221 research outputs found

    Breaking the Area Spectral Efficiency Wall in Cognitive Underlay Networks

    Get PDF
    In this article, we develop a comprehensive analytical framework to characterize the area spectral efficiency of a large scale Poisson cognitive underlay network. The developed framework explicitly accommodates channel, topological and medium access uncertainties. The main objective of this study is to launch a preliminary investigation into the design considerations of underlay cognitive networks. To this end, we highlight two available degrees of freedom, i.e., shaping medium access or transmit power. While from the primary user's perspective tuning either to control the interference is equivalent, the picture is different for the secondary network. We show the existence of an area spectral efficiency wall under both adaptation schemes. We also demonstrate that the adaptation of just one of these degrees of freedom does not lead to the optimal performance. But significant performance gains can be harnessed by jointly tuning both the medium access probability and the transmission power of the secondary networks. We explore several design parameters for both adaptation schemes. Finally, we extend our quest to more complex point-to-point and broadcast networks to demonstrate the superior performance of joint tuning policies

    Energy Harvesting Empowered Cognitive Metro-cellular Networks

    Get PDF
    Harvesting energy from natural (solar, wind, vibration etc.) and synthesized (microwave power transfer) sources is envisioned as a key enabler for realizing green wireless networks. Energy efficient scheduling is one of the prime objectives of cognitive radio platforms. To that end, in this article, we present a comprehensive analytical framework to characterize the performance of a cognitive metro-cellular network empowered by solar energy harvesting. The proposed model considers both spatial and temporal dynamics of the energy field and the mobile user traffic. Channel uncertainties are also captured in terms of large scale path-loss and small-scale Rayleigh fading. A new metric called `energy outage probability' which characterizes the self-sustainable operation of the base stations under energy harvesting is proposed and quantified. It is shown that the energy outage probability is strongly coupled with the path-loss exponent, required quality-of-service, base station and user density. Moreover, the energy outage probability varies both on daily and yearly basis depending on the solar geometry. It is shown that even in winter time BSs can run for 10-15 hours without any purchase of energy from the power grid

    Spectrum sensing for cognitive radio

    Get PDF
    In this thesis we will study the generalized likelihood ratio test as a solution to the spectrum sensing in multiple-input multiple-output environments. The performance will be analyzed by means of Monte Carlo simulations.El objetivo de este Proyecto Fin de carrera ha sido estudiar una posible solución a la radio cognitiva. Para ello y con ayuda de Matlab, se ha simulado el comportamiento de varios tipos de detectores diseñados bajo diferentes suposiciones y comparando sus resultados. Finalmente el detector GLRT es estudiado con más profundidad dado a sus buenas prestaciones. Por ello, en el capítulo final se representarán las curvas ROC de detectores GLRT derivados bajo diferentes condiciones y aplicados bajo diferentes escenarios para comparar los resultados obtenidos con cada uno de ellos.Ingeniería de Telecomunicació

    The Cognitive Internet of Things: A Unified Perspective

    Get PDF
    In this article, we present a unified perspective on the cognitive internet of things (CIoT). It is noted that within the CIoT design we observe the convergence of energy harvesting, cognitive spectrum access and mobile cloud computing technologies. We unify these distinct technologies into a CIoT architecture which provides a flexible, dynamic, scalable and robust network design road-map for large scale IoT deployment. Since the prime objective of the CIoT network is to ensure connectivity between things, we identify key metrics which characterize the network design space. We revisit the definition of cognition in the context of IoT networks and argue that both the energy efficiency and the spectrum efficiency are key design constraints. To this end, we define a new performance metric called the ‘overall link success probability’ which encapsulates these constraints. The overall link success probability is characterized by both the self-sustainablitiy of the link through energy harvesting and the availability of spectrum for transmissions. With the help of a reference scenario, we demonstrate that well-known tools from stochastic geometry can be employed to investigate both the node and the network level performance. In particular, the reference scenario considers a large scale deployment of a CIoT network empowered by solar energy harvesting deployed along with the centralized CIoT device coordinators. It is assumed that CIoT network is underlaid with a cellular network, i.e., CIoT nodes share spectrum with mobile users subject to a certain co-existence constraint. Considering the dynamics of both energy harvesting and spectrum sharing, the overall link success probability is then quantified. It is shown that both the self-sustainability of the link, and the availability of transmission opportunites, are coupled through a common parameter, i.e., the node level transmit power. Furthermore, provided the co-existence constraint is satisfied, the link level success in the presence of both the inter-network and intra-network interference is an increasing function of the transmit power. We demonstrate that the overall link level success probability can be maximized by employing a certain optimal transmit power. Characterization of such an optimal operational point is presented. Finally, we highlight some of the future directions which can benefit from the analytical framework developed in this paper

    20 Years of Evolution from Cognitive to Intelligent Communications

    Full text link
    It has been 20 years since the concept of cognitive radio (CR) was proposed, which is an efficient approach to provide more access opportunities to connect massive wireless devices. To improve the spectrum efficiency, CR enables unlicensed usage of licensed spectrum resources. It has been regarded as the key enabler for intelligent communications. In this article, we will provide an overview on the intelligent communication in the past two decades to illustrate the revolution of its capability from cognition to artificial intelligence (AI). Particularly, this article starts from a comprehensive review of typical spectrum sensing and sharing, followed by the recent achievements on the AI-enabled intelligent radio. Moreover, research challenges in the future intelligent communications will be discussed to show a path to the real deployment of intelligent radio. After witnessing the glorious developments of CR in the past 20 years, we try to provide readers a clear picture on how intelligent radio could be further developed to smartly utilize the limited spectrum resources as well as to optimally configure wireless devices in the future communication systems.Comment: The paper has been accepted by IEEE Transactions on Cognitive Communications and Networkin

    Massive MIMO and small cells: How to densify heterogeneous networks

    Full text link
    International audienceWe propose a time division duplex (TDD) based network architecture where a macrocell tier with a "massive" multiple-input multiple-output (MIMO) base station (BS) is overlaid with a dense tier of small cells (SCs). In this context, the TDD protocol and the resulting channel reciprocity have two compelling advantages. First, a large number of BS antennas can be deployed without incurring a prohibitive overhead for channel training. Second, the BS can estimate the interference covariance matrix from the SC tier which can be leveraged for downlink precoding. In particular, the BS designs its precoding vectors to transmit independent data streams to its users while being orthogonal to the subspace spanned by the strongest interference directions; thereby minimizing the sum interference imposed on the SCs. In other words, the BS "sacrifices" some of its antennas for interference cancellation while the TDD protocol allows for an implicit coordination across the tiers. Simulation results suggest that, given a sufficiently large number of BS antennas, the proposed scheme can significantly improve the sum-rate of the SC tier at the price of a small macro performance loss

    Cognitive Radio Systems

    Get PDF
    Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems

    Cognitive-Based Solutions to Spectrum Issues in Future Satellite Communication Systems

    Get PDF
    With particular attention to Satellite Communications (SatComs), cognitive-based solutions are investigated. With cognitive-based solutions we refer to all those techniques that aim at improving spectrum utilization of the available spectrum and rely on the knowledge of the environment in which the systems operate. As a matter of fact, an improved spectrum utilization enables higher throughput capacities that will satisfy the future markets and demands of an increasingly connected world. Throughout the thesis, several techniques are proposed, developed, and assessed with respect to specific scenarios of interest. Particular focus has been put on spectrum awareness techniques for system coexistence, and on spectrum exploitation techniques for an improved efficiency in terms of resource utilization

    Drone-Assisted Wireless Communications

    Get PDF
    In order to address the increased demand for any-time/any-where wireless connectivity, both academic and industrial researchers are actively engaged in the design of the fifth generation (5G) wireless communication networks. In contrast to the traditional bottom-up or horizontal design approaches, 5G wireless networks are being co-created with various stakeholders to address connectivity requirements across various verticals (i.e., employing a top-to-bottom approach). From a communication networks perspective, this requires obliviousness under various failures. In the context of cellular networks, base station (BS) failures can be caused either due to a natural or synthetic phenomenon. Natural phenomena such as earthquake or flooding can result in either destruction of communication hardware or disruption of energy supply to BSs. In such cases, there is a dire need for a mechanism through which capacity short-fall can be met in a rapid manner. Drone empowered small cellular networks, or so-called \quotes{flying cellular networks}, present an attractive solution as they can be swiftly deployed for provisioning public safety (PS) networks. While drone empowered self-organising networks (SONs) and drone small cell networks (DSCNs) have received some attention in the recent past, the design space of such networks has not been extensively traversed. So, the purpose of this thesis is to study the optimal deployment of drone empowered networks in different scenarios and for different applications (i.e., in cellular post-disaster scenarios and briefly in assisting backscatter internet of things (IoT)). To this end, we borrow the well-known tools from stochastic geometry to study the performance of multiple network deployments, as stochastic geometry provides a very powerful theoretical framework that accommodates network scalability and different spatial distributions. We will then investigate the design space of flying wireless networks and we will also explore the co-existence properties of an overlaid DSCN with the operational part of the existing networks. We define and study the design parameters such as optimal altitude and number of drone BSs, etc., as a function of destroyed BSs, propagation conditions, etc. Next, due to capacity and back-hauling limitations on drone small cells (DSCs), we assume that each coverage hole requires a multitude of DSCs to meet the shortfall coverage at a desired quality-of-service (QoS). Hence, we consider the clustered deployment of DSCs around the site of the destroyed BS. Accordingly, joint consideration of partially operating BSs and deployed DSCs yields a unique topology for such PS networks. Hence, we propose a clustering mechanism that extends the traditional Mat\'{e}rn and Thomas cluster processes to a more general case where cluster size is dependent upon the size of the coverage hole. As a result, it is demonstrated that by intelligently selecting operational network parameters such as drone altitude, density, number, transmit power and the spatial distribution of the deployment, ground user coverage can be significantly enhanced. As another contribution of this thesis, we also present a detailed analysis of the coverage and spectral efficiency of a downlink cellular network. Rather than relying on the first-order statistics of received signal-to-interference-ratio (SIR) such as coverage probability, we focus on characterizing its meta-distribution. As a result, our new design framework reveals that the traditional results which advocate lowering of BS heights or even optimal selection of BS height do not yield consistent service experience across users. Finally, for drone-assisted IoT sensor networks, we develop a comprehensive framework to characterize the performance of a drone-assisted backscatter communication-based IoT sensor network. A statistical framework is developed to quantify the coverage probability that explicitly accommodates a dyadic backscatter channel which experiences deeper fades than that of the one-way Rayleigh channel. We practically implement the proposed system using software defined radio (SDR) and a custom-designed sensor node (SN) tag. The measurements of parameters such as noise figure, tag reflection coefficient etc., are used to parametrize the developed framework
    corecore