1,539 research outputs found

    Piezoelectric vibration energy harvesting from airflow in HVAC (Heating Ventilation and Air Conditioning) systems

    Get PDF
    This study focuses on the design and wind tunnel testing of a high efficiency Energy Harvesting device, based on piezoelectric materials, with possible applications for the sustainability of smart buildings, structures and infrastructures. The development of the device was supported by ESA (the European Space Agency) under a program for the space technology transfer in the period 2014-2016. The EH device harvests the airflow inside Heating, Ventilation and Air Conditioning (HVAC) systems, using a piezoelectric component and an appropriate customizable aerodynamic appendix or fin that takes advantage of specific airflow phenomena (vortex shedding and galloping), and can be implemented for optimizing the energy consumption inside buildings. Focus is given on several relevant aspects of wind tunnel testing: different configurations for the piezoelectric bender (rectangular, cylindrical and T-shaped) are tested and compared, and the effective energy harvesting potential of a working prototype device is assessed

    Electric-Field Energy Harvesting in Wireless Networks

    Get PDF
    © 2002-2012 IEEE. Electric-field energy harvesting (EFEH) can be considered as an emerging and promising alternative for self-sustainable next-generation WSNs. Unlike conventional harvesting methods that rely on ambient variables, EFEH provides more reliable and durable operation as it is operable with any voltage-Applied conductive material. Therefore, it is better suited for advanced throughput and applications requiring a certain QoS. In this article, we introduce this newly emerging WSN paradigm, and focus on enabling EFEH technology for smart grid architectures, such as home, building, and near area networks, where the field intensity is relatively low. To this end, a practical methodology and a general use implementation framework have been developed for low-voltage applications by regarding compelling design issues and challenging source scarcity. The proposed double-layer harvester model is experimentally evaluated. Its performance in terms of implementation flexibility, sensor lifetime, and communication throughput is investigated. In addition, current challenges, open issues, and future research directions are discussed for the design of more enhanced EFEH wireless networks

    Development of a piezoelectric energy-harvesting sensor: from concept to reality

    Get PDF
    This study focuses on the development and integrated design over a 24-month period of a high efficiency energy-harvesting (EH) temperature sensor, based on piezoelectric materials, with applications for the sustainability of smart buildings, structures and infrastructures. The EH sensor, harvests the airflow inside Heating, Ventilation and Air Conditioning (HVAC) systems, using a piezoelectric component and an appropriate customizable aerodynamic fin that takes advantage of specific air flow effects, and is implemented for optimizing the energy consumption in buildings. The project was divided in several work-packages (some running in parallel) that cover different aspects of the device development. Some of them focus on engineering aspects (starting from the numerical modeling, then prototyping, and concluding with experimental testing). Other aspects focus on the sensor promotion (including the development of a business plan, the intellectual property rights, the final design and the go-to-market actions). Considering the multidisciplinary character of the project (involving knowledge from fields such as wind engineering, electrical engineering, industrial design, entrepreneurship), this study tries to provide an insight on the complex design issues that arise when such complex, sometimes conflicting and overlapping aspects have to be managed within strict deadlines. In doing so, the most important design and development aspects are critically presented

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    Integration of aero-elastic belt into the built environment for low-energy wind harnessing: current status and a case study

    Get PDF
    Low-powered devices are ubiquitous in this modern age especially their application in the urban and built environment. The myriad of low-energy applications extend from wireless sensors, data loggers, transmitters and other small-scale electronics. These devices which operate in the microWatt to milliWatt power range and will play a significant role in the future of smart cities providing power for extended operation with little or no battery dependence. Low energy harvesters such as the aero-elastic belt are suitable for integration with wireless sensors and other small-scale electronic devices and therefore there is a need for studying its optimal installation conditions. In this work, a case study presenting the Computational Fluid Dynamics modelling of a building integrated with aero-elastic belts (electromagnetic transduction type) was presented. The simulation used a gable-roof type building model with a 27° pitch obtained from the literature. The atmospheric boundary layer flow was employed for the simulation of the incident wind. The work investigates the effect of various wind speeds and aero-elastic belt locations on the performance of the device giving insight on the potential for integration of the harvester into the built environment. The apex of the roof of the building yielded the highest power output for the aero-elastic belt due to flow speed-up maximisation in this region. This location produced the largest power output under the 45° angle of approach, generating an estimated 62.4 mW of power under accelerated wind in belt position of up to 6.2 m/s. For wind velocity of 10 m/s, wind in this position accelerated up to approximately 14.4 m/s which is a 37.5% speed-up at the particular height. This occurred for an oncoming wind 30° relative to the building facade. For velocity equal to 4.7 m/s under 0° wind direction, airflows in facade edges were the fastest at 5.4 m/s indicating a 15% speed-up along the edges of the building

    Airborne Wireless Sensor Networks for Airplane Monitoring System

    Get PDF
    In traditional airplane monitoring system (AMS), data sensed from strain, vibration, ultrasound of structures or temperature, and humidity in cabin environment are transmitted to central data repository via wires. However, drawbacks still exist in wired AMS such as expensive installation and maintenance, and complicated wired connections. In recent years, accumulating interest has been drawn to performing AMS via airborne wireless sensor network (AWSN) system with the advantages of flexibility, low cost, and easy deployment. In this review, we present an overview of AMS and AWSN and demonstrate the requirements of AWSN for AMS particularly. Furthermore, existing wireless hardware prototypes and network communication schemes of AWSN are investigated according to these requirements. This paper will improve the understanding of how the AWSN design under AMS acquires sensor data accurately and carries out network communication efficiently, providing insights into prognostics and health management (PHM) for AMS in future
    corecore