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“It is paradoxical, yet true, to say, that the more we know, the more ignorant we become

in the absolute sense, for it is only through enlightenment that we become conscious of

our limitations. Precisely one of the most gratifying results of intellectual evolution is the

continuous opening up of new and greater prospects.”

Nicola Tesla.
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Preface

Nowadays, the radio spectrum is a limited resource in wireless communications. This

limitation is due to the fixed spectrum allocation principle, which allocates a spectrum

band to a licensed user, even if it is not being used. Therefore, it has been necessary

to introduce a new communications paradigm, which takes advantage of unused licensed

spectrum. This known paradigm known as cognitive radio can improve the wireless usage

sharing the spectrum between the licensed users and secondary users.

There are three different paradigms of cognitive radio: underlay, overlay and interweave

cognitive radio. The first two paradigms allow concurrent communication between the

primary and secondary users, whereas in the interweave cognitive radio, the secondary user

transmits only when the primary is inactive. In the next chapter, a brief overview about

these three paradigms will be presented, and finally we will focus on the last paradigm:

interweave cognitive radio.

The main idea of interweave cognitive radio is the dynamic spectrum access, which allows

secondary users to access unused resources in frequency, time and space. These secondary

users search for opportunistically access of the spectrum when the primary users are inac-

tive. Many factors (like SNR, interference, etc.) must be taken into account to maintain

the quality of the service and allow the transmission of any user without causing degrada-

tion. In order to avoid the interferences, the probability of detection must be very high to

be able to interrupt the secondary transmission whenever the primary users become active

[1, 2].

In the next chapters, several sensing methods in different scenarios will be studied. To do

that, we will present different detectors discussing their characteristics and performance.

The detectors have to detect whether the received signal is only noise or there is a signal

which has been transmitted from the user, i.e. the objective is to differentiate between two

hypotheses, as a binary hypothesis testing problem. Common applications for this problem

can be Radar, Sonar, Image processing, Biomedicine, etc. due to the fact that they all

need to detect the presence/absence of a transmitted signal.
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As introduction to the detection problem in this document, we will mainly differentiate

between two types of detectors. Firstly, we will take into account a prior knowledge

of the probability density functions (PDF) of each hypothesis. When the PDF of the

signal is completely known, the Neyman-Pearson detector (NP) is the optimal detector

[3]. Secondly, we will analyze the performance of the energy detector, which decides

whether a signal has been transmitted or not, based on the received signal’s energy. This

detector is easy to implement, but has some limitations when the SNR is below a threshold.

Thus, we have to study other detectors with good performance in the presence of some

unknown parameters. In case the receiver does not have perfect knowledge of some of the

parameters of the signal’s PDF, it will be necessary to estimate them as good as possible.

For these cases we will review the common approaches to the testing problem, going over

the generalized likelihood ratio test (GLRT) and the Bayesian approach.

Finally a deep analysis of the GLRT in Cognitive Radio will be presented, due to its

good performance. The communication system to analyze will be a system, in which

the transmitted signal has rank P , i.e. where the transmitted signal has P independent

transmitted streams.

The GLRT detector will be formulated for different scenarios, depending on the noise dis-

tribution in the receiving antennas. First, the GLRT will be derived for systems, where the

noises are independent and identically distributed (i.i.d) is considered. Second, the noise

with different and unknown variances (non i.i.d). The GLRT detector will be obtained for

systems where only a given frequency channel has to be sensed (Chapter 3) or frequency

selective channels (Chapter 4).

The numerical results will be presented in Chapter 5, where the GLRTs proposed will be

compared under different scenarios.

In summary, in this thesis we will study the generalized likelihood ratio test as a solution

to the spectrum sensing in multiple-input multiple-output environments. The performance

will be analyzed by means of Monte Carlo simulations.
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Chapter 1

Introduction to Cognitive Radio

Since the utilization of wireless transmission has immensely increased over the last two

decades, the available spectrum has been reduced due to the fixed allocation of the spec-

trum [4]. The radio spectrum is a resource assigned by governments, i.e. the spectrum

is divided into distinct frequency bands and each is assigned to a specific communication

use [5]. These licenses can completely manage their own spectrum to get the best quality-

of-service (QoS) and avoid the interference in their services as good as possible. Some of

those licensed frequency bands are the radio and television bands, cellular and satellite

bands and the traffic air control bands.

An example to show the band assignments is the frequency allocation chart of the United

States (see Figure 1.1)1 , in which most frequency bands have been assigned and there is

only few available frequency bands for new transmission services or products. Thus, the

idea of cognitive radio has appeared as a solution to the scarcity of spectrum. Through

this paradigm the spectrum utilization can be improved, by allowing the sharing of the

frequency band between licensed (primary) and non licensed (secondary) users - also called

noncognitive and cognitive users, respectively2. For that, it is necessary to use the infor-

mation of the activity, channel conditions, codebooks or messages of the users with whom

spectrum is shared. Advanced radio and complex signal processing technology will be used

to support this shared communication, in order to maintain the performance and quality

of service. As a result, the spectrum efficiency will be improved and the bandwidth will

be enough to support the demand for higher data rates in the future.

In this introductory chapter, three different types of cognitive radio will be studied [4].

These three types are underlay, overlay and interweave cognitive radio. Underlay cognitive

1’http://www.ntia.doc.gov/files/ntia/publications/2003-allochrt.pdf’
2From now on, the licensed users will be named primary users and the users with dynamic access will

be cognitive users

4
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radio allows the secondary transmission only when the interference caused by the cogni-

tive users does not exceed a fixed threshold. In overlay systems, the cognitive transmitter

knows some information about primary users. This information is used to improve their

communication while obtaining at the same time additional bandwidth for its own com-

munication. Lastly the interweave cognitive radio transmits only when there are spectral

holes in frequency and time, i.e. when the spectrum is eventually unused by the primary

users.

A brief overview about these three different paradigms of cognitive radio will be presented

in the introduction. We will finally focus on the analysis of interweave cognitive radio,

which will be explained in depth in the following chapters, analyzing the results and

commenting on them.

1.1 Underlay Cognitive Radio

In these systems, the interference caused to the primary users must be always known to

the cognitive users to test if it always stays under an acceptable threshold. Only in that

case will the transmission of the cognitive users be possible. To do this, the cognitive

transmitter can approximate the interference caused in the primary user’s signal, through

overhearing the transmission from the cognitive receiver’s location. Another option is that

the cognitive user transmits with a limited power to maintain the interference as low as

the threshold specifies.

Underlay communications with multiple cognitive and primary users are possible, and they

can be formulated as a general multiuser communication problem with power constraints

at the cognitive transmitters and interference constraints at primary receivers. In those

systems, the power restriction will be limited by the sum of transmitting powers of the

cognitive users. Thus, underlay systems are very restrictive whenever a peak interference

power constraint at the primary users exist and as a result, the cognitive users must

transmit below a certain power level.

1.2 Overlay Cognitive Radio

In overlay cognitive radio, the cognitive transmitter knows the channel information, the

primary user’s codebooks and sometimes also the messages. The primary user’s message is

obtained through the decoding at the cognitive’s receiver. This knowledge of the primary

user’s signal can be used to cancel or mitigate the interference, i.e. the cognitive user as-

signs part of their power to improve the primary communications reducing the interference

while transmitting their own information.
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Different forms of cooperation are possible, in which the primary user works with different

roles. The primary user might be oblivious to the cognitive user’s presence and the decod-

ing in the cognitive transmitter happens without assistance. On the other side, primary

user can be aware of the cognitive user’s presence and exploit the received signals from

the cognitive users to cancel the interference. Moreover the primary user may be partially

or fully cooperative, i.e. the primary user may sense the environment, forward messages

and cooperate based on the obtained information. This last possibility obtains maximum

benefits via cooperation.

1.3 Interweave Cognitive Radio

Interweave systems take advantage of the spectrum holes in time and frequency, i.e. when-

ever the spectrum is not occupied by the primary user. The spectrum efficiency will be

improved making use of the opportunistic access to this non occupied bands. Since the

communication is not concurrent, the primary users will not be interfered by the cognitive

users. To make it possible, the radio spectrum must be periodically analyzed. This pro-

cess is called spectrum sensing. To do that, it is necessary to make use of detectors and

intelligent technology that allows the cognitive users to detect the presence/absence of the

primary transmission in a spectrum band. The goal is to transmit whenever the primary

user is inactive. The fading and shadowing effects are factors that make the detection a

difficult task, due to the degradation of the signal.

Interweave cognitive radio will be from now on the topic of this thesis. We will study

how spectrum sensing works and we will define different types of detectors and their

characteristics.

In the Table 1.1, we will present the comparison of this three cognitive radio techniques,

summarizing the characteristics previously explained.
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Underlay Overlay Interweave

The channel information is

known by the cognitive user.

The caused interference to the

primary user must be always

known.

Cognitive nodes know the chan-

nel gains, codebooks and possi-

bly the messages of the primary

user. It may be used by the cog-

nitive user to improve the pri-

mary communication.

Cognitive user has to sense the

spectrum to seek spectral holes

in space, time or frequency.

Thus, the activity of the pri-

mary user must be monitored.

Concurrent transmission is

possible when the interference

caused by the secondary user is

below a limit.

Simultaneous transmission is

possible. The cognitive user

can use part of its power to

relay the primary user’s mes-

sage. The interference can be

cancelled or mitigate by cooper-

ation between both users.

The transmission is not concur-

rent and can be possible as long

as the primary user is inactive.

If the detector decides mistak-

enly that the primary user is

idle, the transmission will be si-

multaneously. This probability

of missed detection must be as

low as possible.

Cognitive user’s transmit power

is limited by the interference

constraint.

There is no restriction in the

cognitive user’s transmit power,

since part of its power is used

to relay the noncognitive user’s

message and therefore, improve

the primary users’s communica-

tion.

The power limitation is given

by the range of cognitive user’s

spectral hole sensing.

Table 1.1: Comparison of underlay, overlay and interweave cognitive radio
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Chapter 2

Spectrum Sensing for Cognitive

Radio

Having explained the problem of spectrum bands scarcity and the solution given by cog-

nitive radio in three different paradigms, we will focus in this chapter on one of those

paradigms, which is the interweave cognitive radio. The goal is to transmit when the spec-

trum is unused by the primary user. To do that, it is necessary to detect the spectrum

holes using spectrum sensing. In spectrum sensing, the secondary user has to detect peri-

odically whether a primary transmission exists in a certain spectrum band and, whenever

it is unused, the secondary transmission will be possible.

Many factors must be taken into account to get a successful transmission system and for

this reason the spectrum sensing is not an easy to solve task. Firstly, the required SNR

for detection may be very low in case the transmission power of the main signal is low.

However the secondary user should detect the primary transmission and cease the use of

the channel to avoid interference. Secondly, the time dispersion could make the coherent

detection unreliable when it is unknown and the multipath fading could cause fluctuations

in the signal power. Thirdly, there exists noise power uncertainty due to the change of the

noise level in the wireless system [1].

In this thesis, several sensing methods will be proposed with different assumptions [3]. In

some cases, the signal detection will be possible only when the signal’s probability density

function (PDF) p(x;Hi) under each hypothesis is known. In such cases, the detectors are

optimal, however this case is rarely realistic. For deterministic signals we will review the

matched filter, and for random signals the energy detector, which has some SNR constraints.

In realistic communication systems, the information about the transmitted signal’s PDF

is not completely known and therefore it is necessary to develop approaches to solve the

spectrum sensing problem. In this part we will review the Bayesian approach and the

10
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generalized likelihood ratio test (GLRT). This GLRT detector will be thoroughly analyzed

in the last part of this thesis as a solution to the detection in systems where the transmitted

signal has rank P , i.e. there are P streams transmitted at the same time. The reception

will be also multiple, with L antennas at the spectrum monitor.

The noise properties will be also a point to consider. In multiple-input multiple-output

(MIMO) systems, which are used to increase the channel capacity or improve the trans-

mission reliability, we have to take into account whether the noise is identically distributed

at each of the antennas.

2.1 Spectrum sensing

Spectrum sensing is the process of detecting if a certain spectral band is used or not, which

allows a secondary transmission in this spectrum hole. Since we want to decide between

two possible hypotheses, signal plus noise present versus noise only present, we consider

a binary testing problem. Let us define H1 as the presence of transmitted signal in the

spectrum band and H0 the absence of transmitted signal i.e. the availability of the band:

H0 : x[n] = v[n], n = 0, 1, . . . , N − 1,

H1 : x[n] = s[n] + v[n], n = 0, 1, . . . , N − 1,
(2.1)

where s[n] represents a primary user’s signal, v[n] is noise and n represents time.

Different types of common detectors used in this process will be explained and analyzed.

To do that, we have to analyze the received signal and apply the test decision T (x) to

decide if the signal has been generated under H1 or under H0, i.e.

T (x)
H1

≷
H0

γ. (2.2)

Finally the performance of each one will be compared using the receiver operating charac-

teristics (ROC) curve, which shows the probability of false alarm PFA versus the probability

of detection PD. The PFA is defined as the probability of deciding H1 when the transmis-

sion has been produced under H0 and the PD is the probability of decide H1 when the

transmission has been produced under H1, i.e.

PFA = Pr(H1;H0),

PD = Pr(H1;H1).
(2.3)

This can be rewritten
PFA = Pr(T (x) > γ;H0),

PD = Pr(T (x) > γ;H1).
(2.4)
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A threshold has to be fixed to get the desired PFA , what is also a very difficult task. Our

goal will be to get the minimum false alarm probability obtaining the best probability of

detection, but as we will see in the next sections, an increase in the probability of detection

causes an increase in the probability of false alarm. Thus, we have to obtain a compromise

between PFA and PD, which depends on the selection of the threshold.

2.2 A brief review of detection theory

2.2.1 Detectors with known PDF

The problem to be considered in this section is the detection of a signal with a known

probability density function. We will study two types of detectors, the matched filter for

deterministic signals and the energy detector for random signals. To do this, we assume

the problem as a binary hypothesis test, which can be written as follows

H0 : x[n] = v[n] n = 0, 1, . . . , N − 1,

H1 : x[n] = h[n]s[n] + v[n] n = 0, 1, . . . , N − 1,
(2.5)

where v[n] is a white complex zero-mean Gaussian noise (CWGN) with variance σ2, i.e.

v[n] ∼ CN (0, σ2). In this section we will analyze two different distributions of the signal

s[n]. Firstly, the signal is defined as a known deterministic signal, where the resulting

detector will be the matched filter. Secondly, the signal is defined as a random Gaussian

process with a known covariance. In such case the detector will be named energy detector.

Since we want to represent a real wireless system, we have to take into account the effects

of the propagation environment on a radio signal. We will have to simulate the fading of

the signal according to a Rayleigh distribution h[n] with normalized power. The SNR is

defined as follows

SNR =
Ps
Pv

=
1

σ2
, (2.6)

where the Ps is the normalized signal power and Pv is the noise power, which is equivalent

to the noise variance σ2.

The goal of a detector is to maximize the probability of detection PD subject to a constraint

probability of false alarm PFA. We will study in the next sections different ways to make

this decision.

2.2.1.1 Matched filter

In this section, the signal s[n] defined in the hypothesis test (2.5) is a known complex

signal and the noise v[n] has a complex Gaussian distribution with variance σ2 and zero
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mean, i.e. v[n] ∼ CN (0, σ2). Thus, the signal x[n] under each hypotesis is defined as

H0 : x ∼ CN (0, σ2I),

H1 : x ∼ CN (s, σ2I),
(2.7)

where x = [x[0]x[1] · · · x[N − 1]]T , s = [s[0]s[1] · · · s[N − 1]]T and 0 denotes a vector that

contains N zeros. This detector applies the Neyman Pearson’s criterion to make its de-

cision. The matched filter decides H0 if the likelihood ratio L (x) exceeds a threshold γ

and H1 in other case. The likelihood ratio is defined as

L (x) =
p(x;H1)

p(x;H0)

H1

≷
H0

γ. (2.8)

The PDF under each hypothesis is defined as a complex normal distribution

p(x;H0) = (
1

πNσ2N
) exp

[
− 1

σ2
xHx

]
,

p(x;H1) = (
1

πNσ2N
) exp

[
− 1

σ2
(x− s)H(x− s)

]
,

(2.9)

where H is the hermitian operator, given by the complex conjugate transpose.

Thus, the likelihood ratio is

L (x) = exp

[
− 1

σ2
(
(x− s)H(x− s)− xHx

)] H1

≷
H0

γ. (2.10)

Taking logarithms

lnL (x) = − 1

σ2
(
(x− s)H(x− s)− xHx

)
= − 1

σ2
[
−xHs− sHx + sHs

]
=

2

σ2
Re(sHx)− 1

σ2
sHs

H1

≷
H0

lnγ.

(2.11)

Since s is known, we decide following the next criterion

T (x) = Re(sHx)
H1

≷
H0

γ′, (2.12)

or equivalently

T (x) = Re

(
N−1∑
n=0

x[n]s∗[n]

)
H1

≷
H0

γ′, (2.13)

where γ′ = σ2

2

[
lnγ + 1

σ2 sHs
]

and * denotes the conjugate of the signal. Figure 2.1 shows

how this matched filter works.
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Figure 2.1: Matched filter for complex data

The performance is obtained by calculating the PFA and PD. To make it easier, we will

let z =
∑N−1

n=0 x[n]s∗[n], which is a complex Gaussian random variable with different mean

under each hypothesis

E(z;H0) =
N−1∑
n=0

E(x[n])s∗[n] = 0,

E(z;H1) =
N−1∑
n=0

E(x[n])s∗[n] =
N−1∑
n=0

|s[n]|2.

(2.14)

The variance of the signal z will be the same in both hypotheses because of the uncor-

relation between the x[n]’s and taking into account that var(sz) = |s|2var(z). Then, the

variance under H0 is

var(z;H0) = var

(
N−1∑
n=0

x[n]s∗[n]

)

=
N−1∑
n=0

var (x[n]) |s[n]|2

= σ2
N−1∑
n=0

|s[n]|2 = σ2E .

(2.15)

The variance under H1 is calculated with the same procedure. The result will be the same

as the previous one since the variance of x[n] is the same under both hypotheses, as we

can see in (2.7). This is

var(z;H1) = σ2E . (2.16)

As we can see, the distribution of the random variable z depends only on the signal energy

and the noise variance. Thus, the hypothesis test T (x) will be modeled as a Gaussian

random variable whose mean will depend on the hypothesis and variance σ2E , this is

T (x) = Re(z) ∼

{
N (0, σ2E/2) under H0,

N (E , σ2E/2) under H1.
(2.17)
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Figure 2.2: Hypothesis testing problem

With this distribution, we can calculate the PFA and PD, whose definition is given in

(2.3), making use of the Gaussian distribution’s properties. So, PFA is defined in terms

of Gaussian distribution, as the area of the T (x)’s PDF under H0 which is above the

threshold and PD is the area of the T (x)’s PDF under H1 which is above to the threshold,

as we can see in the figure (2.2).

After some algebra, these probabilities are

PFA = Pr(T (x;H0) > γ′)

= Q

(
γ′√
σ2E/2

)
,

PD = Pr(T (x;H0) < γ′)

= Q

(
γ′ − E√
σ2E/2

)
,

(2.18)

where Q is the complementary cumulative distribution function of the Gaussian, defined

as follows

Q(x) =

∫ ∞
x

1√
2π

exp

{
−1

2
t2dt

}
. (2.19)

In figure 2.2 a generic hypothesis testing problem is represented, where η is the threshold

and µ is the mean under H1.

2.2.1.2 Energy Detector

In the previous section the signal s was assumed deterministic and known. Such scenario

is not common in real communication systems and therefore this detector is not a good

solution to spectrum sensing, although the performance is optimal. In this section we will

assume random signals and for that we can not assume the knowledge of the signal, but

rather we have to assume that the signal is a random process with a known covariance

structure. The studied detector for this assumption will be the energy detector, which



16

assume the same binary hypothesis test as (2.5) where s is defined as a Gaussian random

process with zero mean and covariance matrix σ2sI. The noise is complex white gaussian

(CWGN) with covariance matrix σ2I. The signal x results

H0 : x ∼ CN (0, σ2I),

H1 : x ∼ CN (0, σ2sI + σ2I).
(2.20)

The likelihood ratio test decides H1 if

L (x) =
p(x;H1)

p(x;H0)
> γ, (2.21)

where the PDFs are given by

p(x;H0) =
1

piN det (σ2I)
exp

[
−xH

(
σ2I
)−1

x
]
,

p(x;H1) =
1

πN det (σ2sI + σ2I)
exp

[
−xH

(
σ2sI + σ2I

)−1
x
]
.

(2.22)

This can be rewritten as

p(x;H0) =
1

(πσ2)N
exp

[
− 1

σ2
xHx

]
,

p(x;H1) =
1

(π(σ2s + σ2))N
exp

[
− 1

(σ2s + σ2)
xHx

]
,

(2.23)

where the likelihood ratio test (2.21) results

L (x) =

1

(π(σ2
s+σ

2))N
exp

[
− 1

(σ2
s+σ

2)
xHx

]
1

(πσ2)N
exp

[
− 1
σ2 xHx

] H1

≷
H0

γ. (2.24)

Taking logarithms, we have

lnL (x) = N ln

(
σ2

σ2s + σ2

)
− xH

[
1

σ2s + σ2
− 1

σ2

]
x

= N ln

(
σ2

σ2s + σ2

)
+

σ2s
(σ2(σ2s + σ2))

xHx
H1

≷
H0

lnγ.

(2.25)

Reducing this expression in data-dependent terms, the test statistic is

T (x) = xHx
H1

≷
H0

γ′, (2.26)

or, what is the same

T (x) =
N−1∑
n=0

x∗[n]x[n]
H1

≷
H0

γ′, (2.27)
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Figure 2.3: Energy detector for complex data

where

γ′ =
(σ2(σ2s + σ2))

σ2s

[
ln(γ)−N ln

(
σ2

σ2s + σ2

)]
. (2.28)

Figure 2.3 shows the energy detector’s diagram.

The performance of the detector is obtained by calculating the PFA and PD. To do

that, let us define the distribution of T (x) under each one of the hypotheses. Assuming

z =
∑N−1

n=0 x∗[n]x[n], where the the mean is

E(z;H0) =

N−1∑
n=0

E(x∗[n]x[n]) = 0,

E(z;H1) =

N−1∑
n=0

E(x∗[n]x[n]) = 0.

(2.29)

The variance under H0 and H1 is

var(z;H0) = σ2,

var(z;H0) = σ2s + σ2.
(2.30)

Thus, the distribution of the hypotheses test is defined as the sum of the squares of N

i.i.d Gaussian random variables, which yields

T (x)

σ2
∼ χ2

N under H0,

T (x)

σ2s + σ2
∼ χ2

N under H1.
(2.31)

To define the PFA and PD we will make use of the right-tail probability Qχ2
v

for a chi-

squared χ2
v random variable distribution.
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Figure 2.4: Number of samples N versus SNR, SNR Walls

Finally, according to (2.3) we have

PFA = Pr(T (x;H0) > γ′)

= Pr

(
T (x)

σ2
>
γ′

σ2

)
= Qχ2

N

(
γ′

σ2

) (2.32)

and
PD = Pr(T (x;H1) > γ′)

= Pr

(
T (x)

σ2s + σ2
>

γ′

σ2s + σ2

)
= Qχ2

N

(
γ′

σ2s + σ2

)
.

(2.33)

This detector has some problems in the real-world, since we are assuming complete knowl-

edge of the signal. In practice, some parameters are not known with an infinite precision.

Specially the uncertainty in the noise variance might cause unrobustness in the detector1.

The noise variance σ2 is used to calculate the decision’s threshold and therefore the PFA

is affected whenever there is some deviation in the value. In case the SNR is below to a

certain value (SNR Wall), this deviation make the detection an impossible task to solve,

even if the sensing duration is very high (N →∞) [6].

1A detector is nonrobust at a fixed SNR if it can not robustly achieve any pair (PFA,PMD = 1− PD)
where 0 < PFA < 1/2 and 0 < PMD < 1/2, even when N is arbitrary large.
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Figure 2.4 shows how the N varies depending on the SNR value for a desired PFA and

PD. As we can see, the value of N goes to infinite when the SNR is near the SNR wall.

The variable x represents x = 10 log10 ρ, where ρ > 1 is a parameter that quantifies the

noise uncertainty.

The energy detector limitations make us consider asynchronous detectors, which have to

be robust even there exists noise uncertainty.

To summarize this subsection, the studied detectors with known PDF assumption are

compared in the Table 2.1.

Signals x Likelihood ratio Conclusions

Matched

filter

s deterministic

x ∼

{
H0 : CN (0, σ2I)

H1 : CN (s, σ2I)

L = Re(sHx)

Optimal but not realistic. Neces-

sary to know the transmitted sig-

nal s. Synchronous with s, not re-

liable in the low-SNR region.

Energy

detector

s random variable

x ∼

{
H0 : CN (0, σ2I)

H1 : CN (0, (σ2
s + σ2)I)

L = xHx

Asynchronous with the transmit-

ted signal. Noise variance σ2 must

be known to calculate the thresh-

old. The deviation in the estima-

tion of σ2 implies a degradation.

Under a SNR Wall the detection

is not possible.

Table 2.1: Comparison of detectors with known PDF

2.2.2 Detectors with unknown PDF

In the previous section, we have assumed signals with completely known PDF for both

hypotheses but this does not represent a real communication system in most of cases.

Some parameters of the transmitted signal may be unknown. For example, the receptor

may not always perfectly know the frequency of the transmitted signal and therefore we

can not assume knowledge of the PDF . Moreover, the noise will be modeled as white

Gaussian noise but with an unknown variance.

The approaches are, first of all, the Bayesian approach, which assigns prior PDFs to

the unknown parameters considering the unknown parameters as realizations of random

variables. The second approach will be the generalized likelihood ratio test (GLRT), which

estimates the unknown parameters by the maximum likelihood estimates (MLEs).
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2.2.2.1 Bayesian Approach

The Bayesian assigns prior PDFs to the unknown parameters θ and so, the PDFs of the

data can be calculated as

p(x;H0) =

∫
p(x | θ0;H0) p(θ0)dθ0,

p(x;H1) =

∫
p(x | θ1;H1) p(θ1)dθ1,

(2.34)

where p(x | θi;Hi) is the PDF of x, conditioned on θi, assuming that Hi is true. Thus,

the Bayesian approach test is

L (x) =

∫
p(x | θ1;H1) p(θ1)dθ1∫
p(x | θ0;H0) p(θ0)dθ0

H1

≷
H0

γ. (2.35)

This detector requires complex multidimensional integration to solve the problem, which

is not always possible in closed form. Therefore we will focus on the GLRT approach,

which provides a good performance with a less complex solution.

2.2.2.2 Generalized Likelihood Ratio Test

The idea of this approach is to replace the unknown parameters by their maximum likeli-

hood estimates (MLEs) θ̂. The likelihood ratio test is

L (x) =
p(x; θ̂1,H1)

p(x; θ̂0,H0)

H1

≷
H0

γ, (2.36)

where θ̂0 is the MLE of θ0 assuming H0 and θ̂1 is the MLE of θ1 assuming H1, i.e.

θ̂0 = argmax
θ0

p(x;θ0,H0),

θ̂1 = argmax
θ1

p(x;θ1,H1).
(2.37)

This detector will be analyzed in the next chapters, where it will be derived under different

assumptions.

Finally, a summary of detectors with unknown PDF assumption is presented in the Table

2.2.
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Likelihood ratio Procedure Conclusions

Bayesian

approach
L =

∫
p(x | θ1;H1) p(θ1)dθ1∫
p(x | θ0;H0) p(θ0)dθ0

Assign prior PDF to un-

known parameters.

Complex multidimensional

integrals to solve.

GLRT L =
p(x; θ̂1,H1)

p(x; θ̂0,H0)

Estimation of the un-

known parameters.

Asynchronous. Good per-

formance. Easy to solve.

Table 2.2: Comparison of detectors with unknown PDF
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Chapter 3

Multichannel GLRT detection of

stationary white processes

In the previous chapter the problem of spectrum sensing has been introduced. Moreover,

we have briefly explained some detectors classified into two categories, depending on the

prior knowledge of the signal.

In the first category, the knowledge of the signal’s probability density function is assumed

to be complete. The optimal performance is provided by the matched filter, but it is

necessary to know the transmitted signal and to be synchronized with the transmitter,

that is not common in real communication systems. The second detector in this category

is the energy detector, which uses the received signal’s energy to make its decision. This

detector is easy to implement and does not need synchronization with the transmitted

signal. The main problem is caused by the noise variance uncertainty, which is required

to calculate the threshold and therefore has a direct relation with the value of false alarm

probability as we can see in (2.18). Thus, any deviation in the assumed noise variance

with respect to the real value causes degradation in the detection performance. When the

SNR is under a given SNR (SNR Wall), this detector will be not able to detect even if the

sensing time is infinite.

Since the perfect knowledge of the signal’s PDF is not common in spectrum sensing, in

the second category we have studied some approaches to the testing problem. As we

have shown, the Bayesian approach is difficult to implement because it requires complex

multidimensional integration. The second approach is the generalized likelihood ratio

test, which provides a less complex solution with a good performance by estimating the

unknown parameters. Thus, in this thesis we will analyze the GLRT detector as a solution

of spectrum sensing for cognitive radio [7].

23
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In this chapter, we will review the performance of the GLRT detector in a multiple-input

multiple-output (MIMO) communication system, with P transmitters and L receivers.

The noise covariance is assumed unknown and has to be estimated by maximum likelihood

estimation. To do that, the problem will be divided into different assumptions. Firstly,

the GLRT detector will be analyzed in a scenario where the noise is independent and

identically distributed (i.i.d) at each of the receivers. Secondly, the GLRT will be studied

assuming non independent and identically distributed (non-i.i.d) noises.

3.1 Formulation problem

Let us consider a system where the transmitted signal has rank P . The spectrum monitor is

equipped with L antennas, which has to sense the spectrum in a given frequency channel.

The received signal x ∈ CL will be exploited to formulate the GLRT detector. The

hypothesis testing problem is

H0 : x = v,

H1 : x = Hs + v.
(3.1)

H0 is the hypothesis where there is no transmission, i.e. the received signal is only the noise

v ∈ CL. H1 is the hypothesis where a primary signal s ∈ CP has been transmitted and

therefore, the received signal is the transmitted signal plus the additive noise. This noise

is assumed as a zero-mean complex Gaussian spatially uncorrelated and temporally white.

H ∈ CL×P is the unknown multiple-input multiple-output (MIMO) channel between the

primary user and the spectrum sensor. The signal s is assumed complex Gaussian tem-

porally white and the power is normalized. We assume that the channel matrix H can

absorb any spatial correlation and scaling of the primary signal. The covariance matrices

of each signal are therefore

E[ssH ] = IP ,

E[vvH ] = Σ2,
(3.2)

where IP is the identity matrix with size P×P . The noise covariance matrix Σ2 is diagonal

and unknown and σ2i represents the noise variance in the i− th component, i.e

Σ2 =


σ21 0 · · · 0

0 σ22 · · · 0
...

...
. . .

...

0 0 · · · σ2L

 . (3.3)

Since there are unknown parameters, the Neyman Pearson test can not be implemented

and therefore, the GLRT approach will be used.



25

The detection problem is to decide between the hypotheses given in (3.1) testing the

covariance matrix R of the received signal x ∼ CN (0L,R). This matrix is defined under

each of the hypotheses as follows

H0 : R0 = Σ2,

H1 : R1 = HHH + Σ2.
(3.4)

Then, the GLRT based on the generalized likelihood ratio L is

L =

max
R0

p(x0, . . . ,xM−1; R0)

max
R1

p(x0, . . . ,xM−1; R1)

H0

≷
H1

γ. (3.5)

Having presented the GLRT test and the signals to be used, in the next sections the GLRT

will be formulated under different scenarios.

3.2 Derivation of the GLRT for i.i.d. noises

In this first part, it is assumed a GLRT detection in which the noises at the received

antennas are independent and identically distributed (i.i.d), i.e. the noises in (3.3) are

σ2i = σ2 ∀i. Considering a sensing period, in which the channel remains constant and

M ≥ L snapshots x0, · · · ,xM−1 are taken. It will be assumed as an independent identically

distributed realizations of the signal x ∼ CN (0L,R). The likelihood is calculated as the

product of the individual PDFs

p(x0, . . . ,xM−1; R) =
M−1∏
i=0

p(xi; R)

=
1

πLM det(R)M
exp

{
−Mtr

(
R̂R−1

)}
,

(3.6)

where R̂ is the sample covariance matrix:

R̂ =
1

M

M−1∑
m=0

xmxHm. (3.7)

In this particular case with i.i.d noises, the expression (3.5) can be rewritten with the

values of Ri under each hypotheses, i.e. H0 : R0 = σ2I and H1 : R1 = HHH +σ2I. Then,

the generalized likelihood ratio can be written as

L =
max
σ2

p(x0, . . . ,xM−1;σ
2)

max
H,σ2

p(x0, . . . ,xM−1; H, σ2)

H0

≷
H1

γ. (3.8)
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To obtain the closed form solution of this likelihood ratio, we have to estimate the value

of the unknown parameters R1 and σ2.

Firstly, we have to obtain the maximum likelihood (ML) estimate of σ2 under H0, i.e. the

value of σ2 that makes the likelihood under the hypothesis H0 to be maximal. That is

σ̂2 = argmax
σ2

p(x0, . . . ,xM−1;σ
2). (3.9)

To do that, we have to substitute R = σ2I in the likelihood (3.6)

p(x0, . . . ,xM−1;σ
2I) =

1

πLM det(σ2I)M
exp

{
−Mtr

(
(σ2I)−1R̂

)}
=

1

πLMσ2LM
exp

{
−M
σ2

tr
(
R̂
)}

.

(3.10)

and obtain the value of σ2 that maximizes (3.10). Due to the monoticity of the logarithm

function, the resulting optimization problem is

maximize
σ2

− LM log π − LM log σ2 − M

σ2
tr
(
R̂
)
,

subject to σ2 > 0,

(3.11)

which can be solved with the Lagrange multipliers method [8]. To get the maximum value

of σ2, we have to apply the derivative of (3.11) and equate it to zero. The obtained value

for σ̂2 is

σ̂2 =
1

L
tr
(
R̂
)
. (3.12)

Thus, the expression of the likelihood under H0 can be written as

log p(x0, . . . ,xM−1; R̂0) = −LM log π − LM log

[
1

L
tr
(
R̂
)]
− LM. (3.13)

In order to estimate R under H1, we consider two cases depending on the rank P .

3.2.1 Sphericity Test: signals with rank P ≥ L− 1

When the rank of the signal P is greater than or equal to the number of sensing antennas

minus one, the covariance matrix R1 = HHH + σ2I is positive definite Hermitian (i.e.

λi > 0 ∀i and R1 = RH
1 ) and has no additional structure to exploit. Thus, the solution

to the covariance matrix under H1 with this assumption is given by

R̂1 = R̂, (3.14)
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where R̂ is the sample covariance matrix defined in (3.7). This result can be obtained by

maximizing the likelihood under H1 with respect to R1, i.e.

max
R1

log p(x0, . . . ,xM−1; R1), (3.15)

where

log p(x0, . . . ,xM−1; R1) = −LM log π − LM log det(R1)−Mtr
(
R−11 R̂

)
. (3.16)

To do this, we will apply the gradient to (3.16) with respect to R1 and equate the expression

to 0 obtaining the estimate in (3.14). Thus, the likelihood under H1 is

log p(x0, . . . ,xM−1; R̂1) = −LM log π − LM log det(R̂)−ML. (3.17)

Having obtained the estimates of the unknown values (3.12) and (3.14) we can substitute

in (3.5) to obtain the solution of the likelihood ratio, which is a particular case of the

GLRT approach called Sphericity Test

log L = ML log

det
1
L

(
R̂
)

1
Ltr

(
R̂
)
 H0

≷
H1

γ. (3.18)

3.2.2 GLRT for signals with rank P < L− 1

When the rank P < L − 1, the matrix R1 has additional structure that allows us to

improve the detection, due to the low rank structure of the primary signal. To estimate the

value of R1 we will simplify the procedure to calculate the estimates, applying eigenvalue

decompositions (EVDs).

Firstly, let HHH = UΨ2UH be an eigenvalue decomposition of HHH , where U ∈ CL×P

is a unitary matrix which contains the eigenvectors, and

Ψ2 = diag
(
ψ2
1, ψ

2
2, · · · , ψ2

P , 0, 0, · · · , 0
)
, (3.19)

with ψ1 ≥ ψ2 ≥ · · · ≥ ψP .

Secondly, to obtain the likelihood under H1, let us decompose with EVD the sample

covariance matrix R̂ = Wdiag (λ1, · · · , λL) WH where λ1 ≥ λ2 ≥ · · · ≥ λL. With these
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assumptions, the estimates of U, Ψ2 and σ2 are given by

Û = W,

ψ2 = λi − σ̂2, i = 1 · · · , P,

σ̂2 =
1

L− P

L∑
k=P+1

λk,

(3.20)

whose demonstration is given in [9].

After some manipulations in (3.5) including (3.12) and using the previous EVD, the like-

lihood ratio detector is

log L = ML log


(

L∏
i=1

λi

) 1
L

1
L

L∑
i=1

λi

−M (L− P ) log


(

L∏
i=P+1

λi

) 1
(L−P )

1
(L−P )

L∑
i=P+1

λi


H0

≷
H1

γ, (3.21)

which is supposed to have the best performance in comparison with any other GLRT

studied in this chapter, in case the variance of the noises is i.i.d. This is due to the

additional structure of the covariance matrix and the possibility of exploiting the low rank

structure of the primary signal. The first term of this expression is the statistic of the

sphericity test (3.18) and the second one can be seen as the statistic of the sphericity test

of the noise subspace.

3.3 Derivation of the GLRT fot non-i.i.d noises

In this section , the noise covariance matrix can not be simplified with a common variance

as we did in the previous formulations. Thus, the parameters to estimate are Σ2 under H0

(defined in (3.3)) and the value of the covariance matrix R underH1. The particularization

of (3.5) in this case is

L =

max
Σ2

p(x0, . . . ,xM−1; Σ
2)

max
R1

p(x0, . . . ,xM−1; R1)

H0

≷
H1

γ. (3.22)

To estimate Σ2 under H0, we will apply the logarithm to p(x0, . . . ,xM−1; Σ
2). Taking

into account the diagonal structure of Σ2, we will rewrite it as a product of the marginal

PDFs where each
[
Σ2
]
i,i

can be independently optimized. This is

log p(x0, . . . ,xM−1;
[
Σ2
]
i,i

) = −M log π −M log
([

Σ2
]
i,i

)
−M

[
R̂
]
i,i[

Σ2
]
i,i

. (3.23)
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Applying the derivative in (3.23) and equating this expression to zero, we obtain the MLE

of each independent (i, i) value as[
Σ̂

2
]
i,i

=
[
R̂
]
i,i
, i = 1 . . . , L, (3.24)

being
[
R̂
]
i,i

the i, i element in R̂. Thus, the matrix Σ̂
2

is

Σ̂
2

= D̂ = diag

([
R̂
]
1,1
, . . . ,

[
R̂
]
L,L

)
. (3.25)

Finally the likelihood under H0 is

log p(x0, . . . ,xM−1; Σ̂
2
) = −M log π −M log det

(
D̂
)
− LM (3.26)

To estimate the covariance matrix R under H1 the problem must be divided depending

on the rank P as we did in the case of i.i.d noises.

3.3.1 GLRT for signals with rank P ≥ L−
√
L

If the rank P ≥ L−
√
L [10], the covariance matrix R1 does not have additional structure

to exploit, and therefore the ML estimate of R1 is given by the sample covariance matrix,

as we saw in (3.14). The GLRT is now calculated making use of the expressions (3.17)

and (3.26) as follows

log L = log p(x0, . . . ,xM−1; Σ̂
2
)− log p(x0, . . . ,xM−1; R̂1) = log


det
(
R̂
)

∏L
i=1

[
D̂
]
i,i

 .

(3.27)

Since D̂ is defined by (3.25), the Hadamard ratio of the covariance matrix can be rewritten

as follows

L =
det
(
R̂
)

L∏
i=1

[
R̂
]
i,i

H0

≷
H1

γ. (3.28)

3.3.2 Signals with rank P < L−
√
L

If the signal has a rank P < L −
√
L implies a low-rank structure in the primary signal,

which can be exploited to improve the detection as we did in the Section 3.2.2. Let us
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define the whitened sample covariance matrix and the whitened channel as

R̂Σ = Σ−1R̂Σ−1,

HΣ = Σ−1H,
(3.29)

and rewriting the likelihood, we have

log p(x0, . . . ,xM−1; HΣ,Σ
2) =− LM log π −M log det

(
HΣHΣ

H + I
)

−M log det
(
Σ2
)
−Mtr

[
R̂Σ

(
HΣHΣ

H + I
)−1]

.
(3.30)

Now we have to obtain the MLEs of HΣ and Σ but due to the complexity, we will solve

it making use of the eigenvalue decompositions of HΣHΣ
H and of the sample covariance

matrix RΣ.

First, the EVDs of HΣHΣ
H and R̂Σ are

HΣHΣ
H = GΦ2GH ,

R̂Σ = Qdiag (γ1, · · · , γL) QH ,
(3.31)

where Φ2 = diag (φ1, · · · , φL) and γ1 ≥ γ2 ≥ · · · ≥ γL. Then the ML estimates of G and

Φ2 are as follows
Ĝ = Q,

φ̂2i =

{
γi − 1, i = 1, . . . P,

0 , i = P + 1, . . . , L.

(3.32)

The proof can be found in [9] as well as in the i.i.d case in the previous section (3.20).

Making use of this obtained MLEs, the likelihood under H0 in (3.30) results

log p(x0, . . . ,xM−1; ĤΣ,Σ
2) = −LM log π −M

P∑
i=1

log γi

−M log det
(
Σ2
)
−M

(
P +

L∑
i=P+1

γi

) (3.33)

which can be rewritten as

log p(x0, . . . ,xM−1; ĤΣ,Σ
2) =− LM log π −MP −M log det

(
R̂
)

−M
L∑

i=P+1

[γi − log γi] ,
(3.34)

The next step to obtain the GLRT is to maximize with respect to Σ2 in (3.33). If P <

L −
√
L, there is not a closed-form solution. Thus, to calculate Σ2, we will study two
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approaches: an alternating optimization method and a closed-form GLRT detector in the

limit of asymptotically small SNR.

3.3.2.1 Alternating Optimization

The first proposed method to estimate when the rank P < L −
√
L is an alternating

optimization. The problem is partitioned into two different sets to obtain the alternatively

minimization over each set of parameters maintaining the remaining ones with a fixed

value. With this approach we can obtain a local minimum, since in each step the cost

function always decreases, and therefore, converges. This method does not obtain the

optimal value that maximizes the likelihood, but the result obtained by the detector has

a good performance.

The ML optimization problem in (3.29) can be written as follows

minimize
HΣ,Σ

tr
(
R̂Σ−1R−1Σ Σ−1

)
− log det

(
Σ−2

)
+ log det RΣ,

subject to RΣ = IL + HΣHΣ
H ,

[Σ]i,i ≥ 0.

(3.35)

To solve the problem with the alternating optimization, it has to be divided into two

different sets, in which each one obtains the minimum value of HΣ (fixed Σ) and Σ (fixed

HΣ) respectively, i.e.,

1) Minimization with respect to HΣ for fixed Σ.

The matrix ĤΣ that minimizes the likelihood under H1 is

ĤΣ = [q1 · · ·qP ] (diag (γ1, · · · , γP )− IP )
1
2 , (3.36)

where qi is the ith column of Q.

2) Minimization with respect to Σ for fixed HΣ

In this case, the optimization problem is

minimize
Σ

tr
(
R̂Σ−1R−1Σ Σ−1

)
− log det

(
Σ−2

)
,

subject to [Σ]i,i ≥ 0,
(3.37)

which can be rewritten

minimize
α

αT
(
R̂
T �R−1Σ

)
α−

L∑
i=1

logα2
i ,

subject to α2
i ≥ 0,

(3.38)
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where α =
[[

Σ−1
]
1,1
, · · · ,

[
Σ−1

]
L,L

]T
and the operator � represents the Hadamard prod-

uct, i.e. element to element. The matrix R̂
T�R−1Σ is positive semidefinite and the problem

is convex with respect to α, which makes it possible to solve it efficiently using a convex

optimization solver. In the next chapter, where the performance results are presented, we

will explain some possible convex optimization solvers to use in our simulations.

Having defined the two sets to minimize, the alternating optimization method has to be

implemented following the next steps:

Alternating Optimization: Iterative Estimation of HΣ and Σ

Input: Starting point α0 and R̂

Output: ML estimates of HΣ and Σ

Initialize: n = 0;

repeat

Compute Σ−1(n) = diag
(
α(n)

)
;

Obtain R̂
(n+1)
Σ = Σ−1(n)R̂Σ−1(n) and its EVD ;

Compute Hn+1
Σ from (3.36) (fixed Σ−1(n)) ;

Solve (3.38) to obtain α(n+1) (fixed H
(n+1)
Σ ) ;

Update n = n+ 1 ;

until convergence

The next step to solve the GLRT for non-i.i.d noises and P < L−
√
L is to substitute the

obtained estimates of Σ and HΣ in the likelihood under H1 given in (3.33) and apply the

difference between the log-likelihoods under each hypothesis (3.26)-(3.33).

log L = log p(x0, . . . ,xM−1; Σ̂
2
)− log p(x0, . . . ,xM−1; ĤΣ, Σ̂

2
). (3.39)

The complexity of this method might limit its utility. Thus, in the following section, we

will study a simpler approach that assumes low SNR.

3.3.2.2 Low SNR approximation

This approach obtains a closed form expression for the GLRT in the low SNR regime.

Such cases are very interesting in cognitive radio applications. The SNR will be close to

zero, therefore the covariance matrix under H1 will be dominated by the noise covariance

matrix, i.e. R1 ≈ Σ2, where its MLE is Σ̂
2 ≈ D̂, defined in (3.25). Thus, the likelihood
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under H1 is

p(x0, . . . ,xM−1, Ĥ, Σ̂
2
) =− LM log π −MP −M log det

(
R̂
)

−M
L∑

i=P+1

[βi − log βi] ,
(3.40)

where the βis are the eigenvalues of the sample spatial coherence matrix Ĉ = D̂
−1/2

R̂D̂
−1/2

,

being β1 ≥ β2 ≥ · · · ≥ βL.

To get the log-likelihood ratio we have to calculate the difference between the likelihoods

under H0 (3.26) and H1 (3.40). So, the log-GLRT closed form approach results as follows

log L ≈M
P∑
i=1

[log βi − βi] +MP
H0

≷
H1

γ, (3.41)

or alternatively

log L ≈M log

P∏
i=1

βie
−βi +MP

H0

≷
H1

γ. (3.42)

So far we have proposed different formulations of the GLRT problem in different scenarios

depending on the noise distribution, where the sensing is applied only for a given frequency.

The simulations and performance of each one will be analyzed in Chapter 6, comparing

and commenting on the results with the help of the ROC curves.
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Chapter 4

Multichannel GLRT detection of

stationary processes with arbitrary

PSDs

In the previous chapter the problem has been formulated as sensing in a given frequency.

This problem will be extended to systems with frequency selective channels in which the

signal’s power spectral densities (PSDs) are unknown. The parameters to estimate in this

section will be the PSDs S(ejθ), instead of working with the covariance matrices R as we

did previously.

In order to calculate the GLRT in the frequency domain, we will divide the problem into

two different scenarios: equal PSDs and different PSDs, each one subdivided depending

on the rank P of the signal. We will see in the next sections that the studied GLRT

algorithms for frequency selective channels are the integral in frequency of the results

obtained in (3.21) and (3.41) in the previous chapter.

4.1 Formulation problem

In environments with frequency-selective channels and arbitrary power spectral densities

(PSD), the problem has to be reformulated as follows

H0 : x [n] = v [n] , n = 0, 1, . . . , N − 1,

H1 : x [n] = (H ∗ s) [n] + v [n] , n = 0, 1, . . . , N − 1,
(4.1)

where s [n] ∈ CP is the wide sense stationary (WSS) zero-mean complex Gaussian primary

signal, H [n] ∈ CL×P is the frequency selective multiple-input multiple-output (MIMO)

35
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channel and v [n] ∈ CL is the WSS zero-mean circular complex Gaussian and spatially

uncorrelated additive noise.. As in the previous chapter, any spatial and temporal corre-

lation present in the signal can be absorbed in the unknown channel. The noise and signal

covariance matrices are now defined as

E[s[n]sH [n−m]] : Iδ[m],

E[v[n]vH [n−m]] : Σ2[m].
(4.2)

i.e. the signal covariance matrix function is an identity matrix with dimension P × P for

m = 0 whereas the noise covariance matrix Σ2[m] is a L × L diagonal matrix for all m,

i.e.

Σ2[m] =


σ21[m] 0 · · · 0

0 σ22[m] · · · 0
...

...
. . .

...

0 0 · · · σ2L[m]

.

 (4.3)

The data matrix X is defined as the combination of each x[n] = [x1[n], x2[n], . . . , xL[n]]T ,

where each x[n] vector is a column in the matrix X. This is

X = [x[0] x[1] · · · x[N − 1]] ∈ CL×N . (4.4)

Therefore, the i− th row contains N samples of the time series xi[n] at the i− th antenna

in the spectrum monitor. Let us define a vector z which contains the stacked columns of

X, i.e.

z =


x[0]

x[1]
...

x[N − 1]

 ∈ CLN . (4.5)

Having defined the signal z necessary to solve the detection problem, the hypotheses can

be written as
H0 : z ∼ CN (0LN ,R0) ,

H1 : z ∼ CN (0LN ,R1) ,
(4.6)

whose block Toepliz covariance matrix R ∈ CLN×LN has the form

R =


R[0] R[−1] · · · R[−N + 1]

R[1] R[0] · · · R[−N + 2]
...

...
. . .

...

R[N − 1] R[N − 2] · · · R[0]

 . (4.7)

and includes all the second order information of x[n], being each block of the covariance

matrix defined as R[m] = E
[
x[n]xH [n−m]

]
. As we saw in the last chapter, the covariance
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matrices under each hypothesis are different, and are defined as follows

H0 : R0[m] = Σ2[m],

H1 : R1[m] =
∑
k

H[k]HH [k −m] + Σ2[m].
(4.8)

4.2 Asymptotic Log-likelihood

To derive the log-GLRT for (4.8), it is necessary to obtain the ML estimates of the Toeplitz

covariance matrices R. Since it is a nonconvex problem, there is not a closed-form solu-

tion. Therefore, we propose the use of the asymptotic likelihood that is a function of the

estimated and theoretical power spectral densities (PSDs). This asymptotic likelihood

converges in the mean square sense to the time-domain likelihood, when the number of

samples N goes to infinity, as Theorem 1 shows (the proof of this theorem can be found

in [7]):

Theorem 1 : As N →∞, the asymptotic log-likelihood converges in the mean square sense

to the true log-likelihood.

lim
N→∞

E

[∣∣∣∣ 1

N

[
log p(z0, . . . , zM−1;R)− log p(z0, . . . , zM−1; S(ejθ))

]∣∣∣∣2
]

= 0. (4.9)

The log-likelihood given in the first term is defined as a function of the block Toeplitz

covariance matrix R (4.7)

log p(z0, . . . , zM−1;R) =−NML log π −M log det (R)−Mtr
(
R̂R−1

)
, (4.10)

where the sample covariance matrix R̂ is given by:

R̂ =
1

M

M−1∑
i=0

ziz
H
i . (4.11)

The asymptotic log-likelihood in the second term is a function that depends on the power

spectral density (PSD) matrix S(ejθ) = F (R[m]), where F (·) denotes a Fourier transform.

Then, we have

log p(z0, . . . , zM−1; S(ejθ)) =−NML log π −NM
∫ π

−π
log det

(
S(ejθ)

) dθ
2π

−NM
∫ π

−π
tr
(
Ŝ(ejθ)S−1(ejθ)

) dθ
2π
.

(4.12)
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The variable M(M > L) represents the number of independent realizations of the vector

z produced in an experiment. The sample PSD S(ejθ) is

Ŝ(ejθ) =
1

M

M−1∑
i=0

xi(e
jθ)xHi (ejθ), (4.13)

where

xi(e
jθ) =

1√
N

N−1∑
n=0

xi[n]e−jθn. (4.14)

The hypothesis test defined in (4.6) can asymptotically be rewritten now as a hypothesis

test for the power spectral density S(ejθ) matrix

H0 : x(ejθ) ∼ CN
(
0,S0(e

jθ)
)
,

H1 : x(ejθ) ∼ CN
(
0,S1(e

jθ)
)
,

(4.15)

being the PSDs under each hypotheses

H0 : S0(e
jθ) = Σ2(ejθ),

H1 : S1(e
jθ) = H(ejθ)HH(ejθ) + Σ2(ejθ),

(4.16)

where H(ejθ) = F (H[n]) is the Fourier transform of the MIMO channel and Σ2(ejθ) is a

diagonal matrix which contains the noises PSDs.

Then, the generalized likelihood ratio test L is asymptotically

L =

max
S0(ejθ)

p(x0, . . . ,xM−1; S0(e
jθ))

max
S1(ejθ)

p(x0, . . . ,xM−1; S1(ejθ))

H0

≷
H1

γ. (4.17)

where, as in the previous chapter, it is necessary to find the ML estimates S0(e
jθ) and

S1(e
jθ) that maximize the likelihoods.

This problem can be solved by finding the ML estimation of the matrix PSDs S(ejθ)

independently for each frequency, and finally applying the integral. Let us separate the

problem depending on the noises distribution.
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4.3 Derivation of the asymptotic GLRT for equal PSDs

In this section the noise PSDs are S0(e
jθ) = Σ2(ejθ) = Sv(e

jθ)I. Therefore, the likelihood

ratio test in (4.17) is to find the ML estimations of Sv(e
jθ) and S1(e

jθ):

L =

max
Sv(ejθ)

p(x0, . . . ,xM−1;Sv(e
jθ))

max
S1(ejθ)

p(x0, . . . ,xM−1; S1(ejθ))

H0

≷
H1

γ. (4.18)

To get the ML estimate of S(ejθ) under H0, we have to calculate the value of Sv(e
jθ) that

maximizes the likelihood (4.12), that results in

Ŝv(e
jθ) =

1

L
tr
[
Ŝ(ejθ)

]
. (4.19)

To get the ML estimation of S1(e
jθ), the rank of the signal has to be taken into con-

sideration. When the rank P ≥ L − 1, the problem does not have low rank structure.

When P < L − 1, there exists an additional structure that can be exploited to improve

the detection. This reason implies the division of the problem in two parts.

4.3.1 GLRT for signals with rank P ≥ L− 1

When the rank is P ≥ L − 1, there is no low rank structure in the problem to exploit.

Then, the value of S1(e
jθ) that maximizes the likelihood under H1 is equal to (4.13), i.e.

S1(e
jθ) = Ŝ(ejθ). (4.20)

With this value, the asymptotic log-GLRT results as follows

log L = NML

∫ π

−π
log


(

L∏
i=1

λi(e
jθ)

) 1
L

1
L

L∑
i=1

λi(ejθ)

 dθ2π

H0

≷
H1

γ, (4.21)

which is the integral of the Sphericity test (3.18).

4.3.2 GLRT for signals with rank P < L− 1

In case P < L− 1 the ML estimation of S(ejθ) is calculated following the same process as

in the previous chapter, section (3.3.2). Then, to obtain the estimates under H1 we will
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rewrite H(ejθ)HH(ejθ) + Sv(e
jθ)I as follows

H(ejθ)HH(ejθ) + Sv(e
jθ)I = U(ejθ)

[
Ψ2(ejθ) + Ŝv(e

jθ)I
]

UH(ejθ). (4.22)

where Ψ2(ejθ) = diag
(
ψ2
1, ψ

2
2(ejθ), · · · , ψ2

P (ejθ), 0, 0, · · · , 0
)

is a diagonal matrix of eigen-

values and U(ejθ) the eigenvector matrix. Thus, the ML estimation of these variables

are
Û(ejθ) = W(ejθ),

ψ2
i (e

jθ) = λi(e
jθ)− Ŝv(ejθ), i = 1 · · · , P,

Ŝv(e
jθ) =

1

L− P

L∑
k=P+1

λk(e
jθ).

(4.23)

Where W(ejθ) is a matrix that contains the eigenvectors of Ŝ(ejθ). The final expression

of the log-GLRT is given by

log L =NML

∫ π

−π
log


(

L∏
i=1

λi(e
jθ)

) 1
L

1
L

L∑
i=1

λi(ejθ)

 dθ2π

−NM (L− P )

∫ π

−π
log


(

L∏
i=P+1

λi(e
jθ)

) 1
(L−P )

1
(L−P )

L∑
i=P+1

λi(ejθ)


dθ

2π

H0

≷
H1

γ,

(4.24)

where λi(e
jθ) is the i − th largest eigenvalue of Ŝ(ejθ). We can see this log-GLRT (4.24)

as the direct application of the log-GLRT (3.21) calculated in the previous chapter, inte-

grating for each one of the frequencies.

4.4 Derivation of the asymptotic GLRT for different PSDs

In this case, the PSD under H0 is S0(e
jθ) = Σ2(ejθ) and the GLRT is

L =

max
Σ2(ejθ)

p(x0, . . . ,xM−1; Σ
2(ejθ))

max
S1(ejθ)

p(x0, . . . ,xM−1; S1(ejθ))

H0

≷
H1

γ. (4.25)

The ML estimate of the PSD under H0 is

Σ̂
2
(ejθ) = D̂(ejθ) = diag

([
Ŝ(ejθ)

]
1,1
, . . . ,

[
Ŝ(ejθ)

]
L,L

)
, (4.26)
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where Ŝ(ejθ) is defined in (4.13). Let us present the ML estimates of S(ejθ) under H1

depending on the rank P to obtain the GLRT approaches.

4.4.0.1 GLRT for signals with rank P ≥ L−
√
L

When the rank P ≥ L−
√
L there is no additional low rank structure. Then, the estimate of

S1(e
jθ) under H1 is the sample PSD Ŝ(ejθ) defined in (4.13). Then, the GLRT is obtained

by introducing the estimates Σ̂
2
(ejθ) (4.26) and Ŝ1(e

jθ) into the asymptotic likelihood

ratio test (4.25), that results the integral of the Hadamard ratio (3.28), i.e.

L = N

∫ π

−π

det
(
Ŝ(ejθ)

)
L∏
i=1

[
Ŝ(ejθ)

]
i,i

dθ

2π

H0

≷
H1

γ. (4.27)

4.4.0.2 GLRT for signals with rank P < L−
√
L

In the case P < L−
√
L, there exists a low-rank structure to exploit and improve the de-

tection. Due to the computational complexity of the alternating optimization in (3.3.2.1),

we will only study the GLRT in the low SNR region, where we can find a closed form

solution to the GLRT.

To estimate S1(e
jθ) under H1, the first step is to define the whitened channel as HΣ(ejθ) =

Σ−1(ejθ)H(ejθ) and apply its eigenvalue decomposition as follows

HΣ(ejθ)HH
Σ(ejθ) = G(ejθ)Φ2(ejθ)GH(ejθ), (4.28)

with Φ2(ejθ) = diag
(
φ21(e

jθ), φ22(e
jθ), · · · , φ2P (ejθ), 0, 0, · · · , 0

)
. Then the ML estimates of

G(ejθ) and φ2i (e
jθ) are given by

Ĝ(ejθ) = Q(ejθ),

φ̂2i (e
jθ) =

{
βi(e

jθ)− 1, i = 1, . . . , P,

0 , i = P + 1, . . . , L.

(4.29)

where βi(e
jθ) is the ith largest eigenvalue of Ĉ(ejθ) = D̂

−1/2
(ejθ)Ŝ(ejθ)D̂

−1/2
and Q(ejθ)

is its eigenvector matrix. Finally the GLRT can be approximated as follows

log L ≈ NM
∫ π

−π

P∑
i=1

log βi(e
jθ)

dθ

2π
−NM

∫ π

−π

P∑
i=1

βi(e
jθ)

dθ

2π
+NMP

H0

≷
H1

γ. (4.30)

That is the integral of the asymptotic log-GLRT given in (3.41).
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Chapter 5

Simulations

In this chapter, we will evaluate the detection performance of the GLRT as a solution to

the sensing problem in cognitive radio. To do that, we will simulate the scenarios proposed

in Chapter 3 and Chapter 4 by means of Monte Carlo.

Firstly, we will summarize the likelihood ratio test of each detector, and the assumptions

in its derivation. Secondly, we will represent some numerical results using the ROC curves

and also evaluating the effect of the rank P in the performance. Moreover, in some cases

we will represent the value of the missed detection probability (1 − PD) versus the value

of the SNR.

5.1 Multichannel GLRT detection of stationary white pro-

cesses

In frequency flat channels, the hypothesis test will be as follows:

H0 : x = v,

H1 : x = Hs + v.
(5.1)

where the signal s has a complex white Gaussian distribution. The channel H is a multiple-

input multiple-output (MIMO) channel of size L× P and the noise s is assumed complex

white Gaussian. The SNR for this experiment is defined as follows

SNR (dB) = 10 log10
tr(HHH)

tr(Σ2)
. (5.2)
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We will compare the algorithms derived under the assumptions given in Chapter 3. Firstly,

GLRT detectors that assumes i.i.d noises. Secondly, GLRT detectors where the noise is

assumed non-i.i.d.

Before we analyze the numerical results, a summary of the GLRT algorithms to compare

is presented

GLRT for signals with i.i.d noises

• Sphericity

GLRT derived under i.i.d noise assumption and rank of the transmitted signal P ≥
L− 1.

log L = ML log

det
1
L

(
R̂
)

1
Ltr

(
R̂
)
 H0

≷
H1

γ. (5.3)

• iid-GLRT

GLRT derived assuming i.i.d. noise and rank of the transmitted signal P < L− 1.

log L = ML log


(

L∏
i=1

λi

) 1
L

1
L

L∑
i=1

λi

−M (L− P ) log


(

L∏
i=P+1

λi

) 1
(L−P )

1
(L−P )

L∑
i=P+1

λi


H0

≷
H1

γ.

(5.4)

• iid-GLRT (P = 1)

GLRT algorithm assuming i.i.d noises and rank of the transmitted signal P = 1,

whose likelihood ratio is

log L = ML log

tr
(
R̂
)

λ1

 H0

≷
H1

γ. (5.5)

GLRT for signals with non-i.i.d noises

• Hadamard

GLRT derived under non i.i.d noise assumption, where the rank P ≥ L−
√
L

L =
det
(
R̂
)

L∏
i=1

[
R̂
]
i,i

H0

≷
H1

γ. (5.6)
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• alternating

This algorithm does not have a closed form solution as the previous GLRTs. The

ML estimates are found applying the alternating optimization algorithm given in ??.

Then, the likelihood ratio is

log L = log p(x0, . . . ,xM−1; Σ̂
2
)− log p(x0, . . . ,xM−1; ĤΣ, Σ̂

2
). (5.7)

• asymp-GLRT

GLRT derived under non i.i.d noise assumption and rank of the transmitted signal

P < L−
√
L. This approach is valid in the low SNR regime

log L ≈M
P∑
i=1

[log βi − βi] +MP
H0

≷
H1

γ. (5.8)

• asym-GLRT (P=1)

This is a particular case of the previous algorithm, where only one signal is trans-

mitted

log L ≈ −β1
H0

≷
H1

γ. (5.9)

5.1.1 Numerical results

5.1.1.1 Comparison of rank P versus missed detection probability - i.i.d

noises

Figure (5.1) shows the missed detection probability (1 − PD) versus the rank P of

the signal for i.i.d noises. The PFA is fixed to PFA = 0.001, the signal to noise ratio

is SNR = -8dBs and the number of antennas is L = 6.

Since the i.i.d GLRT does not assume any structure on the primary signal, its

performance will be the best one with respect the other detectors for arbitrary values

of P .

Moreover, it is clear that the i.i.d GLRT and the i.i.d GLRT (P = 1) have the same

performance when the rank is 1. When P increases, i.i.d GLRT (P = 1) suffers more

degradation since we are assuming a false parameter P to derive the algorithm.

It should also be noted that when the rank is P ≥ L − 1, the Sphericity test offers

similar performance to the GLRTs. That is, taking into account that L = 6, the

Sphericity test obtains its best performance when P ≥ 5.
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Figure 5.1: Missed detection probability versus P with PFA = 0.001 and i.i.d noises

5.1.1.2 Comparison of rank P versus missed detection probability - non-

i.i.d noises

The figure (5.2) presents a scenario whose parameters are the same as in the previous

figure, i.e, SNR = - 8dB, a fixed PFA = 0.001, and the number of antennas L = 6.

Now the noise distribution is assumed non-i.i.d.

When the rank P > 1, we can see how the asymp-GLRT algorithm offers the the

same detection performance as the alternating algorithm, which is computationally

more complex since it needs to iterate until convergence. In case the rank P ≥ 4,

the Hadamard ratio test offers a similar performance to the asymp-GLRT
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Figure 5.2: Missed detection probability versus P with PFA = 0.001 and non i.i.d noises

5.1.1.3 Comparison of false alarm probability versus detection probabil-

ity - i.i.d noises

Figure (5.3) compares all the GLRT algorithms derived in Chapter 3 using the ROC

curves, which compare the detection probability versus the false alarm probability.

In this case, the rank of the signal is P = 1, the SNR = -8dB, L = 4 antennas and

it is assumed i.i.d noises.

As expected, the best results are given by the GLRT, whose design assumes i.i.d

noises and exploits the low rank structure of the signal, i.e the i.i.d-GLRT. The

Sphericity ratio test has also better performance as the rest of algorithms derived

under non-i.i.d noise assumption.

It is interesting to note that the detectors designed for uncalibrated receivers, i.e

alternating, asym-GLRT and Hadamard do not suffer a notable degradation in their

performance, since they do not assume any noise covariance structure.
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Figure 5.3: ROC for the different detectors (SNR = -8dB, L = 4 antennas, M = 128
samples, i.i.d noises)

5.1.1.4 Comparison of false alarm probability versus detection probabil-

ity - non-i.i.d noises

Figure (5.5) compares using the ROC curve the same detectors as the previous figure

with a similar scenario, now assuming non-i.i.d noises.

As we can see, the detection performance derived for uncalibrated receivers does

not have any difference with respect to the previous figure. This can be explained

from the fact that these detectors assume no structure in the noise covariance and

therefore, the performance is not affected by the noise distribution.

On the other hand, the detectors designed for uniform noises, i.e. Sphericity and

i.i.d-GLRT suffer a considerable performance degradation since the noise structure

does not accomplish with the design assumptions.
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Figure 5.4: ROC for the different detectors (SNR = -8dB, L = 4 antennas, M = 128
samples, non-i.i.d noises)

5.1.1.5 Comparison of missed detection probability versus SNR

In order to compare the detectors designed with non-i.i.d noises at the receivers,

we will represent the missed detection probability for different SNR values. It will

be assumed only one transmitter P = 1 and L = 6 antennas. The result will be

represented for two different values of PFA = 0.01 and PFA = 0.1.

As expected, for very low SNR values the approach designed to the low SNR regime,

i.e. asym-GLRT, offers as good performance as the alternating optimization. As the

value of the SNR increases, the asym-GLRT does not accomplish with the required

low-SNR regime and therefore, the obtained performance is worst than the offered

by alternating optimization, but the difference between them is very small.

Since the rank P < L−
√
L, the detection performance of the Hadamard algorithm

is the worst one compared to the previous mentioned detectors.
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Figure 5.5: Missed detection probability versus SNR for different detectors (SNR =
-8dB, L = 4 antennas, M = 128 samples, non-i.i.d noises)

5.2 Multichannel GLRT detection of stationary processes

with arbitrary PSDs

In frequency selective channels, the hypothesis test will be as follows:

H0 : x [n] = v [n] , n = 0, 1, . . . , N − 1,

H1 : x [n] = (H ∗ s) [n] + v [n] , n = 0, 1, . . . , N − 1,
(5.10)

where s [n] ∈ CP is the wide sense stationary (WSS) zero mean complex Gaussian

primary signal, H [n] ∈ CL×P is the frequency selective multiple-input multiple-

output (MIMO) channel and v [n] ∈ CL is the WSS zero-mean circular complex

Gaussian and spatially uncorrelated additive noise. The SNR for this experiment is

defined as follows

SNR (dB) = 10 log10

∫ π
−π tr(H(ejθ)HH(ejθ)) dθ2π∫ π

−π tr(Σ2(ejθ)) dθ2π
. (5.11)

In this part we will compare the algorithms that we studied in Chapter 4. As in

the previous part, we will compare GLRT detectors under i.i.d. noise assumption.

Secondly, GLRT detectors where the noise is assumed non-i.i.d.

The summary of the GLRT algorithms is
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• Freq-log-GLRT

GLRT algorithm assuming equal PSDs and rank P < L− 1.

log L =NML

∫ π

−π
log


(

L∏
i=1

λi(e
jθ)

) 1
L

1
L

L∑
i=1

λi(ejθ)

 dθ2π

−NM (L− P )

∫ π

−π
log


(

L∏
i=P+1

λi(e
jθ)

) 1
(L−P )

1
(L−P )

L∑
i=P+1

λi(ejθ)


dθ

2π

H0

≷
H1

γ.

(5.12)

• Freq asym-GLRT

GLRT algorithm assuming different PSDs along the antennas, rank P < L −
√
L

and low-SNR regime

log L ≈ NM
∫ π

−π

P∑
i=1

log βi(e
jθ)

dθ

2π
−NM

∫ π

−π

P∑
i=1

βi(e
jθ)

dθ

2π
+NMP

H0

≷
H1

γ.

(5.13)

5.2.1 Numerical results

5.2.1.1 Comparison of false alarm probability versus detection probabil-

ity - equal PSDs

To represent Figure (5.6), let us assume P = 2 transmitters and L = 5 antennas,

which captures M = 5 realizations. We will represent two curves for each detector

which show the detection performance with different values of SNR and length of

the realization N , i.e: 1) SNR = 2.5dB, N = 20 ; 2)SNR = -2.5dB, N = 100.

The figure shows the good detection performance of the Freq-log-GLRT algorithm

compared to the i.i.d-GLRT, which is derived for a frequency flat channel. As known,

when the SNR decreases, the detection performance is degraded. This effect can be

mitigated by increasing the realization length N but as we can see, it does not have

the same effect on the performance of both detectors seen in the figure.
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Figure 5.6: Performance comparison of the frequency domain GLRT

5.2.1.2 Comparison of false alarm probability versus detection probabil-

ity - different PSDs

In Figure (5.7) the scenario is similar to the previous one, now assuming different

PSDs along the components, i.e. the parameters are P = 2 transmitters and L = 5

antennas withM = 5 realizations. The represented ROC curves have the parameters:

1) SNR = 2.5dB, N = 20 ; 2)SNR = -2.5dB, N = 100.

As expected, the detection performance of the asym-freq-GLRT is better than the

asym-GLRT for one frequency, as we saw in the previous figure with equal PSDs.
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Figure 5.7: Performance comparison of the frequency domain GLRT
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Chapter 6

Conclusion

In Chapter 1, we introduced the current problem of spectrum availability. As a solution,

we have presented the cognitive radio paradigm, which improves the utilization of the

spectrum bands, permitting the access to a secondary user by different techniques. We

have briefly introduce three types of cognitive radio: underlay, overlay and interweave

cognitive radio, focusing the study on interweave in the last chapters of this thesis.

The interweave cognitive radio paradigm improves the spectrum utilization allowing the

dynamic access to the spectrum bands whenever the primary user is not transmitting.

To do that, it is necessary to periodically sense the spectrum using detectors and decide

if a secondary transmission is possible. We have considered the spectrum sensing as a

binary testing problem, where the presence and absence of signal is represented by two

different hypothesis. We have reviewed some detectors as a solution to spectrum sensing

in cognitive radio, commenting on their advantages and disadvantages.

Finally, since the generalized likelihood ratio test (GLRT) detector provides good perfor-

mance, it has been studied in depth in the last chapters of this thesis. We have analyzed

the different GLRT algorithms under different assumptions in a multiple-input multiple-

output (MIMO) communication system, with P transmitters and L receivers.

In Chapter 3, we have considered a frequency flat channel, i.e. when there is only one

given frequency to sense. The GLRT has been reviewed for scenarios, where the noise is

independent and identically distributed (i.i.d.) at each of the components. Moreover, we

have analyzed scenarios with uncalibrated receivers where the noise is independent and

non identically distributed (non-i.i.d). For each scenario, we have obtained an expression

to the GLRT detector, whose detection performance has been analyzed in Chapter 5. The

most important conclusion in this part is the fact that the detectors designed under non-

i.i.d. assumption do not suffer much degradation in the detection performance, even when

the noise is i.i.d. On the other hand, the detectors that assume calibrated antennas suffer
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a notable degradation in the detection performance when this assumption of i.i.d. noises

is not accomplished.

In Chapter 4 the derivation of the GLRT has been studied assuming frequency selective

channels, where the temporal structure of the signal is exploited. The problem has been

divided into two parts, assuming equal PSDs and different PSDs along the antennas,

respectively. As we have seen in the numerical results in Chapter 5, the results given by

this frequency GLRT are better than the GLRT, whose design does not take into account

the temporal structure of the signal.
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