184 research outputs found

    deep learning based segmentation of breast masses in dedicated breast ct imaging radiomic feature stability between radiologists and artificial intelligence

    Get PDF
    Abstract A deep learning (DL) network for 2D-based breast mass segmentation in unenhanced dedicated breast CT images was developed and validated, and its robustness in radiomic feature stability and diagnostic performance compared to manual annotations of multiple radiologists was investigated. 93 mass-like lesions were extensively augmented and used to train the network (n = 58 masses), which was then tested (n = 35 masses) against manual ground truth of a qualified breast radiologist with experience in breast CT imaging using the Conformity coefficient (with a value equal to 1 indicating a perfect performance). Stability and diagnostic power of 672 radiomic descriptors were investigated between the computerized segmentation, and 4 radiologists' annotations for the 35 test set cases. Feature stability and diagnostic performance in the discrimination between benign and malignant cases were quantified using intraclass correlation (ICC) and multivariate analysis of variance (MANOVA), performed for each segmentation case (4 radiologists and DL algorithm). DL-based segmentation resulted in a Conformity of 0.85 ± 0.06 against the annotated ground truth. For the stability analysis, although modest agreement was found among the four annotations performed by radiologists (Conformity 0.78 ± 0.03), over 90% of all radiomic features were found to be stable (ICC>0.75) across multiple segmentations. All MANOVA analyses were statistically significant (p ≤ 0.05), with all dimensions equal to 1, and Wilks' lambda ≤0.35. In conclusion, DL-based mass segmentation in dedicated breast CT images can achieve high segmentation performance, and demonstrated to provide stable radiomic descriptors with comparable discriminative power in the classification of benign and malignant tumors to expert radiologist annotation

    Selection of diagnostic features on breast MRI to differentiate between malignant and benign lesions using computer-aided diagnosis: differences in lesions presenting as mass and non-mass-like enhancement

    Get PDF
    Purpose: To investigate methods developed for the characterisation of the morphology and enhancement kinetic features of both mass and non-mass lesions, and to determine their diagnostic performance to differentiate between malignant and benign lesions that present as mass versus non-mass types. Methods: Quantitative analysis of morphological features and enhancement kinetic parameters of breast lesions were used to differentiate among four groups of lesions: 88 malignant (43 mass, 45 non-mass) and 28 benign (19 mass, 9 non-mass). The enhancement kinetics was measured and analysed to obtain transfer constant (Ktrans) and rate constant (kep). For each mass eight shape/margin parameters and 10 enhancement texture features were obtained. For the lesions presenting as nonmass-like enhancement, only the texture parameters were obtained. An artificial neural network (ANN) was used to build the diagnostic model. Results: For lesions presenting as mass, the four selected morphological features could reach an area under the ROC curve (AUC) of 0.87 in differentiating between malignant and benign lesions. The kinetic parameter (kep) analysed from the hot spot of the tumour reached a comparable AUC of 0.88. The combined morphological and kinetic features improved the AUC to 0.93, with a sensitivity of 0.97 and a specificity of 0.80. For lesions presenting as non-mass-like enhancement, four texture features were selected by the ANN and achieved an AUC of 0.76. The kinetic parameter kepfrom the hot spot only achieved an AUC of 0.59, with a low added diagnostic value. Conclusion: The results suggest that the quantitative diagnostic features can be used for developing automated breast CAD (computer-aided diagnosis) for mass lesions to achieve a high diagnostic performance, but more advanced algorithms are needed for diagnosis of lesions presenting as non-mass-like enhancement. © The Author(s) 2009

    Caracterización de Patrones Anormales en Mamografías

    Get PDF
    Abstract. Computer-guided image interpretation is an extensive research area whose main purpose is to provide tools to support decision-making, for which a large number of automatic techniques have been proposed, such as, feature extraction, pattern recognition, image processing, machine learning, among others. In breast cancer, the results obtained at this area, they have led to the development of diagnostic support systems, which have even been approved by the FDA (Federal Drug Administration). However, the use of those systems is not widely extended in clinic scenarios, mainly because their performance is unstable and poorly reproducible. This is due to the high variability of the abnormal patterns associated with this neoplasia. This thesis addresses the main problem associated with the characterization and interpretation of breast masses and architectural distortion, mammographic findings directly related to the presence of breast cancer with higher variability in their form, size and location. This document introduces the design, implementation and evaluation of strategies to characterize abnormal patterns and to improve the mammographic interpretation during the diagnosis process. The herein proposed strategies allow to characterize visual patterns of these lesions and the relationship between them to infer their clinical significance according to BI-RADS (Breast Imaging Reporting and Data System), a radiologic tool used for mammographic evaluation and reporting. The obtained results outperform some obtained by methods reported in the literature both tasks classification and interpretation of masses and architectural distortion, respectively, demonstrating the effectiveness and versatility of the proposed strategies.Resumen. La interpretación de imágenes guiada por computador es una área extensa de investigación cuyo objetivo principal es proporcionar herramientas para el soporte a la toma de decisiones, para lo cual se han usado un gran número de técnicas de extracción de características, reconocimiento de patrones, procesamiento de imágenes, aprendizaje de máquina, entre otras. En el cáncer de mama, los resultados obtenidos en esta área han dado lugar al desarrollo de sistemas de apoyo al diagnóstico que han sido incluso aprobados por la FDA (Federal Drug Administration). Sin embargo, el uso de estos sistemas no es ampliamente extendido, debido principalmente, a que su desempeño resulta inestable y poco reproducible frente a la alta variabilidad de los patrones anormales asociados a esta neoplasia. Esta tesis trata el principal problema asociado a la caracterización y análisis de masas y distorsión de la arquitectura debido a que son hallazgos directamente relacionados con la presencia de cáncer y que usualmente presentan mayor variabilidad en su forma, tamaño y localización, lo que altera los resultados diagnósticos. Este documento introduce el diseño, implementación y evaluación de un conjunto de estrategias para caracterizar patrones anormales relacionados con este tipo de hallazgos para mejorar la interpretación y soportar el diagnóstico mediante la imagen mamaria. Los modelos aquí propuestos permiten caracterizar patrones visuales y la relación entre estos para inferir su significado clínico según el estándar BI-RADS (Breast Imaging Reporting and Data System) usado para la evaluación y reporte mamográfico. Los resultados obtenidos han demostrado mejorar a los resultados obtenidos por los métodos reportados en la literatura en tareas como clasificación e interpretación de masas y distorsión arquitectural, demostrando la efectividad y versatilidad de las estrategia propuestas.Doctorad

    Breast Cancer Analysis in DCE-MRI

    Get PDF
    Breast cancer is the most common women tumour worldwide, about 2 million new cases diagnosed each year (second most common cancer overall). This disease represents about 12% of all new cancer cases and 25% of all cancers in women. Early detection of breast cancer is one of the key factors in determining the prognosis for women with malignant tumours. The standard diagnostic tool for the detection of breast cancer is x-ray mammography. The disadvantage of this method is its low specificity, especially in the case of radiographically dense breast tissue (young or under-forty women), or in the presence of scars and implants within the breast. Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) has demonstrated a great potential in the screening of high-risk women for breast cancer, in staging newly diagnosed patients and in assessing therapy effects. However, due to the large amount of information, DCE-MRI manual examination is error prone and can hardly be inspected without the use of a Computer-Aided Detection and Diagnosis (CAD) system. Breast imaging analysis is made harder by the dynamical characteristics of soft tissues since any patient movements (such as involuntary due to breathing) may affect the voxel-by-voxel dynamical analysis. Breast DCE-MRI computer-aided analysis needs a pre-processing stage to identify breast parenchyma and reduce motion artefacts. Among the major issues in developing CAD for breast DCE-MRI, there is the detection and classification of lesions according to their aggressiveness. Moreover, it would be convenient to determine those subjects who are likely to not respond to the treatment so that a modification may be applied as soon as possible, relieving them from potentially unnecessary or toxic treatments. In this thesis, an automated CAD system is presented. The proposed CAD aims to support radiologist in lesion detection, diagnosis and therapy assessment after a suitable preprocessing stage. Segmentation of breast parenchyma has been addressed relying on fuzzy binary clustering, breast anatomical priors and morphological refinements. The breast mask extraction module combines three 2D Fuzzy C-Means clustering (executed from the three projection, axial, coronal and transversal) and geometrical breast anatomy characterization. In particular, seven well-defined key-points have been considered in order to accurately segment breast parenchyma from air and chest-wall. To diminish the effects of involuntary movement artefacts, it is usual to apply a motion correction of the DCE-MRI volumes before of any data analysis. However, there is no evidence that a single Motion Correction Technique (MCT) can handle different deformations - small or large, rigid or non-rigid - and different patients or tissues. Therefore, it would be useful to develop a quality index (QI) to evaluate the performance of different MCTs. The existent QI might not be adequate to deal with DCE-MRI data because of the intensity variation due to contrast media. Therefore, in developing a novel QI, the underlying idea is that once DCE-MRI data have been realigned using a specific MCT, the dynamic course of the signal intensity should be as close as possible to physiological models, such as the currently accepted ones (e.g. Tofts-Kermode, Extended Tofts-Kermode, Hayton-Brady, Gamma Capillary Transit Time, etc.). The motion correction module ranks all the MCTs, using the QI, selects the best MCT and applies a correction before of further data analysis. The proposed lesion detection module performs the segmentation of lesions in Regions of Interest (ROIs) by means of classification at a pixel level. It is based on a Support Vector Machine (SVM) trained with dynamic features, extracted from a suitably pre-selected area by using a pixel-based approach. The pre-selection mask strongly improves the final result. The lesion classification module evaluates the malignity of each ROI by means of 3D textural features. The Local Binary Patterns descriptor has been used in the Three Orthogonal Planes (LBP-TOP) configuration. A Random Forest has been used to achieve the final classification into a benignant or malignant lesion. The therapy assessment stage aims to predict the patient primary tumour recurrence to support the physician in the evaluation of the therapy effects and benefits. For each patient which has at least a malignant lesion, the recurrence of the disease has been evaluated by means of a multiple classifiers system. A set of dynamic, textural, clinicopathologic and pharmacokinetic features have been used to assess the probability of recurrence for the lesions. Finally, to improve the usability of the proposed work, we developed a framework for tele-medicine that allows advanced medical image remote analysis in a secure and versatile client-server environment, at a low cost. The benefits of using the proposed framework will be presented in a real-case scenario where OsiriX, a wide-spread medical image analysis software, is allowed to perform advanced remote image processing in a simple manner over a secure channel. The proposed CAD system have been tested on real breast DCE-MRI data for the available protocols. The breast mask extraction stage shows a median segmentation accuracy and Dice similarity index of 98% (+/-0,49) and 93% %(+/-1,48) respectively and 100% of neoplastic lesion coverage. The motion correction module is able to rank the MCTs with an accordance of 74% with a 'reference ranking'. Moreover, by only using 40% of the available volume, the computational load is reduced selecting always the best MCT. The automatic detection maximises the area of correctly detected lesions while minimising the number of false alarms with an accuracy of 99% and the lesions are, then, diagnosed according to their stage with an accuracy of 85%. The therapy assessment module provides a forecasting of the tumour recurrence with an accuracy of 78% and an AUC of 79%. Each module has been evaluated by a leave-one-patient-out approach, and results show a confidence level of 95% (p<0.05). Finally, the proposed remote architecture showed a very low transmission overhead which settles on about 2.5% for the widespread 10\100 Mbps. Security has been achieved using client-server certificates and up-to-date standards

    Texture Analysis Platform for Imaging Biomarker Research

    Get PDF
    abstract: The rate of progress in improving survival of patients with solid tumors is slow due to late stage diagnosis and poor tumor characterization processes that fail to effectively reflect the nature of tumor before treatment or the subsequent change in its dynamics because of treatment. Further advancement of targeted therapies relies on advancements in biomarker research. In the context of solid tumors, bio-specimen samples such as biopsies serve as the main source of biomarkers used in the treatment and monitoring of cancer, even though biopsy samples are susceptible to sampling error and more importantly, are local and offer a narrow temporal scope. Because of its established role in cancer care and its non-invasive nature imaging offers the potential to complement the findings of cancer biology. Over the past decade, a compelling body of literature has emerged suggesting a more pivotal role for imaging in the diagnosis, prognosis, and monitoring of diseases. These advances have facilitated the rise of an emerging practice known as Radiomics: the extraction and analysis of large numbers of quantitative features from medical images to improve disease characterization and prediction of outcome. It has been suggested that radiomics can contribute to biomarker discovery by detecting imaging traits that are complementary or interchangeable with other markers. This thesis seeks further advancement of imaging biomarker discovery. This research unfolds over two aims: I) developing a comprehensive methodological pipeline for converting diagnostic imaging data into mineable sources of information, and II) investigating the utility of imaging data in clinical diagnostic applications. Four validation studies were conducted using the radiomics pipeline developed in aim I. These studies had the following goals: (1 distinguishing between benign and malignant head and neck lesions (2) differentiating benign and malignant breast cancers, (3) predicting the status of Human Papillomavirus in head and neck cancers, and (4) predicting neuropsychological performances as they relate to Alzheimer’s disease progression. The long-term objective of this thesis is to improve patient outcome and survival by facilitating incorporation of routine care imaging data into decision making processes.Dissertation/ThesisDoctoral Dissertation Biomedical Informatics 201

    Deep learning in medical imaging and radiation therapy

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146980/1/mp13264_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146980/2/mp13264.pd

    Innovations in Medical Image Analysis and Explainable AI for Transparent Clinical Decision Support Systems

    Get PDF
    This thesis explores innovative methods designed to assist clinicians in their everyday practice, with a particular emphasis on Medical Image Analysis and Explainability issues. The main challenge lies in interpreting the knowledge gained from machine learning algorithms, also called black-boxes, to provide transparent clinical decision support systems for real integration into clinical practice. For this reason, all work aims to exploit Explainable AI techniques to study and interpret the trained models. Given the countless open problems for the development of clinical decision support systems, the project includes the analysis of various data and pathologies. The main works are focused on the most threatening disease afflicting the female population: Breast Cancer. The works aim to diagnose and classify breast cancer through medical images by taking advantage of a first-level examination such as Mammography screening, Ultrasound images, and a more advanced examination such as MRI. Papers on Breast Cancer and Microcalcification Classification demonstrated the potential of shallow learning algorithms in terms of explainability and accuracy when intelligible radiomic features are used. Conversely, the union of deep learning and Explainable AI methods showed impressive results for Breast Cancer Detection. The local explanations provided via saliency maps were critical for model introspection, as well as increasing performance. To increase trust in these systems and aspire to their real use, a multi-level explanation was proposed. Three main stakeholders who need transparent models have been identified: developers, physicians, and patients. For this reason, guided by the enormous impact of COVID-19 in the world population, a fully Explainable machine learning model was proposed for COVID-19 Prognosis prediction exploiting the proposed multi-level explanation. It is assumed that such a system primarily requires two components: 1) inherently explainable inputs such as clinical, laboratory, and radiomic features; 2) Explainable methods capable of explaining globally and locally the trained model. The union of these two requirements allows the developer to detect any model bias, the doctor to verify the model findings with clinical evidence, and justify decisions to patients. These results were also confirmed for the study of coronary artery disease. In particular machine learning algorithms are trained using intelligible clinical and radiomic features extracted from pericoronaric adipose tissue to assess the condition of coronary arteries. Eventually, some important national and international collaborations led to the analysis of data for the development of predictive models for some neurological disorders. In particular, the predictivity of handwriting features for the prediction of depressed patients was explored. Using the training of neural networks constrained by first-order logic, it was possible to provide high-performance and explainable models, going beyond the trade-off between explainability and accuracy

    Quantification of tumour heterogenity in MRI

    Get PDF
    Cancer is the leading cause of death that touches us all, either directly or indirectly. It is estimated that the number of newly diagnosed cases in the Netherlands will increase to 123,000 by the year 2020. General Dutch statistics are similar to those in the UK, i.e. over the last ten years, the age-standardised incidence rate1 has stabilised at around 355 females and 415 males per 100,000. Figure 1 shows the cancer incidence per gender. In the UK, the rise in lifetime risk of cancer is more than one in three and depends on many factors, including age, lifestyle and genetic makeup

    Complexity Reduction in Image-Based Breast Cancer Care

    Get PDF
    The diversity of malignancies of the breast requires personalized diagnostic and therapeutic decision making in a complex situation. This thesis contributes in three clinical areas: (1) For clinical diagnostic image evaluation, computer-aided detection and diagnosis of mass and non-mass lesions in breast MRI is developed. 4D texture features characterize mass lesions. For non-mass lesions, a combined detection/characterisation method utilizes the bilateral symmetry of the breast s contrast agent uptake. (2) To improve clinical workflows, a breast MRI reading paradigm is proposed, exemplified by a breast MRI reading workstation prototype. Instead of mouse and keyboard, it is operated using multi-touch gestures. The concept is extended to mammography screening, introducing efficient navigation aids. (3) Contributions to finite element modeling of breast tissue deformations tackle two clinical problems: surgery planning and the prediction of the breast deformation in a MRI biopsy device
    corecore