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A B S T R A C T   

A deep learning (DL) network for 2D-based breast mass segmentation in unenhanced dedicated breast CT images 
was developed and validated, and its robustness in radiomic feature stability and diagnostic performance 
compared to manual annotations of multiple radiologists was investigated. 93 mass-like lesions were extensively 
augmented and used to train the network (n ¼ 58 masses), which was then tested (n ¼ 35 masses) against manual 
ground truth of a qualified breast radiologist with experience in breast CT imaging using the Conformity coef
ficient (with a value equal to 1 indicating a perfect performance). Stability and diagnostic power of 672 radiomic 
descriptors were investigated between the computerized segmentation, and 4 radiologists’ annotations for the 35 
test set cases. Feature stability and diagnostic performance in the discrimination between benign and malignant 
cases were quantified using intraclass correlation (ICC) and multivariate analysis of variance (MANOVA), per
formed for each segmentation case (4 radiologists and DL algorithm). DL-based segmentation resulted in a 
Conformity of 0.85 � 0.06 against the annotated ground truth. For the stability analysis, although modest 
agreement was found among the four annotations performed by radiologists (Conformity 0.78 � 0.03), over 90% 
of all radiomic features were found to be stable (ICC>0.75) across multiple segmentations. All MANOVA analyses 
were statistically significant (p � 0.05), with all dimensions equal to 1, and Wilks’ lambda �0.35. In conclusion, 
DL-based mass segmentation in dedicated breast CT images can achieve high segmentation performance, and 
demonstrated to provide stable radiomic descriptors with comparable discriminative power in the classification 
of benign and malignant tumors to expert radiologist annotation.   

1. Introduction 

With the advancements in medical image analysis, clinical images 
are now being considered not only as graphical representations intended 
for visual perception alone, but as mineable, multidimensional data [1]. 
Extracting relevant data from medical images is referred to as radiomics. 
For this purpose, images may be analyzed by high-throughput 
computing algorithms that extract several quantitative features, which 
can be used to develop mathematical models and classifiers for diag
nostic decision support [1]. Automated medical image analysis has seen 
a rapid growth in the past few years, and is motivated by the fact that 
intrinsic characteristics contained in medical images can be quantified 
and subsequently related to specific physiological and pathological 

conditions [2]. 
The pipeline of quantitative radiomics involves several steps, 

including the identification of the region of interest in the image, the 
segmentation of the structure to be analyzed (which is, in most cases, 
performed manually by expert readers), and the extraction of quanti
tative features [2]. Once obtained, these features can be statistically 
analyzed, and used to develop classification models to predict the 
investigated diagnostic outcome. 

One of the main areas where radiomics has been applied is breast 
cancer imaging, due to its high incidence rate [3]. Classification models 
based on quantitative descriptors have been proposed for digital 
mammography [4–6], digital breast tomosynthesis [7], breast ultra
sound [8], and breast MRI [9,10], with the objective of assessing the risk 
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of breast cancer development [6], differentiating benign versus malig
nant lesions [4,5,8,9], and predicting cancer recurrence and survival 
rates [10]. 

Among the most recently developed technologies for breast imaging, 
dedicated breast CT has been proposed to overcome the problem of 
tissue superposition in mammography. Breast CT, optimized for the 
contrast and spatial resolution requirements of breast cancer imaging, 
can provide real 3D images of the breast, allowing for a complete 
characterization of breast tissue and, especially, of lesions [11]. Without 
tissue superposition, tumor features such as shape, heterogeneity, and 
degree of infiltration might be obtained with higher accuracy compared 
to when using mammography, potentially leading to more predictive 
radiomic descriptors of malignancy and aggressiveness. 

Since in morphological imaging (such as in unenhanced breast CT), 
malignant and benign tumors may appear differently in the image 
mainly according to shape, definition of boundaries, and heterogeneity 
in voxel intensity [12], radiomic biomarkers should investigate tumor 
shape, margin, and texture. In order to quantify these characteristics, 
numerous radiomic features should be calculated, leading to a huge 
amount of data extracted from each image. This poses major difficulties 
in the development of robust diagnostic models, especially when data
sets are limited [1], as is the case with breast CT imaging, a modality still 
under research and not yet implemented in the daily clinical routine. 
Furthermore, many radiomic features are of considerable complexity, a 
fact which makes their computational cost high, especially in the case of 
3D descriptors calculated in tomographic imaging techniques [13]. 

This can be partially solved by considering the tomographic image as 
a stack of 2D slices, and performing any radiomic analysis on a 2D basis. 
A 2D radiomics approach has been shown to provide, in some studies, 
similar performance compared to 3D radiomic analyses [13], with the 
additional advantage of a much simpler mathematical formulation of 
radiomic features (and corresponding lower computational cost). In 
parallel, a 2D approach allows for the development of more advanced 
and robust diagnostic classifiers through the augmentation of the dataset 
(for example, through the collection of multiple image slices, multiple 
image views, or affine transformations of each tumor image [14,15]). 
However, this approach makes the manual segmentation process of all 
regions of interest highly time consuming and, therefore, not sustainable 
in clinical practice, especially if tens (or hundreds) of 2D images need to 
be annotated from each case. 

Therefore, automated tumor segmentation methods are needed, 
especially where the volume to be segmented is usually of considerable 
size and complexity in shape (e.g. in mass-like lesions). With the ad
vancements in artificial intelligence, deep learning algorithms can be 
trained to perform the segmentation task in a supervised fashion, which 
have demonstrated to achieve high performance with low computa
tional times, as reported in previously conducted studies on mass seg
mentation in digital mammography [16–18], breast ultrasound [19,20], 
and breast MRI [21]. 

For breast CT, to the best of our knowledge, only unsupervised seg
mentation methods have been proposed [22,23], which report an 
average DICE similarity performance of 0.8 [22], with some cases where 
the DICE drops to below 0.7 [23]. Therefore, the application of deep 
learning in breast CT images for lesion segmentation remains to be 
investigated. 

Moreover, while the superior performance of deep learning over 
traditional segmentation methods has been repeatedly demonstrated, 
the viability of computerized segmentation as input for radiomic models 
has not be studied to a large extent. Some previous works evaluated the 
stability of radiomic features across different annotations for head and 
neck squamous cell carcinoma [24], pleural mesothelioma [24], lung 
[24–27] and liver [28,29] cancer, but radiomic feature stability among 
radiologist annotations and deep learning-based segmentation in breast 
cancer imaging remains to be investigated in depth. In a single publi
cation (to the best of our knowledge) on radiomics robustness in dy
namic contrast-enhanced breast MRI [30], only radiomic-based 

classification performance was evaluated, without investigating the 
stability of the descriptors. 

Therefore, in this work, we implemented a deep learning-based 
method for breast mass segmentation and classification in unenhanced 
dedicated breast CT images, and we validated it against a ground truth 
dataset in terms of segmentation performance, and against the annota
tion of multiple breast radiologists in terms of radiomic feature stability 
and diagnostic power in the classification of benign and malignant 
masses. 

The proposed study therefore aims to investigate the validity of 
engineered solutions for breast mass segmentation (in the perspective of 
radiomic analyses) compared to human expert annotations, with future 
application for computer-aided diagnosis in dedicated breast CT 
imaging. 

2. Materials and methods 

2.1. Breast CT images 

The unenhanced dedicated breast CT images used in this study were 
prospectively collected as part of an ethics-board approved patient trial 
being performed at our institution, with all women providing written 
informed consent. Women 50 years of age or older with a suspicious 
finding detected at mammographic screening were eligible for this 
study. 

Exclusion criteria were suspected or confirmed pregnancy, bilateral 
mastectomy, the presence of the suspicious lesion in the axillary tail, 
prior breast cancer or breast biopsy in the recalled breast in the last 12 
months, presence of palpable lesions, breastfeeding, frailty or inability 
to cooperate. 

For each patient, as part of the clinical routine, the presence of the 
lesion was assessed by the combined use of digital breast tomosynthesis 
and/or breast ultrasound, and all masses were identified and localized 
on the breast CT images by an experienced breast radiologist. 

2.2. Breast CT scan protocol 

Images were acquired by trained radiographers with a dedicated 
breast CT clinical system (Koning Corp., West Henrietta, NY) [31,32]. 
The system has an x-ray tube with a tungsten target and aluminum filter, 
and the tube voltage was set to 49 kV for all acquisitions. The x-ray 
source has a half-cone beam geometry, and the resulting spectrum has a 
nominal focal spot of 0.3 mm and a half-value layer of 1.39 mm Al. The 
breast CT system has a source-to-imager distance of 92.3 cm, a 
source-to-isocenter distance of 65 cm, and is equipped with an 
energy-integrating detector (4030CB, Varian Medical Systems, Palo 
Alto, California, USA) with dimensions 397 mm � 298 mm (1024 � 768 
elements) and nominal pixel size of 0.194 mm. Tomographic image 
reconstruction was performed through a filtered backprojection algo
rithm, with a reconstructed voxel size of 0.273 mm (isotropic). 

A complete breast CT scan is achieved through the acquisition of 300 
projections during a full revolution of the x-ray tube and detector around 
the patient breast, in a total time of 10 seconds. The x-ray tube operates 
in pulsed mode, with a constant 8 ms pulse; the tube current is auto
matically set for each patient breast by acquiring two scout images 
normal to each other (16 mA, 2 pulses of 8 ms each per projection). 
According to the signal level in the two scout images, the tube current is 
selected between 12 mA and 100 mA. The dose varied for each patient 
breast, with the average level (for a breast of mean composition and 
size) being 8.5 mGy [32]. 

2.3. Data collection and annotation 

Within this study, 69 patient images containing a total of 93 mass- 
like lesions were collected, with patient age ranging between 50 and 
86 years, (mean 61.1 years). The distribution of the image dataset within 
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the four BI-RADS® breast density categories was 5.85% (n ¼ 4, BI- 
RADS® a), 42.0% (n ¼ 29, BI-RADS® b), 47.80% (n ¼ 33, BI-RADS® c), 
and 4.35% (n ¼ 3, BI-RADS® d). 

The size of the lesions, given by the major diameter, ranged between 
4.8 mm and 27.0 mm (mean 10.2 mm, median 8.5 mm). 59 masses were 
benign (49 cysts, 5 fibroadenoma, 3 lymph nodes, 1 hamartoma, 1 
atypical papilloma), 25 biopsy-proven malignant (12 ductal carcinoma 
in situ (DCIS), 8 invasive ductal carcinoma (IDC), 5 combinations of 
tumor types), and for 9 cases the lesion type was not available. All cysts 
(n ¼ 49) were diagnosed through ultrasound examination, while all 
solid masses (n ¼ 35) were biopsy-proven (through stereotactic or 
ultrasound-based biopsy). 

All lesions were divided into training (n ¼ 50: 24 cysts, 2 fibroade
noma, 2 lymph nodes, 6 DCIS, 3 IDC, 2 combinations of tumor types, 1 
atypical papilloma, 1 hamartoma, 9 with unknown lesion type), vali
dation (n ¼ 8: 4 cyst, 1 fibroadenoma, 1 DCIS, 1 IDC, 1 combination of 
tumor types), and test sets (n ¼ 35: 21 cysts, 2 fibroadenoma, 1 lymph 
node, 5 DCIS, 4 IDC, 2 combinations of tumor types). For each lesion 
type, the number of cases to be assigned to each dataset was defined a 
priori (to allow for case stratification), and then the lesions were 
assigned to each dataset randomly. 

2.4. Data augmentation 

Since this study aims to perform breast mass segmentation on a 2D 
basis for subsequent radiomic analyses, a single image patch was 
collected for each mass in the coronal plane intersecting the mass center. 
Each patch had fixed dimensions of 128 � 128 voxels, so as to fully 
encompass the largest mass in our dataset (27.0 mm, equivalent to 99 
voxels). 

Given the strong dependency of deep learning performance on 
dataset size, different augmentation strategies were performed for the 
58 breast masses included in the training and validation sets, in order to 

maximize the deep learning model training effectiveness. In the first 
augmentation step, an additional 8 patches (still of 128 voxel side 
length) were collected from each training-validation mass, in addition to 
the coronal ones. Two of these were generated from the other planes 
perpendicular to the coronal view (sagittal and axial). The other six were 
extracted from the planes of symmetry that cut two opposite faces of an 
imaginary cube (circumscribing the mass) into its diagonals (that is, 
each plane contains two opposite edges of the cube, and four vertices). 
This process resulted in a first dataset of 522 training and validation 
patches (some of which are shown in Fig. 1), and 35 test patches. All 
training, validation, and test patches were manually segmented under 
the supervision of a qualified breast radiologist with experience in breast 
CT imaging, providing a labelled dataset considered as the ground truth. 
Three other breast radiologists segmented the 35 patches of the test set, 
which were used to evaluate the radiomic feature stability across 
different annotations (as explained in Section 2.I). 

In the second augmentation strategy, traditional rotation (three ro
tations, with random angles ranging among 1o-20�, 10o-30�, and 20o- 
40�), mirroring (horizontal and vertical), and shearing (along the hori
zontal and vertical axis, with a shear ratio varying randomly between 
1% and 20%) were performed. All these affine transformations were 
performed in a cumulative manner, resulting in a total of 324 patches for 
each mass. 

Finally, a third augmentation strategy was performed using a 
Generative Adversarial Network (GAN). This deep learning model was 
used to synthesize additional training data through the generation of 
new, realistic images of breast masses. A GAN architecture is composed 
of two main blocks: a generator and a discriminator, which are trained to 
compete against each other. Given an input noisy vector, the former 
generates synthetic images which are fed to the discriminator. This latter 
is trained in parallel to recognize between real breast masses, and syn
thetic ones. During training, gradients from the discriminator decision 
are propagated to the generator (which never directly sees the real mass 

Fig. 1. Examples of training image patches generated with the first augmentation strategy. Each row shows the same mass captured in a multi-view manner along 9 
different planes. Three planes correspond to the coronal, sagittal and axial view, while the other six to the planes of symmetry that cut two opposite faces of an 
imaginary cube, circumscribing the mass, into its diagonals. 
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images), allowing to adjust the parameters of the model to generate, at 
each iteration, more realistic synthetic images. 

The implemented GAN model [33] was trained to output synthetic 
image patches of breast masses, and respective annotations, and was 
used to generate 450 pairs of patches, which were then further 
augmented using the second augmentation strategy described above. As 
a result of this last augmentation method (summed with the two pre
viously described), a total of 34,992 image patches (and respective an
notations) were available for training and validation. 

A scheme of the GAN model is shown in Fig. 2, and details about 
architecture and training parameters are described in the following 
Subsection. 

2.5. GAN for data augmentation: architecture and training 

The implemented model [33] is a modification of the standard GAN 
[34], which forces the generator to create annotation masks in addition 
to synthetic images. The discriminator then judges the results from the 
generator on a pair basis, allowing the whole GAN to implicitly learn 
about the structure of both real mass images and ground truth labels. 
The model is based on the DCGAN [35] architecture, which uses a fully 
convolutional generator and discriminator without pooling layers. The 
generator takes a noisy vector x as input (dimensions kept fixed to 400 
� 1, uniform noise ranging between � 1 and 1), and outputs the syn
thetic images IsyntheticðxÞ. The discriminator takes both IsyntheticðxÞ and the 
real images Ireal, and provides a binary output classifying each image as 
either real (y ¼ 1) or fake (y ¼ 0) using binary cross-entropy as the loss 
function (JD): 

JD¼
1
m

Xm

i¼1

�
log
�
y
�
Isynthetic

�
xi
���
þ log

�
1 � y

�
Iireal
���

(1)  

where m is the mini-batch size. The generator loss function (JG) is 

similar to equation (1), but it only evaluates the output from the 
discriminator (i.e. real training images are not directly fed to the 
generator): 

JG¼
1
m

Xm

i¼1

�
log
�
1 � y

�
Isynthetic

�
xi
����

(2) 

By minimizing JD, the discriminator can recognize correctly between 
real and fake images, while minimizing JG allows the generator to create 
realistic synthetic images. 

The size of the feature maps of the generator were [512; 256; 128; 
128; 128], while the discriminator feature map dimensions were set to 
[128; 128; 256; 512; 512]. All weights were normally initialized, and 
batch normalization was implemented to reduce overfitting. 

The GAN was trained using the Adam (adaptive moment estimation) 
optimization method [36], an algorithm that adapts the learning rate for 
each network weight by using first and second moments of the gradient, 
with an initial learning rate of 0.0001 and an exponential decay rate for 
the first and second moment estimates of β1 ¼ 0.5, β2 ¼ 0.999, and a 
mini-batch size of 64 examples. The model was trained using the image 
patches from the training set (50 masses and respective annotations), 
after extracting 9 patches from each mass (450 patches in total) using 
the first data augmentation strategy (as explained above). 

So as to process both the original and the annotated image, the 
DCGAN architecture was modified to include two input channels [33]. 
The first channel corresponds to the original image, while the second to 
the respective manually annotated mask. During training, the discrim
inator judges the quality of the image-annotation pairs, instead of 
evaluating only the original image. After training, the generator creates 
synthetic examples which are composed by a mass patch, and the 
respective segmentation mask; these pairs can then be used as additional 
examples for the training of supervised deep learning models aiming at 
automatic segmentation. 

Fig. 2. (a) Scheme of the implemented GAN [33] used as an augmentation strategy to generate synthetic images and respective annotations. (b) Some examples of 
the generated synthetic images, and respective annotations. 
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2.6. Breast mass segmentation through deep learning 

For the segmentation of breast mass patches, a U-net architecture 
[37] composed of an encoder-decoder structure was implemented 
(Fig. 3). This model performs pixel-wise mapping between the original 
image and the manually annotated mask, learning the segmentation task 
in a supervised fashion. 

The encoder reduces the input feature space dimensions through 3 �
3 convolutions and max pooling operations (kernel size 2 � 2, stride of 
2), while the decoder recovers the information through 2 � 2 nearest- 
neighbor up-sampling followed by two 3 � 3 convolutional kernels. 
All results of convolutional blocks from the encoding part are concate
nated with each corresponding decoding step, allowing to preserve the 
high detail of the original input image. The final layer consists of a 1 � 1 
convolution followed by a sigmoid activation function, which outputs 
the segmentation result in the form of a pixel-wise probability. 

The network was trained using mini-batches of 16 examples and the 
Adam optimization method. The initial learning rate was set to 0.001, 
and decayed exponentially every 10 epochs (over a maximum of 50 
epochs). The energy function was computed by a pixel-wise softmax 
(equation (3)) over the final feature map combined with the cross- 
entropy loss function (equation (4)) [37]: 

piðxÞ¼
exi

PK
j¼1exj

(3)  

Loss¼ �
XK

i¼1
tilogðpiðxÞ

�
(4) 

Equation (3), in which xi represents the activation value for an input 
pixel i, and K the number of possible classes (two in case of binary 
segmentation), maps the non-normalized output of the network to a 
probability distribution over the predicted output class. Equation (4) 
penalizes wrong network predictions, by comparing the ground truth 
labels ti with the network predictions piðxÞ. 

When implementing the network, the validation set was used both 
for hyperparameter tuning, and for overfitting prevention, by evaluating 
the network accuracy on the validation set, and stopping the training if 

the validation accuracy did not increase after 5 epochs. Accuracy was 
calculated as for binary classification, but was applied pixel-wise: the 
sigmoid activation function in the last layer outputs a pixel-wise prob
ability map between 0 and 1, which is rounded and compared with the 
ground truth annotated images. 

2.7. Radiomics descriptors 

A pipeline for the automatic extraction of radiomic features (327 
texture-based, 18 shape- and contour-based) was implemented. Texture 
was quantified through different descriptors which can be divided into 
five major categories: histogram-based (first order moments of the 
image patch gray-level distribution) [38], Haralick (second order mo
ments, which recognize frequency patterns of neighboring pixels) [39], 
run length (which capture the coarseness of texture over different linear 
orientations) [40], structural and pattern (which characterize tissue 
architectural complexity, possible directionality of structures, and local 
intensity variations) [41–45], and Gabor filters (which analyze the fre
quency content within the image in specific directions and in localized 
regions) [46]. Texture analysis was performed for each mass both inside 
the segmented boundary, and within an annular region whose centerline 
is given by the edge of the segmented area, and whose total thickness 
along the radial direction equals 10 voxels, to capture the texture of the 
mass margins. 

Shape and contour analysis were performed through the extraction 
of 18 features calculated from each segmented mass. Features include 
regional descriptors based on geometrical characteristics [47], and more 
complex measurements based on Fourier descriptors applied to the 
centroid-distance function [48], to the shape contour [49], and mo
ments of the mass boundaries [50]. 

A detailed mathematical formulation of all implemented radiomic 
features is reported in Tables 3 and 4 (Online Appendix). 

2.8. Segmentation performance 

To evaluate the segmentation performance of the deep learning al
gorithm (A) using the manual annotations as ground truth (B), four 

Fig. 3. U-net architecture implemented for breast mass segmentation.  
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similarity metrics were used:  

- DICE similarity, defined as the intersection between the two samples 
A and B over their union, ranging between 0 (no overlap) and 1 
(perfect overlap) 

DICE¼
2⋅jA \ Bj
jAj þ jBj

(5)    

- Sensitivity, which measures the proportion between positive voxels 
which are correctly segmented by the algorithm (TP) to the total 
number of ground truth positive voxels (PgroundTruth) 

S¼
TP

PgroundTruth
(6)    

- Precision, defined as the ratio between TP and all voxels which are 
segmented by the algorithm (Palgorithm) 

P¼
TP

Palgorithm
(7)    

- Conformity, which considers the ratio between the total number of 
incorrectly classified voxels (Vmisclassified) and TP: 

Conformity¼ 1 �
Vmisclassified

TP
(8) 

This latter metric varies within a much wider range compared to the 
other three, spanning between -∞ (no overlap between A and B), and 1 
(perfect overlap). A value of zero indicates that the number of correctly 
segmented voxel equals the number of misclassified voxels. 

Evaluation was performed against the ground truth annotation for 
four different models, which were trained using the different data 
augmentation strategies (as described in Section 2.D):  

- Using only the 9 multi-view patches collected from each training and 
validation mass (augmentation 1) 

- Using the 9 multi-view patches, and traditional affine trans
formations (augmentation 2)  

- Using the 9 multi-view patches, and synthetic images generated with 
the GAN (augmentation 3)  

- Using the 9 multi-view patches, traditional affine transformations, 
and synthetic images generated with the GAN (augmentation 4) 

To evaluate the stability of radiomic features among the algorithm, 
the considered ground truth, and the three additional expert manual 
annotations, the model with the highest performance was selected. 

2.9. Radiomic feature stability 

The stability of radiomic features between the annotations per
formed by the four radiologists included in this study and the segmen
tation resulting from the deep learning algorithm was quantified using 
the intraclass correlation coefficient (ICC(3,1)), a statistical indicator 
that measures the consistency of feature descriptors [51]. ICC indicates 
the degree of variability of feature values that is due to a real difference 
among the cases, as opposed to disagreement between annotations. It 
varies between 0 and 1, with a value above 0.75 often considered as a 
good threshold to indicate that the descriptors are stable across different 
segmentations [52]. 

The analysis of feature stability for the DL segmentation was per
formed considering both one radiologist at a time (to evaluate the al
gorithm performance over different radiologists’ annotations), and all 
four radiologists together (to evaluate the actual stability of the de
scriptors accounting for all the annotations at a time). The process was 
repeated multiple times, each time eliminating features with high inter- 

correlation (with a correlation threshold varying from 1 to 0.7), and for 
multiple ICC threshold levels (from 0.9 to 0.7). 

Finally, to investigate the differences in diagnostic performance in 
mass classification based on radiomic feature descriptors, multivariate 
analysis of variance (MANOVA) was performed for all five segmentation 
cases (four manual, one computerized). MANOVA was used to test the 
equality of the means of the two groups, i.e. benign vs malignant lesions. 
Therefore, radiomic features of the test set masses were tested against 
their pathology ground truth, which represents a nominal variable 
assuming only two values (0 and 1). To avoid multicollinearity, highly 
correlated variables were removed prior to the analysis (with a corre
lation threshold of 0.7) [53]. 

For each analysis performed, the MANOVA dimension, the Wilk’s 
Lambda, and the p-value were reported. The dimension of the MANOVA 
(d) was used to assess whether the two groups (benign, malignant) were 
separable in the MANOVA canonical hyperplane. In fact, d is an estimate 
of the dimension of the group means, and a value equal to 1 indicates 
that the means of the two groups can be considered as different (with a 
statistical significance given by the p-value). Finally, the Wilk’s Lambda 
expresses the ratio between the determinant of the variance within each 
of the group, and the sum between the determinants of the variance 
within and between each group [53]. All MANOVA analyses were per
formed using the Statistical Toolbox available in MATLAB (The Math
Works, Natick, MA, USA). 

3. Results 

3.1. Segmentation performance 

The algorithm resulted in the best performance when trained with all 
augmented data (9 multi-view planes, affine transformations, and syn
thetic images), achieving an average DICE for the test set images of 0.93 
� 0.03, a sensitivity of 0.92 � 0.03, a precision of 0.93 � 0.05, and a 
conformity of 0.85 � 0.06. Some example results are shown in Fig. 4. 
Segmentation performance using only the 9 planes and affine trans
formations resulted in comparable performance, while the training 
using only the 9 planes resulted in significantly lower performance. 
Between affine transformations and synthetic images, the former pro
vided a higher increase in segmentation performance (Table 1). 

3.2. Radiomic feature stability 

Overall, modest agreement was found among the four annotations 
performed by radiologists (Conformity: 0.78 � 0.03), and between all 
radiologists and the DL-based segmentation (Conformity: 0.78 � 0.04). 
A few examples of different segmentations are shown in Fig. 5. 

Results from the stability analysis are shown in Figs. 6 and 7. Overall, 
comparisons between each radiologist and the deep learning segmen
tation resulted in the majority of the radiomic features being stable. 
When all radiomic features were analyzed (i.e. highly correlated fea
tures not eliminated), at least the 90% of descriptors were stable 
(ICC>0.75) for all comparisons between each radiologist and the algo
rithm. When lowering the correlation threshold to eliminate highly 
correlated features, the percentage of stable features decreased, but the 
majority of features were still stable (ICC>0.75) for all comparisons 
(Fig. 6, a-d). 

By comparing all five segmentations together, the percentage of 
stable features (ICC>0.75) was 95.4%, 86.5%, 78.0%, and 77.2%, after 
eliminating correlated features with a threshold of 1, 0.9, 0.8, and 0.7, 
respectively (Fig. 6, e). 

Overall, texture features extracted from the masses and from their 
margins were the most stable (322 on 327, and 310 on 327, respec
tively), while only half of the shape and contour features showed high 
stability (9 on 18). 

MANOVA analyses resulted in similar discrimination between 
benign and malignant masses for all five segmentations (Fig. 8). All three 
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groups of radiomic descriptors (texture, margin, shape) were found to 
provide discriminant features. All analyses were statistically significant 
(P < 0.05), with MANOVA dimension (d) of 1, and all Wilks lambda 
were below 0.35. Complete findings for all analyses are reported in 

Table 2. 
A list of all features used, their ICC value, and the features that were 

selected after the correlation analysis (with a threshold of 0.9, 0.8, and 
0.7) are reported in the Online Supplemental Material. 

4. Discussion 

In this work, we developed a deep learning-based algorithm for 2D 
breast mass segmentation in unenhanced dedicated breast CT imaging, 
and we validated it in terms of segmentation performance and stability 
of radiomic feature descriptors across multiple expert manual 
annotations. 

Although, in the past few years, radiomic approaches based on 
convolutional neural networks have been proposed to directly analyze 

Fig. 4. (First row) Examples of original test masses; (second row) ground truth (single manual) annotation; (third row) deep learning-based segmentation; (last row) 
graphical comparison between ground truth and automated segmentation. 

Table 1 
Results of the segmentation performance metrics (mean, standard deviation) for 
the four different data augmentation strategies implemented.   

DICE Sensitivity Precision Conformity 

Augmentation 1 0.70 (0.16) 0.70 (0.19) 0.72 (0.18) 0.59 (0.18) 
Augmentation 2 0.92 (0.03) 0.92 (0.03) 0.92 (0.03) 0.83 (0.07) 
Augmentation 3 0.87 (0.09) 0.85 (0.13) 0.91 (0.11) 0.65 (0.37) 
Augmentation 4 0.93 (0.03) 0.92 (0.03) 0.93 (0.05) 0.85 (0.06)  

Fig. 5. Examples of breast masses included in the test set, with different segmentations overlaid. (a–c) are malignant, (d–f) are benign cases.  
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the lesions without the need for mass contouring, segmentation remains 
an important and critical aspect in radiomics, as confirmed by the 
number of studies involving lesion segmentation and handcrafted 
radiomic features being still much increasing, due to the advantage of 
handcrafted features to capture different physiological phenomena 
without an excessive increase in feature space size [54]. 

The best segmentation performance was achieved using extensive 
data augmentation, which includes the use of synthetic images gener
ated by a GAN. However, while traditional augmentation strategies 
(rotations, mirroring, and shearing) improved the segmentation results 
considerably compared to only using 9 views from each mass (DICE 
increased by over 30%), the additional inclusion of synthetic cases only 

Fig. 6. Results of radiomic feature stability analysis. Each graph shows the percentage of features (y axis) having different ICC values (x axis), after eliminating the 
highly correlated features for four thresholds of correlation (1, 0.9, 0.8, 0.7). (a)–(d) show the feature stability for the four radiologists’ annotations (each compared 
with the DL algorithm), while (e) shows the stability for the deep learning-based segmentation compared to all radiologists together. 

Fig. 7. Graphs showing the ICC distribution for all radiomic features, when the annotation of all radiologists was simultaneously compared with the deep learning 
segmentation. Each plot shows the results of the stability analysis for different correlation thresholds, used to eliminate highly correlated features (a: 1; b: 0.9; c: 0.8; 
d: 0.7). 
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increased the DICE results by an additional 1%. This highlights that 
traditional augmentation methods are still valuable, and that synthetic 
images generated through GANs have a lower impact in performance 
increase, and this could be due to the fact that synthetic images possess 
features which are not fully representative of real cases. However, when 
added to the 9 views only, synthetic images could increase the DICE by 
20%, suggesting that, for small datasets, GANs could still be helpful in 
increasing segmentation performance. While previous studies on chest 
x-ray lung segmentation showed a negligible benefit in segmentation 
performance when adding synthetic images to original cases [33], our 
findings could be due to the increased difficulty of segmenting size- and 
shape-varying structures (e.g. breast masses) as opposed to organs. 
Given the higher difficulty in the segmentation task, in case of very 
limited datasets there seems to be a benefit when using synthetic images 
for training a supervised segmentation model, as also previously re
ported in Refs. [55,56]. However, our findings are related to the specific 
model implemented in this work [33], and might therefore be different 
when other architectures are used. Therefore, also accounting for the 
very low increase in segmentation performance by including the syn
thetically generated images, further statistics with additional mass cases 
are required in future for a more meaningful performance comparison 
assessment. Furthermore, due to the limited number of masses available 
for this study, the same dataset was used to train both the U-net and the 
GAN. This limitation might reduce the impact of synthetic images on the 
segmentation performance, which could increase if the GAN was trained 
on different training examples compared to the model used for 
segmentation. 

The limited size of the dataset used in this study could be addressed 
in future work by the acquisition and inclusion of additional patient 
images. This could allow for improvement of the realism of the syn
thetically generated images, and consequently the performance of the 
automatic segmentation. The availability of larger image datasets could 
also allow for implementation of a conditional GAN architecture, where 
the input is not given by a simple noise vector, but by mask priors. While 
this approach is generally harder to train due to the larger dimension of 
the input to the generator and to the pixel level constraints given by the 
input mask [57], it could help improve the quality of the generated 
images. Therefore, it could help produce more realistic synthetic ex
amples to be used to ameliorate the performance of the subsequent 
segmentation model. 

While the implemented GAN can generate an arbitrary number of 
images, we chose to generate 450 synthetic mass patches to match the 
number of original training examples deriving from the first augmen
tation strategy (9 view augmentation). This was done to evaluate the 
potential increase in segmentation performance when the network was 
trained with only the 9 mass views and the synthetic samples, with a 
number of synthetic cases equal to the number of real images. While a 
larger number of synthetic cases could be included in this step, we do not 
expect further significant improvements, as the GAN was trained with 
the same image patches used to train the U-Net. With a larger number of 
examples available to train the GAN, especially different examples from 
the ones used to train the U-Net, additional insights may be achieved, 
and, in this case, a larger number of generated synthetic images could 
provide further benefit in the segmentation performance. 

Deep learning applied for breast mass segmentation in dedicated 
breast CT images achieved higher performance compared to traditional, 
unsupervised methods (DICE of 0.8) [22,23], although former analysis 
were performed on different datasets, which may impact results. The 
algorithm also demonstrated better results compared to some deep 
learning-based segmentation algorithms applied to breast ultrasound 
(DICE of 0.82 [19], and DICE of 0.89 [20]), and similar results compared 
to digital mammography (DICE of 0.91 [16]), and DICE of 0.93 [17]). 
This could be due to the better contrast of dedicated breast CT (as 
opposed to ultrasound), and to the possibility to perform extensive data 
augmentation thanks to the images being in fully three dimensions, 
which allows for the increase in the U-net training set size to a large 

Fig. 8. Graphs displaying the statistical analysis performed using MANOVA on the radiomic features extracted from the test set masses. Each plot shows the results of 
the analysis based on a different annotation (a–d), and on the deep learning segmentation (e). 

Table 2 
Results of the MANOVA for the four radiologists and for the deep learning-based 
segmentation in the discrimination between benign and malignant masses based 
on radiomic features.   

p-value d Wilks Lambda 

Radiologist 1 0.009 1 0.321 
Radiologist 2 0.003 1 0.276 
Radiologist 3 0.001 1 0.129 
Radiologist 4 0.005 1 0.233 
DL algorithm 0.015 1 0.342  

M. Caballo et al.                                                                                                                                                                                                                                



Computers in Biology and Medicine 118 (2020) 103629

10

number of examples (resulting in data set sizes similar to those in 
mammography). However, despite the promising results, the experi
ment should be repeated when a larger number of patient cases is 
available, possibly with images acquired with different breast CT sys
tems, and for different radiation dose levels, to evaluate the effect of 
different noise magnitudes and frequencies on the segmentation 
performance. 

The majority of radiomic features were found to have good stability, 
and features from each group were selected in all MANOVA analyses, 
indicating that a strong radiomic signature is obtained by the combi
nation of radiomic descriptors belonging to different categories (mass 
and margin texture, and shape). Considering the non-negligible vari
ability observed in the annotations of the four radiologists (Conformity 
of 0.78), this finding demonstrates a considerable robustness in radiomic 
descriptors extracted from breast CT mass-like lesions, suggesting that 
reliable radiomic signatures could be obtained even with different seg
mentation results. Moreover, the percentage of stable descriptors 
remained high when highly correlated features were eliminated. This is 
in line with previous findings conducted on liver masses [29], and in
dicates that only a small subset of radiomic features could be used to 
draw diagnostic conclusions. This is a desirable outcome, since dealing 
with too many features (compared to the number of available cases) 
usually requires correction for multiple testing, and increases the risk of 
overfitting of any predictive model designed upon the feature values. 

MANOVA was chosen as a statistical test to evaluate the discrimi
nation between benign and malignant cases due to its appropriateness in 
handling multi-dimensional data simultaneously. In fact, as opposed to 
univariate analyses (e.g. ANOVA or t-test), single statistical indicators 
are provided without the need to correct for multiple comparisons [58]. 
However, little information is provided about the power of single de
scriptors. Therefore, in future and with larger datasets, further insights 
could be achieved by applying additional statistical tests, to better 
evaluate the discriminant power of each radiomic descriptor and pro
vide a more reliable analysis from a diagnostic perspective. 

MANOVA analyses resulted to be statistically significant, and all 
presented a dimensionality of 1, indicating that the differences observed 
in the two samples (benign and malignant masses) is not due to random 
chance. Furthermore, except for a single radiologist whose annotation 
led to a much improved separation of the two classes in the MANOVA 
hyperplane (Radiologist 3, Fig. 8c), all segmentations led to similar 
discriminations between benign and malignant cases. 

These results confirmed not only the power of automatic segmenta
tion for radiomic purposes, but also highlighted a significant difference 
between the two mass types. However, these findings should be 
confirmed with future studies, with an enlarged test set, additional ex
perts’ annotations, and further statistics to better assess all comparisons 
among all segmentation results. 

With a larger test set, future studies will also analyze each non-stable 
radiomic descriptor, to evaluate whether the low stability is due to high 
variability among segmentations, or low variability across the image 
cases. Although results from the MANOVA show a good discriminant 
power (and therefore suggest a variability between the two classes of 
interest, benign and malignant), some features may show low stability 
because our dataset is not representative enough. Therefore, the analysis 
should be repeated with a larger number of cases, to understand which 
features should be avoided prior to radiomic analysis. 

The main limitation of this study is the relatively limited dataset size, 
due to breast CT still being in the clinical research realm, and not yet 
implemented in daily clinical routine. With an increased number of test 
cases, especially in terms of different lesion types, further insights could 
be achieved, both in terms of segmentation performance, and on its ef
fect on radiomic feature stability. Furthermore, the training set was 
annotated by a single radiologist, and this can potentially bias the seg
mentation performance towards this single expert. However, from a 
radiomics perspective, this does not seem to significantly affect the 
diagnostic power, while the segmentation performance could be further 

increased by using the entire dataset annotated by multiple readers. 
In future work, with an expanded dataset, this study will be included 

in the development of an automated computer-aided diagnosis system 
for dedicated breast CT images, with the goal of predicting breast mass 
malignancy grade and, consequently, attempt to reduce the number of 
negative biopsies. 

5. Conclusions 

Deep learning-based 2D segmentation of breast masses in unen
hanced dedicated breast CT images can achieve high performance 
against manually annotated ground truth. Furthermore, it demonstrated 
to provide stable radiomic feature descriptors, with a discriminative 
power in the classification of benign and malignant tumors comparable 
to expert manual annotation. 
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