm
e(ω,x) g(ω) dσ(ω) (4)

where e(ω,x) :=
∏m

i=1 e
ei ωi xi is called the inverse (left-sided) Clifford Fourier kernel.

2 THE CLIFFORD FOURIER-STIELTJES TRANSFORM AND ITS PROPERTIES

In this section we review the (real) Clifford Fourier-Stieltjes transform (CFST).

2.1 The (real) Clifford Fourier-Stieltjes transform

In the sequel, consider the function

α : Rm −→ Cl0,m, x 7−→ α(x) :=
m∏

i=1

αi(xi)

where αi : R −→ Cl0,m are of bounded variation on R:
∫

R
|dαi(xi)| := Mi <∞,
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and such that |αi| ≤ δi for real numbers δi < ∞. From here it follows that α is of bounded
variation also, since it holds

∫

Rm
|dα(x)| =

∫

Rm

m∏

i=1

|dαi(xi)| =
m∏

i=1

Mi := M <∞

and, such that

|α(x)| ≤
m∏

i=1

δi := δ <∞.

The class of all such functions is denoted by (V ). Unless otherwise stated, throughout this
paper the product is meant to be performed in a fixed order:

m∏

i=1

αi(xi) := α1(x1)α2(x2) . . . αm(xm).

For the sets of discontinuity points of each αi(xi), we further assume that there exist the limits

lim
xi−→yi+

αi(xi) = αi(yi + 0), and lim
xi−→yi−

αi(xi) = αi(yi − 0) (i = 1, . . . ,m)

(taken over all directions) for which

αi(yi) =
1

2

[
αi(yi + 0) + αi(yi − 0)

]

holds almost everywhere on R. Each function αi is said to be a Clifford distribution.

The idea behind the construction of a Clifford counterpart of the Stieltjes integral is to replace
the exponential function in (1) by a suitable (noncommutative) exponential product. Due to the
noncommutativity of the algebra, we recall two different types of CFST [13]:

Definition 2.1. The CFST FS(α) : Rm −→ Cl0,m of α(x) is defined as the Stieltjes integrals:

1. Right-sided CFST:

FSr(α)(ω) :=

∫

Rm
dα(x) e(ω,x), (5)

2. Left-sided CFST:

FS l(α)(ω) :=

∫

Rm
e(ω,−x) dα(x). (6)

The function α(x) which generates (5) and (6) is essentially unique.

Remark 2.2. We recall the reader that, the order of the exponentials in (5)-(6) are fixed because
of the noncommutativity of the underlying product. It is of interest to remark at this point that in
the case m = 2 the formulae above reduce to the definitions for the right- and left-sided QFST
introduced by the authors in [14]. Detailed information about the QFST and its properties can
be found in [14]. For m = 1 the CFST is identical to the classical FST.
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Remark 2.3. Throughout this text we may investigate the integral (5) only that, for simplicity,
we denote by FS(α). Nevertheless, all computations can be easily converted for (6). In view
of (5) and (6), a straightforward calculation shows that:

FS(α)(ω) =

∫

Rm
e(ω,x) dα(x) = FS l(α)(−ω).

From now on, we denote the class of functions which can be represented as (5) by B. Func-
tions in B are called (right) Clifford Bochner functions and B will be referred to as the (right)
Clifford Bochner set. It follows that members of B are entire functions of the real variables ωi.

It is immediately clear that B is a linear space, and every element f of B is a bounded
uniformly continuous function:

|f(ω)| ≤
∫

Rm
|dα(x)| = M <∞. (7)

We recall from [13] the following result.

Theorem 2.4. If a function belongs to B and is identically equal to zero for all ωi ≤ 0 (i =
1, . . . ,m), then it is the Fourier-Stieltjes transform of an absolutely continuous function.

Proof. Let f be any function in B. By hypothesis,

f(ω) =

∫

Rm
dα(x) e(ω,x), (8)

where
∫
Rm |dσ(x)| = M <∞. For x = x1e1 + · · ·+ xmem ∈ Cl0,m we set

Cl0,m 3 x̃ :=
1

2

m∑

i=1

(x2
i + 1)ei.

Let Rm,+
0 := R+

0 × · · · × R+
0︸ ︷︷ ︸

m times

. We define the function G(x) as follows

G(x) :=
1

(2π)m

∫

Rm,+0

f(ω) e(ω, x̃)dω.

Evidently G(x) is analytic for all xi (i = 1, . . . ,m) since it is the product of analytic functions
for any fixed xi. We suppose from now on that this condition is satisfied. From the definition of
the function f follows that there exists a constant M > 0 so that |f(ω)| ≤ M < ∞. From (8)
and since f(ω) = 0 for all ωi ≤ 0 (i = 1, . . . ,m), we may write

|G(x)| ≤ 1

(2π)m

∫

Rm,+0

|f(ω)|
m∏

i=1

e−
x2i+1

2
ωidωi ≤

M

(2π)m

m∏

i=1

2

x2
i + 1

.

By straightforward calculation we may show that
∫

Rm
|G(x)|dx ≤ M

(2π)m

m∏

i=1

∫

R

2

x2
i + 1

dxi = M <∞.

This proves the theorem.
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For practical purposes, if f ∈ B is given then for any real variables ωi, and real constants ai
(i = 1, . . . ,m) a direct computation shows that

|f(ω)| =

∣∣∣∣
(∫ a1

−∞
+

∫ ∞

a1

)(∫ a2

−∞
+

∫ ∞

a2

)
. . .

(∫ am

−∞
+

∫ ∞

am

)
dα(x) e(ω,x)

∣∣∣∣

≤
m∏

i=1

(∣∣αi(∞)− αi(am+1−i)
∣∣+
∣∣αi(am+1−i)− αi(−∞)

∣∣
)

since
∣∣∣e(ω,x)

∣∣∣ = 1. If f ∈ B is given, then

f(0) =
m∏

i=1

(
αi(∞)− αi(−∞)

)
.

In particular, a simple argument gives

f(−ω) =

∫

Rm
dα(x) e(−ω,x) =

∫

Rm
e(−ω,x) dα(x) = g(ω), (9)

where g is any function which can be represented as FS l(α)(ω).

2.2 Lévy’s inversion formula

This subsection provides an explicit formula for computing a Clifford function once its
Fourier-Stieltjes integral is known.

Theorem 2.5. For every αi : R −→ Cl0,m (i = 1, . . . ,m), we consider the functions

gi(ωi) =

∫

R
dαi(xi) e

eiωixi .

For any real numbers a and b the following equality holds:

αi(a)− αi(b) = lim
T−→∞

1

2π

∫ T

−T
gi(ωi)

eeibωi − eeiaωi
eiωi

dωi. (10)

In particular, it holds

αi(xi + 0)− αi(xi − 0) = lim
T−→∞

1

2T

∫ T

−T
gi(ωi)e

−eixiωidωi.

Proof. We begin with the following observation:

gi(ωi)
(
e−eiaωi − e−eibωi

)
=

∫

R
dαi(xi) e

eiωi(xi−a) −
∫

R
dαi(xi) e

eiωi(xi−b)

=

∫

R
dαi(xi + a) eeiωixi −

∫

R
dαi(xi + b) eeiωixi
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= lim
T−→∞

[
αi(T + a)eeiTωi − αi(−T + a)e−eiTωi

−αi(T + b)eeiTωi + σi(−T + b)e−eiTωi

−
∫ T

−T

(
αi(xi + a)− αi(xi + b)

)
dxi e

eiωixieiωi

]

= −
∫

R

(
αi(xi + a)− αi(xi + b)

)
dxi e

eiωixieiωi.

Therefore, it is easy to see that

gi(ωi)
(
e−eiaωi − e−eibωi

) 1

−eiωi
=

∫

R

(
αi(xi + a)− αi(xi + b)

)
dxi e

eiωixi .

From the last equality and from the inverse Fourier transform formula we find

αi(xi + a)− αi(xi + b) =
1

2π

∫

R
gi(ωi)

e−eiaωi − e−eibωi
−eiωi

e−eixiωidωi,

and, in particular taking xi = 0 we find

αi(a)− αi(b) =
1

2π

∫

R
g(ωi)

e−eiaωi − e−eibωi
−eiωi

dωi,

and this completes the proof.

Formula (10) is known as the Lévy’s inversion formula. It is immediately clear if two Clif-
ford functions have the same Fourier-Stieltjes integral, then they are identical up to an additive
(Clifford) constant.

3 UNIFORM CONTINUITY

In this section we discuss uniform continuity and its relationship to CFST. We begin by
defining uniform continuity.

Definition 3.1. A Clifford function f : Rm −→ Cl0,m is uniformly continuous on Rm if and
only if for all ε > 0 there exists a δ > 0 such that |f(ω)−f(t)| < ε for all ω, t ∈ Rm whenever
|ω − t| < δ.

We now prove some results related to the asymptotic behaviour of the CFST which run:

Proposition 3.2. Let f be an element of B. For any natural number n, let fn : Rm−1 ×
[−n, n] −→ Cl0,m be the function given by

fn(ω) =

∫ n

−n

∫

Rm−1

dα(x) e(ω,x).

Then fn(ω) −→n−→∞ f(ω) uniformly. Also, if fn are uniformly continuous functions then f
is a uniformly continuous function.

313



Proof. A first straightforward computation shows that
∣∣∣f(ω)− fn(ω)

∣∣∣ =

∣∣∣∣
∫

Rm
dα(x) e(ω,x)−

∫ n

−n

∫

Rm−1

dα(x) e(ω,x)

∣∣∣∣

=

∣∣∣∣
∫ −n

−∞

∫

Rm−1

dα(x) e(ω,x) +

∫ ∞

n

∫

Rm−1

dα(x) e(ω,x)

∣∣∣∣

≤
m−1∏

i=1

∣∣αi(∞)− αi(−∞)
∣∣ |αm(−n)− αm(−∞)|

+
m−1∏

i=1

∣∣αi(∞)− αi(−∞)
∣∣ |αm(∞)− αm(n)| .

Moreover, having in mind that

αm(−n)− αm(−∞) −→n−→∞ 0, and αm(∞)− αm(n) −→n−→∞ 0,

and hence, fn(ω) −→n−→∞ f(ω) uniformly. In addition, we claim that if fn(ω) are uniformly
continuous functions it follows that f(ω) is an uniformly continuous function.

In like manner, we have an analogous result.

Proposition 3.3. Let f be an element of B. For any natural number n, let fn : [−n, n] ×
Rm−1 −→ Cl0,m be the function given by

fn(ω) =

∫

Rm−1

∫ n

−n
dα(x) e(ω,x).

Then fn(ω) −→n−→∞ f(ω) uniformly. Also, if fn are uniformly continuous functions then f
is a uniformly continuous function.

Proposition 3.4. Let f be an element of B. For any natural number n, let fn : [−n, n]m −→
Cl0,m be the function given by

fn(ω) =

∫

[−n,n]m
dα(x) e(ω,x).

Then fn(ω) −→n−→∞ f(ω) uniformly. Also, if fn are uniformly continuous functions then f
is a uniformly continuous function.

Proof. For simplicity and without loss of generality we will prove the case m = 2 only. We set

A := dα1(x1)dα2(x2) ee1ω1x1 ee2ω2x2 .

The key to the proof is the simple observation that:
∫ ∞

−∞

∫ ∞

−∞
A−

∫ n

−n

∫ n

−n
A =

∫ −n

−∞

∫ −n

−∞
A+

∫ −n

−∞

∫ n

−n
A+

∫ −n

−∞

∫ ∞

n

A

+

∫ n

−n

∫ −n

−∞
A+

∫ n

−n

∫ ∞

n

A

+

∫ ∞

n

∫ −n

−∞
A+

∫ ∞

n

∫ n

−n
A+

∫ ∞

n

∫ ∞

n

A.

For the remaining part of the proof, we use similar arguments as in Proposition 3.2.
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We come now to the main result of this section.

Theorem 3.5. Let f ∈ B be given, and g : Rm −→ Cl0,m be a continuous and absolutely
integrable function. For any α : Rm −→ Cl0,m the following relations hold:

1.
∫

Rm
f(t)g(ω − t)dt =

∫

Rm
dα(x)

∫

Rm
e(ω,x) g(ω − t)dt;

2.
∫

Rm
f(t)g(t)dt = (2π)m

∫

Rm
dα(x)F−1(g)(x).

Proof. Assume g : Rm −→ Cl0,m to be a continuous and absolutely integrable function. For
any real variables ρi (i = 1, . . . ,m) let Ωρi := [−ρ1, ρ1] × · · · × [−ρm, ρm] ⊂ Rm. We now
define the function

R : Rm × Rm −→ Cl0,m, (x,ρ) 7−→ R(x,ρ) :=

∫

Ωρi

m∏

i=1

eeitixig(t)dt.

Take

fn(t) =

∫

[−n,n]m
dα(x)

m∏

i=1

eeitixi .

Using the fact that g is an absolutely integrable function it follows

∫

Ωρi

fn(t)g(t)dt =

∫

Ωρi

(∫

[−n,n]m
dα(x)

m∏

i=1

eeitixi

)
g(t)dt

=

∫

[−n,n]m
dα(x)

∫

Ωρi

m∏

i=1

eeitixig(t)dt

=

∫

[−n,n]m
dα(x)R(x, ρ). (11)

From the last proposition we know that lim
n−→∞

fn(ω) = f(ω) uniformly. Moreover, since g(t)

is an absolutely integrable function it follows that R(x,ρ) is a uniformly continuous function.
Hence

lim
n−→∞

∫

Ωρi

fn(t)g(t)dt =

∫

Ωρi

f(t)g(t)dt. (12)

With this argument at hand, and from (11) we conclude that

lim
n−→∞

∫

Ωρi

fn(t)g(t)dt =

∫

Rm
dα(x)R(x,ρ). (13)

From the last equality and from (12) we obtain
∫

Rm
dα(x)R(x,ρ) =

∫

Ωρi

f(t)g(t)dt.
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In addition, we have

R(x,ρ) −→
ρi −→∞
(i = 1, . . . ,m)

∫

Rm

m∏

i=1

eeitixig(t)dt

and hence, for any fixed ai it follows
∫

Ωai

dα(x)R(x,ρ) −→
ρi −→∞
(i = 1, . . . ,m)

∫

Ωai

dα(x)

∫

Rm

m∏

i=1

eeitixig(t)dt. (14)

For the sake of simplicity, in the considerations to follow we will often omit the argument and
write simply R instead of R(x,ρ). Since R is uniformly bounded then there exists a positive
constant M so that |R| ≤ M for all real numbers xi and ρi. Without loss of generality, we will
prove the case m = 2 only. A direct computation shows that

I :=

∣∣∣∣
∫ −a1
−∞

∫ −a2
−∞

dα1(x1)dα2(x2)R +

∫ a1

−a1

∫ −a2
−∞

dα1(x1)dα2(x2)R

+

∫ ∞

a1

∫ −a2
−∞

dα1(x1)dα2(x2)R +

∫ −a1
−∞

∫ a2

−a2
dα1(x1)dα2(x2)R

+

∫ ∞

a1

∫ a2

−a2
dα1(x1)dα2(x2)R +

∫ −a1
−∞

∫ ∞

a2

dα1(x1)dα2(x2)R

+

∫ a1

−a1

∫ ∞

a2

dα1(x1)dα2(x2)R +

∫ ∞

a1

∫ ∞

a2

dα1(x1)dα2(x2)R

∣∣∣∣ .

Therefore, we obtain

I ≤ M
[∣∣α1(−a2)− α1(−∞)

∣∣ ∣∣α2(−a1)− α2(−∞)
∣∣

+
∣∣α1(−a2)− α1(−∞)

∣∣ ∣∣α2(a1)− α2(−a1)
∣∣+
∣∣α1(−a2)− α1(−∞)

∣∣ ∣∣α2(∞)− α2(a1)
∣∣

+
∣∣α1(a2)− α1(−a2)

∣∣ ∣∣α2(−a1)− α2(−∞)
∣∣+
∣∣α1(a2)− α1(−a2)

∣∣ ∣∣α2(∞)− α2(a1)
∣∣

+
∣∣α1(∞)− α1(a2)

∣∣ ∣∣α2(−a1)− α2(−∞)
∣∣+
∣∣α1(∞)− α1(a2)

∣∣ ∣∣α2(a1)− α2(−a1)
∣∣

+
∣∣α1(∞)− α1(a2)

∣∣ ∣∣α2(∞)− α2(a1)
∣∣
]
−→a1,a2−→∞ 0.

Extending the last inequality to a total of 2m terms (m > 2), and using (14) we get

lim
ai−→∞

∫

Ωai

dα(x)R(x,ρ) =

∫

Rm
dα(x)

∫

Rm

m∏

i=1

eeitixig(t)dt.

From here and (13) we find
∫

Rm
f(t)g(t)dt =

∫

Rm
dα(x)

∫

Rm

m∏

i=1

eeitixig(t)dt = (2π)m
∫

Rm
dα(x)F−1(g)(x).

Making the change of variables ti −→ ωi − ti (i = 1, . . . ,m) in the definition of g we finally
find

∫

Rm
f(t)g(ω − t)dt =

∫

Rm
dα(x)

∫

Rm

m∏

i=1

eeitixi g(ω − t)dt.
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4 CONVOLUTION

In this section we introduce the definition of convolution of Clifford functions. The convo-
lution is related to pairs of Clifford functions belonging to (V).

Definition 4.1. Let α, β : Rm −→ Cl0,m belong to (V ). The convolution α � β of α and β is
the uniquely determined function γ : Rm −→ Cl0,m given by

γ = α� β :=

∫

Rm
α(x− y) dβ(y) (15)

for every x,y ∈ Rm.

We underline that due to the noncommutativity of the quaternionic product, α � β does not
coincide with β�α in general. We notice that the function γ given by (15) is well defined since
it obviously holds

|γ(x)| ≤
∫

Rm
|α(x− y)||dβ(y)| ≤ δ

∫

Rm
|dβ(y)| <∞.

Let α, β, ζ be elements of (V ), and λ a Clifford constant. In particular, the convolution retains
the following properties:

1. (α� β)� ζ = α� (β � ζ);

2. α� (β ± ζ) = α� β ± α� ζ;

3. λ(α� β) = (λα)� β, (α� β)λ = α� (βλ);

4. λ(α� β) 6= α� (λβ) in general.

Next we formulate the results of this section.

Proposition 4.2. If α and β are elements of (V ) then the function γ defined by (15) belongs to
(V ).

Proof. Let x, z ∈ Rm. Since α is a continuous function then for every ε > 0 there exists a real
δ = δ(ε) > 0 such that

|α(x)− α(z)| < ε

M

whenever |x − z| < δ. The constant M > 0 is chosen so that
∫
Rm |dβ(y)| = M for every

y ∈ Rm. Hence, it holds

|γ(x)− γ(z)| =
∣∣∣∣
∫

Rm
(α(x− y)− α(z− y)) dβ(y)

∣∣∣∣ < ε.

Consequently γ is a continuous function in x. Since x ∈ Rm is arbitrarily chosen it follows that
γ is also continuous.
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Proposition 4.3. Let α and β be elements of (V ). If α ∈ L1(Rm;Cl0,m) then it holds

‖γ‖L1(Rm;Cl0,m) ≤M‖α‖L1(Rm;Cl0,m).

Proof. Let α and β be any functions in (V ). A first straightforward computation shows that

‖γ‖L1(Rm;Cl0,m) =

∫

Rm
|γ(x)|dσ(x)

=

∫

Rm

∣∣∣
∫

Rm
α(x− y)dβ(y)

∣∣∣dσ(x)

≤
∫

Rm

(∫

Rm
|α(x− y)|dσ(x)

)
|dβ(y)|

= M‖α‖L1(Rm;Cl0,m).

In consequence, the following result holds:

Corollary 4.4. Let α, β and αn be elements of (V ). If α, αn ∈ L1(Rm;Cl0,m) then it holds

‖γn − γ‖L1(Rm;Cl0,m) −→ 0

when n −→∞, where γn = αn � β and γ = α� β.

Proof. From the previous proposition a direct computation shows that

‖γn − γ‖L1(Rm;Cl0,m) ≤M‖αn − α‖L1(Rm;Cl0,m),

and from this follows our assertion.
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Abstract. This paper presents a methodology for uncertainty quantification in cyclic creep
analysis. Several models- , namely BP model, Whaley and Neville model, modified MC90 for
cyclic loading and modified Hyperbolic function for cyclic loading are used for uncertainty
quantification. Three types of uncertainty are included in Uncertainty Quantification (UQ): (i)
natural variability in loading and materials properties; (ii) data uncertainty due to measure-
ment errors; and (iii) modelling uncertainty and errors during cyclic creep analysis. Due to
the consideration of all type of uncertainties, a measure for the total variation of the model
response is achieved. The study finds that the BP, modified Hyperbolic and modified MC90
are best performing models for cyclic creep prediction in that order. Further, global Sensitivity
Analysis (SA) considering the uncorrelated and correlated parameters is used to quantify the
contribution of each source of uncertainty to the overall prediction uncertainty and to identi-
fying the important parameters. The error in determining the input quantities and model itself
can produce significant changes in creep prediction values. The variability influence of input
random quantities on the cyclic creep was studied by means of the stochastic uncertainty and
sensitivity analysis namely the Gartner et al. method and Saltelli et al. method. All input im-
perfections were considered to be random quantities. The Latin Hypercube Sampling (LHS)
numerical simulation method (Monte Carlo type method) was used. It has been found by the
stochastic sensitivity analysis that the cyclic creep deformation variability is most sensitive to
the Elastic modulus of concrete, compressive strength, mean stress, cyclic stress amplitude,
number of cycle, in that order.
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1 INTRODUCTION

Creep of concrete under a sustained static load is a well-known phenomenon. Much research
has been carried out in this context [1-2]. Under actual operating condition many structures are
subjected to dynamic loading in addition to static loading. The effect of traffic loads on bridge
and pavement, vibrating machinery on floor system, wave load on offshore structures and wind
load on slender buildings are familiar examples. Such structures under repeated loads must be
designed to control deformation due to static and dynamic creep. Numerous researches on the
cyclic creep in concrete found the increase in creep under cyclic loading as cyclic creep and it is
important to realize that cyclic creep is measured relative to creep under sustained load equal to
the mean cyclic stress and not the creep under a sustained load equal to the upper cyclic stress
[2]. Actually, time-dependent nonlinearity also grows during cyclic loading especially under
higher strains. Cyclic creep is a nonlinear phenomenon.

Many studies have examined the stress-strain behaviour of drying and confined concrete un-
der cyclic compression and tension and numerous concrete models have been proposed in the
last years but very few studies addressed the long term time-dependent behaviour of concrete
under cyclic load. Since probably the first works attempting to characterize the behaviour of
concrete under a rapidly fluctuating (1 Hz) stress of given duration were published [3-4] a sig-
nificant research effort has been devoted to that field and found the irreversible deformation
to increase with the number of cycles. The decrease of the non-elastic deformation with an
increase in the age at application of cyclic load, this behaviour is similar to that under static
loading. Many others mathematical and experimental models have been documents in the liter-
atures like [5-12].

The investigation of uncertainties for time-dependent behaviour of plain concrete under sus-
tained loading much research has been carried out but under cyclic loading very less work has
been done. The study on the uncertainties in creep and shrinkage effects has been continuously
an area of significant efforts. The external or parameters uncertainty and internal (model un-
certainty, measurement uncertainty and uncertainty of the creep phenomenon) uncertainty has
given to the references [13-20].Uncertainty Quntification (UQ) of creep models under sustained
loading by using the Latin Hypercube Sampling were proposed [21]. However, most of the ex-
isting UQ and Sensitivity Analysis (SA) techniques assume input variables independence, and
a few studies have focused on the UQ and SA of the correlated input variables and degrada-
tion materials behaviour under cyclic loading, which is usually the common case in concrete
structures.

Different UQ and SA techniques will perform better for specific type of models. One method
of UQ and SA of models by considering the uncorrelated and correlated parameters is proposed
by [22 and 28]. The distinction between uncorrelated and correlated contribution of uncertainty
for an individual variable is very important and output response and input variables is approx-
imately linear in this method. One of the most important and basic concepts is that results of
any scientific experiment always has a degree of uncertainty which is known as experimental
uncertainty. The problem of quantifying the contribution of systematic error and measurement
uncertainty considered for the calculation of the uncertainty. In fact, since its first edition [24]
of the Guide to the Expression of the Uncertainty in Measurement (GUM), and still in the last
one [25], the GUM attempts to completely set aside the concepts of the true value and mea-
surement error, whose connection with that of measurement uncertainty is considered (Clause
E.5.1). GUM uncertainties are standard deviation of probability distribution and as a degree of
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belief, quantified by means of a subjective probability distribution (Clause 3.3.5). The GUM
Supplement 1 [26] is based on one general concept of propagating probability density function
(PDF) where in order to obtain PDF for the measured of the Monte Carlo method (MCM) use
was suggested. Consequently, the law of propagation of uncertainties is based on a construction
of a linear approximation of the model function [27]. The GUM uncertainty framework- GUF
[26] and MCM are approximate methods where the first methods are exact and second one is
never exact. Apart from that MCM is more valid than the GUF for large class of problems [26].

In this work, a statistical framework is discussed for cyclic creep function. As a first step,
four cyclic creep models in plain concrete are discussed briefly: BP model [6-7], modified
MC90/EC2 [8-9], Whaley and Neville model [5] and modified Hyperbolic function [10-12].
Subsequently, the influences of input parameters are discussed in 2 steps. The Monte Carlo
simulation with Latin Hypercube Sampling (LHS) technique is used for determining the UQ
and SA, measurement, phenomenon , model uncettainties, which explained in step 3. In step 4
explain the overview of UQ and SA [22-26] and measurement UQ according to GUM methods.
Further, using the stochastic UQ and SA, it is determined the uncertainty level of different
models and analysed the quality of model and to what degree does the randomness of an input
quantity influence the variability of the output. The present paper has considered the amount of
degradation with respect of both strength and stiffness of the concrete.

2 CYCLIC CREEP MODELS

Several experimental and mathematical models have been developed for estimating cyclic
creep strain. The most widely used mathematical models are the BP models, Whaley and
Neville model. Modified MC90/EC2 and modified Hyperbolic function, experimental cyclic
creep models: Gaede 1962, Kern et al. 1962, Neville et al. 1973, Sutter et al. 1975, Hirst et al.
1977. This study also includes these four mathematical models.

Based on the test data Whaley and Neville model [5] has shown that the cyclic creep strain
can be expressed as the sum of the two strain component, a mean strain component and a cyclic
strain component. We consider uniaxial stress decribe as:

σ = σ0 +
1

2
∆sin(2Πωt) (1)

where, σ0 = mean stress, 1
2
∆ = cyclic stress amplitude, and ω = circular frequency.

The mean strain component is the creep strain produced by the static mean stress (σm) =[
σmax−σmin

2

]
. The additional cyclic creep component was found to dependent on both mean

stress (σm) and the stress range (∆) = [σmax − σmin]. They proposed the following predictive
equation for the total cyclic creep strain:

ε(t− t0) = 129σm(1 + 3.87∆)t
1
3 ∗ 10−6 (2)

Φ(t− t0) =
1

σ
[εel(t0) + ε(t− t0)] =

1

Ec(t0)
+
ε(t− t0)

σ
(3)

where, ε(t − t0) is the cyclic creep strain, σm is the mean stress expressed as a fraction of the
compressive strength, ∆ is the stress-range expressed as a fracton of the compressive strength,
and Φ(t− t0) is the creep functuion.
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The above the static and dynamic components of dynamic creep as a function of time. It can
be expressed as a function of number of cycles also:

ε(t− t0) = 129σmt
1
3 + 17.8σm∆N

1
3 (4)

The above equation is fit for σm < 0.45 and ∆ < 0.3. The cyclic creep specimens 76 mm x 76
mm x 203 mm cast vertically, fog-cured for 14 days at 20±1◦C. During enclosed in polyethy-
lene bags containing some water nut water was not in direct contact with the specimens. The
cyclic load varied sinusoidally at 9.75 (Hz) cycles per second.

BP model [6] takes into consideration both shrinkage strain and mechanical strain. Accord-
ing to the BP model, cyclic creep function Φ(t − t0) = ε

σmean
, where ε is the strain mean level

of cycle, is as follows:

φ(t− t0) =
[

1

E
+ Coc(t− t0) + Cd(t− t0 − td)gσ − Cp(t− t0 − td)

]
fσ (5)

where,

Coc(t− t0) =
ϕ1

E0

(t−m0 + α)(1 + kwϕσσ
2
ppω

n(t− t0)
n (6)

and this equation modified:

Φ(t, t0, σ) = q1 + F (σ) [Coc(t, t
′) + Cd(tdc, t

′t0) + Cp(tdc, t
′, t0)] (7)

In which tdc can be calculated as:

tdc = t′ + (t− t′)
[
1 + 10ω

1
4 ∆2F 3σmax

]
(8)

Here ω is the frequency (Hz), kω is the empirical constant and the the function F (σmax) is the
nonlinearity over proportionality factors.

The long-time material model presented in the 1990 CEB Model Code (MC90) [8] was
chosen as the model. Static creep tests within the previously mentioned and the modified by [9]
cyclic creep function is defined as:

Φ(t− t0) =
1

Ec(t0)
+
ϕc(t− t0)

Ec(28d)
+
ϕcc(t− t0)

Ec(28d)
(9)

In these expression ϕc(t − t0) is the static creep ratio and ϕcc is the cyclic creep ratio, t’ the
concrete age at loading and t the actual time. The cyclic creep ratio is defined as:

ϕcc(t− t0) = β(t0)β(fcm)β(Sm)β(∆)ϕccβ(N,ω) (10)

In this expression fcm is the average compressive cylinder strength at 28 days, Sm the ratio
between the mean stress and the concrete strength at the start of testing, ∆ the relative stress
amplitude, N is the number of load cycles and ω is the frequency N = (t− t0)ω:

β(N,ω) = Nn − 1 = ((t− t0)86400ω)n − 1, with, n = 0.022 (11)

The general expression for cyclic creep term is then written as:

ϕcc(t− t0) = 1.39β(t0)β(fcm(1 + 10.5(Sm − 0.4)2))∆(Nn − 1) (12)
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This expression is basically derived for high strength concrete and it is applicable also plain
concrete with different constants parameters.

The hyperbolic function form German code 1045-1 or DAfStb booklet 525 [DIN5] modified
by [10] and give the final equation as:

ϕ(t− t0) =

(
t− t0

a+ (t− t0)

)b
ϕ∞(t0) =

(
t− t0

a+ (t− t0)

)b
∗ c ∗ 1

d+ te0
(13)

c = ϕRH ∗ β(fcm) =


1 +

1 − RH
100

0.10 ∗ h
1
3
0

∗
(

35

fcm

)0.7

 ∗

(
35

fcm

)0.2

∗
(

16.8

(fcm)
1
2

)
(14)

The constant a, b, d, and e are determined from cyclic creep experimental data. For concrete
compressive strength 52.00 MPa, the value of a, b, d and 318.22, 0.30, 0.10 and 0.20 found,
respectively.

3 SOURCES OF UNCERTAINTY

This section describe to include the different sources of uncertainty in the cyclic creep pre-
diction. These sources of uncertainty can be classified into three different types-physical or
natural uncertainty, data uncertainty and model uncertainty as shown in Fig.1.

Fig.1 shows the different sources of error and uncertainty considered in this paper for the
sake of illustration of the proposed methodology. There are several otheres sources of uncertaint
that are not considered here. Each of these different sources of uncertainty is briefly discussed
below.

3.1 Physical or Natural Uncertainty

Physical or natural uncertainty refers to the uncertainty or fluctuations in the environment,
test procedures, instruments, observer, etc. Hence, repeated obervations of the same physical
quantity do not yield identical results. This paper considers the physical uncertainty in loading,
environment and materials properties. The uncertainty in the systematic errors to the measue-
ment, human error, the variability in others materials properties such as Poisson ratio, supple-
mentary cementaing materials, the curing time period, temperatures, etc. is not considered.

3.2 Data Uncertainty

Experimental data are available in literature to characterize the distribution of materials prop-
erties such as young modulus of elascity, compressive strength of concrete, etc. These data may
be sparse and cause uncertainty regarding the probability distribution type and parameters, these
errors are not considered in this paper and the quantification of these errors is trivial; these er-
rors will be considered in future work. The measurement uncertainty calculated from the GUM
[23-25] and Monte Carlo method. Bayesian model screening is implemented using Monte Carlo
methode, which is described in literature [25]. The study found that the experimental error be-
tween 0.08 - 0.13 is reasonables for diffeent test.
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Figure 1: Sources of Uncertainty in Creep Prediction

3.3 Model Uncertainty

More than 10 different creep prediction laws have been proposed in the literatures. Each of
these models has its own limitation and uncertainty. The uncertainty in cyclic creep prediction
can be subdivided into two different type: creep model error and uncertainty in model coffi-
cients. This error is assumed to represent the difference between the model prediction and the
experimental obervations. The variation from the experiments are determined by [28-29] for
the comparison with measurements data. The statistical analysis of cyclic creep data no body
done and there is no data existing data bank for cyclic loading. The all pervious comparison
based on RILEM data bank for sustained loading. The effect of cyclic loading to calculate
variation in experiments are neglected so far might be non-negligible for big structures, such as
bridge with many lanes or with dense traffic of heavy trucks. Assuming the CVψ,α ≈ 0.08 and
CVψ,β ≈ 0.05. The coefficient of variation of the creep phenomenon α and the measurements β
determined the coefficient of variation of the model uncertainties. The model uncertainty factor
is normally distributed with an expected value of E(ψcr,cyc) = 1. Discretization error is not
considered in this paper; this error will be considered in future work. There appears to be an
influence of frequency of loading on cyclic creep, creep generally decreasing with an increase
in frequency so that under very rapid cycles the behaviour of concrete becomes more elastic.
Furthermore, uniform cycling causes less creep than an irregular pattern within the same range
of stresses. Table 1 list the comparision of the total coefficient of variation of four models based
on using statistic input variables. In all these comparision, model BP is found to be the best
model. The MCM calculation method of measurement uncertainty is discussed in Section 4.1.
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Table 1: Model uncertainty

Model BP mod.MC90 mod. Hyperbolic Neville
CVψ,cr,cyc 0.283 0.306 0.300 0.380

4 UNCERTAINTY QUANTIFICATION IN MODEL PARAMETERS

4.1 Bayes Method

This section explain the Bayesian technique used to uncertainty anylsis for measurement:
MCM using the experimental data. A fundamental parameter in order to obtain reliable results
through MCM is the number M of trails or evaluation be performed by the model. M value 106 is
often considered approprite in order to provide a coverage interval of 95 percentage ; however,
the random nature of the process and the nature of the probability distribution of the output
quantity Y have an influence on the value needed for M, which will very in each case. Each
value of standard uncertainty yr (r = 1, ...,M) is obtained by performing a random sampling
of each of the probability density functions of the input quantities Xi and evaluating the model
with the values found. The M values of Y thus obtained must be arranged in a non-decreasing
order. The output quantity and the associated standard uncertainty can be calculated as follows:

The average:

ȳ =
1

M

M∑

r=1

yr (15)

and the standarddeviation is taken as the standard uncertainty u(y) associated with y:

u2(ȳ) =
1

M − 1

M∑

r=1

(yr − ȳ)2 (16)

4.2 Global sensitivity analysis

The objective of SA is to identify critical inputs variables of a model and quantifying how
input uncertainty impacts model outcomes. The sensitivities are solved at nominal values, can-
not take account of the variation effect of the input variables, and thus those sensitivities are
local. Compared with the local sensitivity, the uncertainty importance measure is defined as the
uncertainty in the output cab be apportioned to different sources of uncertainty in the model in-
put, and the importance measures is also called global sensitivity. [22-23] Methods are used in
this paper and method is approximately linear output response and input variables. For a model
y = (x1, x2, x3, ...xi...xk) and the main effect of each variables, the model can be simplified as
follows:

y = β0 +
K∑

i

βixi + e, (17)

Where β0...βk are regression coefficients and e is the error. The partial variance (Vi) and
total variance (V ) can be estimate for uncorrelated variables as follows. The sensitivity indices
can be calculated as follows:
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Si =
Vi

V̂
(18)

SUi =
V U
i

V̂
(19)

SCi =
V C
i

V̂
(20)

where, Vi, V U
i , V

c
i are the partial variancs, uncorrelated variance and correlated variance, re-

spectively.

5 UQ AND SA OF CYCLIC CREEP FUNCTION

5.1 Input Parameter and Parameters Correlation

The cyclic creep models uncertainty factors compressive strength of concrete (fc), young
modulus of elasticity (Ec), relative humidity (RH), water-cement ratio (w/a), sand-aggregate
ratio (a/c), geometry factor (ks), cement content (c), frequency of loading (ω), mean stress
(σm), stress amplitude (∆), number of cycle (N) are assumed to be random quantities. All
statistic properties of concrete given in Table 2. For the determination of dynamic modulus
of concrete, Ed, dynamic compressive shear strength of concrete, fd, are contradictory part
for the analysis of the cyclic creep function because these quantities are depend on the strain
rate, and number of cycle. Numerous empirical relationships are available in the literatures.
However, “Lifetime-Oriented Structural Design Concepts” and ”Deterioration of Materials and
Structures” [31] published the overview of degradation of concrete under cyclic loading and are
used in this paper. The deformation of concrete at any instant are defined as follow:

Totalstrain = elasticstrain+ creep+ shrinkage (21)

If the elastic strain under a constant stress is assumed to diminish with time, then merely assume
that creep is increased by a corresponding amount to insure that the total strain is correct. Under
cyclic loading, is the precise interpretation of elastic strain very important, because change in
elastic strain due to change in elastic modulus are generally small compared with the sum of
others quantities. The correlation of ρ = 0.4 and ρ = 0.8 further additional small range of cor-
relation ρ = 0.1 are determined, but neglected in the stochastic analysis due to insignificance.
These models are not intended (e.g. temperature effect on creep).
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Table 2: Statistic properties of the input variables for mathematical cyclic creep model

Variables Mean Std. CoV Distribution Models Sources
fc,28 52.00 MPa 3.12 0.06 Log-normal 1,2,3,4 34
fd 50.70 MPa 3.00 0.06 Log-normal 1,2,3,4 30

Eci,28 34144 MPa 3414.4 0.10 Log-normal 1,2,3,4 30
Ecm,28 29394 MPa 2994.0 0.10 Log-normal 1,2,3,4 34
Ed 33290 MPa 3329.0 0.10 Log-normal 1,2,3,4 30

Humidity (RH) 0.65 [-] 0.026 0.04 Normal 1,2,3 32
Cement content 362 kg/m3 36.20 0.10 Normal 1,3 33

Water-cement ratio 0.50 [-] 0.10 Normal 1 33
Sand-cement ratio 5.16 [-] 0.516 0.10 Normal 1 33

Fine-aggregate ratio 0.50 [-] 0.05 0.10 Normal 1 33
Geometry factor, ks 1.15 [-] 0.057 0.05 Normal 1,2,3 33

Frequency 9.0 Hz 0.72 0.08 Normal 1,2,3,4 Assumed
Mean stress 0.40fc 0.016 0.04 Normal 1,2,3,4 Assumed

Stress amplitude 0.20fc 0.008 0.04 6 Normal 1,2,3,4 Assumed
Number of cycles 106 40000 0.04 Normal 1,2,3,4 Assumed

a 318.22 31.82 0.10 Normal 3 Assumed
b 0.30 0.03 0.10 Normal 3 Assumed
d 0.10 0.010 0.10 Normal 3 Assumed
e 0.20 0.02 0.10 Normal 3 Assumed

1 = BP, 2 = modified MC90/CE 2 , 3 = modified Hyperbolic , 4 = Neville

The input variables correlation of the model Neville, modified MC90/CE2, modified Hyper-
bolic function and BP are shown in Tables 3-6.

Table 3: Correlation matrix Neville

Variables fc Ec σm ∆
fc 1 0.8 0 0
Ec 1 0 0
σm 1 0
∆ Symm. 1

Table 4: Correlation matrix mod. MC90/EC

Variables RH ks fc Ec σm ∆ N
RH 1 0 0 0 0 0 0
ks 1 0 0 0 0 0
fc 1 0.8 0 0 0
Ec 1 0 0 0
σm 1 0 0
∆ 1 0
N Symm. 1
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Table 5: Correlation matrix mod. Hyperbolic model

Variables RH ks fc Ec a b d e
RH 1 0 0 0 0 0 0 0
ks 1 0 0 0 0 0 0
fc 1 0.8 0 0 0 0
Ec 1 0 0 0 0
a 1 0 0 0
b 1 0 0
d 1 0
b Symm. 1

Table 6: Correlation matrix BP

Variables RH c w/c a/c ks fc ω ∆
RH 1 0 0 0 0 0 0 0
c 1 -0.4 -0.4 0 0.4 0 0

w/c 1 0 0 -0.4 0 0
a/c 1 0 -0.4 0 0
ks 1 0 0 0
fc 1 0 0
ω 1 0
∆ Symm. 1

5.2 Uncertainty of cyclic creep strain

The mean value of the predicted cyclic function of the four models for short time is presented
in Fig 2. Because the initial elastic strains were not reported, because, due to pronounced short-
time creep duration, they had to be assumed, and so the compressions are relevant only to
the part of strain representing the creep increase due to the part of strain cycling. Significant
errors have often been caused by combining the creep coefficient with an incompatible value
of the conventional elastic modulus. Thus analysis must properly be based on the cyclic creep
function. In Fig. 2 the data of all four models shows quit different values in the first hour
of testing and at 100 hours the difference showed small despite the use of a similar concrete
and testing condition. This may be fluctuation in time to the physical mechanism of creep.
The modified MC90/EC2, Neville and modified hyperbolic model are based only on the set
of data and may not be applicable for conditions substantially different than these during the
experiments.

Fig. 3 and 4 shows that the result of the uncertainty analysis of four different models. The
both Fig. showed that the correlated and uncorrelated contribution of input variables have im-
portant contribution to the uncertainty in model output. The uncorrelated input variables un-
certainty of Neville model is very small, only the contribution of four variable. On the other
hand the input variables are notable effect on the output because there in more variables and
complex model and model uncertainty is small. The correlated and uncorrelated input vari-
ables for model Neville shows largest uncertainty CVpar,crcyc(t − t0) = 0.08 at t = 1 h
and uncertainty CVpar,crcyc(t − t0) = 0.06 at t = 100 h, the uncertainty goes to decreas-
ing with the increasing the time under load. The uncorrelated input quantities uncertainty of
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Figure 2: Mean value of creep function

model mod. MC90 and mod. Hyperbolic CV par, crcyc(t − t0) = 0.10 and almost inde-
pendent with time. Model BP has strongly time-dependent uncertainty varying in the range
of CVpar,crcyc(t − t0) = 0.11 · · · 0.08. Taking into the input variables real correlation of model
Neville the input variables increase significantly CVpar,crcyc(t−t0) = 0.08 may cause this effect
strong correlation of strength and young modulus of elasticity. Comparing the total uncertainty
of the models from Fig. 4, we conclude that the model and measurement paly the important
role on the uncertainty behaviour of models. In comparison of all models, BP has the lowest
total uncertainty CVpar,crcyc(t − t0) = 0.30 and model Neville has highest total uncertainty
CVtot,crcyc(t − t0) = 0.40. The models mod. MC90, mod. Hyperbolic and Neville are based
on the experimental data and also, assumed strain-time equation do to always satisfactory fit
the experimental data, so that long-term values cannot be estimate with confidence. Generally,
the time over which creep have actually been measured the better the prediction. The CV in
the initial time of loading shows higher and decreasing with increasing the time. Because the
initial time more uncertainty in measurement. The most important variable at short-time creep
is model uncertainty factor for all models.

Total model quality (MQ) can be used to balance the better response of the model to its
uncertainty in order to select the model that is most for a certain response. Fig. 5 show the
time-dependent model quality. MQ dependent total uncertainty considering the correlated input
quantities. The MQ is slight time dependent. For this reason the time interrogation according to
the [32] and results given in Fig 5. In all these comparisons, model BP is found to be the best.
CEB-MC90/EC2 model [8], which modifies his original model MC90/EC 2 [9] by co-opting
key aspects of cyclic loading (the mean stress and stress amplitude function and dependence
on the number of cycles would simply mean a loading frequency), comes out as the second
best. Considerably worse but the third best overall is seen to be the modified Hyperbolic model.
Since the current Neville model, labelled Neville, is the simplest, introduced in 1973 on the
basis of Neville’s research [2], it is not surprising that it comes out as the worst because based
on only four variables and there is no consideration of concrete composition and environmental
variables.
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Figure 3: Input variables uncertainty of cyclic creep prediction
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Figure 4: Input variables and model uncertainty of cyclic creep prediction
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Figure 5: Model quality (MQ) of cyclic creep prediction
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5.3 Sensitivity analysis of the cyclic creep strain

SA require to find out the dominant effect of the variability of input random variables on
the cyclic creep strain. Figs 6-9 show the results of the sensitivity analysis of uncorrelated
and correlated variables. For the calculation of the sensitivity the model uncertainty is not
considered. It is assumed that the sensitivity indices are up to

∑pK
p′=1 Sp = 1. The normalization

is necessary due to consideration of correlation, which may the results of sensitivity indices
Sp ≥ 1. This arise the difficulties in the comparison between the uncorrelated and correlated
indices. High value of sensitivity Sp means highly influential on the uncertainty. For example
Sp = 1 means only this quantities affect the output. The input quantities sensitivity of model
Neville is presented in Fig.6. All input quantities are approximately time-independent. The
reason behind this is the expression is depend on the value of the mean stress, stress amplitude,
compressive strength an modulus of concrete and there is other input quantities considered
in this model and this quantities is assumed constant with respect to time. The strength and
modulus is not exactly constant over the time but it is much complicated to consider. It is seen
that the most sensitive quantities turn out to be elastic modulus and followed by compressive
strength. The mean stress and stress amplitude is not much influence as compared above two
quantities. The variables correlation is strongly influence the sensitivity indices. However, Ec
and fc are most influence quantities.
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Figure 6: Uncorrelated and correlated sensitivity indices of model Neville

Model modified hyperbolic shows also constant sensitivity indices of all input quantities over
the time. In this model the time is account only this

(
t−t0

a+(t−t0)

)b
quantities and the influence of

both a and b is much smaller as compared the other quantities. The elastic modulus most
influenced variable and followed strength of concrete. The correlation showed the valuable
influences the sensitivity indices. The Fig. 7 shows the sensitivity indices of all input variables
of modified hyperbolic.

The sensitivities of model modified MC90 remain approximately constant over the time.
The humidity influence the time function by factor βH , but the influence is relatively small. The
sensitivity indices of Ec, fc and σm fluctuate over the time. The main reason for this is these
variables affect by the time under loading but the influence is small. As compared the sensitivity
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Figure 7: Uncorrelated and correlated sensitivity indices of model modified Hyperbolic

indices between the uncorrelated and uncorrelated, it seem clearly large difference for most
influent quantities. In the case of input quantities uncorrelated, Ec is the most dominating input
quantities. Oh the other hand, the Ec and fc are sensitive quantities turns out due to the strong
correlation. The numbers of cycle, mean stress and stress amplitude have small influence.
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Figure 8: Uncorrelated and correlated sensitivity indices of model modified MC90/CE2

The model BP seen a more time dependent sensitivity indices over the time. The main
reason behind this is the more combination of time function with the input quantities. It is
seen that the most sensitive quantities turn out to be concrete strength. In the second place
the content of the cement when quantities are assuming the uncorrelated. Further, the stress
amplitude and frequency is the third and fourth influence quantities. The influence of water-
cement ratio, aggregate-sand ratio and humidity also considerable. The concrete strength is
most dominating quantities when considering the quantities correlation. The second dominant
quantity is the cement content and stress amplitude. The sensitivity indices of cement content
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and stress amplitude small decrease with increasing time. The cyclic parameter is seen that the
considerable influence.
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Figure 9: Uncorrelated and correlated sensitivity indices of model BP

6 CONCLUSION

In the present study, a probabilistic framework is suggested for the predicting the cyclic
creep of plain concrete considering four different cyclic creep models. Different sources of
uncertainty- physical variability, data uncertainty, and model error/uncertainty- were included
in the cyclic creep analysis. Different types of model error cyclic creep model error. The
input quantities which drive the cyclic creep such as, elastic modulus, concrete strength, mean
stress, cyclic stress amplitude, number of cycle, humidity, cement content, water-cement ratio,
sand-cement ratio, geometric factor have been considered as random variables. The uncertainty
and sensitivity analysis is computed using the LHS sampling technique. It is seen from the
uncertainty analysis the complex cyclic creep model BP has the good MQ and less uncertainty
but the simple model Neville has higher uncertainty and lower model quality. In contrast, the
complex model needs computational effort and more input variables. Stochastic sensitivity
analysis is performed to determine the predominant factor amongst the input variables, which
influences the cyclic creep prediction. It is observed that cyclic creep is more sensitive to the
elastic modulus and strength of concrete, followed by mean stress, stress amplitude, frequency,
cement content, humidity, water- cement ratio, in that order. Further, the present study of cyclic
creep models brings some interesting point. The most of the creep analysis is only sustained
load; the cyclic loading effect is neglected. Cyclic effect, neglected so far, might non-negligible
for long span bridge with many lanes or with a dense traffic of heavy trucks. This may cause
the excessive time-dependent deflection of concrete structures. The concrete structure can lose
their stiffness by (i) the degradation of concrete, (ii) the creep of concrete etc. The relation
between the frequency of the structure and its age is important fo the study of the long-term
bahaviour of materials, possibly for the detection of its damage. Significant is the change of the
modulus of elasticity of concrete dur to cyclic creep. Also, the proposed approach for UQ and

SA is applicable to several engineering disciplines and the domain of cyclic creep analysis was
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used only as an illustration to develop the methodology. In general, the proposed methodology
provides a fundamental framwork in which multiple models can be connected through a Bayes
network and the confidence in the overall model prediction can be assessed quantitatively.
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Abstract. In this paper experimental studies and numerical analysis carried out on reinforced 
concrete beam are partially reported. They aimed to apply the rigid finite element method to 
calculations for reinforced concrete beams using discrete crack model. Hence rotational 
ductility resulting from crack occurrence had to be determined. A relationship for calculating it 
in static equilibrium was proposed. Laboratory experiments proved that dynamic ductility is 
considerably smaller. Therefore scaling of the empirical parameter was carried out. 
Consequently a formula for its value depending on reinforcement ratio was obtained. 
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1    INTRODUCTION 

Some research concerning reinforced concrete beams [1, 2] including own research [3] 
exhibit differences in terms of static and dynamics issues. Those differences are reflected by 
deflections (statics) and natural frequencies. Those quantities, however, could not be directly 
compared. Nonetheless, based on their values and known scheme stiffness of elements can be 
computed [4] (static based on deflections and dynamic based on natural frequencies). Research 
carried out thus far proved, those are not the same quantities. 

The approach presented by authors draws on discrete crack model in rigid finite elements 
method [5, 6]. Hence, formulae for equivalent stiffness (both static and dynamic) could not be 
used. The rigid finite element method requires on the other hand implementing ductility 
dictated by crack occurrence. This paper discusses method of scaling relationship expressing 
dynamic rotational ductility based on the static one. Scaling was carried out based on own 
experimental studies. 

2. EXPERIMENTAL STUDIES CHARACTERIZATION

Experimental studies were performed on reinforced concrete beams in half-natural scale. 
Each of the elements had the dimensions of 3300 mm x 250 mm x 150 mm. The cross-sections 
with a reinforcement are shown in figure 1. 

Figure 1: Investigative elements (dimensions in mm) 

Series B-I, B-II, B-III had the same tensile reinforcement ratio of 0,65 %. The B-IV beams 
series were reinforced stronger (1,38 %). The elements were made of the C25/30 class 
concrete. The basic material properties are listed in table 1. 

Table 1: Basic material properties 

Series Material Property B-I B-II B-III B-IV 
Mean compressive strength fcm [MPa] 51,7 51,2 45,0 41,1 
Mean splitting tensile strength fctm,spl [MPa] 3,58 3,21 3,03 2,79 Concrete Mean Young modulus Ecm [GPa] 30,3 29,6 28,5 30,0 
Mean yield strength fym [MPa] 563 563 548 555 Steel 

(longitudinal rebars) Mean Young modulus Esm [GPa] 202 202 200 202 

The beams’ deflections were registered with the inductive gauges with accuracy of 0,001 
mm. The beams were loaded with concentrated force applied at the mid-span (three points 
bending test). 
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A Brüel & Kjær data acquisition and processing system was used in the dynamic 
measurements. The system uses the operational version of the modal analysis [7] – presently, a 
popular tool for nondestructive testing of engineering structures and machines. The system 
registers the beam’s response (acceleration of certain points) on external random forces. The 
vibrations in the beams are caused randomly by the setup environment, and include: acoustic 
noise, air flow, gentle strokes in investigative element. The measurements yield basic dynamic 
parameters of the object investigated (eigenfrequencies, eigenforms, damping parameters). It 
was decided to carry out the dynamic experiments with using the suspended beam scheme. This 
approach is commonly used in investigating mechanisms and their characteristics [8]. 

Each test was preceded by the dynamic analysis of a suspended beam. Followingly, the 
element under tests was placed on the supports and loaded at the mid-span with a concentrated 
force of a given value. The beam deflection was acquired once it stabilized. Subsequently, 
beam was unloaded and taken from the supports for the dynamic analysis. In the next step, the 
beam was once again placed on the bearings and loaded with a higher force than in the previous 
step. The aforementioned procedure was repeated till the beam failure. When the load-bearing 
capacity was exhausted the modal analysis was performed in the suspended position. The 
detailed description of the experimental studies is included in [3]. 

3. STIFF FINIE ELEMENTS METHOD

3.1.    General description of the method 
In this method beam model consists of stiff mass discs which represent force of inertia of a 

structure. Discs are connected by elastic constraints (one rotation and two translation) 
responsible for elastic features of a structure. Movement of each mass discs is described by 
three general coordinates. In case of transverse vibrations which are considered in this paper, 
elastic constraints and general coordinates are reduced to two. Example scheme and calculation 
model of a beam divided into four elements are shown in figure 2. The wider description of the 
method is included in [9]. 

Figure 2: Scheme and numerical model of homogenous beam 

The presented approach enables to include local discontinuities (among others cracks) in a 
discrete way [5, 6]. Adequate division into finite elements allows the introduction of cracks by 
means of reduction of stiff rotation constraints while calculations are performed as for the 
homogenous beam. 

Stiffnesses of constraints kϕ, k∆ are commuted using the element stiffness in phase I (EII). 
The stiffness of rotation constraints is reduced and has value crkϕ  in the place where the cracks 
appear. The scheme and calculation model of the segment of beam with cracks is shown in 
figure 3. 
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Figure 3: Scheme and numerical model of the reinforced concrete beam with cracks 

3.2.    Rotational ductility in static calculation 
The rotational ductility resulted from crack was estimated on the basis of elementary 

relations of geometry and strength of materials. The scheme as in figure 4 was considered. 

Figure 4: Considered model of beam with cracks 

Forces acting in the cross-section (A-A) in the place of crack occurrence are shown in figure 5. 
Triangular stress distribution in compressed concrete was assumed. 

Figure 5: Forces acting in cross-section 

Figures 4 and 5 enable to formulate following expression allowing to calculate the rotational 
susceptibility which is consequence of crack occurrence in static solution: 

)x)(dx(dAE

 sψd
II

II
ss

rmzicr
static

−−
=−

3
  1

,ϕ , (1) 

where: ψz – coefficient describing violation of interaction between steel and concrete calculated 
according to (2), srm – average crack spacing, Es – Young’s modulus of steel, As1 – 
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reinforcement cross-sectional area, d – useful beam height, xII – height of the compressed zone 
in phase II. 

M
Ms cr

z −= 3.1ψ , (2) 

where: s – 1.1 in case of immediate loading, 0.8 in case of long-term loading, Mcr – cracking 
moment, M – maximum moment up to which the cross-section was overloaded. 

3.3.    Comparison with experimental results 
In line with above-mentioned assumptions, proprietary program was used to compute 

deflections of reinforced concrete beams. Results of calculations along experimental results are 
shown on charts (fig. 6 – 9). Solid line traces equilibrium paths recorded during experiment, 
points represent analytical results for each load increment. Individual elements from different 
series had different colours. 

Figure 6: Deflection vs. bending moment for B-I series 

Figure 7: Deflection vs. bending moment for B-II series 

Figure 8: Deflection vs. bending moment for B-III series 
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Figure 9: Deflection vs. bending moment for B-IV series 

Obtained results proved highly consistent, especially up to 50% load applied to lightly 
reinforced beams (series B-I, B-II, B-III) and up to 30% load applied to highly reinforced 
beams (series B-IV). Results outside that range show greater inconsistencies (approx. 30%). 
Deflection could have been overestimated, because computations included every 
macroscopically observable during the experiment crack. Cracks occurring under heavier loads 
(closer to supports) were not as deep as cracks occurring under lighter loads. The proposed 
numerical model envisages every crack penetrating to natural axis of beam. Results of 
calculations have therefore confirmed correctness of the model and usability of presented 
method in computing static deflection of cracked reinforced concrete beams. 

4. SCALING OF PARAMETER

As aforementioned in preliminary section of the paper, static and dynamic ductility of 
cracked reinforced concrete beams might vary. Hence it is fair to say that rotational ductility 
resulted from crack will differ from dynamic one. Hence: 

icr
staticd

icr
dynamic dd −− ⋅= ,, ϕϕ α , (3) 

where: αd – empirical coefficient. 

The parameter was scaled iteratively. During laboratory experiments at each load increment, 
crack perpendicular to element's axis were macroscopically catalogued. After cataloguing, 
cracks were sketched. Example sketch for B-I-1 beam is shown in figure 10. Next to each crack 
is given the load that caused it. 

Figure 10: Sketch of crack - element B-I-1 (mm) 

For each load increment, computations were then carried out using proprietary program. 
Each model was recalculated several times for different αd parameters. Selected were values 
where inconsistencies between analytical and experimental natural frequency were the smallest. 
Example chart illustrating the process of scaling the B-I-1 beam is shown in figure 11. 
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Figure 11: Relative difference depending on αd parameter for individual load increments 

Results of calculations for individual beams were analysed and function describing scaled 
parameter selected. Tested initial functions are shown in table 2. 

Table 2: Functions describing parameter αd 

Relative function error [%] 
No. Function B-I B-II B-III B-I, B-II, B-III 

ρ = 0,65 % 
B-IV 

ρ = 1,38 % 
1 xe  β− 0,46 1,03 0,48 0,67 0,42 
2 xe  βα −⋅ 0,09 0,53 0,36 0,33 0,16 
3 x βγα −⋅ 0,10 0,57 0,39 - 0,17 
4 βα −+ x  0,09 0,51 0,35 0,32 0,13 
5 γα β +⋅ )( xCot  0,09 0,56 0,38 0,33 0,14 
6  xβα −+ e 0,10 0,55 0,46 0,36 0,20 

e – Eulerian number 
α, β, γ – parameters 
x = M/MR (effort level) 

Model exhibiting the smallest error (function no. 4) was selected and used for further analyses. 
Values of parameters α and β are given in table 3. 

Table 3. Parameters of used model 

Parameter B-I B-II B-III B-I, B-II, B-III 
ρ = 0,65 % 

B-IV 
ρ = 1,38 % 

α -0,916 -0,926 -0,947 -0,929 -0,958 
β 0,0941 0,0955 0,157 0,116 0,0732 

Due to negligible difference in the α parameter for both lightly and highly reinforced concrete, 
it was averaged for further calculations. Moreover, the β was assumed linearly variable as the 
function of reinforcement ratio given by the relationship: 

ρβ ⋅+−= 823,5154,0 . (4) 

The final formula for calculating the αd coefficient given by: 

ρ

α
 823,5154,0

944,0
+−







+−=

R
d M

M . (5) 
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Figure 11 shows nomograph of the parameter for selected reinforcement ratios. 

Figure 11: Nomograph of the αd parameter for selected reinforcement ratios 

5. FINAL REMARKS AND CONCLUSIONS

Carried out analyses proved differences in static and dynamic behaviour between reinforced 
concrete beams pertain not only to the global parameter of flexural rigidity. It was observed 
they also concern aspects of local description. In this paper used were the rigid finite element 
method and discrete crack modelling. Hence rotational ductility resulting from crack 
appearance had to be determined. For static issues an own relationship was used (1), derived 
based on elementary relationships from strength of materials. Proposed model showed 
promising results in terms of static calculations. 

For dynamic calculations the relationship (1) was modified by introducing the empirical 
coefficient of αd. Scaling was carried out based on own experimental studies. It was proved that 
dynamic ductility decreases relative to static ductility. It is the lower the higher the overload of 
element. The research has thus far proved that this difference depends also on the 
reinforcement ratio (fig. 11). 
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Abstract.Correct evaluation of wall displacements is a key matter when designing silos. This 
issue is important from both the standpoint of design engineer (load-bearing capacity of 
structures) and end-consumer (durability of structures). Commonplace methods of silo design 
mainly focus on satisfying limit states of load-bearing capacity. Current standards fail to 
specify methods of dynamic displacements analysis. 
Measurements of stressacting on silo walls prove that the actual stress is sum of static and 
dynamic stresses. Janssen came up with differential equation describing state of static 
equilibrium in cross-section of a silo. By solving the equation static stress of granular solid on 
silo walls can be determined. Equations of motion were determined from equilibrium equations 
of feature objects. General solution, describing dynamic stresses was presented as parametric 
model. 
This paper presents particular integrals of differential equation, which enable analysing 
displacements and vibrations for different rigidities of silo walls, types of granular solid and its 
flow rate. 
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1 INTRODUCTION - TECHNICAL PROBLEM STATEMENT 
Silos for storing grain or other granular solids, under normal operating conditions 

exhibit wall vibration caused by flow of material generating friction against silo wall. That 
vibration normally has quasi-harmonic waveform alternately increasing and decreasing. Its 
strength depends on various factors, however, observations made thus far prove that crucial 
parameters are wall flexibility and its decrement rate. 

Stresspeaks upon silo emptying are widely known phenomena. Since those greater 
stresses used to cause silo failures, it is currently a common practice to factor them in and 
compensate their impact through experimentally determined by increasing coefficients. 
Those coefficients usually enable satisfying limit states of structural capacity, however, they 
could not be used to: compute maximum amplitudes in walls, determine material fatigue 
hazards or potential resonance threats. 

The Authors set out to develop a computational model for describing fluctuation of 
vibration in silo walls during granular solid and grain flows. The model was devised based 
on analysis of continuous stress on silo walls. 

2. ASSUMPTIONS TAKEN FOR MODELLING
The following assumptions were taken to formulate the model:

− Actual stress is superposition of static and dynamic stress (fig. 1): 
− Vibration has harmonic waveform alternately increasing and decreasing. 

− Conditions for static equilibrium defined by Janssen 

γδ =+
F
Uk tg p

dp
v

v

dx
 (1.1) 

pv – vertical stress; F – silo cross-sectional area; U – silo circumference; δ - angle of 
wall friction; γ – bulk solid weight by volume; 

Solution to differential equation (1) in accordance with Janssen: 











−=

−
F

zUtgk
stat
h e

Utgk
Fp

δ

δ
γ 1

− The displacement equation should be a variable dependent on silo height z and time t, 
and other derivatives will enable solving for longitude of the nodal line ϕ(z,t), bending 
moment M(z,t) and transverse force V(z,t); 

− The model factors in wall give and decrement rate of the structure; 

Special assumption taken to describe self-excited vibration is proportionality of exciting 
force - stressph(x,t), with derivatives of perpendicular translations relative to silo wall  – 

w(x,t), ( )
dt

txdw , , ( )
2

2 ,
dt

txwd . 
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Fig. 2.1. Stress σn acting on cylindrical silo wall [Kmita, Ubysz]. 

Continuous recording silo wall stress measurement  
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3. FORMULATION OF THE MODEL
According to Boroch [2] and Langer [7] physical objects are continuous systems with

indefinite degrees of freedom. Mathematics normally tends to discretise tasks. An assumption 
can be made that desired effect is obtained through force acting as point mass (granular solid, 
physical discretisation). The mass, however, can be divided into regular partitions, and the state 
of displacements can be given by limited number of parameters (mathematical discretisation). 
The latter method was employed to develop model describing silo wall displacement under 
load of granular solid. 

The square one is equations of motion for uni-dimensional continuous arrangements and 
underlying dynamics assumptions. This model is justified by silo geometry. In many case this 
task could be approximately reduced to one dimension.  

An important part of every analysis is defining the right-hand side of the equation. In order 
to correctly describe effect of self-excited vibration, the exciting force has to be proportional to 
derivatives of perpendicular translations relative to silo wall. In order to more comprehensively 
analyse experimentally a given phenomenon and more accurately describe vibrations, adequate 
parameters have to be introduced into RHS of equation. In many cases, numerous parameters 
would prevent from obtaining a closed solution and that is the objective authors did set for 
themselves. 

Another issue important from viewpoint of modelling is rigidity of the silo wall. As far as 
dynamic parameters are concerned - frequency and amplitude - the wall is approximated by a 
beam of adequate flexural rigidity, or by membrane (string) whose flexural rigidity is ignored. 

3.1. Linear membrane model of self-excited system 
Base model was assumed as unit width membrane, fixed at both ends. The task was reduced 

down to unit width. In authors' view this is the most fundamental model taken from classic 
mechanics, which gives a good representation of self-excited vibration generated by dry 
friction. Figure 3.1 illustrates cut-out of wall under horizontal stress ph1(x) and quasi-harmonic 
stress ph2(x,t).  N(x,t), N(x+∆x,t) expresses local longitudinal force, α(x,t), α(x+∆x,t) – vertical 
tilt. The load applied to membrane ph2(x,t) is a transverse force per unit of length. From 
condition for equilibrium Σx (vertical axis) factoring in forces generated by motion and forces 
of inertia (D'Alembert's principle) we get: 

N(x+∆x,t) sin α (x+∆x,t) – N(x,t) sin α (x,t) = ∆x [m ( )
2

2 ,
dt

txwd – ph (x,t)] (3.1) 

m - mass per unit of length, ( )
2

2 ,
dt

txwd  - acceleration 

Formulation m is an inertial force inferred from II Newton's laws of motion. 
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Fig. 3.1. Cut-out of membrane and distribution of forces. 

By dividing both sides of equation 3.1 by ∆x we get difference quotient on LHS and given 
∆x� 0 we get derivative at dx (from definition of derivative). For constant x over segment ∆x 
at small angles sin α �dw/dx we get longitudinal force N: 

N – m ( )
2

2 ,
dt

txwd  = – ph(w,t) (3.2) 

This equation, however, has more a general nature. For the exciting force to generate 
self-excited vibration it has to depend on displacement and its derivatives. Here, on wall 
displacement, its speed and acceleration. Some authors take static friction fs as an auxiliary 
parameter. Forces occurring in the self-excited system, however, have to be explicitly 
separated from static and quasi-static stress generated through storage, filling and 
discharging the silo. Hence the general form of non-homogeneous equation can be written 
as:  

N ( )
2

2 ,
dx

txwd – m ( )
2

2 ,
dt

txwd  = – ph1(w,t) – ph2(w, ( ) ( )
2

2 ,,,
dt

txwd
dt

txdw ,fs, t) (3.3) 

– ph1(w,t) – static component of stress; ph2(w, ( ) ( )
2

2 ,,,
dt

txwd
dt

txdw ,fs, t) – dynamic 

component of stress. 
In similar fashion both the linear flexural model of self-excited system and the model of 
vibration along generatrix of silo's plating can be described. This will be discussed in 
dissertation currently in progress. Their final shape is presented in the following subsection. 

3.2. Linear flexural membrane model of self-excited system 
In case of silo wall with little give, its rigidity has to be factored in as well. Hence - similarly 

to flexible wall - the entire side surface is assumed to have the same rigidity. From general 
relationships from strength of materials, geometric relationships and by factoring in physical 
conditions, we get for small displacements: 

– m w&& (x,t) ∆x

α (x+∆x,t) Ν (x+∆x,t) 

α (x,t) Ν (x,t) 

∆x 

h(x) 

w 
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M(x,t) = – EI (x) ( )
2

2 ,
dx

txwd (3.4) 

Fig. 3.2. Cut-out of silo wall and distribution of forces. 

From conditions for equilibrium (fig. 3.2) we get: 
– m w&& (x,t) ∆x + Q (x+∆x,t) – Q (x,t) + ph(x,t) ∆x = 0 (3.5) 

Similarly to equation 3.1, the equation 3.5 can be divided by ∆x, and given ∆x�0 we get: 

Q’(x,t) = m ( )
2

2 ,
dx

txwd – ph(x,t) (3.6) 

From equation 3.4 we get: 

Q(x,t) = 
dx
d M(x,t) =

dx
d  [– EI (x) ( )

2

2 ,
dx

txwd ] (3.7) 

After substituting (3.7) to (3.6) we get: 

2

2

dx
d M(x,t) = 2

2

dx
d  [– EI (x) ( )

2

2 ,
dx

txwd ] = m ( )
2

2 ,
dx

txwd – ph(x,t) (3.8) 

In majority of cases, silos have high longitudinal rigidity constant across segments, hence 
EI(x) = const. and 3.8 is reduced to: 

EI (x) [ ( )
4

4 ,
dx

txwd ] + m w&& (x,t) =  ph(x,t) (3.9) 

Similarly to previous case, the component of excitation generated by vibration in self-
excited system can by isolated: 

– m w&& (x,t) ∆x

M (x,t) 

Q (x+∆x,t) 

Q (x,t) 

M (x+∆x,t) h(x) 

w 

∆x 
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EI (x) [ ( )
4

4 ,
dx

txwd ] + m w&& (x,t) = ph1(x,t) + ph2(x, 2

2
,

dt
xd

dt
dx ,fs, t) (8.9) 

3.3. Model of vibration along generatrix of silo's plating 
In high silos elastic strain occurs along generatrix of the silo. Here, vibrations are excited 

longitudinally. System of forces along the wall is illustrated in figure 3.3 and equation 3.10 
shows equilibrium: 

Fig. 3.3. Cut-out of silo wall and distribution of forces. 
N(x+∆x,t) – N(x,t) = m u&& (x,t) ∆x – pv(x,t) ∆x    (3.10) 

Similarly dividing by ∆x in line with definition of differential quotient, given ∆x�0, 
the differential equation is: 

dx
dN  = m u&& (x,t) – pv(x,t) (3.11) 

Then in accordance with physical relationship (Hooke's law) we get: 

σ = E ε        (3.12) 

  
A
N = Ε 

dx
du  (3.13) 

By substituting (3.13) to (3.11): 

dx
d  ( E A

dx
du

 ) = mu&& (x,t) – pv(x,t) (3.14) 

and for quantities constant over segments EA = const.: 

E A 2

2

dx
ud  =  mu&& (x,t) – pv(x,t) (3.15) 

After rearranging equation 3.15 and singling out factor generating self-excited vibration it 
becomes: 

 mu&& (x,t) ∆x 

N (x,t) 

py (x+∆x,t) py (x,t) 

N (x+∆x,t) 
h(x) 

w 

∆x 

u(x,t) 
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mu&& (x,t) – E A 2

2

dx
ud  =  pv1(x,t) + pv2(x, 2

2
,

dt
xd

dt
dx ,fs, t) (3.16) 

However, terms pv are significantly lower than ph, are recorded longitudinal vibrations have 
amplitudes significantly lower than vibrations perpendicular to silo walls. Thus they are 
considerably less important for silo wall vibrations. 

4. SOLUTIONS TO SELECTED MODELS DESCRIBING SILO WALL VIBRATION
Models of self-excited systems were based on equations of motion. Solutions were sought

after for complete structure of mass and using approximated description of state of 
displacements with limited number of parameters expressing characteristics of silo wall 
stresses. 

4.1. Laminar flow stress 
Stress generated by granular solid acting on silo walls - provided there is no pulsation 

(laminar) - can be described by differential equation, which - since stress is assumed 
proportional to horizontal translation of silo wall - will take form of general equation of motion. 
If there is no pulsation upon bulk solid being discharged from the silo (laminar flow), the 
phenomenon can be expressed by the following differential equation:

( ) ( ) ( )txu
t

txut
t

txu n ,,,
2

2
−

∂
∂

−=
∂

∂ ; n X<½; 2> (4.1) 

For initial conditions: 

u(x,t) = 0; u’(x,t) = 1 (4.2) 

we get relationship describing silo wall displacements over time. This is the case where there 
are no extra loads applied of oscillatory nature. By following up on the assumption wall 
displacements are proportional to wall stress, we get relationship expressing that stress over 
discharge time. Depending on assumed n, usually between <½; 2>, the stress will fade over 
various time. This corresponds to different readings of measurements taken at different heights. 
Due to sheer complexity of factors influencing actual stresses, the following models use 
theoretical normal stress 1=∗

hp , which for given silo has to be multiplied by static stress at
given height determined through e.g. Janssen equations. The following figures show example 
stress over time charts. To better illustrate the function, waveforms of stress fluctuations were 
shown for three levels: upper, middle and lower part of the silo. According to the function, the 
highest stress occurs once the discharge process starts and is most intensive towards the hopper. 

Due to numerous factors influencing stress acting on different levels of silo, a parametric 
function is envisaged to describe the phenomenon. 

( ) πn
th

L
h etmtxp

−

=,  + c1t + c2 (4.3) 

This function is general integral of equation (4.2) expressed in real numbers. Initial and 
boundary conditions for determining parameters and constants of integration are determined 
based on results of experimental study. Parameters of "low vulnerability" to function 
fluctuation were taken for further deliberations as constants: 

m = coefficient describing initial discharge <0,7÷1,00> – assumed 0.8; 
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L = coefficient describing variability of the function fluctuation - assumed 0.1 

h = coefficient describing variability of the function fluctuation (convexity, concavity, 
inflection point) - assumed 0.005 

The solids discharge starts at t0. Hereunder the function is: 

( )






>

≤
= −

0

005,0
1,0

01
,

ttetm

tt
txp

n
th

π
 (4.4) 

Both the function fluctuation and parameters were taken based on experimental data. 
Arriving at the solution enables adjusting (correcting) those parameters for flow of different 
substances  
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Fig. 4.1. Relationship between horizontal stress and time - upper silo section (n = ½). 

4.2. Stress at flow with self-excited vibration 
Solids discharge from silo is often distorted by dynamic factors occurring over the course of 

that process. The most important from the viewpoint of day-to-day operation are seemingly: 

− tumble of overburden material due to arching or doming; 

− vibration generated by turbulent flow; 

− vibration excited by "dry friction" as called in literature self-excited vibration. 

πn
h

H =
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The nature on impact stress exerts depends on multiple factors and can be vary both 
qualitatively and quantitatively. Some of the factors are:  

− caking (humidity, granulation, re-solidification), 

− angle of internal friction of bulk solid, 

− wall friction coefficient, 

− silo wall give, 

− flow rate of bulk solid, 

− boundary conditions (wall joints, silo supports, foundation), 

− mass flow problems (relief equipment, segregation); 

− other. 
Presented next is model built based on available to authors results of experimental study, 

where parameters of bulk solid (sand) can be assumed homogeneous, the silo is regular shape 
and discharge flow is consistent. Silo walls show some give, and the wall where wall stress 
measurements were taken had natural frequency ν = 33 Hz. 

For purposes of formulating the model, only tape sections where vibrations were the 
strongest were used. Based on continuous readings it was concluded that an important 
oscillatory factor is self-excited vibration. 

The equation describing silo wall strain over time was formulated using forecasting method. 
Presented was superposition function of carrier wave and function describing oscillation. The 
function describing carrier wave was described in detail in subsection 4.5.1. The function 
describing the oscillatory wave was introduced with - apart from conditions enabling 
modulation of frequency and amplitude - conditions enabling to describe excitation and 
extinction of vibration.  

The function describing horizontal displacement of silo wall in any given section is also 
given by: 

( ) ( ) ( )txutxutxu ,,, 21 += , (4.6) 

where: ( ) ( )DtCtAtetxu tB sinsin,1 −= − , (4.7) 

( ) tHL etMtxu −=,2 . (4.8) 

Thus the full equation is: 

( ) ( ) tHLtB etMDtCtAtetxu −− +−= sinsin, (4.9) 

or 

( ) tHLtBtB etMDtAteCtAtetxu −−− +−= sinsin, (4.10) 

Next in this subsection presented is rearrangement of the function, leading to final differential 
equation describing silo wall vibration. To keep working outs concise, derivative symbol used 
for single-variable function ( )!was substituted into the RHS of equation.        

( ) ( ) ( ) ( )( ) ( ) ( )!!!!
sinsinsinsin, tHLtHLtBtB etMetMDtCtAteDtCtAte

t
txu −−−− ++−+−=

∂
∂
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(4.11) 

( ) ( ) tBtBtB teBAAeAte −−− −+=
!

( )( ) ( )DtDCtCDtCt coscossinsin ! −=−

( ) ( ) ( ) ( ) tHLtHLtHLtHL etHMeMLtetMetM −−−−− −+=+ 1!!

( ) ( )( ) ( ) ( ) tHLtHLtBtBtB etMHetMLDtDCtCAteDtCtteABAe
t

txu −−−−−− −+−+−−=
∂

∂ 1coscossinsin,

( ) ( )

( ) ( ) tHLtHLtBtB

tBtBtBtB

etMHetMLDtDAteCtCAte

DtteABDtAeCtteABCtAe
t

txu

−−−−−

−−−−

−+−+

++−−=
∂

∂

1coscos

sinsinsinsin,

( ) ( )( ) ( ) ( )( )!1
2

2
coscossinsin, tHLtHLtBtBtB etMHetMLDtDCtCAteDtCtteABAe

t
txu −−−−−− −+−+−−=

∂
∂

( )
( )

( ) ( )

!

1
2

2

coscos

sinsinsinsin
,

















−+−+

++−−
=

∂

∂

−−−−−

−−−−

tHLtHLtBtB

tBtBtBtB

etMHetMLDtDAteCtCAte

DtteABDtAeCtteABCtAe

t
txu

( ) CtACeCtABeCtAe tBtBtB cossinsin
! −−− +−=

( ) ( )( ) CtABCteCtteBABABeCtABte tBtBtBtB cossinsin
! −−−− +−+=

( ) CtABCteCtteABCtABeCtABte tBtBtBtB cossinsinsin 2! −−−− +−=

( ) DtACeDtABeDtAe tBtBtB cossinsin
! −−− +−=

( ) ( )( ) DtABDteDtteBABABeDtABte tBtBtBtB cossinsin
! −−−− +−+=

( ) DtABDteDtteABDtABeDtABte tBtBtBtB cossinsinsin 2! −−−− +−=

( ) ( )( ) CtteACCtteBACACeCtACte tBtBtBtB sincoscos 2! −−−− −−+=

( ) CtteACCtABCteCtACeCtACte tBtBtBtB sincoscoscos 2! −−−− −−=
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( ) ( )( ) DtteADDtteBADADeDtADte tBtBtBtB sincoscos 2! −−−− −−+=

( ) DtteADDtABDteDtADeDtADte tBtBtBtB sincoscoscos 2! −−−− −−=

( )( ) ( ) ( ) ( ) ( ) tHLtHLtHL etHMLetLMLetML −−−−−− −+−= 12!1 1

( )( ) ( ) ( ) ( ) tHLtHLtHL etMLHetLMLetML −−−−−− −−= 12!1 1

( ) ( ) ( ) tHLtHLtHL etHMHeMHLtetMH −−−− −+= 1!

( ) ( ) tHLtHLtHL etMHeMHLtetMH −−−− −= 21!

( ) ( ) ( ) tHLtBtB etMDtAteCtAtetxutxutxu −−− +−=+= sinsin,,, 21

( ) ( )

( ) ( ) tHLtHLtBtB

tBtBtBtB

etMHetMLDtDAteCtCAte

DtteABDtAeCtteABCtAe
t

txu

−−−−−

−−−−

−+−+

++−−=
∂

∂

1coscos

sinsinsinsin,

( ) CtACeCtABeCtAe tBtBtB cossinsin
! −−− +−=

( ) CtABCteCtteABCtABeCtABte tBtBtBtB cossinsinsin 2! −−−− −+−=−

( ) DtADeDtABeDtAe tBtBtB cossinsin
! −−− −=−

( ) DtABDteDtteABDtABeDtABte tBtBtBtB cossinsinsin 2! −−−− +−=

( ) CtteACCtABCteCtACeCtACte tBtBtBtB sincoscoscos 2! −−−− −−=

( ) DtteADDtABDteDtADeDtADte tBtBtBtB sincoscoscos 2! −−−− ++−=−

( )( ) ( ) ( ) ( ) tHLtHLtHL etMLHetLMLetML −−−−−− −−= 12!1 1

( ) ( ) tHLtHLtHL etMHeMHLtetMH −−−− +−=− 21!
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After substitution: 

( ) ( ) ( ) ( )
)coscos(2)sin(sin

,
2,

, 1
1

22
2

1
2

DtDCtCAeDtCtteAB
t

txu
BtxuCB

t
txu BtBt −+−+

∂
∂

−−=
∂

∂ −−  

and 

( ) ( ) ( ) ( ) )22(21
, 22212

2
2

2
tHLtHLtHLtHLtHL etMHetMHetMHetMLHetLML

t
txu −−−−−−− −++−−=

∂

∂  

and after rearranging 

( ) ( ) ( ) ( ) ( )
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1
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2

1
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txu
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BtxuCBB
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





 +−
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∂
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∂
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2
2

2
2

1,
,

2
,

When considering complete solids discharge, the parameter of time might reach high values 
and last two equation components will tend to naught. Then the final equations of motion 
become: 

( ) ( ) ( ) ( ) ( )
12

11
1

22
2

1
2 2,2,

2,2
,

u
t
B

tt
txu

tt
txu

BtxuCBB
t

txu







 +−
∂

∂
=

∂
∂

+−−−
∂

∂ (4.12) 

( ) ( ) ( ) ( ) ( ) 01,
,

2
, 2

2
2

2
2

2

=−−+
∂

∂
+

∂

∂ −− tHL etLMLtxu
t

txu
M

t
txu   (4.13) 

In equation (4.12) the RHS is the function of displacement and first derivative of 
displacement - this is consistent with initial assumptions made for self-excited vibrations. The 
equation (4.13) can be interpreted as "main wave" −describing characteristics of stress on silo 
wall during solids discharge. 

Similarly to laminar flow, stress was assumed proportional to horizontal translations of silo 
walls, however, as opposed to that case, apart from regular stress upon solids discharge, also 
other loads occur with oscillatory waveform. Based on that assumption, we get the relationship 
between stress and solids discharge time. To make possible comparing graphs of functions, the 
parameter was assumed to fluctuate within n = <½; 2>. Hence, those stresses will be described 
for different levels of silo wall. These models also use the theoretical normal stress ph

* = 1, 
which for given silo has to be multiplied by actual stress at given height. The following figures 
show example stress over time charts. To better illustrate the function, waveforms of stress 
fluctuations were shown for three levels: upper, middle and lower part of the silo.  

The function describing stress acting on silo wall is given by superposition of main wave 
and oscillatory stresses. Introduced parameters enable experimentally describing the function 
both in terms of its graph and expected values. 

( ) ( ) 21sinsin, ctcetMDtCtAtetxp n
th

LBt
h +++−=

−
− π  (4.14) 

Similarly to solution for laminar flow, the function is general integral of equation () 
expressed in real numbers. Initial and boundary conditions for determining parameters and 
constants of integration are determined based on results of experimental study.  
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Parameters found in equations have the following physical representation: 

– A - vibration amplitude; when describing stress acting on silo wall where amplitude
of oscillatory component to fixed component is 5 ÷ 20 %, the parameter fluctuates
within <0,0005 ÷ 0,002>;

– 
πn
bB = , b – range of damping; n X<½; 2>;  when self-excited vibrations extinct at 

0.7 ph acting on silo wall, b = 0.03, provided self-excited vibrations extinct at 0.2 ph, 
b = 0.07; 

– C, D - parameters describing frequency of resonant excitation; quantities closest to
observed excitations are obtained for C/D=<0,85 ÷ 0,95>;

and previously assumed for laminar flow 

– m = coefficient describing initial discharge <0,7÷1,00> – assumed 0.8;

– L = coefficient describing variability of the function fluctuation - assumed 0.1;

– 
h = coefficient describing variability of the function fluctuation (convexity, 
concavity, inflection point) - assumed 0.005 

The solids discharge starts at t0. Finally the formula became: 

( )
( )





>+−

≤
= −

−
0

005,0
1,0

0

sin9,0sin

1
,

ttetMttAte

tt
txp

n
t

Bth
π

(4.15) 

In case of rigid silos with high decrement rate vibration has nature of short-term excitation, 
which causes temporary overload of the silo wall. For that eventuality silo overload was 
modelled for stresses beyond 1.2 ph. Because overload has short-term nature, silo overload has 
characteristics similar to random structural overload during solids discharge, where expected 
stresses are a band of expected loads as opposed to non-ambiguous values. 

In case of dynamically flexible walls with high decrement rate, higher amplitude 
vibrations might occur, but they who quickly extinct (fig. 4.2). 

Another example is dynamically susceptible wall with low decrement rate, where 
periodically excited are cyclical high-amplitude vibrations. Description of these vibrations is 
rather characteristic with explicit self-excited vibration (fig.4.3). 

Selected examples are seemingly the most representative based on available experimental 
studies as far as analysis of vibrations and stresses acting on silo walls are concerned.  

πn
hH =
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Fig. 4.2.Horizontal stress acting on silo flexible wall to vibration with high decrement rate. 
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Fig. 4.3. Deformable wall with low decrement rate. 

5. SUMMARY, RESEARCH PROBLEMS AND SUPPLEMENTARY RESEARCH
PLAN 

From designer's point of view, issues of stress acting on silo wall are synonymously related 
to wall displacements, strength of materials problems and fatigue problems. The proposed 
model is a tool intended for forecasting loads and some processes related to day-to-day silo 
operation. 
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This proposition of stress&strain model was devised to give original contribution to current 
state of arts in behaviour of silo wall during storage, filling and discharging. This particularly 
applies to subject area most extensively covered in specialist publications which seems crucial 
from standpoint of structural safety i.e. real stresses generated by granular solid acting on silo 
wall. The proposed model aims to make computational models more true to real structural 
behaviour. 

In this paper, authors attempted to compromise between universality of model and its 
practical applicability, hence it was limited to analyse variability of only selected elements. 
Taken assumptions are the square one in developing more complex models which would 
describe with greater accuracy existing cases or enable analysing new practical cases, which 
were not included in this paper. 

Practical applications for the model are: 

– Approximated description of vibration cycles (amplitude and frequency of
vibrations), key for determining fatigue strength of material,

– Estimation of expected stress acting on silo wall during granular solid flow.

This model - based on research data - requires further verification against greater 
number of experimental data from natural-scale structures. Beyond doubt, however, it can serve 
well for purposes of experimental studies. 
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Abstract. A numerical analysis of the mode of deformation of the main load-bearing 
components of a typical frame sloping shaft headgear was performed. The analysis was done 
by a design model consisting of plane and solid finite elements, which were modeled in the 
program «LIRA». Due to the numerical results, the regularities of local stress distribution 

under a guide pulley bearing were revealed and parameters of a plane stress under both 
emergency and normal working loads were determined. 
In the numerical simulation, the guidelines to improve the construction of the joints of guide 
pulleys resting on sub-pulley frame-type structures were established. Overall, the results 
obtained are the basis for improving the engineering procedures of designing steel structures 
of shaft sloping headgear.
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1 INTRODUCTION 

 Sloping shaft headgear structures are crucial to the surface facilities of mines. Failure of 
the shaft headgears have disastrous consequences on the system and can lead to prolonged 
stoppages. The causes of failure are due to: a) heavy loads; b) intense dynamic loads; c) 
technical modifications of cables without a proper engineering study. 
 In the design of the frame supporting the sloping headgears, simplified computational 
models consisting of rod finite elements are used. The headgear calculations are carried out 
using equivalent static loading to simulate the hoisting cable tension. However, not all 
elements of the frame sloping headgears can be represented in the form of rods. For example, 
sub-pulley components, because these elements have a depth to length ratio ranging between: 
1:2 and 1:5 (see Figs. 1-3). 

а) b) c) 

Figure 1: The general view and basic design models of the sub-pulley components: 
а) a fragment of the general view of the typical sub-pulley components; b) a fragment of the design model of the 
sub-pulley rod components; c) a fragment of the design model of the sub-pulley of the lamellar elements (H, V 

are horizontal and vertical components of the resultant of the hoisting cable tension) 

 The parameters of the plane mode of deformation of bearing structures of shaft headgears 
are not calculated accurately enough, for example, in the joints of guide pulley resting on the 
sub-pulley construction, as well as in the areas of sudden changes in the sections of the 
structural elements. Thus, the analysis of the plane mode of deformation of the sub-pulley 
structure elements and their joints is a significant scientific task. 

1.1 Object of the study 

 The object of the study is a sub-pulley structure of a typical sloping frame-type shaft 
headgear system. Sloping frame-type shaft headgears are a part of the shaft hoisting plant and 
consist of the following structural parts (see Fig. 2): 1 – sub-pulley structures; 2 – stay legs; 3 
– vertical supports (pillars); 4 – a bench; 5 – a sub-headgear frame; 6 – a stay leg and pillar
foundation. 

H H V V 
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Figure 2: The arrangement of frame-type sloping headgears 

 Due to the nature of the connection between the above structural parts, there exist several 
frame-type sloping shaft headgears systems as follows (see Fig. 3): 
• Semi-hipped (sub-pulley structures rest on a space frame consisting of a vertical support
(pillar) and a stay leg, see Fig. 3a); 
• Hipped (sub-pulley structures rest on a hipped roof consisting of two stay legs which form a
space frame, see Fig. 3b); 
• Combined (sub-pulley structures rest on a bench or on a heap-stead building, see Fig. 3c).

а) b) c) 

Figure 3: The structural systems of the frame-type sloping shaft headgears: 
а) semi-hipped system; b) hipped system; с) combined system 
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 The most vital joints and elements of the frame-type sloping shaft headgears are depicted 
schematically in Fig. 4. 

а) b) 

    c)  d) 

Figure 4: The major joints and elements of a frame-type box-like headgear: a) a segment of the upper sub-pulley 
structure; b) a segment of the lower sub-pulley structure; c) a segment of the upper part of a stay leg; d) a 

segment of the upper part of a vertical support (pillar). Component numbering: 1-support bearings of a pulley; 2 
– a sub-pulley pillar of the upper sub-pulley platform; 3 – the main girder of the stay leg of the upper sub-pulley
platform; 4 – the branches of the stay leg between the sub-pulley platforms; 5 – a pillar of the lower sub-pulley 
platform; 6 – the main girder of the stay leg of the lower sub-pulley platform; 7 – the main girder of the vertical 
supports of the lower sub-pulley platform; 8 – the stay leg branches; 9 – the vertical support body; 10 – the stay 

leg girder; 11 – the girder of vertical supports) 

 The sub-pulley structures of the frame-type sloping shaft headgears are for guide pulleys to 
rest on. In this paper, the sub-pulley structures of the upper pulley are considered. According 
to the arrangement of the sub-pulley structure, a frame with the vertical posts inclined to the 
horizontal is considered. In the place where a guide pulley bearing rests, a change of the 
frame girder section is provided by adding from above a T-section of 320 mm in height with a 
flange of 300 mm in width to the main section of the girder (see Fig. 5). 
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Figure 5: A supporting joint of the guide pulley (1 – a supporting bearing of the guide pulley; 2 – the front and 
back stops; 3 – the bearing surface area; 4 – the webbing of the supporting joint of the guide pulley) 

 The supporting joint of the guide pulley (see Fig. 4, 5) consists of a supporting bearing 
(position 1), the front and back stops (position 2), the bearing surface area (position 3), and 
the webbing (position 4). The supporting bearing of the guide pulley is secured vertically by 
bolts, and horizontally, it is secured by dressed wedges between the stops, which are fastened 
by fillet welds to the upper girder chord of the sub-pulley frame. 
The photos of the sub-pulley structures and the resting nodes of the pulleys of the upper sub-
pulley platform are shown in Fig. 6. 

а) b) 

Figure 6: The sub-pulley structures of the upper sub-pulley platform: a) View from below; 
b) Resting nodes of the guide pulley

1.2 Purpose of the work 

 The purpose of the work is to analyze the mode of deformation of the sub-pulley 
structures of a typical, frame-type, sloping, semi-hipped, shaft headgear and to improve the 
engineering design methods of the node structures of the guide pulley resting on the sub-
pulley structures. 
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1.3 Research tasks 

 The research tasks are a) to reveal the areas of distributing local tensions in the resting 
node of a guide pulley at different parameters of the resultant of a hoisting cable tension; b) to 
determine of the parameters of a plane mode of deformation of the sub-pulley structures; c) 
establishment of the principles of the rational designing of sub-pulley structures.  

2 EXPLORATORY PROCEDURES 

 A typical skip semi-hipped frame-type sloping shaft headgear was chosen for the study. 
The headgear has the following technical characteristics: the headgear height – 39.3 m; the 
spread of the stay leg branches – 11.0 m; the section of the stay leg branches – box-like; the 
structure material – steel  С255 (see Fig. 7). 

а) b) 

Figure 7: The object of the study – a semi-hipped skip frame-type sloping shaft headgear: 
а) the general view of the headgear studied; b) the geometry of the headgear 

 To fulfill the assigned task, computer simulation techniques were implemented with the 
help of the software package LIRA. The investigation of the mode of deformation of the 
structure was investigated in two stages: 

The 1st stage - The simulation of the mode of deformation of the structure on the spatial
design model approximated by laminated finite elements. 

The 2nd stage - The simulation of the mode of deformation of a separate sub-pulley
structure on the spatial design model approximated by laminated and three-dimensional finite 
elements. 
 The design was completed for the following load scenarios: a) normal operating conditions 
(normal hoisting cable tension, pulley weight, and permanent load); b) emergency loading and 
breaking of the upper pulley cable, calculated in accordance with the regulations [2]. Loads 
on a cable are transferred to the nodes of the guide pulley in the form of vertical and 
horizontal components of the resultant of the hoisting cable branch tension (see Fig. 8). 
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Figure 8: Diagram of load transfer of hoisting cable tension where S is the tension in a cable branch; R is the 
resultant of a hoisting cable tension; V is the vertical component of the resultant; H is the horizontal component 

of the resultant; α is the inclination of a hoisting cable to the horizon 

The 1st stage. On the spatial design model approximated by laminated finite elements (see 
Fig. 9) it was obtained: the principal (σ1, σ2) and reduced (σred.) tensions; characteristics of the 
self-excited vibrations and elastic displacement of the elements. 

Figure 9: The finite-element model generated in the software package LIRA 

The 2nd stage. The sub-pulley frame of the upper pulley was thoroughly modeled as a 
spatial lamellar system in LIRA in the form of an add-on system with regards to the 
interaction boundary conditions (see Fig. 10). 

hoisting cable 

pulley 

369



Figure 10: A segment of the design model approximated by plates 

 The elastic interaction of the sub-pulley frame and the rest of the stay leg structure was 
simulated by adding resilient flexing ties (FE 266), which simulated the axial and flexural 
rigidity of an abutment node. 

The guide pulley bearing was simulated by the three-dimensional finite elements (FE 34, 
36) in such a way that the model dimensions correspond to the structure of the guide pulley
supporting bearing. The bearing base resting on the frame, and operating at tension, was 
simulated with the help of the unilateral elastic tie elements (FE 262) that are horizontally 
compliant. The stops were three-dimensional elements (FE 36). The stop fastening was 
modeled by fillet welds with legs of 10 mm which, in turn, were simulated by the three-
dimensional finite elements (FE 34). 
 Breaking cable load, operation tension, and weight of the guide pulleys were applied to a 
three-dimensional element of the design model, to the simulation bearing of the guide pulley 
in the form of the vertical and horizontal components of the resultant (see Fig. 11). 

Figure 11: Load transfer diagram of the hoisting cable tension in the lamellar approximation where V – the 
vertical component of the resultant; H – the horizontal component of the resultant 

 Because of the varying processes of different shaft hoisting plants, the inclination of the 
cable can change. In the process of the numerical experiment, we evaluated the influence of 
the cable inclination on the plane mode of deformation. The inclination of the resultant of the 
hoisting cable tension varied within 30º and 65º in 5º increments. 

3 ANALYSIS 

 In the first stage, the main stresses (σ1, σ2), reduced stresses (σred.), normal stresses (σx, 
σy), and tangential stresses (τxy) were obtained. In the analysis of the mode of deformation, 
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the headgear structures were zoned according to the nature and intensity of the mode of 
deformation (see Fig. 12 and Table 1). 

Figure 12: Zoning of the headgear structures by 
nature and intensity of the mode of 
deformation: 
А – zones of local tension; 
В – zones of tension concentration; 
С – zones that showed highest stresses. 

Zone – А 

Zone – В (the girder of the upper sub-pulley structure on 
both sides В1) 

Zone – В (the girder of the lower sub-pulley structure on 
both sides В2) 

Zone – C 

А1 А2 

А3 

С1 

С2 
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Table 1: Zoning according to type of plane mode deformation in the headgear elements and the maximum stress 
values obtained 
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 From the above table, it is evident that the maximum values of σ1occur in the nodes of 
resting of the guide pulley and the maximum values of σ2 were calculated in the stay leg 
branches in connection with the sub-pulley structures. 
 In the second stage, the mode of deformation was analyzed for the sub-pulley structures 
and the nodes of resting of the guide pulleys of the sloping shaft headgear. It was found that 
the typical parameters affected by cable inclination change were local stresses in the resting 
node of a guide pulley, the basic stresses (σ1, σ2), reduced stresses (σred), normal stresses (σx, 
σy), tangential stresses (τxy), and stress concentration coefficients (Cи). See Fig. 13. 
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 Analysis of the mode of deformation of the given design model showed the following 
ranges in the local stress distribution in the resting node of a guide pulley: «А» – the range of 
the local stress distribution under the support bearing foot (see Fig. 13, Table 2, 3); «В» – the 
range of the plane mode of deformation in the wall of the pulley attachment point (see Fig. 
13, Table 2, 3); «С» – the range of the plane mode of deformation in the girder wall (see Fig. 
13, Table 2, 3); «D» – the range of the steady mode of deformation in the girder wall (see Fig. 
13, Table 2, 3). 

а) b) 

c) d) 

Figure 13: Areas of the local stress distribution in the resting node of the guide pulley (stress iso-fields):  
а) segment of the sub-pulley frame; b) σred; c) σx; d) τху 

 From the above figure it is evident that the area of the local stress distribution (area «А») is 
under the front end of the guide pulley bearing. The area of the plane mode of deformation 
(area «В») is in the wall of the pulley attachment and is limited by a compartment under the 
front stop of the pulley bearing. The area of the plane mode of deformation (area «С») covers 
both the wall of the pulley attachment point and the girder wall. The area of the steady mode 
of deformation (area «D») covers the girder wall and connects to a slant leg of the sub-pulley 
frame. 
 The linear dimensions of the typical areas, connections to the pulley axis of rotation and 
the ratio of the height (h) and width (d) of the typical area to the length of the support bearing 
foot (b) are given in Table 2. 

The test area 
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Table 2: Dimensions of local stress areas in the resting node of the guide pulley 

Type of 
stresses  

Area of 
stresses 

Linear dimensions 
of the area  (d x h), 

cm 

Connection to the axis of 
rotation of the pulley, cm d/b h/b 

horizontally vertically 

Σred

А 16 х 16 

41 42 

0.20 0.20 

В 39 х 30 0.49 0.38 

С 86 х 91 1.08 1.14 

D 150 х 135 1.88 1.69 

σx

А 20 х 13 

38 42 

0.25 0.16 

В 40 х 25 0.50 0.31 

С 60 х 69 0.75 0.86 

D 150 х 135 1.88 1.69 

τху

А 25 х 31 

46 46 

0.31 0.39 

В 54 х 35 0.68 0.44 

С 66 х 127 0.83 1.59 

D 150 х 135 1.88 1.69 

 Note: b – the length of the guide pulley bearing foot; d – the area width; h – the area 
height. The intensities of the mode of deformation in the areas under study and the ratios of 
σмах1/σмах2, σx max / Ryγc, σred /1.15Ryγc, and τмах ./ 0.58Ryγc are given in Table 3. 

Table 3. The extremes of the local stresses in the resting node of the guide pulley 

Stress 
area 

σ мах 1, 
МPа 

σ мах 2 
МPа 

σ red 
МPа 

σ x мах, 

МPа 
τмах. 
МPа 

σмах 1/ 
σмах 2 

σмах/ 
σaver 

σx max/ 
Ryγc 

Σred/ 
1.15 Ryγc 

τмах./ 
0.58 Ryγc 

А 6.5 -361.0 364.3 -277.6 172.2 -0.018 3.8 0.99 1.1 1.1 

В 49.5 -147.9 177.9 -163.7 105.6 -0.335 1.9 0.58 0.6 0.6 

С 25.6 -121.2 135.8 -128.0 63.9 -0.212 1.4 0.46 0.4 0.4 

D 9.0 -103.2 108.0 -81.7 47.7 -0.087 1.1 0.29 0.3 0.3 

 From the above table it is evident that areas «А» and «D» have a stress condition close to 
the mode of deformation with the ratios σмах1/σмах2 equal to 0.018 and -0.087, respectively. 
The areas «В» and «С» are the areas of the plane and stress state with the ratios σмах1/σмах2 
equal to 0.335 and 0.212, respectively. The area «А» does not meet the strength requirements 
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because of the tangential and reduced stresses in the case of a combination of loads that will 
result in failure. 
 The maximum values of σмах1, σмах2, σred, σx мах, σy мах, τмах in the resting node of the guide 
pulley at different parameters of the resultant of the cable tension and the ratios of the 
maximum to the average stresses in the area of study (σмах/σaver) are given in Table 4 and Fig. 
14. 
 

Table 4. The extreme values of local stresses in the resting node of the guide pulley as the resultant inclination 
changes 

 

α, 
degrees σ1, МPа σ2, МPа Σred, 

МPа 
σx мах, 

МPа 
σy мах, 

МPа 
τмах. 

МPа σ1/σ2 
σмах/ 
σaver 

30 10.2 -369.7 374.9 -334.0 -56.5 171.2 -0.028 4.57 

35 9.3 -369.2 373.9 -332.4 -58.3 172.3 -0.025 4.33 

40 8.3 -367.1 371.3 -329.2 -59.8 172.7 -0.023 4.09 

45 7.2 -363.1 366.8 -324.3 -61.1 172.3 -0.020 3.86 

50 6.1 -357.4 360.5 -317.7 -62.2 171.1 -0.017 3.65 

55 5.0 -350.1 352.6 -309.6 -63.1 169.2 -0.014 3.44 

60 3.9 -341.1 343.0 -299.9 -63.7 166.5 -0.011 3.24 

65 2.7 -330.6 332.0 -288.8 -64.1 163.0 -0.008 3.04 
 

The maximum-average stress ratio in the area of study (σмах/σaver) 

 
 

Figure 14: The maximum-average stress ratio in the area of study at different parameters of the resultant of the 
hoisting cable tension. 

 
 With regards to local stresses in the sub-pulley structures, it was discovered that strength 
capacity limits were reached due to tangential and reduced stresses. Two methods of 
enhancing the node were theorized. Additional cross ribs could be placed under the exposed 

degrees 
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face of the support bearing: a) vertical rib; b) inclined rib (the rib inclination corresponds to 
the inclination of the resultant of the cable tension), see Fig. 15 and Table 5. 
 

 
а) 

 
b) 

 
Figure 15: Cross ribs under the exposed face of the support bearing: a) vertical rib; b) inclined rib 

 
Table 5. The extreme values of local stresses in the resting node of the guide pulley for two different additional 

cross ribs placements 
 

Rib 
arrange
-ment 

σ мах 1, 
МPа 

σ мах 2 
МPа 

σ прив. 

МPа 
σ x мах, 

МPа 
τмах. 
МPа 

σмах 1/ 
σмах 2 

σмах/ 
σaver 

σx max/ 
Ryγc 

σпred/ 
1.15 Ryγc 

τмах./ 
0.58 Ryγc 

Vertical 72.5 -185.2 230.2 -153.8 117.8 -0.4 2.0 0.5 0.7 0.7 

Inclined 145.6 -178.4 281.1 -169.7 121.0 -0.8 2.2 0.6 0.9 0.7 

 From the above table it is evident that a vertical rib arrangement under the exposed face of 
the support bearing is more effective than an inclined rib arrangement, because the maximum-
average stress ratios (σмах/σaver) are lower in the area of study. 
 
 
4  CONCLUSIONS 
 
 1. In the study, an excess of the reduced stresses in the sub-pulley structures was revealed. 
The reason for this lies in a zone of local stresses in the nodes of resting of the guide pulley 
bearings.  
 2. As a result of the numerical experiment, the following typical areas of distribution of 
local stresses in the resting node of the guide pulley were revealed: : «А» – the area of the 
local stress distribution under the support bearing foot close to the linear stressed state 
(σмах1/σмах2 = -0.018); «В» – the area of the plane mode of deformation in the wall of the 
pulley attachment point (σмах1/σмах2 = -0.335); «С» – the area of the plane mode of 
deformation in the girder wall (σмах1/σмах2 = -0.212); «D» – the area of the steady mode of 
deformation in the girder wall close to the linear stressed state (σмах1/σмах2 = -0.087). 
In the area of local stresses «А» in the girder wall of the sub-pulley structure an area for 
which no strength by tangential and reduced stresses (σred /1.15Ryγc=1.1;  
τмах ./ 0.58Ryγc=1.1) was provided in case of the accidental combination of loads. 

vertical rib inclined rib 
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3. To provide the strength of the girder walls in the resting nodes of the guide pulley, it is
recommended to place additional double vertical ribs under the exposed face of the support 
bearing in accordance with the diagram given in Fig. 15. 

4. The maximum-average stress ratio (σмах/σaver) in the girder wall of the sub-pulley
structure in the zone of local stresses «А» changes from 4.57 to 3.04 as the inclination of the 
resultant of the hoisting cable tension changes in the range of 300 

… 650.
5. The connection between the center of the area of local stresses (area «А») to the pulley

axis of rotation is constant as the inclination of the resultant of the hoisting cable tension 
changes. Both the width and height of this area increases 1.7 times as the inclination of the 
resultant changes. This relationship has linear characteristics. 
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Abstract. Monogenic functions play a role in quaternion analysis similarly to that of holo-
morphic functions in complex analysis. A holomorphic function with non-vanishing complex
derivative is a conformal mapping. It is well-known that in Rn+1, n ≥ 2 the set of conformal
mappings is restricted to the set of Möbius transformations only and that the Möbius trans-
formations are not monogenic. The paper deals with a locally geometric mapping property
of a subset of monogenic functions with non-vanishing hypercomplex derivatives (named M-
conformal mappings). It is proved that M-conformal mappings orthogonal to all monogenic
constants admit a certain change of solid angles and vice versa, that change can characterize
such mappings. In addition, we determine planes in which those mappings behave like confor-
mal mappings in the complex plane.
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1 INTRODUCTION

The complex function theory is considered as the theory of holomorphic functions, which are
null solutions of the Cauchy-Riemann operator. In quaternionic analysis, monogenic functions
are a generalization of holomorphic functions in the sense that they are null solutions of the
so-called generalized Cauchy-Riemann operator and they share with holomorphic functions so
many common properties such as integral representations, mean value theorems, maximum
principles, series expansions and etc.

One of the most interesting points of a holomorphic function is that it realises in a domain
Ω ⊂ C a conformal mapping providing that its C-derivative is different from zero in Ω. It is well
known that in Rn, n > 2, only Möbius transformations have the property of conformality and
they are not monogenic. Similarly to the complex analysis, we say that a monogenic function
with non-vanishing hypercomplex derivative realises in a domain a M-conformal mapping (M
stands for monogenic). It arises naturally a question: which geometric mapping properties
characterize M-conformal mappings, or how can we generalize the result of conformality from
complex case to higher dimensional spaces?

There are several attempts to describe geometric mapping properties of M-conformal map-
pings. Among others, H. Malonek proved that M-conformal mappings preserve angles where
angles in his sense must be understood in terms of ”Clifford measures” (see also [7]), while
in [8, 9] J. Morais showed that locally M-conformal mappings map a ball to a specific type of
ellipsoids with the property that the length of one semi-axis is equal to sum of lengths of two
other semi-axes. In fact, in [7] apart from introducing the ”Clifford measures” of a surface, the
author measures not angles between curves, but angles between hypersurfaces. That means a
generalization of angles from the complex plane (between curves) to higher dimensional spaces
(between hypersurfaces). These results motivate us to study actions of M-conformal mappings
on solid angles in R3.

In section 3, we have proved that actually M-conformal mappings change also solid angles.
However, there exists a subclass of monogenic functions which admits a certain change of a
specific type of solid angles. These are monogenic functions with non-vanishing hypercomplex
derivatives and orthogonal to all monogenic constants. The inversion theorem is also true, i.e
a mapping admits such a change of such solid angles must be in that subclass. Therefore that
geometric mapping property can characterize some M-conformal mappings. These results are
stated for linear mappings only but it holds for general mappings. The fact is that the actions of
general mappings on solid angles are completely determined by their linear parts and based on
the relation between the linear part and the whole function at the origin (see also [8]), one can
state the results for both of them. The section 4 is about the role of M-conformal mappings on
some planes analogously to that of holomorphic functions on the complex plane. They are not
conformal with respect to every angles between curves but we determine some planes where
they preserve such angles.

2 PRELIMINARIES

2.1 Some Definitions and Notations

Let H be the skew field of real quaternions with basic elements {1, e1, e2, e3} satisfying:

eiej + ejei = −2δij , (i, j = 1, 2, 3)
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Denote by A := spanR{1, e1, e2} a subset of H. Each x := (x0, x1, x2) ∈ R3 can be identified
with x := x0 + x1e1 + x2e2 ∈ A. As usual, we define Sc(x) := x0, x := x0 − x1e1 − x2e2 and
|x| :=

√
x2
0 + x2

1 + x2
2, respectively.

Let f : R3 ⊃ Ω → A, f(x) = [f(x)]0 + [f(x)]1e1 + [f(x)]2e2, be a reduced quaternion-
valued function where [f(x)]i (i = 0, 1, 2) are real-valued functions. Denote by L2(Ω;A;R)
the real-linear Hilbert space of square integrable A-valued functions defined in Ω endowed with
the scalar-valued inner product:

〈f, g〉L2(Ω,A,R) :=

∫

Ω

Sc(fg)dV (1)

We introduce a so-called generalized Cauchy-Riemann operator by

D :=
∂

∂x0

+
∂

∂x1

e1 +
∂

∂x2

e2

Definition 2.1. A C1-function f is called monogenic in a domain Ω if it satisfies Df = 0 in Ω.

With the adjoint Cauchy-Riemann operator D := ∂
∂x0

− ∂
∂x1

e1 − ∂
∂x2

e2, it is well-known that
the Laplacian operator in R3 can be decomposed into ∆ = DD = DD. It means that the class
of monogenic functions is a subset of harmonic functions.

Definition 2.2. Let f be a monogenic function in Ω. The expression 1
2
Df is called the hyper-

complex derivative of f in Ω.

Definition 2.3. A C1-function is called a monogenic constant if it is monogenic and its hyper-
complex derivative is equal to zero.

Example: f = x1e1 − x2e2 is a monogenic constant.

Remark 2.1. In [7], H. Malonek introduced the definition of M-conformal mappings and proved
that these are equivalent to monogenic functions with non-vanishing hypercomplex derivatives.

2.2 Complete Elliptic Integrals

We introduce Complete Elliptic Integrals of the first, second and third kind which will be
used in the next sections

K(k) :=

∫ 1

0

dt√
(1− t2)(1− k2t2)

,

E(k) =

∫ 1

0

√
1− k2t2

1− t2
dt,

Π(n, k) :=

∫ 1

0

dt

(1− nt2)
√
(1− t2)(1− k2t2)

.

They have the following properties:

• K(0) = Π(0, 0) = π
2
.

• d
dk
K(k) = − 1

k
K(k) + 1

k(1−k2)
E(k).

• ∂
∂n
Π(n, k) = 1

2(k2−n)(n−1)
[E(k) + k2−n

n
K(k) + n2−k2

n
Π(n, k)].

• ∂
∂k
Π(n, k) = k

n−k2

(
1

k2−1
E(k) + Π(n, k)

)
.

For more information, see also [5, 6].
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3 M-CONFORMAL MAPPINGS WITH SOLID ANGLES

We investigate now the change of solid angles under linear M-conformal mappings F (x) =
ax0 + bx1e1 + cx2e2, where a, b, c are real, non-zero and have same signs. We refer readers to
J. Morais’ dissertation [8] to see how general linear monogenic mappings can be transformed
to our case.

θ

W0

W1

W2

L

Ω

S1 S2

SX0R

X1

X2

F (x) = ax0 + bx1e1 + cx2e2

Figure 1: The mapping F (x) changes the solid angle

Let’s consider a cone around the x0-axis characterized by an angle θ as shown in the Figure
1. In order to calculate the solid angle of such a cone, we draw a sphere with the radius R. The
area of the surface on the sphere which lies inside the θ-cone can be computed as follow:

Sx =

∫∫

D

√
1 +

(
∂x0

∂x1

)2

+

(
∂x0

∂x2

)2

dx1dx2,

where D = {(x1, x2) : x
2
1 + x2

2 ≤ R2 sin2(θ)} is the projection of the considered surface on the
plane R2(x1, x2) and x0 =

√
R2 − x2

1 − x2
2. With simple calculations, it leads to:

Sx = 2πR2(1− cos(θ)).

Then the solid angle of the cone is:

Sx

R2
= 2π(1− cos(θ)). (2)

By applying the linear mapping F (x) = ax0+bx1e1+cx2e2, where a, b, c are all real positive
(or negative) numbers, the sphere of radius R transforms into an ellipsoid S, the cone changes to
ellipse-based cone and the surface on the ellipsoid restricted by the ellipse-based cone becomes
S1. In order to calculate the solid angle in this case, we draw another sphere with radius L, then
project S1 onto the L-sphere according to the ellipse-based cone and get S2.

It can be proved that the projection of S2 on the plane R2(w1, w2), namely Ω, is an ellipse
with the two semi-axes: 



A1 = L δ tan(θ)√

1+δ2 tan2(θ)

A2 = L ε tan(θ)√
1+ε2 tan2(θ)

where δ = b/a, ε = c/a.
Similarly, the changed solid angle restricted by S2 can be calculated:
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Sw

L2
= 2π +

4A1A2

L
√

L2 − A2
2

K

(√
A2

1 −A2
2

L2 − A2
2

)
− 4LA1

A2

√
L2 −A2

2

Π

(
A2

2 − A2
1

A2
2

,

√
A2

1 − A2
2

L2 − A2
2

)
.

(3)

Remark 3.1. In fact, Sw/L
2 does not depend on L. However for a short expression, we prefer

the formula (3).

We define the change of such a solid angle under the mappings F (x) by:

KF (θ) :=
Sw/L

2

Sx/R2
=

1

2π(1− cos(θ))

Sw

L2
. (4)

Theorem 3.1. Let F (x) = ax0+ bx1e1+ cx2e2 be a bijective linear mapping on R3. Moreover
suppose that F is monogenic and orthogonal to all monogenic constants. Then F changes the
solid angle characterized by the angle θ around the x0-axis by

K0(θ) =
1

1− cos(θ)

(
1− 2√

4 + tan2(θ)

)
. (5)

Proof. If F (x) is monogenic and orthogonal to all monogenic constants, then a = 2b = 2c.
The result follows directly.

One is asking whether the quantity K0(θ) characterizes uniquely mappings which are mono-
genic and orthogonal to all monogenic constants?

Theorem 3.2. Let F (x) = ax0 + bx1e1 + cx2e2 be a bijective linear mapping in R3, where
a, b, c are real and have the same signs. The necessary and sufficient condition for F (x) to
be monogenic and orthogonal to all monogenic constants is that it changes the solid angle
characterized by θ around the x0-axis by K0(θ) as in (5).

Consider the function

f(ε) =
π

2
+

ε√
16ε2 + 1

K

(√
1− 16ε4

16ε2 + 1

)
− 1 + ε2

ε
√
16ε2 + 1

Π

(
16ε4 − 1

ε2(16ε2 + 1)
,

√
1− 16ε4

16ε2 + 1

)
.

(6)
We have

Lemma 3.1. Let f(ε) have the form as in (6), then the derivative of f(ε) is given as follows:

f ′(ε) =
1

(ε2 + 1)
√
16ε2 + 1(1− 16ε4)

(7)

×
(
(16ε4 + 32ε2 + 1)E

(√
1− 16ε4

16ε2 + 1

)
− (32ε4 + 32ε2)K

(√
1− 16ε4

16ε2 + 1

))
.

Proof. It comes directly from the properties of the complete elliptic integrals.

Proof. (theorem 3.2)
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• Consider the equation KF (θ) ≡ K0(θ).

• At θ = 0 =⇒ δ = 1
4ε

• At θ = π/4, we obtain

KF (
π

4
) =

2

π(1−
√
2
2
)
f(ε). (8)

The Figure 2 shows that f(ε) and therefore KF (
π
4
) takes the maximum value at ε = 1/2.

Figure 2: The graph of function f(ε)

This can be proved according to the lemma 3.1. It means that K0(
π
4
) = KF (

π
4
) has the

unique solution ε = 1/2. This completes the proof.

4 M-CONFORMAL MAPPINGS ON PLANES

We have proved that on the x0-direction, a mapping F (x) = ax0 + bx1e1 + cx2e2 admits a
certain change of solid angles providing that it is monogenic and orthogonal to all monogenic
constants. In addition, F (x) maps a ball to a prolate spheroid which is symmetric with respect
to x0-axis. A question follows: How does the mapping F (x) behave on planes which are
perpendicular to the x0-axis?

Theorem 4.1. Let F (x) = ax0 + bx1e1+ cx2e2 be a function defined in a domain Ω ⊂ R3 with
non-vanishing Jacobian determinant. Suppose further that F (x) is monogenic and orthogonal
to all monogenic constants, then F (x) preserves angles on planes which are perpendicular to
the x0-axis.

Proof. Without loss of generality, let’s consider the plane R2(x1, x2). Then

F (x)
∣∣∣
R2(x1,x2)

= bx1e1 + cx2e2 (9)

is identified with a (linear) complex function, f(z) = bx+ icy. The assumptions in the theorem
lead to ∂zf(z) = 0, and consequently f(z) is a holomorphic function. This means that the
restriction of F (x) to the plane R2(x1, x2) is a conformal mapping.

Remark 4.1. This is a special property because usually the restriction of a monogenic function
to a plane is not a holomorphic function there.
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Figure 3: Monogenic mappings preserves angles on the plane R2(x1, x2).
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Abstract. The topic of structural robustness is covered extensively in current literature in struc-
tural engineering. A few evaluation methods already exist. Since these methods are based on
different evaluation approaches, the comparison is difficult. But all the approaches have one in
common, they need a structural model which represents the structure to be evaluated. As the
structural model is the basis of the robustness evaluation, there is the question if the quality of
the chosen structural model is influencing the estimation of the structural robustness index.

This paper shows what robustness in structural engineering means and gives an overview of
existing assessment methods. One is the reliability based robustness index, which uses the reli-
ability indices of a intact and a damaged structure. The second one is the risk based robustness
index, which estimates the structural robustness by the usage of direct and indirect risk. The
paper describes how these approaches for the evaluation of structural robustness works and
which parameters will be used. Since both approaches needs a structural model for the esti-
mation of the structural behavior and the probability of failure, it is necessary to think about
the quality of the chosen structural model. Nevertheless, the chosen model has to represent the
structure, the input factors and reflect the damages which occur. On the example of two different
model qualities, it will be shown, that the model choice is really influencing the quality of the
robustness index.
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1 INTRODUCTION

A large amount of design parameters exist in structural engineering, which have to be taken
into account during the design process. A very crucial, but sometimes neglected design pa-
rameter is the structural robustness. However, a number of structural collapses in the past [1]
have led to a growing importance of this topic. Therefore the topic of structural robustness has
been increasingly addressed in literature in recent years. Such that the discussions regarding the
development of a practical measurement for the determination of structural robustness have al-
ready started. Several approaches for the evaluation of the structural robustness were developed
and already exist [2].

The evaluation approaches are based on the probability of failure according to a given input
scenario. So it is necessary to evaluate the structural behavior. The basis for this is a structural
model, which has to represent all significant input factors. That means it must be able to repre-
sent the structural system as well as the influencing loads. For the evaluation of robustness it is
necessary that damage in the structural system occurs. That being the case, the structural model
must also be able to reflect damage. This shows that the right choice of the structural model
highly influences the evaluation process for the structural robustness.

Also, the Eurocodes addresses the topic of structural robustness in DIN-EN 1990 [3] and
DIN-EN 1991-1-7 [4]. An overview and also some additional background information are given
in [5]. This shows that the topic of structural robustness is gaining more and more attention.
Therefore, it is essential to consider the quality of the existing approaches and the influences of
the used structural models.

2 THE TERM ROBUSTNESS

2.1 Robustness in other disciplines

The word robust originated from the Latin word rōbustus, which means hard, resistant,
strength. The word robustness is often used in the field of science and describes the property of
an object or activity. But as shown in table 1, the meaning of the word robustness sometimes
differs.

In technical disciplines, robustness is a sign of high quality. Thus, for example, robust ma-
chines can work without any problems under a substantial number of difficult conditions. A
partial overload or short-term incorrect use does not lead to damages [6]. That means, an in-
crease of robustness are always equated with an increase in product quality. Therefore, the goal
of a more robust product is clearly comprehensible and can be implemented effectively.

2.2 Robustness in structural engineering

In structural engineering, the definition of robustness is not so transparent like in technical
disciplines. Because of that, there are some cases where wrong definitions of the term structural
robustness exist. The common definition of robustness in structural engineering is related to the
behavior of a structure, to resist an occurred input scenario, which temporarily exceeds the limit
state of the structure. Thereby, a part of the structural system directly fails by reaching the load
bearing capacity. But the rest of the structure has to be stable and rearrange the loads in such a
way that no further structural elements fails. This means that the average of damage has to be
proportional to the resulting input scenario [7]. Another scenario which has to be considered
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Table 1: Different disciplines - Different definitions of robustness [8]

Discipline Definition

Structural Standards The consequences of structural failure are not
disproportional to the effect causing the failure...

Software Engineering The ability...to react appropriately to abnormal
circumstances (i.e., circumstances ”‘outside of
specifications”’). A system may be correct without being
robust...

Product Development The measure of the capacity of a production process to
remain unaffected by small but deliberate variations of
internal parameters so as to provide an indication of the
reliability during normal use...

Statistics A robust statistical technique is insensitive against small
deviations in the assumptions...

Design Optimization A robust solution in an optimization problem is one that
has the best performance under its worst case...

for a robust structure, is the ability of the structure to compensate for deviations between the
designed model and the created structure. Since human errors during the building process are
sometimes not negligible, the structure needs to be stable against variations in the execution.
Also, human errors can occur during the design process. However, since the topic of human
errors in structural engineering is expansive, it will not be further addressed in this paper. For
further information, there is an ample amount of available literature (e.g. [9] to [12]).

The requirements for structural robustness are sometimes implicitly integrated in the existing
codes and design methods, without using the word robustness. Thus, the structural engineer is
sometimes more connected with the subject of robustness than he/she is aware of. One example
is the design of redundant structures. By the design of more support conditions than necessary,
the system includes unused bearing capacities, which can be exhausted in the case of local
damage (formation of plastic hinges). Another example is the structural design of a Gerber
girder. The arrangement of the hinges has to be in such a way, that the failure of one part of the
girder does not lead to a collapse of the overall system.

There are also structural properties which really have to be separated from the topic of struc-
tural robustness. The requirement that a structural system has to announce a failure or collapse
with high deformations or by the formation of cracks is not related to the term robustness. This
is only the request on ductility. Ductility also includes the usage of non-brittle materials. An
example, where non-existing ductility leads to a structural collapse is the progressive collapse
of power line towers in Westphalia in the year 2005. Due to the structures being more than
50 years old, the codes in existence at this time did not consider the topic of ductility - the
structures were constructed with converter steel [7]. Today this type of steel is not allowed
in structural engineering, since the problems of ductility and sensitivity to aging is common
knowledge nowadays.
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2.3 Non-robust structures

History has shown that there were several structural collapses in the past, which could be
related to non-robust structures. This means that the consequences of damage were extensively
higher than the original causes. One of the most famous structural failures according to a
less robust structure is the ”‘Ronan Point Disaster”’ in 1968 in East London [13]. Due to
a small explosion in one of the upper floors, a section of the building completely collapses,
shown in figure 1. The insufficient design of a connection point, which was not resistant against
horizontal loads led to this disaster. Another example for a collapse of a structure related to a
non-robust system is the collapse of the exhibition hall in Katowice (Poland) in the year 2006
[14]. The structural system consisted of a very light weight construction and an overload of
only 20 % of snow led to the total collapse.

Figure 1: Progressive collapse of the Ronan Point Tower [7]

By considering the topic of structural robustness, it is important to have in mind that robust
structures also cannot resist each input action. The design according to the actual standards
leads to a bearing capacity dimensioning of each structural member and connection point re-
garding the given design loads, such that the structure is also robust against this loads. Thus, it is
essential to note that an increasing of the assumed loads, an extraordinary load or a pre-damage
in the structure leads to a decreasing of the structural robustness and thus to an increase in the
probability of failure. The existing approaches for structural robustness uses these differences
in the probability of failure to quantify the structural robustness of a system. An overview for
different evaluation approaches is given in section 3.
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As it is not feasible to check and establish the structural robustness for all potential loads
and load histories in the lifetime of a structure, as well as all variations in the execution during
the building process, it is necessary to think about the right choice of lifetime scenarios. In any
case, the fact that with increasing robustness against several factors or scenarios the structure is
also more and more expensive has to be considered.

3 QUANTIFICATION OF STRUCTURAL ROBUSTNESS

The quantification of structural robustness is one of the aspiring topics in structural engineer-
ing in the last years. The new Eurocodes addresses the topic and require, that structures have to
be robust. This means that the structure has to react in such a way that the overall damage does
not extend disproportionately to the original cause [3]. Thus, if an input scenario occurs and a
part of the structural system exceeds the limit state and fails, the rest of the system must be able
to be stable on its own. Since this declaration is not very comprehensible, different approaches
for the evaluation of the structural robustness were developed. Two of them are the reliability
based robustness index, which is described in section 3.1 and the risk based robustness index,
which is shown in section 3.2. Other approaches are also available in the literature.

3.1 Reliability based robustness index

According to the fact that the probability of failure of a structural system changes with every
modification of the loads or any damage scenario, it is possible to evaluate the structural robust-
ness with the help of the system reliability index β, according to the approach of Frangopol and
Curly [15]. The reliability index β is defined in equation 1, where Φ is the normal distribution
function with X = 0 and σ = 1 and Pf is the probability of failure of the considered system. In
the safety concepts of structural engineering the reliability index β is strongly embedded, since
the determination of the reliability level of a structure is already done by the reliability index β.

β = −Φ−1(Pf ) (1)

The reliability based robustness index by Frangopol and Curly [15], which is defined in
equation 2, is based on two different reliability indices. The reliability of the intact structure,
with normal design loads and without any damage is described by βintact. Wherein βdamaged is
describing the reliability of the damaged system, which reaches the load bearing capacity by an
extraordinary input scenario.

IRob =
βdamaged
βintact

(2)

The defined robustness index IRob could take values between zero and one, if both reliability
indices are positive values. If the probability of failure from one of the systems is higher than
50 %, the robustness index becomes negative. In that case, the robustness is very low, since
a robustness of one indicates the best robustness. That means if the robustness index of a
structural system is one, there would be no change in the probability of failure after some
damage has occurred.

The estimation of the probability of failure could be done by stochastic modeling and the
usage of structural reliability methods according to the probabilistic model code [16].
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3.2 Risk based robustness index

Another approach for the evaluation of the robustness of a structural system, is the risk based
robustness index. This approach was developed by Baker et al. [17] and uses the ratio between
direct and indirect risk for a predefined load or lifetime scenario. Since there is the possibility of
different outcomes by one input scenario, they added an event tree, which includes the different
model responses. An example of this event tree is shown in figure 2.

EXBD 

_ 
D 

_ 
F 

D 

F 

0 

Cdir + Cind

Cdir

Figure 2: An event tree for robustness quantification [17]

The initial situation for the evaluation of the structural robustness is given by a structural
model. This model describes the structural system and must be able to represents all the failure
mechanisms and load or damage scenarios. By adding the first exposure EXBD, the system
has the potential to react in two different ways. The best way is, that the system is picking
up the load without any damage, which leads to path D and no consequences appears. If the
load is too high and some damage occurs, the system is following path D. The consequences
arising from this damage, may be direct (Cdir) or indirect (Cind). Direct consequences are
those that result explicitly from the first exposure. In this case, damage occurs and one or more
structural members fails. Afterwards the load rearranges to other structural members and the
new system works independently. If damage occurs and the new system is not able to pick
up all the rearranged loads and new damage occurs, it will be described by Cind as indirect
consequences. It is also possible, that in this way the whole structure fails. As a result, the
consequences increase to a maximum.

Since the robustness index in the approach of Baker et al. [17] is defined by the ratio of direct
and overall risk, as shown in equation 5, it is necessary to determine the risk of the structure.
The term risk is defined as the effect of uncertainty on objectives [18], which means that in the
context of structural engineering, risk is the probability of failure of a predefined input scenario
multiplied with the consequences of this event [19]. In the case of the event tree shown, the
direct risk could therefore be described by equation 3 and the indirect risk can be estimated by
equation 4.

RDir =
∫

x

∫

y

CDir fD|EXBD
(y|x)fEXBD

(x) dy dx (3)
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RInd =
∫

x

∫

y

CIndP (F |D = y)fD|EXBD
(y|x)fEXBD

(x) dy dx (4)

The robustness index IRob as shown here can assume values between zero and one, where one
indicates a structure without any indirect risk. This means one indicates the highest robustness,
where no additional failure occurs. To make this a little bit clearer, there is an application of
this risk based robustness evaluation in section 5.

IRob =
RDir

RDir +RInd

(5)

4 STRUCTURAL MODELS

A high number of partial models are already in existence in structural engineering. These
could be used to model and evaluate the structural behavior or the load bearing capacity of
a structural system. Therefore it is necessary, to really think about the right choice of models
which will be used during the design process. Each design goal and every influencing parameter
has to be implemented in the used model. This could be done by the usage of an overall, global
model, or by coupling of several partial models. This means that in each case there is an increase
of model complexity.

One way to choose the models for the design process is by selection based on the experience
of the engineer. However, this is not very credible. Another way is the evaluation of the prog-
nosis quality of different coupled partial models. An approach for this was developed by Reuter
[20] within Research Training Group 1462 at Bauhaus-Universität Weimar. By coupling of dif-
ferent partial models, it is possible to evaluate the quality of the overall model answer. In this
way it is possible to create the best model combination for each output value. The evaluation of
coupled partial model by using graph theory was done by Keitel et al. [21]. Since both model
assessment methods are very practicable to evaluate the best model combination, it would be a
promising approach to couple the model evaluation and the estimation of structural robustness.

structural
model 

EXBD 

_ 
D 

_ 
F 

D 

F 

0 

Cind + Cdir

Cdir

model 1 

model 2 

model 3 

model
selection 

……….. 

Figure 3: Expanded event tree for model choice and robustness quantification
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As mentioned before, there are several approaches to evaluate the robustness of structural
systems. One of these is the risk based robustness index, which is described in section 3.2. As
recommended in section 3.2, the evaluation will be done by the estimation of direct and indirect
risk. To that effect, there was shown an event tree, which is necessary in order to identify the
different model outcomes. As also mentioned before, there are no limitations or quality checks
for the structural models which will be used to reflect the structure. Shown in figure 3 is a
scenario how this event tree expands if the model choice or model evaluation is added.

The different input models could be different partial models, which have to be combined to
a global model. But also global models, which describes the whole structural behavior with
different approaches. Thus, it is for example possible to describe the supporting conditions of a
structural model by fixed nodal supports, by implementation of springs or by modeling of a soil
half-space. Another example for different structural models is the choice between linear and
nonlinear material behavior. Thus, all models are more or less able to represent the structural
system, but the quality of this approximation is sometimes very different. In order to make this
clearer, find an example given in the next section.

5 APPLICATION ON A STRUCTURAL MODEL

To show that the model choice is influencing the assessment of the structural robustness,
there is an example given in this section. The model describes a system of several steel columns
under pressure load such that the structural system leads to buckling failures, which is a sub-area
of stability failures.

The worst structural failures in steel constructions are caused by stability problems. Since
failures according to stability problems are usually very abrupt and without any prior notice, the
chance to prevent the collapse or evacuate people before the collapse takes place is very low. To

EI = ∞ 

(E, W, A, w0) 

…….C1 C2 C3 Cn

F1 F2 F3 Fn

EI = ∞ 

(E, W, A, w0) 

…….C1 C3 Cn

F1 + x F3 + x Fn + x 

Figure 4: Structural system before and after damage occurs
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avoid this type of failures, a variety of computational models still exists. These models belong
to the review of load bearing capacity and the need for compliance is governed by the codes.
However, the codes did not prescribe an approach for the evaluation of the structural robustness.
Therefore, it is necessary to think about the usage of the risk based robustness index.

The chosen system, which is shown in figure 4, describes a structure of n columns under
pressure load. These columns are arranged in a row and coupled by a beam with stiffness
EI = ∞. The connection points of the columns are hinged, which means Euler case II. The
input parameters of the structural model are stochastic, to reflect the scattering in real structures.
This means that the cross-sections, material parameters, input loads and also imperfections will
be described as scattering values. To show the influences of two different structural models,
the evaluation was done by two different model approaches. The first model uses nonlinear
kinematics to estimate the load bearing capacity, which means the deformation of the structure
will be taken into account. The second model uses only linear kinematics. Thus, this means
that the second model has a much poorer model quality, since it overestimates the structural
behavior by a large margin.

The evaluation of the risk based structural robustness of the example shown will be done
according to the event tree in figure 3. After the first exposure (EXBD) occurs, the algorithm
calculates the load bearing capacity of each structural member. With this, it is possible to
separate into two different model responses. If there is no damage in the structure, the model
response is path D - no damage occurs, and if damage occurs, the structure goes to path D. So
it is possible, to estimate the probability of failure for the first step, which describes the direct
failures. After damage occurs, the model rearranges the loads from the failed members to the
rest of the structure. This is shown in figure 4, where x indicates the rearranged load from the
failed component. By the use of the new loads, the system calculates the load bearing capacity

10 20 30

0.10

0.20

0.30

number of columns

I R
o
b

geom. linear (CV=0.1)
geom. NL (CV=0.1)

Figure 5: Risk Based Robustness Index for two different models
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again. If new damage occurs the structure follows path F , and if there is no additional damage
the system follows path F .

According to the approach of the risk based robustness index, it is necessary to distinguish
between direct and indirect risk. As mentioned before, direct risk is the probability of failure of
the intact system (D), multiplied with the consequences from this direct failure. The estimation
is done according to equation 3. The indirect risk is estimated according to equation 4, where
the probability of failure is described by D and F . For the definition of the consequences, some
assumptions were made: the consequences for the failure of one component are counted by 10,
the consequences for the failure of the whole structure are counted by 1000. Thus, a failure of
the whole structure will be penalized strongly.

The evaluation of the risk based robustness index is carried out for the two structural models,
with geometrical linearity and nonlinearity. As shown in figure 5, the difference in the model
response is really high. With an increasing number of columns in the structural models, the
robustness index of both models is also increasing. But with an increasing number of columns,
the difference in the model output is increasing as well. As shown, the model with the better
model quality (geometrical nonlinear model), estimates a lower robustness index. This means
that the model with the poor model quality overestimates the robustness of the given structure.

10 20 30

0.25

0.50

0.75

number of columns

I R
o
b

geom. linear (CV=0.05)
geom. NL (CV=0.05)
geom. linear (CV=0.1)
geom. NL (CV=0.1)

Figure 6: Robustness index for two different models and different coefficient of variation

Figure 6 shows the model outputs for both models, with a different coefficient of variation
for the model input parameters. As can be seen, a smaller coefficient of variation in the input
parameters leads to a higher robustness of the structural models. But the problem is that the
overestimating of the poor model also increases. The linear model estimates a model robustness
of up to 0.91, wherein the nonlinear model estimates a model robustness of 0.47. This means
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that the linear model identifies a very robust structure, wherein the nonlinear model identifies
a less robust structure. So it is shown, that the influence from the structural model on the
evaluation of the robustness index is very high. A correct model choice in front of the evaluation
of the structural robustness is recommendable.

During the research an attempt was also made to evaluate the structural robustness for both
models according to the reliability based robustness index. However, there was the problem that
the usage of the reliability indices leads to a very high scattering in the model answers. Since
the probabilities of failure in the used models are sometimes very small, a high scattering in
the reliability indices occurs and as such, the evaluation was not meaningful. Perhaps, a model
with a lesser number of stochastic input parameters will lead to usable model outputs.

6 CONCLUSIONS

In structural engineering a lot of design parameters which have to be taken into account
during the design process are already in existence. One of them is the structural robustness
index. However, since there is no common definition for the term robustness and no universal
evaluation algorithm already in existence, most of the engineers did not consider this design
parameter.

The topic of structural robustness has been addressed in engineering literature several times
during the last years. Thereby, several evaluation approaches were developed. Two of them
are the reliability based and the risk based robustness index, which have been described in
this paper. For the evaluation of the risk based robustness index, an event tree that shows the
different model answers according to robustness problems currently exists. The starting point
of this event tree and also the basis for each robustness evaluation is the structural model. Since
all the approaches for the evaluation of the structural robustness have no requirements to the
quality of the used structural models, this paper shows that the chosen structural model highly
influences the robustness index. In the given example of n columns under pressure load, the
model with the less quality was strongly overestimating the structural robustness. This means
that a poor model leads to an overestimation of the structural robustness. Thus, the question
regarding the right model choice for the structural model is of utmost importance.

In the next steps, the structural model of a multi-storage frame will be used to evaluate the
influences of different partial models more in detail. There, it will also be possible to show the
influences of different static systems. By adding a model quality evaluation process in front of
the robustness estimation, it may be possible to improve the quality of the structural robustness
indices.
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Abstract

The Bernstein polynomials are used for important applications in many branches of Mathematics
and the other sciences, for instance, approximation theory, probability theory, statistic theory, num-
ber theory, the solution of the di¤erential equations, numerical analysis, constructing Bezier curves,
q-calculus, operator theory and applications in computer graphics. The Bernstein polynomials are
used to construct Bezier curves. Bezier was an engineer with the Renault car company and set
out in the early 1960�s to develop a curve formulation which would lend itself to shape design.
Engineers may �nd it most understandable to think of Bezier curves in terms of the center of mass
of a set of point masses. Therefore, in this paper, we study on generating functions and functional
equations for these polynomials. By applying these functions, we investigate interpolation function
and many properties of these polynomials.
Key Words and Phrases. Bernstein polynomials, Bezier curve, Generating function, Interpo-
lation function, Mellin transformation, Gamma function, , Bernoulli polynomials of higher-order,
Stirling numbers of the second kind.
2000 Mathematics Subject Classi�cation. 14F10, 12D10, 26C05, 26C10, 30B40, 30C15,
11B68, 11M06, 33B15, 33B15, 65D17.

1. Introduction

In this section we can use the following notation:

[x : q] =
1� qx
1� q :

Observe that
lim
q!1

[x : q] = x:

If q 2 C, we assume that j q j< 1. If q 2 R, we assume that 0 < q < 1.
In this paper, we modify generating functions for the q-Bernstein polynomials, which are many

applications: in approximations of functions, in statistics, in numerical analysis, in p-adic analysis
and in the solution of di¤erential equations. Using the functional equations for the generating
functions and Laplace transform, we derive fundamental properties and some identities of the q-
Bernstein polynomials.
The remainder of this paper is summarized as follows:
Section 2: We construct generating function of the q-Bernstein basis functions. Using these

generating, some identities and properties of the q-Bernstein basis functions can be given.
Section 3: We give some properties for the q-Bernstein basis functions (Partition of unity, Alter-

nating sum, Subdivision property).
Section 4: We give recurrence retaliations and derivative of the q-Bernstein basis functions.
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Section 5: We give application related to the Laplace transform and generating function.
Section 6: We construct interpolation function for the q-Bernstein polynomials.
Section 7: We give further remarks on the q-Bezier curves and integral representation for the

q-Bernstein basis functions.

2. Modified the generating function for the q-Bernstein basis type functions

De�nition 1. Let x 2 [0; 1]. Let k and n be nonnegative integers with n � k. Then we de�ne

bnk(x; q) =

�
n
k

�
[x : q]kq(n�k)x [(1� x) : q]n�k ; (2.1)

where �
n
k

�
=

n!

k!(n� k)!
and k = 0; 1; 2; :::; n.

Generating functions for the q-Bernstein basis functions bnk(x; q) can be de�ned as follows:

De�nition 2. Let x 2 [0; 1] and t 2 C. Let k be nonnegative integers. Then we de�ne

Fk;q(t; x) =
1X
n=0

bnk(x; q)
tn

n!
: (2.2)

Observe that there is one generating function for each value of k.
We modify generating function for the q-Bernstein type basis functions as follows:

Theorem 1. Let x 2 [0; 1] and t 2 C. Then we have

Fk;q(t; x) =
1

k!
tk[x : q]k exp (qx [(1� x) : q] t) : (2.3)

Proof. By substituting (2.1) into the right hand side of (2.2), we obtain

Fk;q(t; x) =
1X
n=0

��
n
k

�
[x : q]kq(n�k)x [(1� x) : q]n�k

�
tn

n!

=
tk[x : q]k

k!

1X
n=k

(qx [(1� x) : q] t)n�k

(n� k)! :

The right hand side of the above equation is a Taylor series for

exp (qx [(1� x) : q] t) ;

thus we arrive at the desired result.

3. Some properties for the q-Bernstein basis functions are given as follows

In [13] and [14], Simsek present much background material on computations functional equation
of the generating function for the Bernstein basis functions. We give some functional equations
which are used to �nd some new identities related to the q-Bernstein basis functions. Our method
is similar to that of Simsek�s [13].
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3.1. Partition of unity. The polynomials bnk(x; q) have partition of unity, which is given by
the following theorem.

Theorem 2. (Sum of the polynomials bnk(x; q))

nX
k=0

bnk(x; q) = 1:

Proof. By using (2.3), we have
1X
k=0

Fk;q(t; x) = exp (qx [1� x : q] t)
1X
k=0

1

k!
tk[x : q]k:

The right hand side of the above equation is a Taylor series for

exp ([x : q] t) ;

thus we obtain
1X
k=0

Fk;q(t; x) = exp ((qx [1� x : q] + [x : q]) t) : (3.1)

If we substitute the following identity

[a+ b : q] = [a : q] + qa [b : q] ;

into the right-hand side of (3.1), we �nd that
1X
k=0

Fk;q(t; x) = exp(t):

By using (2.2) and Taylor expansion of exp(t) in the above equation, we get

1X
n=0

 
nX
k=0

bnk(x; q)

!
tn

n!
=

1X
n=0

tn

n!
:

By comparing the coe¢cients of t
n

n! on both sides, we arrive at the desired result.

Remark 1. Simsek and Acikgoz [15] de�ned the q-Bernstein type basis functions as follows:

Yn(k; x; q) =

�
n
k

�
[x : q]k [1� x : q]n�k : (3.2)

The polynomials Yn(k; x; q) have not partition of unity. That is
nX
k=0

Yn(k; x; q) = ([x : q] + [1� x : q])n 6= 1: (3.3)

By using (2.1) and (3.2), one can easily see that

bnk(x; q) = q
x(n�k)Yn(k; x; q):

Thus generating functions of the polynomials bnk(x; q) give us modi�cation that of the polynomials
Yn(k; x; q).
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Remark 2. In the special case when q ! 1, De�nition 1 immediately yields the corresponding well
known results concerning the classical Bernstein basis functions Bnk (x):

Bnk (x) =

�
n
k

�
xk(1� x)n�k; (3.4)

where k = 0; 1; � � � ; n and x 2 [0; 1] cf. ([1]-[15]).
Since

qx [(1� x) : q] = 1� [x : q] ;
we modify De�nition 1 as follows:

bnk(x; q) =

�
n
k

�
[x : q]k (1� [x : q])n�k

or
bnk(x; q) = B

n
k ([x : q]) :

3.2. Alternating sum. By using (2.3), we obtain the following functional equation:
1X
k=0

(�1)kFk;q(t; x) = exp ((qx [1� x : q]� [x : q]) t) : (3.5)

By using same method with the author [14] and (3.5), we derive a formula for the alternating
sum which is given the following Theorem:

Theorem 3. (Alternating sum)
nX
k=0

(�1)kbnk(x; q) = (1� 2 [x : q])
n : (3.6)

Remark 3. If we let q ! 1 in (3.6), then we arrive at the well-known Goldman�s results [4]-[3,
Chapter 5, pages 299-306] and see also [14]:

nX
k=0

(�1)kBnk (x) = (1� 2x)
n :

3.3. Subdivision property. By using similar method of Simsek�s [13], we de�ne the following
functional equation:

Fk;q(t; xy) = Fk;q(t [y : qx] ; x) exp (qxy [1� y : qx] t) : (3.7)

By using the above functional equation, we derive subdivision property for the q-Bernstein basis
functions by the following theorem:

Theorem 4. Then the following identity holds:

bnj (xy; q) =
nX
k=j

bkj (x; q)b
n
k(y; q

x):

Remark 4. If we let q ! 1 in Theorem 4, we have

Bnj (xy) =

nX
k=j

Bkj (x)B
n
k (y): (3.8)

The above identity is fundamental in subdivision property for the Bernstein basis functions cf.
([4]-[3, Chapter 5, pages 299-306], [14], [13]).
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4. Recurrence retaliations and derivative of the q-Bernstein basis functions:

In this section, we give higher order derivatives of the Bernstein basis functions. We de�ne

Fk;q(t; x) = gk;q(t; x)hq(t; x); (4.1)

where

gk;q(t; x) =
tk [x : q]k

k!
and

hq(t; x) = exp (q
x [1� x] t) :

In this section we are going to di¤erentiate (4.1) with respect to t to derive a recurrence relation
for the Bernstein basis functions.
Using Leibnitz�s formula for the vth derivative, with respect to t, we obtain the following higher

order partial di¤erential equation:

@vFk;q(t; x)
@tv

=

vX
j=0

�
v
j

��
@jgk;q(t; x)

@tj

��
@v�jhq(t; x)

@tv�j

�
: (4.2)

From the above equation, we have the following theorem:

Theorem 5.
@vFk;q(t; x)

@tv
=

vX
j=0

bvj (x; q)Fk�j;q(t; x): (4.3)

By same method in [14] and [13], Theorem 5 is proved by induction on v using (4.2).
Using (2.2) and (3.4) in Theorem 5, we obtain a recurrence relation for the Bernstein basis

functions:

Theorem 6.

bnk(x; q) =

vX
j=0

bvj (x; q)b
n�v
k�j (x; q): (4.4)

Proof. By substituting right hand side of (2.2) into (4.3), we get

@v

@tv

 1X
n=0

bnk(x; q)
tn

n!

!
=

1X
n=0

0@ vX
j=0

bvj (x; q)b
n�v
k�j (x; q)

1A tn

n!
:

Therefore
1X
n=v

bnk(x; q)
tn�v

(n� v)! =
1X
n=0

0@ vX
j=0

bvj (x; q)b
n�v
k�j (x; q)

1A tn

n!
:

From the above equation, we get

1X
n=v

bnk(x; q)
tn�v

(n� v)! =
1X
n=v

0@ vX
j=0

bvj (x; q)b
n�v
k�j (x; q)

1A tn�v

(n� v)! :

Comparing the coe¢cients of t
n

n! on the both sides of the above equation, we arrive at the desired
result. �
Remark 5. If we let q ! 1 in (4.5), then we arrive at Theorem 9 in [14].

By using (2.3), we derive derivative of the q-Bernstein basis functions for in the next theorem:
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Theorem 7. Let x 2 [0; 1]. Let k and n be nonnegative integers with n � k. Then we have

d

dx
bnk(x; q) =

qx log(qn)

q � 1
�
bn�1k�1(x; q)� b

n�1
k (x; q)

�
: (4.5)

Remark 6. If we let q ! 1 in (4.5), then we arrive at Corollary 1 in [14].

5. Applications

In this section we apply Laplace transform to the generating function for the q-Bernstein basis
function. We derive new identity.
From (2.3), we get the following generating functions:

e[x]t
1X
n=0

bnk(x; q)
tn

n!
=
[x : q]k

k!
tket: (5.1)

e�t
1X
n=0

bnk(x; q)
tn

n!
=
[x : q]k

k!
tke�[x]t: (5.2)

e�q
x[1�x]t

1X
n=0

bnk(x; q)
tn

n!
=
[x : q]k

k!
tk: (5.3)

Theorem 8.
1X
n=0

[x] bnk(x; q) = 1: (5.4)

Proof. Integrate equation (5.2) (by parts) with respect to t from zero to in�nity, we have

1X
n=0

bnk(x; q)

n!

Z 1

0
e�ttndt =

[x : q]k

k!

Z 1

0
tke�[x:q]tdt: (5.5)

We here assume that

x > 0:

of the following Laplace transform of the function f(t) = tk:

L(tk) = k!

[x : q]k+1
;

on the both sides of (5.5), we �nd that

1X
n=0

bnk(x; q) =
1

[x : q]
:

Thus we arrive at the desired result.

Remark 7. If we let q ! 1 in (5.4), then we arrive at Theorem 15 in [14].
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ON INTERPOLATION FUNCTION OF THE BERNSTEIN POLYNOMIALS

6. Interpolation Function

In this section, we construct interpolation function for the q-Bernstein polynomials. This function
interpolates the q-Bernstein polynomials at negative integers.
Let s 2 C, and x 2 R with x 6= 1. By applying the Mellin transformation to (2.3), we give

integral representation of the interpolation function Iq(s; k;x) as follows:

Iq(s; k;x) =
1

�(s)

Z 1

0
ts�1Fk;q(�t; x)dt;

where �(s) denotes the Euler gamma function. By using the above integral representation, we are
now ready to de�ne interpolation function of the q-Bernstein polynomials.

De�nition 3. Let k be a nonnegative integer. Let s 2 C, and x 2 R with x 6= 1. The interpolation
function Iq(s; k;x) is de�ned by

Iq(s; k;x) = (�1)k
�(s+ k)

�(s)�(k + 1)

[x : q]k

qx(k+s) [1� x : q]k+s
:

Theorem 9. Let n be a positive integer. Then we have

Iq(�n; k;x) = bnk(x):

Proof of this theorem is same as that of Theorem 12 in [12]. So we omit it.

7. Further remarks

7.1. Bezier curve. The Bezier curves are constructed by the Bernstein polynomials and control
points. The Bezier curves are widely used in computer graphics to model smooth curves. The
history of the Bezier curves can be traced back to Pierre Bezier, who was an engineer with the
Renault car company and set out in the early 1960�s to develop a curve formulation which would
lend itself to shape design. Engineers may �nd it most understandable to think of the Bezier curves
in terms of the center of mass of a set of point masses.
q-Bezier curves B(x : q) with control points P0,� � � , Pn is de�ned by

B(x : q) =
nX
k=0

Pkb
n
k(x):

Observe that if q ! 1, we have the standard Bezier curves

B(x : 1) = B(x) =
nX
k=0

PkB
n
k (x) cf. [2].

If we substitute bnk(x; q) = B
n
k ([x : q]) into the above equation, then q-Bezier curves have same

properties as standard Bezier curves. Because the q-Bernstein basis functions are parametrization
of the standard Bernstein basis functions. The the q-Bernstein basis functions might be the a¤ect
of q on the shape of the curves.

7.2. Integral representation for the q-Bernstein basis functions. In this section we derive
very powerful result related to integral representation for the q-Bernstein basis functions, which
can be obtained from generating function.
Integral representation for the q-Bernstein basis functions is given as follows:

bnk(x; q) =
n!

2�i

Z
C
Fk;q(z; x)

dz

zn+1
; (7.1)
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where C is a circle around the origin and the integration is in positive direction, z 2 C, n 2 Z+ =
f1; 2; 3; � � � g and x 2 [0; 1].
In [12], we give integral representation for the q-Bernstein basis functions. Here we give in detail

about this representation as follows:
By substituting (2.3) into (7.1) and using Cauchy Residue Theorem, we obtain

n!

2�i

Z
C
Fk;q(z; x)

dz

zn+1
=
n!

2�i

�
2�iRes

�
Fk;q(t; x)
zn+1

; 0

��
:

We now compute residue of Fk;q(t;x)
zn+1

at z = 0 by Laurent series as follows:

bn0 (x; q)
1

zn+1
+ bnk(x; q)

1

zn
+ � � �+ b

n
k(x; q)

n!

1

z
+ bn+1k (x; q) + � � � :

By using the above Laurent series, we have

Res

�
Fk;q(t; x)
zn+1

; 0

�
=
bnk(x; q)

n!
:

Consequently, one can obtain easily arrive at (7.1).
We note that our method same as of that of Lopez and Temme� [9] and Kim et al [7].
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Abstract. The aim of this study is to show an application of model robustness measures for soil-
structure interaction (henceforth written as SSI) models. Model robustness defines a measure
for the ability of a model to provide useful model answers for input parameters which typically
have a wide range in geotechnical engineering. The calculation of SSI is a major problem in
geotechnical engineering. Several different models exist for the estimation of SSI. These can
be separated into analytical, semi-analytical and numerical methods. This paper focuses on
the numerical models of SSI specific macro-element type models and more advanced finite el-
ement method models using contact description as continuum or interface elements. A brief
description of the models used is given in the paper. Following this description, the applied
SSI problem is introduced. The observed event is a static loaded shallow foundation with an
inclined load. The different partial models to consider the SSI effects are assessed using dif-
ferent robustness measures during numerical application. The paper shows the investigation
of the capability to use these measures for the assessment of the model quality of SSI partial
models. A variance based robustness and a mathematical robustness approaches are applied.
These different robustness measures are used in a framework which allows also the investiga-
tion of computational time consuming models. Finally the result shows that the concept of using
robustness approaches combined with other model–quality indicators (e.g. model sensitivity or
model reliability) can lead to unique model–quality assessment for SSI models.

407



1 INTRODUCTION

Soil-Structure Interaction can be defined as a certain kind of structure which is embedded
within the soil. Hereby, the interaction between both materials reaction to each other is impor-
tant. Typical topics for SSI analysis are deep foundations, shallow foundations and excavations,
geosynthecial reinforcements to name a few [1]. SSI effects are important topics which have to
be considered in a wide range of geotechnical and structural engineering applications. SSI can
be modeled using one or more of a high amount of approaches which have been published in the
past. The different available models can be split into analytical, semi-analytical and numerical
models considering SSI effects in diverse ways.
The major problem in dealing with SSI effects is the great amount of model and the rising
question of what the best suitable model is, in regards to model–robustness, model–uncertainty
and/or model–complexity. These different model attributes are important to quantify to select
the most suitable model [2]. [1] states that it is important to consider the best suitable model to
allow predictions and back calculations. [3] points out that less attention is paid to validate the
models and investigate their capability for reliable simulation results. [4] shows a benchmark
test where it is obvious that the model choice and modeling techniques have a major influence
on the results which consider SSI effects.
Recent approaches are presented to assess the modelquality in geotechnical engineering [5] to
validate the use of the constitutive soil models. In general, it can be pointed out that there is great
need to continue this work, in particular for different SSI models. These different SSI models
are so-called ill-posed problems, because for the identification of the most suitable model it is
important to consider changes in the structure as well as in the soil. This paper focuses on the
use of numerical finite element models and so called macro–element approaches. These models
are introduced briefly.
The purpose of this paper is to clarify the use of such different SSI models, taking into ac-
count the model–robustness. Therefore a variance–based model robustness and a mathematical
robustness approaches are used. These two slightly different ways for the model robustness
are applied to a shallow foundation with a transient inclined static loading. Thus a scheme is
proposed to evalute the model robustness especially for boundary value problems which have
a large computational time. For this statistical analysis, different methods presented which
can be used to evaluate the most influencing parameter to the model response are presented.
Following this preliminary study, a meta–model is generated for the further evaluation of the
model–robustness. During the consideration of this meta–model the mathematical model ro-
bustness is evaluated.

2 SOIL-STRUCTURE INTERACTION MODELING

In this section the different SSI modelling techniques are briefly introduced. The main focus
is on the Finite–Element Method, but the SSI modeling using a macro–element approach is also
captured.
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2.1 Modelling SSI with macro-element approach

A macro element approach is a simplified approach which combines the soil half–space,
interface between the soil and the structure, and the foundation into on single model which
can be solved using a parabolic function. A general description of different kinds of macro–
elements to calculate SSI effects are given in [6].
A number of parallel studies have been conducted on the subject of macro–element modeling for
a static loaded strip footing by e.g. [7, 8, 9]. Using an incremental plasticity model consisting
of constitutive description to account for the interaction between the forces of structure and
the plastic displacement, it is possible to use an elasto-plastic strain hardening macroelement
which can predict the behaviour of SSI [7]. Some examples are shown by [10, 11]. These
macro–element use a yield function Eq. (1) given by [7]

f (Q, ρc) = h2 +m2 − ξ2 [1− fracξρc]2β = 0 (1)

Where h = H/ (µVm), m = M/ (m), ξ = V/Vm, ρc is a loading history parameter, H
the horizontal load, M the generated moment, V the vertical force, Vm the maximum vertical
load capacity of the macroelement, µ the slope of failure envelope in the H-V plane, ψ Slope
of the failure envelope in the M-V plane, B width of the foundation and β is a constitutive
parameter which controls the shape of the failure envelope. The plastic potential can be written
as developed by [7]:

g (Q) = λ2h2 + χ2m2 − ξ2 [1− fracξρg]2β = 0 (2)

Where = µ/µg and χ = ψ/ψg. Both of these parameters must be determined experimentally.
If f (Q, ρc) = g (Q) the flow rule is associated. Both functions can be used with an incremental
plasticity scheme to calculate the displacement in respect to the load. For the interested reader,
refer to [10, 7] for a detailed description.

2.2 Modelling with Finite Elemente Methode SSI

Generally, if a structure is loaded, relative movements with regards to the soil can occur.
Therefore, the use of conventional finite elements can create compatibility problems prohibiting
relative movements into soil structure interaction modeling. Due to discretization as shown in
Figure 1a the nodal compatibility in the finite elements method is constrained, such that the
soil and the structure move together. To prevent this occurrence, so-called interface or joints
elements could be used. Particular advancement also is that it is possible to use a different
material formulation for this interaction zone (e.g. maximum wall friction angle). Another
important point is that with such elements it is possible to allow separation or sliding.
Undergoing research to use finite element analysis to investigate SSI has been considered since
the early 70s. There are different proposed methods and models used. The different groups are
tackled here in the following:

1. node to node contact

2. using conventional continuum finite elements (e.g. [12, 13])

3. zero thickness / thin layered interface elements (e.g. [14, 18, 16])
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Figure 1 shows the different types of SSI modelling. These three methods are used in a finite
element analysis. In the following a brief description follows the methodology and the consti-
tutive models.

Structure

Soil

(a)

Structure

Soil

Interface

(b)

Structure

Soil

(c)

Figure 1: (a) node to node contact (b) use of continuum element as interface (c) use of interface
element according to [17]

All of these different techniques can be used under conditions where their utilization is jus-
tified.

Node to node contact

Modeling the SSI using only node to node contact is a rough method with which to model the
phenomenas which appear these transition zones. Clearly there is a big disadvantage in using
such kinds of SSI models due to the fact that the nodes for the soil and structure must fulfill
the nodal compability. This is due to the fact that if the structure is loaded, relative movements
can occur [17]. Due the discretization shown in Fig. 1(a) the nodal compatibility in the finite
elements method is constrained such that the soil and structure tend to move together.
Also, it is important to point out that the use of such a modeling technique for SSI can lead to
unrealistic high failure loads. This is due to the fact that at corner points singularity points, will
occur which reduces the accuracy of the global finite element mesh [18].
The use of these modeling methods can not recommended but it is quite often that in practical
engineering applications using interface elements are forgotten or the effect is underestimated
by the engineer.

Using conventional finite elements

[12] proposes the use of conventional finite elements (Fig. 1(b)) in cases where the slip of a
foundation structure must not be considered. [12, 13] shows that the conventional finite element
formulation is able to predict SSI effects in efficient quality. If the finite element model should
be used to model slipping of the structure in a great range over the soil it is not suitable for this
propose [12].
Another advantage is also that it is possible to use a different material formulation for this
interaction zone (e.g. maximum wall friction angle). As with interface elements it is possible
to use the same constitutive material formulation than in the surrounding soil.
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Zero-thickness interface elements

[15] shows the first use of special interface elements in finite element analysis which can
model discontinuity like joints in rock mechanics. This pioneer work from [15] are followed
by a huge amount of different proposed interface element formulation from 6-10 node isopara-
metric interface element to different material descriptions from linear elastic material behavior
to bi–linear models of the Mohr-Coulomb friction material model to more advanced material
models like Damage models [20], Critical State Soil Mechanics [21] framework and advanced
elasto–plastic formulations [19].
The use of thin continuum interface elements (e.g. [16, 22]) for soil–structure interaction can
lead to problems due to the fact that the thickness of the interface is unknown and the determi-
nation of the input parameters used is difficult without conducting special laboratory tests [19].
Special interface formulation are developed which ensure of singular points at the corner of SSI
modelling [18].
The interface models used are in respect to the finite element formulation in the commercial
software used. 6 or 15 noded triangular elements are used in this publication. The associated
interface elements are 6 or 10 noded joint elements. Both types of elements for the continuum
and interface are shown in Fig. 2. The rate of interface traction t and the displacement disconti-
nuity ∆u is a combination of linear elasticity and perfect plasticity therefore the elasto–plastic
relationship can express the following equation:

t = De
c∆u

e = De
c (∆u−∆up) (3)

Eq. (3) relates the objective rate of traction t to the relative displacement over the full length
of the interface surface ∆ue. The following D–Matrix can be generated for isotropic linear
elastic behavior (4):

De
c =

[
ks 0
0 kn

]
(4)

t < 0 (no slip)

j

c

-tn

ts

(a)

continuum
- element

interface element

tn

ts

(b)

Figure 2: (a) Yield function and (b) interface element assmbly according to [18]

where the interface stiffness is related to the mean element length l, G the shear modulus of
the soil and v Possions ratio.
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ks = µ (G/l) kn = µG/ (1− 2ν) (5)

In the present study only a simple Mohr-Coulomb yield function is considered. This yield
function is combined with a non-associated plastic potential. Fig. 2a shows a repesentation of
the yield function in a ts–tn space. The yield function and plastic potential can be described
with:

f(t) = ts + tn tanϕc − cc g(t) = ts + tn tanψc (6)

Where ϕc is the friction angle and cc the adhesion in the interface zone. For the plastic
potential ψc is the dilation angle which controls the plastic dilation. As described in [23] the
use of a non-associated flow rule ϕc > ψc prevents a unrelastic high plastic dilation. For some
special cases this can result in an overestimation of the contact pressure and consequently of
the shear strength. Using the plastic potential the plastic slip can be derived using the following
equation:

∆up = αλ (∂g/∂t) (7)

where α is a coefficent defined as:

α = 0 if f < 0or [∂f/∂t]T D∆(u) < 0 (8)
α = 1 if f = 0with [∂f/∂t]T D∆(u) ≥ 0 (9)

using this switch on and off coefficient α the multiplier λ can be solved with the help of
the consistency equation f = 0. To solve these constitiutive equations a Newton-Cotes algo-
rithm is applied. Considering this integration scheme, a lumped interface stiffness matrix can
be archieved.
The advantages of using this interface elements is that it is not necessary to care about the in-
terface thickness and the special needed material parameters which are uncertain and difficult
to obtain by using conventional laboratory tests.

3 MODEL – ROBUSTNESS

Model–robustness is defined as the capability of a model to given consistent output over
the full range for which it is generated of possible input parameters. Two different types of
robustness measures are used. Both of these robustness approaches are based on global model–
robustness.

3.1 Variance-based robustness measure

The variance based robustness measure is also called Taguchis robustness and is defined as
an adapted ”‘signal-to-noise”’ ratio discussed in [24] and can be expressed in Eq. (10):
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T = −10 log

(
1

σ2
Y

)
(10)

Where the standard derivation σ2
Y is used to estimate the model–robustness. The robustness

measure by Taguchi has some drawbacks described in [24].

3.2 Mathematical robustness approach

The principal idea of the mathematical robustness approach is directly derived from the defi-
nition of model–robustness, that the model will generate an input which is completely conneted
to the output. As an example the change in input will be related to the change of output. There-
fore the input–output relationship of the SSI models will be investigated.
There can be three different model robustness classes defined. Robust, partial robust and non-
robust models as shown in Fig. 3.

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

∆ 
y

x

robust
partial−robust
non−robust

Figure 3: Input–Output relation for robust, partial-robust and non-robust model

Plotting ∆y – x diagram shows different possible cases. If the plot shows a straight horizontal
line the input-output relation is linear and it is a quite robust model. Shows the input–output
relation some fluctuations, it is partial robust. The third case is that if the model shows a
complete irregular behavior for the output it can be called non-robust. If ∆y = 0 the parameter
does not influence on the output. This means the parameter has no influence on the model
response.
To calculate this, the model input will be split in n numbers of intervals. Using n intervals for all
important input variables used. These are used to compute all possible combinations as model
response. The number of combinations will be quite high, as the following Eq. 11 shows:

nCi = nnp (11)

where nCi is the amount of different possible combinations and np are the number of pa-
rameters. For all these combinations the global response of the model is computed. Therefore
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one parameter is frozen and all other combinations are computed.

E(Y |Xi) (12)

From these ouptut the mean (µY ) is calculated for all combinations. Using these mean values
the ∆y for every single parameter interval is calculated by:

∆y = E
(
Ŷn|Xi

)
− E

(
Ŷn+1|Xi

)

These ∆y are plotted against the parameter input x to estimate the robustness of a model
graphically.

4 METHODOLOGY FOR THE ASSESSMENT OF MODEL – ROBUSTNESS

The first step in the determination of the robustness measures are the concept as show in Fig.
4. The different step as shown in Fig. 4 are explained in the next paragraphs.

Screening
4.3.

ScreeningMeta-
Model
4.4.

Variance-based robustness
measure

3.1

Mathematical robustness
measure

3.2

2 If R < 0.90

2 
If R > 0.90

Figure 4: Methodology for the assement of the model–robustness

4.1 Application to an inclined loaded shallow foundation

The application for the comparison of these different robustness approaches described above
is a shallow foundation which is loaded with an inclined load. Figure 5 shows the boundary
conditions.
This boundary value problem is assumed for all the 4 different partial models. For the three
different finite element models, the contact description is different according to section 2.2.
Model 1 (M1) uses a simple node–node contact, Model 2 (M2) uses an interface element and
Model 3 (M3) uses the continuum approach. The macro–element model is the fourth type of
model which is used. To exclude mesh dependencies and errors due to other modeling issues,
some comparison with different meshes are conducted in order to ensure that such effects could
not happen. Please note that these investigations are not shown here.

The gray scaled areas in Fig. 5 are the meshed parts of the model. For the discretization, 15-
noded triangular elements with a fourth order interpolation for displacements are used. These
elements have 12 Gauss points (stress points) for each element (also shown in Fig. ??).
The model has a plane strain boundary condition with the width of 9.00 m and height of 4.00 m.
Fig. 5 uses the same element formulation for the beam embedded in the soil. For the material
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Figure 5: Applied boundary value problem

model of the foundation a simple linear-elastic ”Hookes law” model is chosen. This requires 2
material parameter. The Young’s Modulus Ef and the Possion’s ratio νf
The constitutive material model for the soil is the Mohr–Coulomb model which is a classical
model used in geotechnical engineering. It is a linear–elastic perfectly plastic model with a
fixed yield surface in principal stress space. For a more detailed description see for example
[6]. The model uses five different parameters to describe the constitutive behavior of soils and
rocks in a wide range. The different parameters are ϕ the friction angle, ψ dilatancy angle, c
cohesion, Es Youngs modulus and νs Possions ratio. For a more detailed description, [6] is
referenced.
Considering this boundary value problem, the SSI models are applied. Consequently, this
means that three finite element analysis and one macro-element calculation is conducted. The
macroelement approach is also applied for the shown boundary in Fig. 5. Due to its modelre-
duction it is not explicitly drawn here, for a pictorial representation is refered to [8] .
For comparsion of the different models a fixed load level of 75 kN is applied and all results are
shown in respect to the displacement by this load level.

4.2 Parameters used in the different SSI models

The parameters which are used are listed in the following Tab. 1. The sampling of the
parameter is performed as uniformed distributed sampling as described by [25]. The meta
model sampling is also uniformly distributed. These uniform distribution is chosen to hold each
variable for the model input independent of each other.

4.3 Preliminary Study for Elementary Effects

The different models were first screened with the help of a screening technique proposed by
[25]. The idea of this is to search the elementary effects of the entire design space. Therefore, a
randomized sampling plan is generated where so-called Elementary Effects (EE) can be calcu-
lated using Equation (13). With the help of these EE the input parameters can be ranked in order
of their importance. These EEs can not give a statement of the importance quantifiably. The
basic assumption from [25] is that the objective function from the underlying computational
model is deterministic.
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Table 1: Parameter input for the analysis

Parameter [unit] Baseline Minimum Maximum
Friction angle ϕ [] 35 28 45
Dilation angle ψ [] 5 0 10
Cohesion c [kN/m3] 1 0.0001 5
Possions ratio (soil) νs [-] 0.25 0.2 0.38
Youngs modulus (soil) Es [kN/m2] 30000 20000 45000
Unit weight (soil) [kN/m3] 18 15 19.5
Youngs modulus (foundation) Ef [MN/m2] 30000 20000 100000
Possions ratio (foundation) νf [-] 0.45 0.3 0.495
Friction cofficient Rinter [-] 0.8 0.3 1
Load inclination angle δ [] 22.5 0.1 45

Soil Foundation Interaction Load

To estimate EEs the mean and standard deviation is calculated. These indicators shows the
importance to the global response and the non–linearity / interaction. In computational regard
this scheme is quite efficient because with the help of one simulation run two sensitivity values
can be examined.

di (x) =
y (x1,x2, · · · ,xi−1,xi + ∆, · · · ,xk)− (y (x))

∆
(13)

Where ∆ = ξ/ (p− 1), ξ ∈ N and x ∈ D such that the components xi ≤ 1 − ∆ and
x ∈ D = [0,1]2 for scaling issues, k amount of input variables, p number of discrete values
along each dimension. The basic idea of a parameter in regarding to [25] is that a parameter
with a large measure of central tendency indicates a major influence to the objective function.
Further, [25] considers that a significant measure of spread indicates that the variable is involved
in non–linear effects and/or interacts with other parameters.
With estimation of the sample mean and the sample standard deviation, for a set of di(x) values
overspanned to the design space. Of major importance for this purpose is to generate a sam-
pling plan that each evaluation of the objective function f participates in the estimation of two
elementary effects. Therefore the sampling has to give us a defined number r elementary effects
for each variable. A more detailed discussion is given by [25].

The sampling can generate with the help of Eq. (14).

B∗ = (1k+1,1x
∗ + (∆/2) [(2B− 1k+1,k)D

∗ + 1k+1,k])P
∗ (14)

Here,B is the basic sampling matrix, P ? is the random permutation matrix andD? randomly
generated matrix with +1 or −1 on the diagonal. For the calculation of r EEs for each variable,
the screening plan is built from r random orientations using Eq. (15):

X =




B∗
1

B∗
2

· · ·
B∗
r


 (15)
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The advantage of the method presented is to generate a more efficient and accurate response
surface with a less of computational time. The result of these screening is shown as a bar plot
in Fig. 6. Therefore, the parameters scaled to show the influence of the different parameters
correlated under each other. These scaling is done with the following Eq. 16:

EEscale
i =

µY
max(µ2

Y )
+

σ2

max(σ2
Y )

(16)

phi
psi

c
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E_s
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nu_f
E_f

R_inter
delta

M1
M2

M3
Macro−Element

0

0.5

1

E
E isc

al
e

Figure 6: Scaled Elementary Effects

4.4 Meta-Modeling

Due to the computational time consuming finite element models, this models are replaced
by different meta–models. For these, only those from the screening important model input
parameters are considered. For the investigation of the robustness criterion it was important
that the model input are considered as uncorrelated input, to generate also uncorrelated meta–
models. To control and build the response surfaces a multi–linear regression was used. The
object function of the observed model will be idealized by the following equation. For the
regression linear, quadratic and mixed terms Eq. 17 are used:

Ŷ = β0 + β1X1 + β2X2 + · · ·+ βPkXPk + β11X
2
11 + β22X

2
22 + · · ·

+βPkPkX
2
PkPk + β12X1X2 + · · ·+ βPk−1PkXPk−1XPk + e

(17)

Here, Ŷ is the regression equation for the approximation of the model response, β the re-
gression coefficient, Xi the i-th parameter set. The regression coefficents β are calculated using
Eq. (18):
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β =
(
XTX

)−
1XTY (18)

For the control of correctness of the used response surface the coefficient of determination
R2 is calculated using Eq. 19.

R2 = 1−
(
SSE
SST

)
(19)

If the coefficient of determination is smaller than 0.90 the number of samplings must be
higher to reach a higher accuracy of the meta–models.
The different coefficient of determination are shown in Fig. 7a. For the generation of the meta–
model, 500 samples are used. The macro–element is not replaced by a meta–model. The plane
in the bar plot shows the value of the coefficient of determination. All meta-models can be used
with a number of 500 samples.

(a)

M1

M2

M3

Macro−Element

−50

0

50
T

(b)

Figure 7: (a) R2 for meta–models (b) Results for the Taguchi robustness

4.5 Robustness approaches

At the end of the concept show in Fig. 4 both robustness approaches are investigated, to
investigate the model–robustness.

Results: Variance–based robustness measure

Fig. 7b visualizes the results for the variance based robustness measure. Based on the
Taguchi robustness measure it can stated that the most robust model is the model M3 followed
by M2.

Results: Mathematical based robustness approach

Currently for the mathematical robustness, there are no clear mathematical formulation to
express the robustness of a model in scalar in existence. However, generally the concept for the
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evaluation of the model–robustness presented above can identify the model–robustness for each
model parameter independently (see Fig. 8).
In Fig. 8a the results for all four different models are shown for the load inclination angle. In
general can be stated that all models have parts where they are robust. In Fig. 8b shows the
results for the friction angle ϕ.
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Figure 8: (a) mathematical robustness inclination angle δ (b) mathematical robustness for the
friction angle ϕ

5 CONCLUSION

Both of these robustness approaches can be applied to soil–structure coupling models. In the
case of the Taguchi robustness measure, the different models shows really different results. The
mathematical robustness approach have to be completed. This approach has to be refined as a
mathematical formulation. This will helps to compare models in the sense of model–robustness
and model–quality. Furthermore, some effort has to be done on the question of which model
delivers a reference model robustness and what happens if the models tends to be show a non-
linear behavior.
This paper shows the applicability of using two different model robustness assement approachs
for the model robustness. This paper concludes with an outlook on the development of a
straight-forward mathematical formulation of model–robustness.
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Abstract. The optimal utilization of modern steels for building industry requires the description
of microscopic constitution of these materials. The disparity in the quantity of their macro-
scopic properties (e.g. Youngs modulus, yield strength, ultimate strength, ductility) is pur-
posely changed by means of microscopic constitutive differences. The hierarchical multiscale
approaches give an opportunity to extend the phenomenological material description of macro-
scopic scale by means of microscopic information. This paper introduces an enrichment mul-
tiscale approach applicable for textured steel materials, typically occurring in hot rolled mem-
bers or welded joints. Hence, texture is manifested in crystalline materials as a regular crys-
tallographic structure and crystallite orientation, influencing macroscopic material properties.
The grain texture has been described on a mesoscopic scale (µm) according to a RVE-approach
and coupled with macroscopic constitutive relations by means of homogenization. On both spa-
tial scales material has been taken into account as a continuum. The influence of manufac-
turing and fabrication has been incorporated into the macroscopic material description by a
local grain size function. The approach has been developed for structures under static loading
underlaying macroscopically elastic material responses.
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1 INTRODUCTION

Modern manufacturing technologies allow an optimal and purpose-oriented utilization of
steel materials in the building industry. Thereby, the desired metallurgical constitution is cre-
ated by obtaining a particular microscopic state, since all material phenomena, affecting the
behavior of the structure, rely on physical effects which interact in different spatial scales from
subatomic to microscopic and macroscopic range. One of early beginnings of research of this
particular issue can be dated to the end of 19th century [10]. In the first half of 20th century,
different approaches of homogenization methods were developed by [4][9][5][1]. These cou-
pling approaches are oriented on transferring the results and informations obtained on lower
spatial scales to the macroscopic scale. Since then, the micromechanical modelling techniques
have been developing rapidly, since they are applicable in a wide range of research fields, such
as mechanical engineering, biomechanics, electronics, etc. This regards mostly the application
to new materials with limited number of alloys and a certain degree of similarity in microstruc-
tural constitution. Since steel materials vary in their microscopic constitution, this prospective
approach can be find rarely in the field of structural steel engineering. In the context of civil
engineering, all steel materials are generalized and described qualitatively by the same phe-
nomenological material laws, differing in quantities of their properties (e.g. Youngs modulus,
yield strength, ultimate strength, ductility). If the material is microscopically heterogenic and
macroscopically homogeneous, it might be appropriate to use phenomenological models for
civil engineering applications. This might be timesaving, but it also has limited potential to in-
crease the reliability of the prognosis of behavior, since the material response is always closely
related to microscopic state. Aside from this, these models are insufficient for steel materials
with microscopic characteristics such as texture, that typically occur in hot rolled steel members
or heat affected zones of welded joints. Hence, texture is manifested in crystalline materials as a
regular morphological structure and crystallite orientation, that influences macroscopic material
properties.

2 CONCEPTION AND METHODOLOGY

2.1 General Context

The method has been developed for materials under static loading, characterized by texture.
In order to distinguish the metallurgical diversity, microscopic material law has been enriched
purposely by microscopic constituents. The concerned approach will be shown on an example
of a welded joint of a hot rolled ferritic/pearlitic steel, S460TM (1, a), where different micro-
scopic states of particular zones in a narrowed area of heat affected zone and parent material
are distinctive. During the manufacture of parent material (e.g. hot rolling) the grains obtained
preffered cristallographic orientation. The non-randomnes of cristallographic texture reveals a
macroscopic anisotropy of crystaline materials. In addition, the parent material is characterized
by banded microscopical structure (1, b), which also contributes to the macroscopic anisotropy
of material. The degree of anisotropy is influenced by grain size ratio in rolling direction and
thickness direction (morpholgic anisotropy). The constitution of S460TM is characterized by
courser bands of ferrite grains, elongated in rolling direction, and fine pearlite bands, consist-
ing of ferrite and cementite constituents. Due to the fact that grain size and cristallographic
orientation influence the macroscopic material properties, these issues will be the focus of this.
The heat affected zone (HAZ) of a welded joint is a thermally and metallurgically affected area,

423



Figure 1: a) Welded joint and heat affected zone, S460TM, b) coarse grain zone, c) pearlite decomposition zone
(fine grain zone), d) microstructure banding

where the initial constitution of the parent material is changed. This zone is mainly character-
ized by brittle and high strength constituents, martensite and bainite. The grain size varies from
the course grain zone in a fusion line of a joint and a HAZ and fine grain zone in a pearlite
decomposition area which is the outside margin of a HAZ (1, c and d). Every welded joint
and its HAZ is unique in its structure, due to the non reproducibility of the welding process
as well as inclusions, voids and microcracks. To incorporate the metallographic structure into
the procedure of the response calculation of engineering structures, it is necessary to describe
microscopic constitution explicitly. For this purpose, the methods of micromechanics are ap-
propriate.

2.2 Meso-Macro Approach to Constitutive Modelling

The methodology has been derived following the principals of the micromechanical approach
of the Reference Volume Element (RVE). This hierarchical multiscale method is based on the
consecutive modeling of material on different spatial scales by RVE and connecting them to
upper scales. Besides the scale of interest (e.g. macroscopic scale), the mesoscopic scale (µm)

Figure 2: Principle of hierarchical multiscale approach

has been taken into account in the present example. The necessity of the description on the
mesoscopic scale is given by the fact, that the constitutive parameters, which mainly influence
macroscopic anisotropy of textured steels can be described on this scale. Within the context
of this approach, on the macroscopic scale, body V consists of a set of infinitesimal material
points X . The material point X ∈ V has to be constitutively and geometrically described on
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the lower scale (meso scale), thus demanding representativity. The models on the considered
spatial scales are coupled by means of homogenization techniques to derive the mechanical
relation between the microscopic components and macroscopic material response. The basic
principle has been shown in figure 2. The original micromechanical approach is based on the
demand of homogeneity of the material on the macroscopic scale. This demand retains the
representativity of the RVE for every material point on the macroscopic body. The application
to materials that obey particular local effects, such as in heat affected zones, has to be modified.
Hence the homogeneity demand can not be met. The amendment consists of an adoptation of a
grain size function (GSF), that describes the grain size as a function of position in a HAZ. Thus
enables a consistent application of an RVE-concept for the presented purpose. An approximated
grain size function of a HAZ of a butt welded S460TM connection is shown in 3. A multiple
linear regression according to [6] has been used to identify the GSF. The measured grain sizes
of an existing joint have been used as a response vector Y . The coordinates in thickness- and
width-direction are represented by the input parameter matrix X . The approximation of the
responce surface Ŷ obey the following equation:

Ŷ = Xβ + e (1)

By minimizing the vector of error term e, the regression coefficient vector β can be obtained
according to [6]:

δSSE
δβ

= 0, β̂ = (XTX)−1XTY (2)

The quality of the approximation has been obtained by the coefficient of determination R2:

R2 = 1− SSE
SST

, 0 ≤ R2 ≤ 1 (3)

which relates the sum of error squares SSE and model response variance SST :

SSE = eT e, e = Y − Ŷ , (4)

SST = (Ŷ − Ȳ )T (Ŷ − Y ) (5)

Within the measured area of HAZ, the calculated coefficient of determination R2 = 0.92 shows
a good approximation quality. The quality decreases for the prediction of the grain size outside
of the approximation area (R2 = 0.67). This result shows a potential to expand the input
parameter set and incorporate the parameters, such as cooling time and temperature gradient,
with the intention of effectively integrating the welding process into the expression of a GSF.
As mentioned, material constitution on a mesoscopic scale is described by means of RVE. The
material properties have been derived from material properties of a body-centered Fe-crystal
(4). The orientation of grains within the RVE is assumed to be normally distributed. To relate
the different cristallographic orientations to the global orientation of an RVE, a decomposed
transformation of material tensor Cpqrs for every grain according to their Eulerian angles has
been preformed. The transformed material tensor Cijkl is calculated according to following
equation:

Cijkl = RipRjqRkrRlsCpqrs (6)
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Figure 3: Approximated response curface of a GSF in a HAZ of S460TM

Figure 4: Material matrix of a body-centered Fe-crystal
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Figure 5: Principle of a meso-macro-approach

where R describes decomposed rotation matrices of three Eulerian angles [3]. To obtain ef-
fective material properties on the macroscopic scale, considering the textured structure of a
mesoscale, homogenization techniques are preformed. The local strain- or stress-fields within
the RVE have to be derived and homogenized over the volume [2]:

〈σmakro〉 =
1

|V |
∫

V
σ(x)dV, 〈εmakro〉 =

1

|V |
∫

V
ε(x)dV (7)

The physical consistency of these approaches has been requested by equality of strain energy
density on both scales:

〈σmeso(x) : εmeso(x)〉 = 〈σmakro〉 : 〈εmakro〉 (8)

The homogenised macroscopic material tensor C∗
ijkl is relating the mean values of stress and

strain-fields over the volume:

〈σij〉 = C∗
ijkl : 〈εkl〉 (9)

Within the application of the RVE-concept, periodic boundary conditions have been imple-
mented, fulfilling the following relation [7]:

uBi i− uAi = εij(x
B
j − xAj ) (10)

where the displacement ui of opposite boundaries A and B has been determined by means of
strain εij and the distance of the respective locations xj . The application of periodic boundary
condition is an RVE-concept based constraint, where all macroscopic material points, repre-
sented by RVE, obey identical behavior on their opposite boundaries. For the calculation of all
components of the macroscopic material tensor, six uniform loading conditions of the RVE are
necessary: three axial strains and three sher strains. With the presented approches and assump-
tions, an exemplary method has been derived, which incorporates the metallurgical material
state into the constitutive material model used for calculation of response of steel structures. In
figure 5, a main principle of the method is shown. The first calculations of RVE are focused
on identification of relevant influencing factors, to assure the representativity of the model. For
this purpose, the effect of grain size, grain shape and RVE-size have been investigated. The
influence of grain geometry has been performed on two-dimensional models, considering rect-
angular and truncated octahedral grains. The representativity of the RVE is apparent when the
influence of the number of grains on the macroscopic material properties is investigated. Ad-
ditional analysis has been performed on a three-dimensional model with cubic formed grains.
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The deviation of RVE-models with respect to their size, has been investigated by means of an
error estimate according to [8]. This error estimator is formulated as a ratio of a standard devi-
ation of an equivalent von Mises stress and a representative equivalent von Mises stress of an
RVE-model with 2744 grains:

err =
S(σvM)

σ2744
vM

(11)

3 RESULTS

The size of the RVE has been investigated with respect to the derived effective Young’s
modulus of the macroscopic material. In addition, the grain shapes have been analysed. The
results of the effective Young’s modulus in the rolling direction with respect to RVE-size for
rectangular and truncated octahedral grains are shown in figure 6. The derived results show

Figure 6: Influence of grain shape and RVE size on effective Young’s modulus

negligible influence of grain shape on the Young’s modulus on macroscopic scale. As the RVE
size increases, the effect on Young’s modulus decreases. The RVE-models with appr. 400
grains vary 3%. Hence, for further three dimensional investigations, a cubic grain shape has
been assumed. The analysis of the error estimate according to 11, reveals asymptotic behavior,
as shown in figure 7. The variation of error is insignificant for RVE with more than 1000 grains.
The presented investigations create a basis for analysis of the influence of the grade of banded

Figure 7: Error estimate based on equivalent von Mises stress for different RVE size according to equation 11
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microscopic structure on the anisotropy on the macroscopic scale. The purpose of this analysis
is to adaptively integrate the method into calculations on a macroscopic scale.

4 CONCLUSIONS

The proposed method enables the description of the metallurgical state of steel materials
for the purpose of the analysis of structural responses in civil engineering applications. There
are advantages to the possibility of including a grain size function for the specification of local
effects such as heat affected zones of welded joints. The first numerical investigations show
negligible influence of grain shape. The error estimation analysis, based on equivalent von
Mises stress, has been used and a representative RVE-size have been derived. An outlook for
the next investigations has been given. With the presented methodology, a first step has been
taken towards a new basis of calculation, as well as an effective design procedure for steel struc-
tures.
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