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Abstract 

 

Femtocells Access Points (FAP) are low power, plug and play home base stations which 

are designed to extend the cellular radio range in indoor environments where macrocell 

coverage is generally poor. They offer significant increases in data rates over a short range, 

enabling high speed wireless and mobile broadband services, with the femtocell network 

overlaid onto the macrocell in a dual-tier arrangement. In contrast to conventional cellular 

systems which are well planned, FAP are arbitrarily installed by the end users and this can 

create harmful interference to both collocated femtocell and macrocell users. The 

interference becomes particularly serious in high FAP density scenarios and compromises 

the ensuing data rate. Consequently, effective management of both cross and co-tier 

interference is a major design challenge in dual-tier networks. 

 

Since traditional radio resource management techniques and architectures for single-tier 

systems are either not applicable or operate inefficiently, innovative dual-tier approaches to 

intelligently manage interference are required. This thesis presents a number of original 

contributions to fulfil this objective including, a new hybrid cross-tier spectrum sharing 

model which builds upon an existing fractional frequency reuse technique to ensure 

minimal impact on the macro-tier resource allocation. A new flexible and adaptive virtual 

clustering framework is then formulated to alleviate co-tier interference in high FAP 

densities situations and finally, an intelligent coverage extension algorithm is developed to 

mitigate excessive femto-macrocell handovers, while upholding the required quality of 

service provision.  

 

This thesis contends that to exploit the undoubted potential of dual-tier, macro-femtocell 

architectures an interference awareness solution is necessary. Rigorous evidence confirms 

that noteworthy performance improvements can be achieved in the quality of the received 

signal and throughput by applying cognitive methods to manage interference. 
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1 Introduction to Wireless Communications and 

Networks 

 

1.1 Emergence of Wireless Communication and Networks 

Since the invention of wireless radio transmissions in the early 20
th

 century by Marconi, it 

has gradually become an indispensable part of our every day life. In the first half of the last 

century, wireless communication systems were mainly used by ships at sea, industry and 

various government agencies such as the police force. The first public mobile telephone 

service was introduced in 1946 across 25 cities of the United States of America (USA). 

Initially, one high powered transmitter was used to cover an entire city, though the 

analogue circuitry and poor signal detection technology meant the system was very 

inefficient and as a result, only 543 subscribers could be supported in New York City even 

three decades after the introduction of the service [1].  For these early generation phones, a 

person had to remain within the coverage of the transmitter where the call was initiated, for 

the entire duration of a call.  

 

The ground breaking innovation of the hexagonal cellular system in 1947 by Bell Lab 

scientists introduced the idea of reusing the same channel in geographically distant places 

[2]. However, with the concept of channel reuse, came the insidious effect of co-channel 

interference, which has been keeping design engineers busy in attempting to manage and 

minimise its impact. Before 1973, the phone was generally mounted on a vehicle top and 

heavy in weight. In early 1978, the USA started the Advanced Mobile Phone Systems 
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(AMPS), widely known as 1
st
 Generation (1G) analogue system. The performance of 1G 

system was limited by the poor performance of the analogue signal processing circuitry 

that struggled to combat the thermal noise generated by the system hardware. 

 

In the early 1990s, the 2
nd

 Generation (2G) system was introduced mainly in the USA, 

Europe and Japan, and was based on digital technology. Subsequently, wireless 

communications have gained momentum and during the past two decades, experienced 

unforeseen growth worldwide mainly due to the invention of digital circuitry and devices, 

with much higher capacity than 1G systems. They have also gradually become cheaper and 

more affordable for the wider population.  

 

Initially, the focus of wireless systems was to enable voice communication and therefore 

the data rate requirement was relatively low. With the advent of digital technologies, the 

mobile communication system has gradually shifted from being circuit-switched to packet-

switched. This allowed the same wireless channels to be shared by multiple users and 

thereby increased the channel efficiency significantly. This increased capacity also paved 

the way for introducing mixed voice and data services together with a variety of mobile 

applications. 

 

In early 2000, 3
rd

 Generation (3G) systems were introduced across Europe predominantly 

as a mixed voice and data intensive service. With sophisticated digital signal processing, 

detection and estimation technology, 3G systems were capable of supporting several mega 

bits per second data over a 10 MHz channel. This capacity enhancement triggered the 

introduction of multimedia services, digital audio and video streaming for mobile networks 

and devices.  
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Despite providing significantly high data rates, the wireless technologies have been 

struggling to meet the ever increasing data rate demands of the new and emerging mobile 

applications. One of the main reasons for this is the limited availability of usable spectrum. 

The power of the wireless signal decays approximately according to power law with 

distance and the rate of decay increases with frequency, so only a limited amount of 

spectrum is suitable for wireless transmissions and due to the massive demand, this is 

extremely expensive. Thus spectrum needs to be used as efficiently as possible in order to 

provide the best value for the investment.  

 

To ensure the best possible use, the cellular system goes through a rigorous planning phase 

before deployment. It also endeavours to ensure the maximum coverage for the minimum 

number of base stations (BS). However, as the signal power decays according to power 

law, users in the cell edge areas usually receive a lower quality of service (QoS). Spectrum 

distribution typically follows a regular pattern over a geographical area so spectrum is 

distributed with the frequency at one cell being reused in another cell a certain distance 

away. This fixed assignment of spectrum is a limitation which has restricted the 

performance of cellular systems since the demand is not uniform over a geographic area. 

Therefore in some places, channels remain unused while at other locations, congestion 

occurs due to an insufficient number of channels leading to an overall inefficient utilisation 

of the valuable spectrum. Although some techniques like channel borrowing [3] and 

allocation on demand [4], try to solve this problem, the overall channel distribution system 

remains broadly rigid. 

 

With the emergence of new high-end, hand-held devices and smart phones, users are 

tending evermore towards data intensive applications like network gaming, video 

conversation, online music, and video streaming, so the demand for high data rate services 

is increasing dramatically. This places tremendous pressure on network capacity and QoS 
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requirement for mobile networks. ITU recommendations for 4
th

 Generation (4G) systems 

envisages achieving a 1Gbps data rate support for the downlink (DL) and 500Mbps for the 

uplink (UL) of stationary mobile stations (MS) [5].There is also a vision of achieving a DL 

data rate of 25 Gbps/km
2
 [6].  To achieve these ambitious goals the spectrum needs to be 

reused much more frequently than currently as the existing wireless system performance is 

approaching the capacity limit. Also, as mentioned above, cell edge users receive a 

relatively lower data rate compared to the users in the cell centre. This problem becomes 

severe if the cell edge users are located indoors as the signal needs to penetrate buildings 

and walls which lead to a significant loss of energy. Thus the research focus has been 

gradually shifting from transceiver circuitry to the network architecture itself and resource 

distribution techniques. Interference generated by neighbouring transmitters limits the 

possibility of reusing the same spectrum and while reducing the transmit power allows 

more frequent deployment of transmitters and greater spectrum reuse, the costs involved 

are prohibitively high.  

 

From the above discussion, it is clear that to achieve the very high data rate requirement as 

set out in the 4G vision, two key factors need to be considered. Firstly, the massive 

deployment of low cost, low power devices alongside the planned cellular deployment and 

secondly, that a more localised and dynamic approach to spectrum use is required. To keep 

the cost of the transmitter low, it must be simple and easy to install, so instead of a planned 

deployment, arbitrarily deployed low power wireless nodes are becoming more prominent 

as they are capable of supporting very high data rate services over short distances. 

However, in terms of localised and dynamic spectrum usage, this requires instant and up-

to-date knowledge of the spectrum and its surrounding radio environment. This means both 

devices and networks must have an awareness of their surroundings either individually or 

collectively and also be sufficiently intelligent to make decisions locally. Clearly how best 

to accommodate randomly deployed short-range cells within the existing pre-planned 
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cellular networks as well as manage resources intelligently and efficiently is a major 

research challenge to be resolved to achieve the desired goal of enhanced data rates in next 

generation wireless networks. 

 

1.2 Cognitive Radio Networks and Dynamic Spectrum Access 

The emergence of cognitive radio (CR) has shifted the paradigm from a fixed and well-

planned centralised spectrum distribution regime to an intelligent, dynamic, autonomous 

and locally managed distribution model. It also facilitates frequent reuse of the spectrum 

and thereby achieves higher spectral efficiency. The term CR was first coined by Mitola 

[7], [8] and its primary objective has been to enable robust communication to anything, 

anytime and anywhere. It can loosely be defined as an intelligent radio that is aware of the 

surrounding environment, learns from it and adapts itself to the statistical variations of the 

surrounding environment accordingly [9].This key characteristic means CR technology can 

enable dynamic allocation of spectrum thereby addressing the fundamental bottleneck in 

current wireless systems. 

 

 

Figure 1.1: Illustration of usable spectrum utilization scenarios [10]. 
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A Study [11] suggests that despite its scarcity, a significant amount of spectrum actually 

remains unused in certain space and time, as illustrated in the Figure 1.1 example [10]. The 

CR can sense the radio environment and detect unused spectrum in the vicinity. By sharing 

these local measurements with the neighbouring nodes or some central entity, a more 

localized spectrum usage map can be generated which in turn, will enable better use of the 

available spectrum based on predefined policy agreement between the competing networks 

[12] [13]. Thus CR can facilitate sharing spectrum opportunistically among multiple 

competing devices and techniques at the same place as opposed to single operator 

allocation of the conventional system. 

 

This leads to the emergence of multiple coexisting and overlapping heterogeneous wireless 

networks. The inherent ability of CR to sense and take intelligent decisions has made it an 

attractive enabler for next generation wireless systems. As will be set out in subsequent 

chapters, this is the context for the research presented in this thesis, namely to investigate 

the development of an original cognitive-based framework where interference awareness 

management is critical, and where no network planning assumptions can be made.  

 

1.3 Cognitive Femtocell Networks 

Studies suggest that most high data rate demand is generating from indoor environments 

where radio coverage is typically poor due to wall penetration losses inside buildings [14]. 

As has already been highlighted, the problem becomes severe in the cell edge area which is 

far from the serving macrocell BS. So there exists a clear data rate demand and support 

mismatch in the indoor and outdoor environment as shown in Figure 1.2.  

 

Femtocells are low cost plug and play home network systems aimed at extending radio 

coverage in the indoor environment and thereby support the rapidly increasing data rate 
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demand in indoor environments. A femtocell consists of a home base station, called home 

node B (HNB) or femtocell access points (FAP), and MS. Femtocells are deployed either 

underlay or overlay on a macro cellular system. When located indoors, MSs connect to the 

FAP instead of the macrocell BS, with the traffic backhauled via either a wired 

asynchronous digital subscriber line (ADSL) or passive optical network (PON).  

 

 

Figure 1.2: Illustrative example showing the data rate requirement (dotted line) and available throughput due to 

received signal to interference & noise ratio (SINR) (solid line), between indoor and outdoor scenarios for a 

cellular base station. 

 

A Femtocell offers a number of potential advantages: 

1. Due to the short communication distances, the link between the transmitter and 

receiver is robust and high data rates are achievable by employing higher order 

modulation.  

2. They liberate a number of channels by handing over indoor MSs from the 

macrocell BS to the FAP.  

3. Since the MS connects to a nearby FAP instead of a relatively distant macro BS, it 

saves battery power.  

4. Since the MS is connected to a FAP located in close proximity, the transmission 

power required for communication is low compared to the macrocell system. This 

allows the spectrum to be reused more frequently which in turn, significantly 

increases achievable throughput per unit area. 
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These benefits collectively mean femtocells offer an attractive design solution for high data 

rate wireless services in indoor environments which are overlaid on the macrocell systems. 

 

1.4 Research Challenges and Problem Statement 

While FAP technology clearly offers users a number of benefits, there are significant 

technical, regulatory and economic challenges that need to be met. Due to short 

communication distances, frequent handovers may occur and so it is necessary to devise 

mechanisms for seamless handover as well as for avoiding the so-called ping pong effect 

[15].  Timing and synchronization, QoS in the backhaul network, portability of FAP are 

among the other challenges that need to be addressed. Recent research suggests that a 

femtocell network will most likely operate on spectrum that is either shared with other 

networks or on lease from other network under some constraints [16].Therefore, it is 

important to devise an efficient spectrum sharing strategy between the macrocell and 

femtocell networks. 

  

Since femtocells are deployed arbitrarily, the biggest challenge in their deployment is to 

manage interference. Figure 1.3 shows the interference scenarios in a joint macro-femto 

deployment. Two types of interference can occur: i) between the macrocell and femtocell 

users, which is known as cross tier interference and ii) amongst the femtocells which is 

referred to as co-tier (inter-femto) interference. 

 

Although the device architectures are similar for both the FAP and macrocell BS, the 

former is limited in power and functionality and there is a fundamental difference in 

network topology and architecture. The macrocell network is generally deployed by highly 

technical personnel after rigorous network planning, testing and evaluation. In contrast, the 
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femtocell network is unplanned and user deployed, although the deployment area and 

density can be either estimated or predicted from the population distribution together with 

the building structure and/or city layout. Thus, existing resource management architectures 

which were originally designed for pre-planned cellular networks, and which are mainly 

centralised entities, cannot be applied directly in this new scenario. 

 

 

Figure 1.3: Interference Scenarios in joint macro femto deployment 

 

Femtocells are expected to be deployed in both rural and urban areas, with the latter having 

very high density. Femtocells are also expected to replace the existing Wireless Fidelity 

(Wi-Fi) services as it will provide the same service in addition to conventional cellular 

services. Wi-Fi operates on an unlicensed band and its resources are managed in a 

distributed manner which is suitable for any large scale deployment such as in ad hoc and 

sensor networks. Despite the similarity in deployment, this kind of completely distributed 

resource management technique is unsuitable because femtocell networks are heavily 

dependent on the macro network for its resource allocation, which is centrally controlled. 

This is because the macro and femto networks must share the same resources. The resource 



    18

management architecture therefore needs to be designed taking all these key facts into 

consideration.  

 

As it is assumed FAP will be deployed by the end users in an uncoordinated way, inter-

femtocell interference can become very high especially in dense scenarios. Existing 

mechanisms for interference and resource management, which are primarily designed for 

pre-planned networks, are simply not applicable for femtocell networks. This means the 

development of new and effective interference aware resource management strategies is a 

key objective for successful femtocell network deployment and provided the main 

motivation behind the research presented in this thesis.  

 

The thesis will embark on developing efficient spectrum sharing strategies between the 

macro and femto tiers to mitigate cross-tier interference before studying the influence of 

FAP deployment density on the interference scenario and examining ways to effectively 

mitigate co-tier interference to achieve the desired QoS performance levels.  

 

The DL of both the macro and femtocells will be investigated, particularly for the home 

environment where femtocells typically operate on a closed access basis. This means a MS 

moving out of the coverage of a femtocell will be handed over to the macrocell even if it 

falls within the coverage of the neighbouring femtocells. CR principles will be partially 

applied in the sense that it only scans the predefined spectrum, not the whole spectrum. 

This information coupled with cross-tier information will then be exploited to intelligently 

allocate resources in the whole system.  

 

Since the resource allocation techniques for macro cellular systems are well established 

and mature, it will be wise to keep the macro-tier allocation model as intact as possible 

while exploiting opportunities available in the system for the femto-tier. Initially, both 
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cross and co-tier interference will be analysed in moderately dense deployments of 

femtocells on the macrocell. For cross-tier interference mitigation, a fractional frequency 

reuse (FFR) technique for macro-tier is applied as it inherently creates spaces where a 

partition of the spectrum is not utilised by the macro-tier. FFR divides a macrocell into an 

inner and outer area and then allocates each divided area with an orthogonal set of 

channels exclusive to those areas. The standard FFR technique has been modified to 

dynamically adapt to the changes in the radio environment and resource demand in both 

tiers. While cross-tier interference will be mitigated via the centralised management of the 

dynamic FFR, the femto-tier interference will be mitigated with certain decisions made 

centrally and others taken locally leading to the creation of a new hybrid resource 

management architecture. 

 

Subsequently, high density femtocell deployments will be investigated. An original 

network management architecture based on the novel concept of virtual clustering will be 

presented for femtocell networks, while keeping the dynamic FFR as the overarching 

model for macro-femto spectrum sharing and cross-tier interference mitigation. The term 

virtual cluster is used in the sense that the femtocells will be grouped not based on physical 

location but based on minimum interference generation criterion. Unlike ad hoc clusters, 

femtocells located far apart can essentially be members of the same virtual cluster.  

 

While the preliminary investigations into virtual clustering assume a fixed set-up and rigid 

resource availability, these assumptions are subsequently relaxed and a generalised virtual 

clustering framework (GVCF) paradigm will be presented which uniquely incorporates 

intelligent algorithms to enable the system to flexibly adapt to changes in both the resource 

availability and radio environment.  
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Finally after rigorously analysing the performance of the new hybrid resource management 

GVCF architecture, the thesis will examine a slightly different, but nevertheless very 

important challenge which highlights the robustness of the new GVCF model. Since 

femtocell coverage is very small, MSs connected to a FAP may frequently move out of the 

coverage and will be required to be handed over to the macrocell. In a highly dense 

deployment scenario, if a large number of femtocell users are moving out of the coverage 

of femtocell simultaneously, a macrocell may need to handle a high number of users 

together and this may lead to significant delays in scheduling. A common alternative is to 

keep the MS forcefully connected to the femtocell by applying handover bias or some 

other technique, so expanding the coverage of the femtocell. In the final thesis chapter, the 

impact of the coverage expansion on closed access cognitive femtocell networks will be 

thoroughly investigated for various network deployment scenarios.  

 

In summary, this thesis will present original scientific contributions in the area of 

interference aware resource management including resource partitioning, channel 

assignment, interference mitigation and coverage optimisation in a joint macro-femtocell 

deployment framework.  

 

1.5 Organization of the Thesis 

The rest of the thesis will be organized as follows:  

Chapter 2  

The chapter introduces the basic concepts of cognitive femtocell networks, their design and 

operational challenges and a review of the technical challenges such as spectrum sharing 

and access methods, co-existence of joint macro-femto systems, cross and co-tier 
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interference management issues and existing approaches to addressing these challenges. 

Part of this chapter has been published in [17]. 

Chapter 3  

This chapter focuses on a new hybrid resource allocation model for both cross and co-tier 

interference management in low to moderately dense femtocell deployments. It explains 

the concept of Fractional Frequency Reuse (FFR) and its application to cross-tier 

interference management in joint macro-femto deployment. A dynamic FFR technique is 

introduced which forms the basis of hybrid resource management algorithm (HRMA). Its 

performance is rigorously tested and evaluated and then compared with a distributed 

random allocation system. The hybrid architecture remains as the overarching framework 

for resource management in all subsequent chapters. Work from this chapter has been 

published in [18]. 

Chapter 4 

This chapter focuses on moderate-to-high density deployment scenarios for femtocell 

networks. Building upon Chapter 3, which shows dynamic FFR effectively mitigates cross- 

tier interference, this chapter addresses the issue of intra-femtocell network interference 

management where FFR remains the underlying spectrum sharing model between the 

macrocell and femtocell. The original idea of virtual cluster formation (VCF) is presented 

in this chapter and its performance investigated for a fixed cluster size setting at various 

femtocell deployment densities.  The novel contribution detailed in this chapter has been 

published in [19]. 

Chapter 5 

The idea of virtual clustering has been generalised to make it more flexible and adaptive to 

the resource availability and requirements. The generalised virtual cluster formation 

(GVCF) framework has been established and extensively tested for various radio 
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environment and interference setting and compared with the distributed random allocation 

model. The superior performance of the GVCF has been proven in different FAP 

deployment densities. A part of this chapter contributes to [20]. 

Chapter 6 

This chapter extends the ideas in Chapters 4 and 5 to incorporate additional flexibility and 

robustness against frequent handover between the macrocell and femtocell. Since the 

coverage of femtocells are very low, users with very low mobility can briefly move out of 

the coverage, so handover may occur very frequently and this can trigger a lot of control 

data generation for handover management. An alternative strategy is investigated; to 

expand the coverage by keeping the MS connected to the femtocell. In this chapter the 

impact of coverage shrinking and expansion on the overall system performance is 

investigated for closed access femtocell networks. The results can also be used to develop 

a look up table (LUT) that defines the performance and resource requirement nexus. 

Chapter 7 

This chapter discusses various ways that the current work can be extended and also 

provides some other future research directions including interference alignment, self 

organisation and green network operation and management. 

Chapter 8 

Finally, this chapter concludes the thesis by summarising the contribution. It also discusses 

the possible ways of validating the results presented in the thesis. 
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2 Cognitive Femtocell Technologies: A Review 

   

2.1 Introduction 

To meet the demand of rapidly increasing wireless data over the last decade, strategies like 

the spatial reuse of spectrum and cell-size reduction have been employed, though both 

approaches increase co-channel and adjacent channel interference. In addition, reducing 

the cell size leads to more BSs being required which is not practical due to their high 

deployment cost. The majority of the traffic is now generated from indoor environments 

where poor received signal strength due to penetration losses increase the demands upon 

QoS provision, with the problem being particularly acute when users are located at cell 

boundaries. Increasing the transmit power of the base station will not solve the problem as 

this only increases the Inter Cell Interference (ICI). As discussed in Chapter 1, the concept 

of femtocells was originally introduced to extend macrocell coverage for indoor scenarios 

where the FAP covers a small area of several metres [21]. 

 

In this chapter, a thorough review of femtocell technologies will be presented including 

femtocell network architecture, deployment and operations. A review will be provided of 

the technical challenges and research opportunities. Finally the chapter will be concluded 

with a discussion on the research issues and approaches addressed in this thesis. 
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2.2 Femtocell Network Architecture 

As femtocells are principally designed to extend macro cellular services into indoor 

environments, the key design requirement for the network is to ensure the same services 

are provided as the macrocell, without user intervention. As mentioned earlier, to secure 

high data rate services, traffic is backhauled via a wired network such as xDSL or xPON. 

To guarantee coexistence with the macrocell system, as well as maintaining call continuity 

by appropriately managed handover, there must be a communication path between the 

macro and femto systems via this wired connection. 

 

A typical femtocell network architecture is shown in Figure 2.1, where each femtocell is 

connected to a local femtocell gateway (FGW) which provides authentication, initial 

configuration and security related support for each FAP [22]. The FGW is the interface 

between the FAP and the core macrocell network, and depending upon the radio resource 

management paradigm being used, certain resource allocation and control functions are 

undertaken by the FGW. For example, the radio network controller (RNC) can share 

information concerning the allocation of spectrum to macrocell users in a particular 

location with the local FGW, so it can inform a nearby FAP to avoid operating in those 

spectra. 

 

The FGW allows the RNC to offload various management and control functions, including 

authentication and IP security issues. It acts as an aggregator for physically co-located FAP 

groupings, and is able to execute joint resource allocation and traffic scheduling by 

considering both the capacity of the FAP and backhaul network. The location of a FGW is 

also important, since if it is too far away from the FAPs connected to it, route optimisation 

will be required to avoid redundant communications [23].  

 



    25

 

Figure 2.1: A joint macro-femto cell deployment architecture 

 

In the remainder of this section, different network related issues for joint macro-femto cell 

deployment such as underlay and overlay architectures, classification based on coverage 

and capacity and possible operating spectrum will be briefly discussed. 

 

2.2.1 Underlay and Overlay Architectures  

In joint macro-femto cell deployments, the macrocell users normally have priority in 

accessing the spectrum. To ensure harmonious coexistence between the two systems, 

femtocells can access the spectrum by operating either in an underlay or overlay mode 

[24].  

 

In underlay architectures, the femtocell is able to use the same spectrum as the macrocell at 

any collocation, provided the femtocell does not exceed a defined interference power 

threshold. This threshold is usually set by the spectrum owner or lender, under the strict 

proviso that it does not generate harmful interference to the primary user (PU) devices 
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[25]. In this scenario, the femtocell network is solely responsible for maintaining the 

threshold set by the macrocell system, though depending upon the policy and regulations, 

the macrocell network may assist in the spectrum allocation decision making process. The 

macro-tier can maintain a geo-location spectrum occupancy database and share this 

information with the femto tier via the FGW, which updates all its connected FAPs either 

on a regular or needs basis [26].  

 

To facilitate local decision-making, FAPs must have an intelligent or cognitive capability. 

To make localised decisions, cognitive femtocells need to regularly sense the environment 

to detect the arrival of new macrocell users and any changes to the radio environment. The 

main disadvantage with the sensing-based system however, is the extra energy expended 

by the FAPs and its users, together with the resources required for sharing information 

[27].  

 

In overlay architectures, the femtocell network shares the same spectrum with the 

macrocell, though at any location, the spectrum used by the macrocell and femtocell must 

be mutually exclusive. Where macrocell users have the priority, femtocell users must avoid 

using the spectrum of all macrocell users in their vicinity. In other aspects, notably in geo-

location database information sharing and sensing-based spectrum allocation, the overlay 

and underlay systems are very similar. 

 

In both deployment scenarios, it is imperative to resolve whether a channel is to be 

considered either occupied or not. Inaccurate decisions can lead to inefficiencies with false 

alarms, i.e., detecting as an unoccupied channel when it is actually occupied can create 

harmful interference to others users. Conversely, falsely detecting an unoccupied channel 

as occupied will leave channels needlessly vacant. In order to effectively make a decision, 

the level of interference generated at any location needs to be either accurately predicted or 
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measured.  This discussion highlights the major design objective for effective femtocell 

deployment, namely the minimisation of cross- and co-tier interference, while retaining 

high spectrum efficiency (throughput).  

 

In an underlay system, the primary system always gets preference and it is the 

responsibility of the secondary system to ensure that it operates within the resource 

restrictions. In contrast, an overlay system operates more flexibly in allowing both systems 

to transmit in a cooperative manner. In joint macro femto systems, the same MS will be 

connected to both the femtocell and macrocell depending on the location. Thus, overlay 

systems will be suitable for femtocell networks and therefore adopted for the thesis. 

 

2.2.2 Home and Enterprise Femtocell 

Home Femtocell 

The most common FAP scenario is in home environments with between 1 and 4 

subscribers. The normal coverage is around 10 m radius with a maximum transmit power 

of 10 dBm. As it can be reasonably assumed that most home femtocell owners are non-

technical people, the installation, operation and management must be kept straightforward. 

Once switched on, the FAP should be self-configuring and able to register itself and since 

each household will be responsible for paying the bills, the envisaged deployment mode of 

access is via a closed subscriber group, where only authorised users can gain access. 

Interference can be particularly high if a user in the vicinity of the FAP attempts to connect 

to the macrocell BS.  

 

As femtocells can be freely deployed by the end user without any network planning, in 

dense deployment scenarios such as apartment blocks, the coverage of either two or more 

neighbouring femtocells may overlap. If a MS falls between the coverage of two 
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femtocells operating on the same channels as illustrated in Figure 2.2 (a), then severe 

interference can occur. Mechanisms for avoiding co-channel transmission for overlapping 

femtocells are therefore an essential design requirement.  

 

Figure 2.2: Example showing various femtocell deployments: a) Overlapped, b) Overlapped but not interfering, 

and c) Non-overlapped 
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The simplest approach is for one of the femtocells to hop channels, though if there is not 

another channel available, it can request the interferer to change channel. The latent danger 

in randomly hopping to another channel however, is the possibility it will generate 

interference with another neighbour. Consequently, FAPs should have some radio 

environment knowledge of their vicinity before making a decision to switch channel. An 

alternative strategy is the implementation of hybrid control where during authentication 

and registration, location information and pilot channel measurements are reported to the 

FGW, which can then avoid allocating the same channels to any overlapping femtocells 

which are generating severe interference to their neighbours [28]. 

 

It needs to be borne in mind that not all overlapping femtocells will necessarily be 

interfering as illustrated in Figure 2.2 (b). In this scenario, the femtocell coverage areas 

overlap but they do not create interference with each other’s users as there are none in the 

overlapping zone. Correctly identifying these instances can help in saving both superfluous 

channel hopping and communications with the FGW. Finally, femto-to-femto interference 

is much less sensitive when the cells are not overlapping as shown in Figure 2.2 (c). The 

net outcome, particularly for those non-interfering femtocells is that they can be granted 

greater flexibility and autonomy in selecting their transmission channel. 

 

Enterprise Femtocell 

Although femtocells were originally designed for home use, with smart adaptation in 

regard to capacity and functionality, the technology has emerged as an equally effective 

and low-cost solution for business enterprises. Enterprise femtocells are suitable for small 

offices, shopping malls, railway stations, airports and other public areas, and can be 

configured to act as an outdoor relay [29]. Typically, they have a range of up to 100 m, 

with a higher capacity than that of home femtocells [30]. They also are more likely to 
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employ either an open or hybrid access system to accommodate the larger numbers of 

visiting users in the anticipated operating environments. 

  

Despite clear similarities, the design requirements for an enterprise femtocell are distinct 

from those of their home counterparts [31]. Intelligent handover management is necessary 

as guest users may frequently move from the coverage of one femtocell to another in office 

environments, as well as to the coverage of a macrocell. During busy periods, there may be 

many users in the coverage area of one femtocell while an adjacent cell may have only a 

few or even no users. Proposed solutions include, artificially triggering handover by 

adjusting the threshold to offload certain users to a neighbouring cell to reduce congestion 

[32], and coverage optimisation whereby power consumption is adjusted to balance the 

load between cells [33].  

 

As mentioned earlier, home femtocells will be the most common scenario for femtocell 

deployment and the density of them will be much higher than their enterprise counterpart. 

Therefore, managing cross and co-tier interference for home femtocell will be more 

challenging. For this thesis, cross and co tier interference will be addressed in the home 

femtocell scenario. However, most of the interference management solutions in principle 

will be applicable for enterprise with some modifications. 

 

2.2.3 Possible Operating Spectrum 

As femtocells are considered an extension of macro cellular systems, affording coverage in 

areas where macrocell coverage is difficult, it is reasonable to assume they will operate in 

the same frequency band as the cellular system. To safeguard the successful coexistence of 

devices, appropriate strategies need to be developed to address a myriad of regulatory and 

economic hurdles. By embedding some cognitive capability, femtocells have the potential 
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to operate on other bands which may opportunistically become available for secondary 

operations. It is in this context, the operating spectrum and related challenges are now 

discussed. 

 

The operating spectrum for femtocell operation can be broadly classified as either licensed 

or license exempt. If the femtocell is using the operator’s cellular spectrum in the 2G and 

3G bands, then it is deemed to be licensed. In these circumstances, the operator must 

ensure femtocell operation is fully compliant with the prevailing regulatory statutes, with 

the management of cross tier and co-tier interference being the principal concern to be 

resolved.  

 

Whenever the femtocell operates as a secondary user in a spectrum, it is defined as license 

exempt. Such operations are divided into two different spectral categories. The first covers 

operating in license exempt bands such as 2.4 GHz, 5.8 GHz, 24 GHz and 900 MHz (in 

USA only). Despite the WiFi band (2.4 GHz) being already very crowded, studies 

advocate that successful femtocell operation is still feasible in this band provided 

coexistence policies are in situ [16]. A recent study [34] has shown femtocells can 

opportunistically operate in both licensed and unlicensed bands, with an interesting 

proposal being that simultaneous scheduling in both licensed and unlicensed bands is a 

promising option for femtocells to avoid congestion or blocking when licensed band is 

heavily crowded. 

 

The second category of license exempt operation is where a femtocell operates in white 

space, i.e., unused licensed spectrum in space and time. This involves various regulatory 

restrictions being imposed by the spectrum owner, i.e., the primary user (PU), such as 

upholding an interference threshold. As a result of the digital television (DTV) switchover 

across Europe, America and in other developed countries, a sizeable number of frequency 
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bands from analogue TV channels have been released [35]. These bands are popularly 

referred to as TV white space (TVWS), and offer an exciting and potentially lucrative 

option for femtocells. 

 

Radar and military bands represent another alternative as usage of these bands is both 

infrequent and location specific. However, for security reasons it must be guaranteed these 

bands will not be used when the PU is transmitting, so mechanisms must exist to switch to 

alternative bands in order to avoid any disruption in communications.  

 

One disadvantage with this out-of-macro cellular band operation, (when the macrocell 

remains in the licensed band of the 2G/3G spectra), is that any MS must be able to support 

a multi-band radio system, which may lead to more expensive MS devices. This thesis will 

thus consider the case where femtocells and macrocells will operate on the same 3G 

spectrum. 

 

2.2.4 Femtocell Standardization 

Since femtocells need to interact and integrate seamlessly with traditional cellular network, 

it is important to make the system compatible with the cellular system. Therefore different 

functionalities such as authentication, handover, billing, interference management, 

transmission power need to be standardised. Femto forum (currently renamed as small cell 

forum) was established in 2007 for promoting femtocell worldwide and coordinating and 

liaising the standardization effort in cooperation with different standardization authority 

such as ITU, 3GPP, broad band forum (BBF) and ETSI [36]. 

 

Although there are some instances of second generation (2G) femtocells, industries are 

more focused on third and subsequent generation femtocells. Both in 3GPP and 3GPP2, a 

lot of effort has been made to standardise the channel and propagation model in the indoor 
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environment, QoS requirement at different layers and other functionalities for CDMA2000, 

UMTS and LTE based systems. In 3GPP, from release 8, femtocell (termed as HNB) has 

been given special provision. In release 11, self organization has been emphasised for 

multi-tier networks. A summary of the standardisation effort is discussed in [37] and [38]. 

 

In the following sections, different technical challenges related to femtocell deployment 

and operation will be discussed. A comparative review of pros and cons of the existing 

solutions will be provided along with opportunities to improve them or of new solutions. 

 

2.3 Femtocell Technical Challenges 

Since femtocell networks will effectively work as an extension of the existing cellular 

network in indoor environments and will be deployed overlaying the existing cellular 

coverage area, a number of technical issues need to be resolved for their successful 

operation. These technical issues include, but are not limited to, access control policy, 

spectrum sharing techniques, handover management, spectrum/channel allocation, resource 

control policy and interference management. In this section, some of these technical issues 

and approaches for addressing those will be briefly discussed. 

 

2.3.1 Femtocell Access Mechanisms 

Femtocells generally operate in three different access modes: closed, open and hybrid, with 

each having their respective advantages and drawbacks. Crucially, the choice of the access 

mechanism influences not only the operation of the femto-tier, but also the macro-tier, and 

in particular cross-tier interference mitigation and handover management [39].  
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Closed Access 

In this mode, a fixed predefined number of users are allowed for network access. An 

unregistered user cannot access the femtocell even if it has the strongest link with a 

particular FAP. The consequence for any unregistered user entering the coverage of a 

closed femtocell is that it will receive severe cross-tier and co-tier interference when it 

respectively connects to a macrocell and another femtocell. A closed access system must 

therefore have strategies in place to either cancel or avoid these two types of interference. 

Multiple-input and multiple-output (MIMO) antenna-based beamforming for directional 

transmission is one approach to attenuate this type of interference [40]. However, to keep 

the cost low, a single antenna can be used. In this case, a negotiation mechanism between 

interfering transmitters needs to be implemented so that they can switch operating 

frequencies in the case of strong interference. The main attraction of this system is that 

because of the limited number of users, both management and billing is relatively easy. 

 

Open Access 

This mode, in contrast to closed access, permits any user located within the range of FAP 

to gain access to the network. The benefit is the downlink (DL) can offload large amounts 

of traffic from the macrocell to the femtocell, so liberating channels for reuse. This is 

especially useful at cell edges where macrocell coverage is generally poor. Despite freeing 

up valuable macrocell resources, open access systems do have a number of limitations. 

Since coverage is small, the system will experience an increased number of handovers if 

users are mobile, so innovative design methodologies are required to minimise handovers. 

In addition, if the number of unregistered or guest users becomes too high, then registered 

users in a femtocell may experience call blocking. There are also security implications, as 

an open access system is inherently vulnerable, for example, to hacking, illegal monitoring 

of activity, location detection, and malicious node attacks [41]. Appropriate measures thus 
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need to be employed to stop malicious manipulation of on-board software which can alter 

location information to hinder network management [42]. 

 

Hybrid Access 

This mode combines the advantages of the above two systems. By considering its capacity 

and gain, the hybrid mode allows a limited number of unsubscribed users to gain network 

access alongside the existing registered and subscribed users. This constraining of the 

number of guest users, achieves significant performance improvements without 

compromising the subscribed users [43]. A mechanism to prioritise the needs of registered 

over unsubscribed guest users must be implemented to ensure the satisfaction of the 

subscribed users. Preferential billing represents an alternative option, where subscribed and 

unsubscribed users are charged different tariffs [44]. A comparative summary of the key 

characteristics of all three access mechanisms is provided in Table 2.1. 

 

Table 2.1: Comparison of the three different access mechanisms 

Attribute  Closed Open  Hybrid 

Handoff No/Limited Very high  High 

Interference to Macro High Low Low 

Congestion Management Not Possible Possible Possible 

Security Risk Low High Low 

Outage High Low Low 

Billing  Easy Complex Moderate 

System Throughput Medium High High 

 

The performance of each access mode will inevitably be scenario dependant. It is also 

governed by whether an orthogonal or non-orthogonal channel allocation is adopted. For 

high user densities, systems employing either time division multiple access (TDMA) or 
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orthogonal frequency division multiple access (OFDMA) as their physical layer technique 

will perform better in closed access mode. Conversely for open access systems, significant 

improvements are derived when code division multiple access (CDMA) is employed [45]. 

Furthermore an estimate of the number of handovers is a key parameter in selecting the 

most appropriate access mechanism, which renders the intelligently designed hybrid 

system a particularly attractive solution as it combines the best features of the two access 

modes. 

  

In home femtocells, as with existing wi-fi systems, owners will not allow unauthorised 

users to access unless there is some incentive. As mentioned above, it also makes the 

network management and billing easier for both the operator and the subscribers. 

Therefore, in this thesis closed access femtocells will be considered. 

   

2.3.2 Security  

Security of femtocell networks mainly involves two functionalities. First, authentication of 

the femtocell access points and the MS connecting to them and second, 

encryption/decryption of the control information across the unreliable internet connection 

between the femtocell and the gateway or RNC. In an effort to reduce different types of 

threat such as subscribers list theft and denial of service (DoS) attack, UMTS and LTE 

femtocells include functionalities such as IPSec and unique identity for each FAP. 

Encryption over the IP transport network between the FAP and FGW is performed using 

IETF IPsec protocols [46] following the IKEv2 femtocell device and hosting party 

authentication procedures. [47]. IPSec allows creating a secured tunnel between FAP and 

the FGW. Security in an open access scenario is much more critical compared to the closed 

and hybrid access mode femtocells and hence special care needs to taken in this case. 

However, security issues are beyond scope of this thesis. 
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2.3.3 Awareness of Backhaul Characteristics  

One major difference between existing cellular and femtocell networks is the backhaul 

system. The macro-cellular system use dedicated backhaul interfaces known as S1 and X2 

[48], which are dedicated for cellular system traffic. On the other hand, for femtocells, it is 

anticipated the traffic will be backhauled via existing xDSL or xPON infrastructure which 

needs to be shared with other internet services and applications. So the nature of backhaul 

issues is different for the macrocell and femtocell networks. This implies the femtocell 

network management system must be designed to be compatible with this shared service 

other wise excessive delay may occur due to congestion.  

 

Current broadband networks have asymmetric uplink (UL) and downlink (DL) 

architectures, with the former using less bandwidth than the latter. This implies cognisance 

needs to be taken to ensure sufficient bandwidth is always available for femtocell-to-

macrocell backhaul communications [49]. Service level agreements (SLA) are one viable 

option to ensure bandwidth is reserved for femtocell operations [50]. 

 

Considering that the femtocell network will generally share the backhaul infrastructure 

with other networks and applications, congestion can occur at peak periods leading to 

potential scheduling delays. The femtocell network must therefore have appropriate 

mechanisms for prioritising traffic in delay-sensitive, low latency applications such as 

video conferencing and voice calls. Furthermore, the femtocell network must have an 

alternative route for backhauling traffic to maintain communications when there is either 

disruption or failure of the backhaul network. In most scenarios, the backhaul network is 

not owned by the femtocell service provider, so its capacity can vary between locations.  

 

The onus is thus on the service provider to make sure the network and resource 

management system incorporates these variations when scheduling any user for a 
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particular service. From a design perspective, a joint scheduling strategy between the 

backhaul network and FAPs is therefore desirable to enable optimal performance in terms 

of the application specific QoS requirement, the throughput and overall system capacity 

[51]. However, these require taking consideration of other systems sharing the wired 

backhaul network such as internet service and voice communications. The thesis focuses 

on wireless network and considers macrocell and femtocells only and hence backhaul 

constraint is not considered. 

 

2.3.4 Spectrum Sharing Strategies 

To enable short range FAP operation in an indoor environment, various spectrum-sharing 

methods have been proposed [52] which can be graphically summarised as shown in 

Figure 2.3. These spectral allocation options can be categorised as being dedicated, shared 

or hybrid. Each of these will now be individually considered. 

 

Dedicated Spectrum Allocation:  

In this arrangement, both the macro and femtocells are allocated separate bands as shown 

in Figure 2.3 (a). This ensures the interference only occurs between co-channel femto cells, 

and inter-channel interference between macro and femtocells is avoided. The drawback is 

that some bands in either system can remain unused if the number of users is low as bands 

allocated to macrocells cannot be reallocated or released to femtocells. Greater efficiency 

could be achieved if the respective channel widths allocated to macro and femtocells can 

be dynamically varied depending on user density and system requirements [53]. 

 

Shared Spectrum Allocation: 

 In the scheme shown in Figure 2.3 (b), no particular band is given to either system, but 

rather there is a common frequency pool from which both macro and femto cells are 

allocated channels which are governed by either a resource allocation policy or some 
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criteria such as pricing, application priority and so on. This scheme is the most efficient in 

terms of resource utilisation, but also inherently leads to interference with other users. 

Coordination between femto and macro cells and/or a strong sensing system along with 

power control mechanism is essential to manage interference to within acceptable levels 

suggested by the regulatory authority or the original spectrum owner.  

 

 

Figure 2.3: Spectrum Sharing Techniques (a) dedicated (b) shared (c) (d) and (e) hybrid 

 

Hybrid Spectrum Allocation:  

Figure 2.3 (c), (d) and (e) illustrate various different options for this scheme. In each case, 

a dedicated band is allocated to either a macro or femto cell or both and a portion of 

remaining bandwidth retained in the pool to be shared between macro and femto cells 

according to demand. The ratio of dedicated to shared band depends on system parameters 

such as the underlying allocation strategy, priority, user-density and cost. 
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Aside from the aforementioned spectrum access methods, flexible spectral utilisation 

technology enables the radio to operate on multiple bands [54]. Since the unlicensed band 

is already overcrowded, most of the studies recommend operating in the licensed band 

such as cellular bands which can suffer from potential co-channel interference. 

 

2.3.5 Mobility and Handover Management 

Since femtocells have limited coverage, even users with low mobility may frequently 

move out of the range of connected FAPs for a short interval. This can mean a 

disproportionate number of handovers being incurred compared to a conventional cellular 

system. Vigilance must thus be exercised in managing both the mobility and handover 

procedures to guarantee seamless operation.  

 

In a closed access femtocell network, if a user moves out of FAP coverage, it must be 

handed over to the macrocell BS. In contrast, for an open access network, the user firstly 

attempts to hand over to a different femtocell if one is available, otherwise it is handed 

over to the macrocell BS. The decision making process for the femtocell-to-femtocell 

scenario is more complex as it not only needs to consider the strongest signal strength, but 

also the admission control policy of possible femtocells, the capacity and load of 

neighbouring FAPs, resources, potential interference creation and the signalling and 

processing overheads [55]. 

 

The handover process is triggered whenever the received MS signal strength falls below a 

threshold. The MS then searches for available FAPs or for a macrocell BS signal and 

reports back to the serving FAP, which if required, cooperates with the RNC or FGW to 

decide which FAP is to be handed over to the MS. This technique is known as reactive 

handover. Handovers can also be proactive where the MS initiates the process before its 

signal strength falls below the threshold. Mobility can be predicted and the radio 
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environment of the position analysed in choosing the most appropriate FAP to be handed 

over the MS [56]. This can be useful for reducing both packet loss and latency during the 

handover procedure. 

 

The femtocell must safeguard against unnecessary handovers and apply an adaptive 

threshold to minimise their number [57]. There should also be a mechanism to 

automatically detect frequent handovers or the so-called ping-pong effect and directly 

terminate such incidences. One proposed solution [58] uses a call admission process to 

force MS to remain connected to either the femtocell or macrocell for a certain time 

interval before permitting handover. Though minimizing the number of handovers is 

crucial, the impact of keeping the MS connected to the femtocell on the network needs to 

be carefully investigated before adopting any handover minimization policy.   

 

2.3.6 Radio Resource Management Architecture 

Radio resource management architecture for a cellular network is a system level entity for 

addressing issues such as spectrum reuse, coverage optimization, inter and intra system 

handover, resource partitioning and channel assignment with the primary aim of enhancing 

the spectral efficiency, user experience, system capacity and performance [59].  

 

The conventional cellular network is extensively analysed and planned before deployment, 

so a centralised resource management is more appropriate for these systems. The 

advantage of centralised management is that it has access to global information and so the 

best possible solution can be made. It also ensures efficient control of the resources. 

However, with increasing entities, the amount of redundant communication required 

increases geometrically. So the centralised solution is not scalable.  
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In contrast, unplanned and massively deployed systems, such as adhoc networks, do not 

have any rigid structure and the topology also varies dynamically, so a distributed resource 

management is better suited with this kind of scenario. 

 

Although the femtocells are deployed by the end users without any network planning, their 

resource usage significantly relies on macrocell resource allocation. The combination of 

predicted large-scale femtocell deployment allied with a dynamically varying radio 

environment means that, it is extremely difficult to centrally control femtocells. This 

means hybrid system control is more propitious for femtocell network management with 

some functionalities controlled centrally and some devolved to either the FAP or local 

FGW. 

 

In radio resource management techniques, resources are exploited intelligently to reduce 

and mitigate interference. Due to the importance of interference mitigation in successful 

deployment of femtocell networks overlaid on macrocell systems, an in depth discussion is 

necessary and therefore in the following section, different interference mitigation 

techniques are discussed in detail. 

 

2.4 Cross and Co-tier Interference Management  

Mitigation of interference between macrocells and femtocells, and among femtocells is 

crucial for efficient operation. Depending upon the operating spectrum for the macro and 

femtocells, the interference scenario may change. For example, if the macrocell and 

femtocell operate on different dedicated spectrum, then there will be no cross-tier 

interference. Conversely, if both operate in the same band, there will potentially be both 

cross and co-tier interference. Table 2.2 summarises the types of interference assuming a 

shared spectrum arrangement for the macrocell and femtocells.  
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There are many recognized techniques for handling interference including for instance, 

those dedicated towards interference randomization [60], cancellation [61] and 

coordination or avoidance [62]. Interference cancellation requires an advanced signal 

processing capability at the receiver which is expensive due to the extra hardware 

complexity. This has meant interference coordination and avoidance methods are more 

preferable since they do not increase the complexity of the transceiver system. The 

following subsections will explore different cross-tier and co-tier interference management 

schemes. For clarity in the ensuing discussion, the two interference types are separated 

according to the system in which they are more prevalent.  

 

Table 2.2: Summary of the various interference scenarios in a joint macro-femto cell deployment. 

Link Transmission Mode Interference Scenario 

Macro BS to Femto MS DL Macro to Femto 

Macro MS to FAP UL Macro to Femto 

FAP to Macro MS DL Femto to Macro 

Femto MS to Macro BS UL Femto to Macro 

FAP to Femto MS DL Femto to Femto 

Femto MS to FAP UL Femto to Femto 

 

To fully mitigate cross tier interference, separate spectra need to be allocated to the 

macrocell and femtocell, though the pyrrhic cost of this solution is spectrum inefficiency.  

 

Femtocells can be arbitrarily positioned by the end users, which prevents any form of pre-

deployment network planning. This means different types of interference have to be either 

coordinated or mitigated in order to guarantee successful operation. Femto-to-femto 

interference can be particularly severe in dense deployments. A centralised solution is 
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precluded simply because it is not scalable in high density scenarios. Therefore, either a 

fully distributed or a hybrid interference management system is more suitable for these 

scenarios. Graph-based allocation and cross tier cooperative power control technique are 

two prominent technologies for distributed and hybrid interference management approach. 

  

Interference management is the biggest challenge for successful operation of femtocell 

networks [63]. So a careful investigation of existing methods and possible alternative 

solutions for managing interference is necessary. In the following section, a detailed 

review of the interference management techniques will be provided. 

 

2.5 Interference Management Strategies 

The methods of interference management mentioned for cross and co-tier interference is 

valid for both cases of interference. However, due to scalability and some other issues 

some methods are preferred for cross tier interference mitigation, while some others are 

preferred for intra femto tier interference mitigation. Some of the methods are discussed 

below: 

 

Macro/Femto Aware Collaborative Resource Allocation  

Cross-tier interference can be efficiently reduced if the femto-tier avoids channels used by 

macro users in their vicinity [64]. Initially, the macro-tier shares allocation information 

with the femto-tier, which can then exploit sensing feedback from its users to attain better 

accuracy in cross-tier interference avoidance. Similarly, a femtocell can report on its 

channel usage via the backhaul network, so the macrocell can avoid allocating those 

resources to neighbouring macrocell users. Efficiency can be further improved by applying 

joint scheduling in a collaborative macro-femtocell arrangement, with a portion of the 

channels dedicated to both tiers and the remainder used in a sharing mode. 
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Directional Beamforming  

Beamforming is another emerging technique for cross-tier interference minimization which 

requires multiple element antennas. Since an omnidirectional antenna generates 

interference in all directions, when a macrocell is transmitting to a user at a certain 

distance, that channel cannot be used by any FAP within the safety distance regardless of 

the position of the femtocell compared to that macrocell user within the cell. Directional 

transmissions only generate interference to users located in the LOS direction, so FAPs 

located outside this direction will be free to use that channel. For each macrocell user, the 

beamforming vector can be selected based on the highest received SINR [65]. The macro 

user then senses the signal from the FAP and provides feedback via the backhaul about the 

beam subset which generates the minimum interference power. Femtocells can then use 

this beam subset to avoid interfering with the macrocell users. A reciprocal scheme can be 

embraced by macrocell users to avoid interference with femtocell users. 

 

Power Control 

Power control has been effectively used as a mitigation strategy for both cross-tier and co-

tier interference. Its main advantage when applied to the macrocell is that it creates more 

space for a femtocell to reuse the channel. A FAP can also adjust its power in order to have 

shared access to the channel with macrocell system. To facilitate this, macrocell users need 

to accurately measure the interference and relay this information via the macrocell BS and 

backhaul network. After receiving this feedback, the FAP can then fine-tune its 

transmission power accordingly.  

 

In large-scale deployments, centrally managing the transmission power is extremely 

problematic. Game theoretic approaches afford a distributed solution to this problem with 

both cooperative and non-cooperative strategies existing to find the optimal Nash 

equilibrium power value for a given set of objectives and constraints [66]. An alternative 
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distributed solution to cross-tier interference minimization is reinforcement learning (RL) 

[67], [68], where femtocell users sense the system and combine the current transmission 

experience with previous experiences to decide the most appropriate power level. While 

RL is an attractive solution for distributed environments and works well for lower numbers 

of users, learning can be a slow process in the case of highly dense deployment and hence 

the solution risks inefficiency in interference management.  

 

Graph Colouring Approach 

This technique is often applied for channel assignment in wireless networks to avoid 

interference [69] and has been examined as a means of interference minimisation in 

femtocell networks [70], [71].  

 

If it is assumed each colour represents either a single channel or set of channels to be 

allocated, and the connections (links) are the interference, then the underlying premise is 

that no connected nodes can be assigned the same colour. The resource allocation problem 

can essentially then be considered as a graph colouring solution.  

 

The interference graph is generated as: 

( )EVG ,=  
(2. 1) 

where V is the vertex that represents each transmitting femtocell and is defined as: 

{ }nvvvvV K,,, 321=
 

(2. 2) 

with edge E  being the interference link for each V  defined as: 

{ }
neeeeE K,,, 321=

 
(2. 3) 

 

After constructing the set of edges en, each vertex is assigned a colour such that no 

connected vertexes have the same colour.  
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The example in Figure 2.4 illustrates the basic graph colouring idea. Firstly, interference 

link edges are constructed for all 5 FAP. As FAP1 has the highest number of links, it is 

assigned the first colour, while since FAP2 and FAP3 have the next highest number of 

links, they are accordingly given two separate colours as they are connected to each other 

as well as FAP1. FAP4 only has a single link to FAP1 so is given a different colour to 

FAP1, while FAP5 is assigned the same colour as FAP2. This provides the minimal intra-

tier interference result for this particular example.   

 

 

Figure 2.4: An example of the graph colouring problem for 5 FAP 

 

Several other issues can be addressed by modifying the graph colouring problem. Fairness 

in channel usage can be assured if the number of times a particular colour is allocated is 

taken into consideration while assigning the next colour.  For example, in Figure 2.4, both 

FAP4 and FAP5 are free to choose the same colour as either FAP2 or FAP3. If it is 

assumed FAP4 selects the FAP3’s colour, then despite FAP5 having the choice of either 

colours, to ensure fairness it must choose the FAP2 colour.  

 

Although graph colouring is suitable for ad-hoc like structures, it may not be suitable for 

hybrid systems like joint macro femto deployment, which is a blend of planned and 
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unplanned deployment. Moreover, the graph needs to be reconstructed for all connected 

nodes if a MS moves out of the system. If the graph is managed centrally, then this will 

generate a huge number of control data exchanges which will make it inefficient. 

 

FFR based resource Allocation: 

FFR was originally proposed to be used for macro cellular systems to avoid ICI 

particularly at the cell edge, to reduce the impact of co-channel interference and co-channel 

reuse distance for a certain portion of the spectrum and thereby improving the overall 

system capacity up to around 30% compared the conventional methods  [72], [73], [74]. To 

both alleviate and coordinate ICI, FFR divides a macrocell into an inner and outer area and 

then allocates each divided area with orthogonal set of channels exclusive for those areas. 

This ensures that there is no conflict between inner and outer cell areas. Intelligent and 

coordinated allocation of mutually exclusive channels in the outer cell area of 

neighbouring cells will also ensure the mitigation of ICI.  Thus the macrocell will have a 

set of channels exclusive for each area. This means certain frequencies are not used by the 

macrocell in some areas, creating the opportunity for the femtocell to exploit this vacant 

spectrum. 

 

A key design precondition for the femtocell to exploit this unused resource is that localised 

spectral information is available at the femto-tier, which as mentioned above, mandates 

cross-tier information sharing within the system. A number of variations are proposed on 

how the spectrum will be split in the outer cell areas of neighbouring macrocell, each with 

their distinct features and advantages [75] [76], [77]. 

 

The main advantage of this method is that the information sharing between tiers is very 

low as only occasional updates are necessary for both the tier. This will save a lot of 

redundant control data and make the cross tier interference management much simpler and 
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efficient. This feature particularly made it attractive for the resource partitioning in joint 

macro-femto deployment scenario.  

 

2.6 Conclusion  

In this chapter, the state of the art in CFN research has been presented. CFN is an emerging 

technology for enhancing the indoor coverage where traditional network performance is 

typically poor. It consists of low power access points overlaid on the existing macrocell 

networks. It typically operates on the same band as the macrocell forming a dual-tier 

network. This network architecture is presented followed by a detailed investigation of the 

challenges involving joint deployment, possible operating spectra and the different access 

technologies. Standardisation activities, backhauling and security issues are also briefly 

discussed for completeness. A thorough review of the technical challenges including 

access control mechanism, interference mitigation, cross and intra-tier spectrum sharing 

problems has also been provided. Finally, some of the challenges and opportunities for 

new radio resource management techniques to minimise interference in dual-tier networks 

have been discussed to define the research scope of the thesis. 
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3 Hybrid Resource Management for Cross and Co-Tier 

Interference Reduction 

 

3.1 Introduction 

Femtocell networks are overlaid on existing macrocell networks and operate on the same 

licensed band as conventional macrocell networks. The MSs will be connected to the 

femtocell or macrocell depending on whether they are located indoors or outdoors and the 

access policies set by the operators. Since they share the same set of wireless resources, 

there are similarities in resource requirements and operating procedures between 

macrocells and femtocells. For any wireless network, intelligent design of radio resource 

management (RRM) techniques is crucial for effective interference reduction and 

successful network operation and management. 

 

Despite many similarities, there is a fundamental difference between macrocell and 

femtocell deployment that prohibits the straightforward use of RRM techniques designed 

for macrocells in the femtocell networks. From the downlink transmission point of view, 

macro BS is deployed after careful planning considering available resources and possible 

traffic patterns in the whole coverage area. On the other hand FAPs are deployed by the 

end users who are normally non technical persons. In addition, it must be assumed the FAP 

is likely to be located at a convenient place in a house regardless of the implications upon 

either other FAPs or the macrocell interference scenario and resource management 

policies. 
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This inherent uncoordinated and overlaid deployment of femtocells makes the existing 

RRM techniques, which are designed to manage well organized and pre-planned network, 

often ineffectual. Therefore, RRM techniques designed for macrocells need to be modified 

to suit the requirement of the femto tier. As any major changes to either the resource 

management architecture or network control topology may be expensive to realize, so a 

careful investigation into the existing systems and possible opportunities for exploiting 

them are necessary for successful femtocell network deployment.  

 

Another major contrast between macro cellular and femtocell systems is the area covered 

by a cell. The macrocell has a typical coverage radius up to 500m in urban areas and a few 

kilometres in rural areas. Since they are deployed in a planned manner, a dedicated 

backhaul communication (known as an X2 interface) among macro BSs are also 

established for faster and reliable communication and data transfer. Thus managing the 

resources from the RNC, offers the best and most efficient performance as it affords global 

traffic information and a dedicated communication medium.  

 

In contrast, the coverage radius of a femtocell is generally only between 10m and 30m. So, 

for example, in 1 km
2
 area there might be only one macro BS, but in the same coverage 

area, hundreds of femtocells may be required. Centralised solutions - although best for 

macro cellular systems - are not scalable and therefore not suitable for femtocell networks 

due to the anticipated massive deployment. Furthermore, since they are deployed 

arbitrarily in buildings, the only viable option is to use existing fibre optic or ADSL-based 

wired networks for backhaul communication and data transfer, which needs to be shared 

with other internet service providers and systems. 
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So controlling the system from a central location through this shared medium will not be 

very effective and poses a potential risk of failure. The number of FAP deployed will vary 

widely depending on the location and one particular solution may not fit all cases. This 

implies a RRM solution for joint macro femto deployment will inevitably be hybrid in 

nature to combine the advantages of both architectures. It must also have the capability to 

adapt to changes in the radio environment caused by frequent users joining and leaving the 

network. 

 

This chapter investigates seamlessly embedding a femtocell tier within a resource 

distribution framework to create a two-tier system, which crucially incorporates a cross-tier 

spectrum sharing strategy. Hybrid Resource Management Architecture (HRMA) is 

proposed where cross tier channel allocation is managed centrally and channel allocation 

for individual MSs is performed by the respective FAP in a distributed fashion.  

 

In the following sections, HRMA will be discussed with both cross and co-tier interference 

management problems being addressed. For cross-tier interference management, a 

modified FFR method will firstly be introduced and this will subsequently be integrated 

into the new HRMA framework. As conventional FFR techniques have been designed 

solely for macrocell systems, an alternative solution needs to be developed for dual-tier, 

joint macro-femto networks. The HRMA algorithm for intra femtocell interference 

mitigation will then be explained in detail. A system model will be developed in order to 

evaluate the performance of the proposed architecture and algorithm with rigorous 

simulation results presented and analysed.  

 

3.2 Hybrid Resource Management Architecture 

As stated in the previous chapters, despite many benefits, femtocells can cause potential 

interference with co-located femtocell and macrocell users operating in the same frequency 
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band. The intrinsic uncoordinated nature of femtocell deployment compounds the 

challenge of managing interference in such two-tier models. Traditional RRM policies 

have been static in nature, with the spectrum assigned to a user being fixed regardless of 

instantaneous changes to the radio environment. This leads to inefficient spectrum and 

energy usage. To ensure better utilisation of locally available spectrum in rapidly changing 

environments, an assortment of dynamic RRM techniques have been proposed [78], [79], 

[80], where both spectrum and energy can be either dynamically switched or modified 

according to the radio environment variables at particular geographic spatial and temporal 

values. 

 

Recent advances in dynamic RRM have emphasised the need for more efficient resource 

management strategies. While centralised resource management offers improved 

coordination and operator control giving better interference management, it is not scalable 

for increasing node densities. Distributed management techniques in contrast, do afford 

scaled deployment, but at higher node densities incur performance degradation in both 

system throughput and link-quality because of poor coordination.  

 

Radio resource allocation and distribution can be done most effectively if the decision is 

taken centrally with global information. However, this requires considerable control data 

transfer to a central entity. As the control data overhead increases geometrically with the 

numbers of FAP deployed, centralised resource management becomes unaffordable for 

higher number of nodes as it requires cross-tier information sharing. Thus a hybrid 

resource management is proposed whereby spectrum sharing between the macro and femto 

tiers is decided in a centralised fashion, with periodic updates to the femto-tier being 

carried out by the RNC and FGW. Depending upon the spectrum sharing decision, in the 

femto-tier, each FAP decides the resource allocation for its own associated users in a 
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distributed fashion. These together form the hybrid resource management architecture 

which will be presented in this thesis.  

 

The HRMA avoids both unnecessary communications via the backhaul networks and 

innate delays in the decision making. The RNC undertakes the range of management and 

control functions usually assigned in a traditional cellular system, including: registering 

and authenticating FAPs, assigning spectrum chunks to each FAP by considering the 

macro-tier load and MS allocations to ensure mutual exclusiveness between the two tiers; 

dispute handling between FAPs and the management of the database containing the FAP 

location information. The FAPs in contrast, manage MS information and make local 

spectrum allocation decisions based upon feedback received from the MSs. 

 

As mentioned earlier, the easiest way of sharing spectrum between the macro and femto 

tiers is to allocate dedicated resources to each tier so that there will be no cross-tier 

interference. However, this method is inefficient in terms of spectrum usage. The best 

policy would be to share the whole available spectrum between the macro and femto tiers, 

though there is the potential danger of creating huge cross-tier interference if the same 

channel is used by the FAP and macro BS to serve co-located femto and macro users 

respectively. So, if the macrocells and femtocells can intelligently avoid using the same 

channels for co-located macro and femto users, then both systems can use the whole 

spectrum. One mandatory requirement for enabling this is to share cross-tier spectrum 

usage information in real time. The cognitive capability of emerging network technologies 

can be utilised to do this, though the amount of data sharing requirement remains a major 

design challenge [63].  
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3.2.1 Fractional Frequency Reuse technique 

A recently proposed frequency reuse technique in macro-cellular spectrum is fractional 

frequency reuse (FFR) [76] [77], where the reuse factor 1>rn , is the number of distinct 

sets of channels used in the system. FFR is applied at cell-edges to avoid ICI. The basic 

idea is to divide the macrocell area into two regions, namely the inner cell region (ICR) 

and the cell edge region (CER). The same set of channels in the ICR is used by all cells 

and a different set of channels for CER of the neighbouring cells. Each colour represents 

the portion of spectrum assigned to the macrocell users in that region correspondi0ng to the 

right bar shown in Figure 3.1 (a).  

 

(a) 

 

 
(b) 

Figure 3.1: Spectrum distribution in ICR and CER for FFR scheme with (a) 3 cells and (b) 7 cells. 

 

The ICR will use spectrum S in all the cells while the CER for the three cells will use 

spectra A, B and C respectively which are all mutually exclusive. This ensures that the 

users in the CER of neighbouring cell will have a different channel set for access and there 

will be no ICI. Depending on the reuse pattern and antenna sectorisation, 3 cells and 7 cells 

reuse can be applied either with or without sectorisation. Figure 3.1(b) shows the 7 cell 

case. 
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The minimum SINR that can be achieved at the boundary is given by [81]: 
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where, N is the number of hexagonal cells per cluster and n is the path loss exponent. The 

value of N is related to radius of the cell, R and channel reuse distance, D according to: 

N
R

D
3=  

(3.2) 

 

Assuming the radius ratio of ICR and the cell, α is related to the ICR radius R1 by 

RR α=1 , then the SINR required at the ICR boundary can be calculated by using the value 

of α in (3.1) yielding: 
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Using the above relations, the transmit power of the BS for users located in the ICR and 

CER can be calculated. In both single and multi-tier systems, the ratio of CER and ICR has 

a significant impact on the overall system performance, so the ratio of spectrum between 

CER and ICR needs to be carefully designed to balance the load per channel in those areas. 

While finding the optimum radius of the ICR is relatively straightforward in single-tier 

systems, the optimum radius for multi-tier systems is more complex. Further details on the 

ICR and CER ratio and its impact on system performance can be found in [82]. 

 

By introducing a suitable modification, this FFR technique can be readily exploited for 

cross tier spectrum sharing. A design prerequisite for the femtocell to be able to exploit this 

unused resource is that localised spectral information is available at the femto-tier, which 
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mandates some level of cross-tier information sharing within the system. This technique is 

particularly rewarding as only regular updates at certain intervals between tiers is 

necessary and this keeps the control data transmission to the RNC or central entity very 

low compared to all other methods. The key idea is to share the ICR and CER spectrum 

allocation information with the femto-tier so it can use the whole band, apart from that 

which has already been assigned to the macrocell in that location. The principal advantage 

of this FFR-based scheme is that it eliminates cross-tier interference because mutually 

exclusive spectrum is used for each tier at any particular location, which allows the design 

focus to be on managing interference in the femto-tier only. 

 

 

Figure 3.2: A Sectoring FFR reuse scheme for macrocells, with femtocells are allowed to use the whole spectrum 

except the chunk used by macrocell users in that sector.  

 

Dividing macro users into more sectors means fewer channels required per sector as fewer 

users will be located in each sector. This means a higher number of channels will be 

available for the femto tier. For example, in Figure 3.2, the CER is divided into six sectors 
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(each colour represents one sector with the corresponding spectrum is shown on the right 

hand bar). In each CER sector, FAPs can use the whole spectrum except the part that is 

allocated to the macro tier on that area. Since the sectoring area is now halved in 

comparison with the three sector system (see Figure 3.3), the spectrum available for the 

femto-tier has increased on average, by between 6% and 7%, under the assumption of a 

uniform user distribution.  

 

With increasing numbers of sectors however, the sector area becomes correspondingly 

smaller which increases the possibility of more handovers and macro-tier load imbalance 

in some sectors. Also, due to the dynamic nature of the resource allocation, a higher 

number of updates between tiers will be necessary which will incur additional control data 

exchanges, so a balance between the performance and associated risk factors needs to be 

considered for successful network operation and management. 

 

3.2.2 Dynamic FFR 

One such dynamic FFR algorithm partitions the macrocell channels in proportion to the 

traffic load in that area. Additionally, a reserve channel set is proposed for the femto-tier 

which is regularly updated based on changes in usage in the macro-tier. This reserve 

channel set is available to femtocell users which are overlapping and in a severe 

interference scenario. 

 

The amount of spectrum available in a certain sector for the macro-tier can be calculated 

by the following relation: 
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where, K  is the sector number, for which spectrum availability is calculated. BW is the 

total bandwidth of the system. KN  is the average number of macro users in that sector, 

while 
UN  is the average number of users in the whole macrocell.  

 

Figure 3.3 illustrates the dynamic FFR scheme used in this thesis.  Each colour represents 

an available spectrum band for the macrocell users in that area and femtocells are not 

permitted to use these bands at all. For example, in the outer cell area of sector 1, macro 

users are allowed to use channel C, so femtocells are only permitted to use the other three 

channels in this area, namely S, A and B. However, vigilance is required for femtocells 

located at the border of a cell as they may interfere with the macro users in an adjacent 

macrocell.  

 

 

Figure 3.3: Dynamic FFR scheme for joint macro femto deployment. 

 

Likewise in the outer cell area of sector 3, femtocells can use the entire spectrum except 

the B channels. In the inner cell areas, macrocell users are allowed to use S channels, 
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though unlike the outer cell area, femtocells are not allowed to use any other channels 

except S. In addition to avoiding the S channels, femtocells need to avoid those channels 

used by the macrocell users in the outer cell in that sector. For example, if a femtocell is 

located in the inner cell area of sector 1, then along with channels S, it also needs to avoid 

channel set C. 

 

It is assumed the average user demand remains constant, so the amount of spectrum 

allocated to a particular area varies with time in accordance with the user density and this 

is updated after some predefined time interval. After making this cross-tier spectrum 

sharing decision, HRMA then allocates resources for the FAPs from the spectrum chunk 

delegated by the RNC for the femto-tier, with each FAP being independently responsible 

for assigning channels to the users connected to it. The main functional blocks of HRMA 

will now be described in detail in the following subsection. 

 

3.2.3 Functional Blocks of HRMA 

HRMA comprises three constituent blocks as shown in Figure 3.4, with the functions of 

each block now being individually explained.  

 

 

Figure 3.4: Functional Blocks of HRMA. 
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a) Registration and Discovery Block: When a FAP switches on, it registers with the RNC 

via the FGW and is assigned a unique ID. As each FAP is connected to the RNC and FGW 

via a back-haul network, the approximate position of both the FAP in the sector and 

neighbouring BS is known to the central controller. Utilising this information, the FGW 

updates the database for each femtocell located within its mandated area as 

);;( fiifii RSNFAP , where iFAP  is the thi   femtocell at time t  and iS  is the area in which 

the femtocell is located. fiN  is the set of neighbours which may potentially overlap 

coverage. The list of overlapping FAP is generated by monitoring whether a registered 

FAP falls within a distance of nbd  of the FAP in the given sector. The concept of 

overlapping and non overlapping FAP is shown in Figure 3.7. fiR  is the set of channels 

accessible to a femtocell, with the following relation needing to be upheld, Φ=mfi RR I  

where mR  is the set of channels allocated to the macro-tier in the same area and Φ  is the 

null set. This condition means a femto-tier channel and a macro-tier channel at any 

location, must be mutually exclusive. 

 

b) Spectrum Allocation Block: One of the principal RNC roles is to notify the FGW 

about the spectrum partition for the FAPs under its control. The FGW then notifies each 

FAP concerning its allocated spectrum partition. This ensures members receive mutually 

exclusive channel sets to avoid severe interference, before each FAP allocates the channel 

from the assigned set to each user independently. This allocation is based on the channel 

state information (CSI) measurement as defined in the Section 3.3. 

 

c) Dispute Management Block (DMB): When a MS performance degrades below a 

prescribed threshold, the corresponding FAP firstly attempts to hop to the second best 

available channel for the next transmission of the relevant MS. If the problem persists, it 
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flags the RNC via FGW with the ID of the interference creator FAP. The RNC then 

examines the allocated frequencies of the disputing MSs and reassigns new channels to 

each. If all partitions are fully used, it will then allocate channels from the reserve set.  

 

The database containing the spectrum partitioning details is regularly updated as is the 

corresponding femto-tier information. After a certain time interval, all the FAP are updated 

with the latest macro-tier spectrum partition information and then execute the localised 

component of the HRMA until a dispute occurs, whereupon control is relinquished to the 

RNC to centrally manage the resolution via this dispute management block (DMB). 

 

3.3 System Model and Simulation Set-up 

A Wireless network is inherently complex and dynamic in nature as they involve a high 

number of time-varying interactive components which often impact on the entire system 

architecture. Thus analytically modelling a multi-user wireless network remains an 

intractable problem [83]. A further problem is very few theoretical results on Shannon’s 

capacity for cellular network are available. While some progress has been made recently in 

this domain applying stochastic geometry [84], the fundamental assumptions underpinning 

the model remain problematic. The net result is that a simulations-based approach is still 

widely employed in cellular network modelling and performance evaluations. In this 

section, the simulator platform, its core building blocks, various system parameters and 

key performance indicators will be discussed. 

 

3.3.1 Choice of simulator platform  

There have been a number of programming languages and coding platforms available for 

system simulation development including C/C++, Java and Matlab. While the first two 

offer much faster execution of the program, they require developing libraries or 
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components for each and every element, which is very time consuming. Sometimes, open 

source libraries for different functions are available, but their reliability is not guaranteed. 

On the other hand, Matlab is relatively slow in terms of execution speeds but has numerous 

built-in functions and specially developed tool boxes for communications and signal 

processing which makes the coding both simple and straightforward. Since the focus of 

this thesis is not developing new basic tools, but rather using those tools for evaluations 

purposes, these built-in functions save significant time and energy. Also, the powerful 

computers can run the system at a reasonably fast pace, so for this reason, Matlab has been 

chosen as the underlying platform for all simulator development work. 

 

3.3.2 Basic Simulation Scenario Assumptions 

A dual-tier (macro-femto) system model is considered in this thesis, where the femtocell is 

overlaid upon the macrocell system. A closed access mechanism is adopted for all 

femtocells so only authorised MSs can connect to a particular FAP. FAP transmission 

power is fixed, though different power levels are used for the inner and outer macro cell 

MSs. Flat fading over one transmission time is assumed, though this can between one 

transmission interval and another and it is also assumed that the channel state information 

(CSI) for all the MS is known by the transmitter.  

 

The interconnection network for joint macro-femto deployment was shown in Figure 2.1. 

The FAPs are connected to a local FGW which retains some FAP control functionality 

relating to the registering of FAP and its user, assisting in the initial configuration, 

allocating available femto-tier resources, managing local disputes, routing traffic in both 

directions and most importantly as a link between the RNC and individual FAPs. The 

FGW maintains communications with the macro-tier via the RNC, the Internet and the 

operator’s interface (also known as the S1 and X2 interface), routing traffic in accordance 
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with the RNC. The FGW plays a crucial role in cross-tier information sharing and is an 

intermediary between the macro and femto networks. 

 

3.3.3 Simulator Building Blocks 

The major constituent building blocks of the simulator that has been developed are shown 

in Figure 3.5. The macro tier deployment module creates the hexagonally-shaped 

macrocells with up to 7 macrocells of various radii being able to be implemented. The 

macro BS is always located at the centre of the cell and comprises three sectors. It also 

randomly deploys the generated MSs in each sector following a uniform distribution.  

 

 

Figure 3.5: Main building blocks of the simulator 

The femto tier deployment module deploys FAP and the MSs which are connected to it. 

Femtocells are circular in shape and uniformly distributed inside every macrocell. The 

FAP is assumed to be located at the centre of a femtocell and the MSs connected to it are 

uniformly distributed across the femtocell. Figure 3.6 shows an example snapshot of 50 

femtocells and 30 macrocell MS located within a macrocell of radius 400m. 
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Figure 3.6: A snapshot of simulation test environment with 30 macrocell MS and 50 FAP in one macrocell area 

with radius of 400m (the x and y axes are distance (m) from centre of the cell). 

 

 

Figure 3.7: Example of overlapping and non-overlapping FAP, where the x and y axes are distance (m) 

Another important building block is the virtual clustering and resource management 

module. This receives information from both the macro and femto tiers, and based on this 

information, resource distribution and cluster formation decisions are taken. One of the 

notable features of this module is the automatic detection of overlapping femtocells which 

is crucial for avoiding severe co-tier interference. This detection mechanism is based either 

upon the geometric distance between the FAPs or alternatively on a predefined signal 

power threshold received by the MS in the neighbouring femtocells. Figure 3.7 provides an 
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example of the former. The task of this layer also includes channel allocation and 

depending on the policy employed, the channels are either allocated by the FAP or the 

FGW. The basic principle for allocating channels is now described. 

 

Channel Allocation 

It is assumed that every FAP is responsible for allocating channels to its member MSs, 

based upon feedback from the MSs on the respective received SINR. To assign the best 

available channel, each FAP calculates the SINR for all MSs attached to it, which is 

formally defined as: 

∑ +
=

j

nj

t

NP

hP
SINR

0

00  … …                  (3.5) 

where SINR  is the signal to interference-plus-noise power, 
0tP  is the transmit signal 

power, 0h  the channel power gain, rjP  the received interference power on thn channel  

from user j  and 
0N  is the noise power. 

 

The achieved user throughput b can then be calculated from Shannon’s capacity 

relationship [85]:  

)1(log2 SINRBWb +⋅=  (3.6) 

Where, BW represents the bandwidth over which the SINR has been measured. 

 

Finally, the Propagation modelling module is another integral building block that generates 

path loss, shadow fading and channel models. A detailed treatment of this module is 

provided below. 
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Path Loss Model 

As joint femto-macrocell deployment is the focus of this thesis, the respective path loss 

models for both indoor and outdoor environments need to be considered. For the outdoor 

scenario, the path loss model is chosen according to the widely used 3GPP LTE standard 

specification described in [86].  The path loss from the macrocell BS to MS is given by:  
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where m

NLOSPL  is the path loss from the macrocell BS, d  is the distance of the user from 

the FAP in metres, and cf  is the carrier frequency.  

 

For indoor scenarios, the WINNER II [87] path loss model is utilised. This model has a 

number of path loss scenarios, with different coefficients values being determined for the 

path loss equation in a combination of analytical and experimental cases. These values are 

valid for the spectrum range between 2GHz and 5GHz. Among the various scenarios, A1 

represents the indoor and small office environment and because the indoor set-up is 

considered for femtocell networks, both the LOS and NLOS path loss values for the A1 

scenario of the WINNER II model were selected for this analysis. For the LOS, where 

there is no obstacle between a FAP and the MS, the path loss is given by. 

( ) 
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where f

LOSPL  is the path loss component. In the NLOS situation, it is assumed there is at 

least one wall between the FAP and the MS. When there are walls between the transmitter 

and receiver, an additional wall penetration loss (
WPL ) component is included in (3.8):  
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where f

NLOSPL  are the femtocell path losses for the NLOS signals. 
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Shadow Fading 

Also known as large scale fading is modelled according to the well established zero mean 

lognormal fading model [88] for a given standard deviation as specified in the LTE 

standard. 

 

Small Scale Fading 

It has been assumed small scale fading follows a Rayleigh distribution, which in the 

absence of a dominant LOS component, is the most appropriate distribution. The signal 

becomes scattered as it is transmitted to the receiver, and if the amount of scattering is 

sufficiently high, it follows a Gaussian distribution with the phase evenly distributed 

between 0 to 2π radians.  

 

Once the resource allocation or virtual cluster formation has been undertaken, data 

transmission takes place and the performance is measured by the performance evaluation, 

interference power and signal power calculation module. This measures both the 

interference and signal power using information provided by the propagation module. 

 

The received power at a femto MS is calculated according to the following relation: 

))()()(()()( dBPdBPdBPLdBmPdBmP ffshadow

fap

t

fms

r ++−=  (3.10) 

 

where fap

tP is the transmit power of the FAP, PL is the path loss component, shadowP  is the 

shadow fading and ffP  is the small scale fading. Similar relations can be used to also 

compute the interference power, from which then the overall SINR can be calculated. 
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These parameters are calculated for each system run and stored in the storage and 

presentation module for subsequent processing and/or plotting as and when required. 

Figure 3.8 shows the complete high-level flow diagram of the developed simulator used 

throughout this thesis. 

 

 

Figure 3.8: High level simulation flow diagram 

 

3.3.4 Key Performance Indicators 

Since a simulation-based approach is adopted, a large amount of data has been generated 

during the course of the research. Summarising and representing data in an informative 
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way is very important for drawing conclusions of the findings. Since the work has focused 

on developing an interference aware system, it is important to measure system 

performance in relation to its capacity to combat interference. For this, one of the widely 

used measures of the signal strength, signal to interference plus noise ratio (SINR) has 

been adopted. The ultimate goal of a communication system is to transfer information from 

the transmitter to receiver using the spectrum. So, performance in terms of achieved 

throughput for a given spectrum is also an important measure. As mentioned earlier, from 

the achieved SINR, the spectral efficiency (SE) in bits per Second per Hertz (bps/Hz) is 

estimated by exploiting Shannon’s capacity formula.  

 

Different statistical description tools are utilised to represent the results. The main 

parameter used is the cumulative distribution function (CDF). The main advantage of using 

the CDF is that it represents the whole spectrum of performance and different statistical 

information can be readily identified as necessary. For example, the median of the 

performance can be computed from the CDF representation. Another important indicator 

often used in wireless communication research, is known as the outage probability can 

also be obtained from the CDF curves. Outage probability is defined as the probability of 

the receiver SINR being less than a predefined threshold, so p% outage value means  

(100-p)% users are performing at or above the threshold. In this thesis both the 50
th

 

percentile (median) and 90
th

 percentile values have been used to evaluate system 

performance, with both being widely applied in the literature as wireless communication 

system performance indicators [16].  

 

Finally, the average minimum distance provides further insight into the performance 

comparison of the developed algorithms. It represents the average of the minimum distance 

between the members of a cluster. This minimum distance measure indicates how 

frequently the set of channels is reused in the spatial domain and since the interference 
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power reduces with distance, the algorithm with a highest average minimum distance 

indicates the best performance. 

 

3.3.5 System Parameters Choices 

A dedicated software simulation environment was developed, to simulate various network 

scenarios and as a flexible test-bed to quantitatively evaluate the corresponding 

performance mentioned earlier. The various network parameters and their corresponding 

values used in the MATLAB simulations are defined in Table 3.1.  

 

The values presented in the table are common for all the simulations, with some being 

varied in different experimental set ups and these will be highlighted in the respective 

discussions. All system parameters in Table 3.1 have been taken from 3GPP LTE standard 

definitions and are also proposed by the industry consortium called the femto forum 

(currently known as the small cell forum) [89].  

 

The SINR threshold varies widely depending on the service and other issues. For a voice 

call, a very low SINR is acceptable while conversely for video transmission a relatively 

high SINR [90] is required. So, when an investigation does not consider a particular 

application, the SINR threshold varies widely from work to work [
91

]. 3GPP LTE release 8 

[92] applies adaptive modulation and coding scheme with minimum value of SINR is less 

than –6.5dB where QPSK with 1/8 coding rate is applied. Although links can be 

maintained, the effective bit rate is very poor at this level. The same QPSK is applied with 

different coding scheme for SINR values <1.5dB, though some research considers 0dB as 

the threshold to maintain QoS in LTE systems [93] [94]. For this reason, a 0dB SINR 

threshold has been adopted in this thesis.  
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Table 3.1: Network parameters and their corresponding values used in all the simulations 

System Parameter  Value or Range 

Femtocell radius 10m in general, except Chapter 6 

Macrocell radius 500m 

Number of femtocells (FAP)  Variable (up to 200) 

Maximum number of MS per FAP 4 

MS noise figure 8 dB 

Internal wall penetration loss 5 dB except Chapter 3 

External wall penetration loss 10 dB except Chapter 3 

Shadowing 6 dB 

Macrocell transmission power 46 dBm (max) 

Femtocell transmission power 0 dBm, 10 dBm 

MS minimum QoS requirement >0 dB 

Total bandwidth 10 MHz 

Carrier frequency 2 GHz 

Channel width 180 kHz 

Total number of channels 50 

Number of channels available in experimental 

area for femto-tier 

<21  

 

One key advantage of using standard values for the system parameters is that the results 

can be validated with the performance boundary of the LTE systems. Despite this, it is 

very difficult to compare results of any other system as interference greatly varies with 

different parameters, i.e., deployment density, user numbers, channel availability, the 

number of interferers and transmission power. However, received power for a single 

transmitter and single receiver considering the path loss value only can be used as the 
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upper performance bound. Another way of verifying simulator performance is to use fixed 

values for different fading components at a known distance in the absence of any 

interference and compare the calculated value with the results from the simulator.  

 

Although this method will validate the simulator accuracy for single-user cases, validating 

results in multi-user cases in the presence of interference remains a complex issue. Since 

heterogeneous network research widely vary in scenario description, comparison with 

other research work or algorithms is very difficult. Therefore, in most work a baseline 

performance for a given scenario is usually used to compare the performance of the 

developed system. However, a combination of analytical evaluation (where a tractable 

solution is available) and simulated system for a preset values can be developed to validate 

the system.  

 

Call Admission Control  

The overarching objective was to make the system interference aware and thus focus on 

physical layer performance evaluation and discussion on the basis of SINR and 

corresponding SE measures. The goal was to understand how well it will it perform in a 

dual-tier arrangement with unplanned deployment scenarios. Call admission control 

(CAC) is a vast field of research [95] [96], so a detailed discussion about its impact on the 

system performance is beyond the scope of the thesis. When the SINR performance of a 

receiver falls below the required SINR threshold, a simple CAC has been employed 

whereby both the designed algorithms (HRMA and GVCF in Chapters 4, 5 and 6) and their 

respective performance comparators (BLA and NCS) hop to a different channel for the 

next transmission, subject to availability. However, it does not drop the call if no alternate 

channel is available and may continue to make a small contribution to the interference of 
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the co-channel MSs. An intelligent and application specific CAC would improve the 

performance of the system. 

 

3.4 Simulation Results and Analysis 

To analyse the performance of HRMA, a number of different FAP deployment densities 

and scenarios were considered. One of the major differences between macro BS and FAP 

is that the former is located outdoor while the latter is usually indoors. The main 

motivation behind the development of femtocells is the poor quality of the radio signal 

received inside a building or house transmitted from the outdoor macro BS. This happens 

mainly due to losses which occur when a signal penetrates the wall.  

 

The wall penetration losses vary depending upon the thickness and material of the wall, 

angle of arrival of the signal and number of walls inside the house. This means for example 

that, performance of the macro MS will be poorer in places like Japan where most of the 

walls are wooden and very thin and hence unable to prevent signals from interfering FAP 

or macro BS. Because of this significance, the impact of wall penetration losses needs to 

be analysed in detail.  

 

To analyse the impact of wall penetration loss, firstly, a simulation was undertaken for 

various number of FAPs with a fixed and varying wall penetration loss and the 

corresponding performance evaluated. For simplicity it is assumed that there is no 

cooperation either between the femtocells and macrocells or among the femtocells as well. 

Each FAP decides its channel independently and in a distributed fashion. In order to 

capture the impact on interference, it is further assumed that all the MS have LOS 

connections to their FAP, i.e. there is no internal wall penetration loss. 
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Figure 3.9: Impact of wall penetration loss on SINR performance at different femtocell deployment density 

(LWP=5 dB) 

 

 

Figure 3.10: Impact of wall penetration loss on SINR performance at different femtocell deployment density 

(LWP=15 dB) 

 

Figure 3.9 and Figure 3.10 show the impact on various FAP deployment densities (50, 100, 

150 and 200) when the wall penetration loss, WPL  is 5 and 15 dB respectively. It is clear 

from the figures that when wall penetration loss is low, the users experience higher 

interference. With increasing FAP density, interference also increases and the performance 

of the system may become unsatisfactory at higher FAP densities. However, when the WPL  
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is higher, i.e. 15 dB, there is little impact of increasing FAP density. This is due to better 

isolation from the interfering signals. Thus wall penetration loss needs to be considered 

carefully in deploying any two-tier networks, which is the focus of this thesis. 

 

Now for a fixed FAP deployment, the impact of varying wall penetration losses (5, 10 and 

15 dB) is shown in Figure 3.11. It is readily apparent for WPL = 15 dB, that the 

corresponding interference is lower, leading to a higher SINR, because of the higher 

absorption by the wall compared to both 10 dB and 5 dB losses.  

 

 

Figure 3.11: Impact of various wall penetration losses on SINR performance of femtocells. 

 

After evaluating the impact of wall penetration loss on the system throughput, a modified 

wall penetration loss model was designed and implemented in the simulations to better 

reflect real-world situations. In most simulations, fixed wall penetration losses 
WPL  of 5 

dB, 10 dB or 15 dB are assumed for evaluation purposes. However, it has been shown in 

[97], that wall penetration losses can vary anywhere between 3 dB and 16 dB, so in the 

simulations, a randomly generated WPL  value between 3 dB and 16dB  has been used for 

each house or FAP to compute the interference power, which was fixed for each simulation 
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run. To calculate the received signal power, a thin indoor wall was assumed and values for 

each MS generated in the 0 to 6 dB range.  

 

 

Figure 3.12: SINR performance of different algorithms at various FAP deployment densities. 

 

To quantitatively analyse the HRMA performance, it was compared with: i) a base-line 

algorithm (BLA), representing the condition where the femto-tier operates independently 

of the macro-tier and there is no inter-tier information sharing and ii) a centralized resource 

management (CRM) scheme, which makes all decisions at the RNC, and where full cross-

tier information is available so all spectrum decisions can be made by considering 

interference from all co-channel operators, regardless of their location in the macrocell. 

Each layer has access to the full spectrum. The number of femtocells was varied between 

20 and 200, and HRMA, CRM and BLA applied to each test deployment scenario. The 

network environment parameters used in all simulations are detailed in Table 3.1.  

 

Figure 3.12 plots the respective SINR performance of each algorithm for three different 

deployment densities of 20, 100 and 200 FAP in one macrocell. The results reveal that for 

each deployment density, HRMA outperformed BLA and had a very similar SINR 
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performance to the CRM scheme, which consistently performed best due to all the inter-

tier information being continually available. Since there is no cross-tier information 

sharing in BLA, interference is comparatively high because of the simultaneous allocation 

of the same channel to both macro and femto tiers. In addition, there is interference from 

neighbouring femtocells operating in the same channel at the same time instant. In 

contrast, as HRMA centrally exploits dynamic FFR to assign mutually exclusive spectrum 

for inter-tier users, no such macro-tier interference affects transmissions in the femto-tier.  

 

Table 3.2: Number of overlapping instances and averaged normalised allocation disputes as a ratio of the total 

number of allocations, for different FAP deployment densities. 

FAP deployed Number of overlapping cases Average normalized disputes 

20 2 0.01 

100 13 0.04 

200 38 0.11 

 

The main disadvantage of CRM is that it communicates with the central entity (RNC) 

during every decision leading to significant redundant data transmissions which consume 

valuable bandwidth. This problem is compounded at higher deployment densities, with the 

corresponding computational cost increasing geometrically. HRMA in contrast, achieves 

an analogous SINR performance to CRM while incurring a much lower computational 

overhead.  

 

Table 3.2 displays the occurrences of FAP overlapping together with the average 

normalised dispute ratio (the number of disputes divided by the total number of spectrum 

allocations and number of iterations) for various FAP deployment densities. This reflects 

those instances where RNC communication is necessary. For 20, 100 and 200 FAPs, 

HRMA required only 1%, 4% and 11% respectively of the time in RNC spectrum decision 

communications, compared with 100% for CRM. As anticipated for larger FAP numbers, 
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intra-tier interference increased and the corresponding SINR dropped in all three 

algorithms, though HRMA still maintains a superior performance compared to BLA. This 

improvement is directly related to the DMB mechanism described in Section 3.2.3, which 

avoided severe femto-tier interference in overlapping FAPs by referring any dispute to the 

RNC.  

 

 

Figure 3.13: Throughput curves (bits/s/Hz) for various FAP deployment densities for different algorithms. 

 

The results in Table 3.2 also confirm that the dispute level increases with deployment 

density, and since BLA does not have a DMB mechanism to manage such situations, its 

performance deteriorates markedly as shown in Figure 3.12. Conversely for CRM, all the 

FAP allocation information is available to the RNC, so it can apportion spectrum in such a 

way that the total interference is always a minimum, giving it better performance than the 

other algorithms. Interestingly an analogous trend is observed in the corresponding 

throughput curves for HRMA, BLA and CRM in Figure 3.13.  

 

As evident from Figure 3.12, for the 200 FAP deployments the severe interference in BLA 

means almost 50% users fail to achieve minimum SINR requirement of 0 dB, which 
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worsens further to 70% when the minimum SINR of 5 dB is specified. In contrast, since 

the HRMA paradigm has been designed to attenuate femto-tier interference, it respectively 

exhibits significantly lower outage probabilities of 12% and 38% respectively for the 0 dB 

and 5 dB SINR requirements, which is again very similar to the CRM performance. 

 

From Figure 3.13, it can be seen that HRMA clearly provides an enhanced performance in 

terms of achieved throughput compared to BLA. Even for 200 FAP deployments, where 

the interference level is at its highest, 50% of the time users achieved a bit-rate of at least 3 

bits/Hz per transmission frame or greater for HRMA compared with only 20% for BLA. 

Commensurate improvements in HRMA throughout are also evident in the other FAP 

deployment density curves.  

 

As evidenced earlier, HRMA outperforms BLA at all the FAP deployment scenarios 

analysed. Despite this superior performance, it can be observed from both Figure 3.12 and 

Figure 3.13 that with increasing femtocell density, the performance of all systems 

gradually reduces. The average received SINR falls from 25 dB when 20 FAP are 

deployed to only 7 dB when 200 FAP are deployed. Since the macrocell MS deployment 

density remains the constant in all these various scenarios, the corresponding cross-tier 

interference for each scenario will approximately be the same. Furthermore, since the 

signal power is constant, the increasing trend of aggregated interference can be directly 

related to the contribution of the co-tier interference component. This interference 

increases with the number of co-channel FAP deployed, while the available resources 

remain fixed.  

 

In urban environments, where much higher FAP deployments are predicted than have been 

considered in this analysis, there is clearly the very serious risk of performance degradation 

falling below a satisfactory level unless appropriate measures are taken to combat the co-
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tier interference in high density deployments. This means further investigation into co-tier 

interference minimisation is a paramount design objective for successful FAP network 

deployment and resource management. 

 

The analysis and simulation in this chapter has focused upon a low-to-moderate density 

femtocell network. While HRMA in combination with dynamic FFR removes cross-tier 

interference, at increasing FAP densities, co-tier interference starts to dominate and the 

performance of the system begins to degrade despite being at a satisfactory level. In 

densely populated urban areas, much higher deployment is anticipated and special attention 

must therefore be given to managing co-tier interference. The next chapter will investigate 

co-tier interference minimisation techniques for high density FAP deployments, where 

HRMA-based dynamic FFR has been retained as the overarching policy for cross-tier 

resource sharing.  

 

3.5 Conclusion  

This chapter has presented a new hybrid resource management algorithm (HRMA) for 

femtocell networks. Various alternatives of FFR techniques have been discussed in detail 

along with the opportunities of exploiting them for cross-tier spectrum sharing. A dynamic 

FFR scheme for joint macro-femtocell deployment has then been investigated. HRMA 

exploits cross-tier information to concomitantly eliminate macro-femto interference and 

significantly reduce femto-tier interference, which can be particularly severe at high FAP 

deployment densities. Superior performance in regard to outage probability and system 

throughput has also been corroborated. 
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4 Virtual Clustering of Femtocells for Co-Tier 

Interference Mitigation 

 

4.1 Introduction 

Femtocell Networks promise multi-fold increments in system throughput by making the 

best possible reuse of the available spectrum. They also improve the QoS in indoor 

environments where radio coverage is typically poor. Since the femtocell network is 

overlaid on a macrocell network, interference from both macrocell BS to femtocell users, 

and FAP to nearby macrocell users causes significant performance degradation unless it is 

managed properly. From the results analysis in the previous chapter, it was clear that FFR 

and its variants, including dynamic FFR, can be successfully applied to mitigate cross-tier 

interference.  

 

Despite this improvement however, at increasing femtocell densities, both the SINR and 

throughput performance of the femtocell networks progressively decreases. While the 

HRMA performance may be deemed satisfactory, the results indicate that at higher FAP 

densities, the femto-to-femtocell interference, i.e. the co-tier interference component 

becomes dominant, so that special attention is required for high density deployment 

scenarios such as in urban areas [98], [99]. In this chapter, the challenge of higher density 

femtocell deployments will be addressed, with the underlying cross-tier interference 

management architecture remaining the same as presented in Chapter 3. The focus will 

thus shift from cross to co-tier interference management strategies.  
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The case of dense femtocell deployments and their associated challenges have previously 

been addressed in different work [100] [101]. One interesting strategy, known as graph 

colouring, also addressed the issue of interference mitigation and resource allocation in 

dense femtocell deployments [102]. Although the performance of these algorithms is 

promising, the graph needs to be constructed at every change in the area. This is 

computationally intensive, given the dynamic and rapidly changing nature of the radio 

environment.  

 

In [103], a cognitive radio resource management algorithm is presented for cross-tier 

interference mitigation. It requires regular sensing of the macrocell spectrum usage in 

order to find a spectrum hole to use it opportunistically. Also, the efficiency of the scheme 

largely depends on the load of the macro tier. Moreover, the co-tier interference problem is 

mostly ignored. The energy and computation required for sensing cross tier interference 

can easily be saved by cross-tier spectrum usage information sharing techniques such as 

FFR.  

 

In this chapter, the novel concept of a new resource distribution architecture based on 

virtual clustering is introduced, with a dedicated virtual cluster controller (VCC) operating 

between the RNC and the FAPs, being used to manage particular resource functionalities 

for a specific grouping of FAPs which are logically assigned to it. A new VCF algorithm 

exploits FAP location information to create virtual (logical) clusters of FAPs. VCF 

maximizes the minimum distance between the FAPs of a cluster, thereby minimising the 

overall interference.  

 

The rationale behind the femtocell clustering is that since interference decreases according 

to power law with distance, by maximising the inter-FAP distance operating on the same 
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channel, will therefore guarantee minimum interference. The concept of virtual clustering 

[19], extends this idea by embedding a dedicated virtual cluster controller (VCC) to 

operate between the RNC and the FAPs, to manage particular resource functionalities for a 

specific FAP grouping which have been logically assigned to it. In the following sections, 

the virtual cluster architecture and algorithm will be discussed in detail before presenting a 

rigorous analysis of the simulation results. Finally, the chapter concludes by discussing the 

benefits and limitations of VCF and explores strategies for improving the virtual clustering 

concept. 

 

4.2 Virtual Clustering Architecture and Algorithm 

Clustering has been widely investigated in both the wireless sensor networks [104] [105] 

and ad hoc network [106] [107] [108] domains, with the normal approach being to select a 

clusterhead from a group of nodes according to some criterion, so neighbouring nodes are 

assigned membership of a cluster based upon for instance, being physically co-located. In 

contrast to physical clustering, the creation of virtual (logical) clusters using an 

interference-based Euclidean distance measure is proposed in this thesis.  

 

The terminology virtual cluster has been adopted to reflect that cluster members are 

virtually linked together rather than as in the traditional ad hoc cluster sense, where 

members are located within some defined distance of the clusterhead. Members of a virtual 

cluster may not necessarily be physically co-located, but instead are grouped together to 

exploit the same set of channels according to a minimum interference generation criterion. 

 

Virtual clusters are formed according to a minimax criterion by combining FAPs operating 

on the same set of channels, while concomitantly maximising the closest FAP distance. 

The rationale for the VCF algorithm is that as power decays according to power law with 
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the distance, the FAP furthest away from a particular FAP will correspondingly generate 

the lowest interference. Hence, by maximising the distance of the closest FAP operating on 

the same channels the interference can be minimised. Figure 4.1 shows the block diagram 

of the logical architecture of the virtual clustering femtocell network. Each VCC has 

specific resource allocation functionality. It assigns the channel set to cluster member 

FAPs and manages disputes between the MSs connected to different FAP on behalf of its 

FAP membership. If a dispute occurs with either a macrocell user or a MS connected to a 

FAP belonging to another VCC, which is very unlikely, then it is forwarded to the RNC for 

arbitration. The RNC cooperates with the MBS to create a list of channels available for 

allocation in a certain area under the dynamic FFR framework described in [18].  

 

 

Figure 4.1: Logical diagram showing a virtual clustered femtocell network system 

 

Unlike distributed resource allocation techniques where each FAP independently chooses a 

channel, the virtual clustering architecture devolves this task to the VCC which maintains 

an updated list of available channels. Furthermore, distinct from centralised resource 

management where every decision, including channel assignment, is performed by the 

RNC, each VCC takes responsibility for channel set allocation and dispute management on 
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behalf its cluster members. This means the virtual clustering system inherently provides 

hybrid resource management, combining the best features of the aforementioned resource 

allocation models. It also saves a significant number of redundant data transfers between 

each FAP and the RNC.  

 

Depending upon the maximum number of MS permitted to connect to a FAP, the RNC 

creates VM  number of individual VCC which are each assigned a corresponding set of 

channels, in accordance with the following relationship:  
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where fC is the number of available channels in the considered area under the dynamic 

FFR-based distribution framework between femtocells, while fN is the number of MS 

connected to the fth FAP where f=1,2, 3…..n. with  n being the total number of FAP under 

consideration. 

 

When a FAP is switched on it goes through an initialisation phase. It firstly connects to the 

RNC via the backhaul network and since the FAP is connected by a wired network, its 

location is approximately known by the RNC. In addition, femtocell network topology can 

be designed to a certain level of accuracy by employing RF measurements [109], so 

position information coupled with RF measurements from the MSs connected to the macro 

BS and FAPs can be exploited to obtain an accurate FAP location. The VCF algorithm 

then assigns each FAP to a designated VCC, which provides access to a set of channels.  

 

The VCF also creates and maintains a reserve channels list RC  derived from the reporting 

of unused channels by the FAPs. This list is periodically updated via the RNC and also 
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includes unused macrocell BS channels. These reserve channels are allocated to FAPs 

either in the case of disputes or to members of the reserve set RS , which include those 

FAPs that failed to uphold the safety distance thD . This is the distance all FAPs must 

sustain from their co-channel FAP to ensure effective femtocell operation, and is 

determined by setting the maximum level of admissible interference and then calculating 

the corresponding minimum distance requirement to preserve the SINR level. An estimate 

of
thD , can be obtained from the PL model defined by the relations (3.2) and (3.3) in 

Chapter 3. The value of
thD  depends on the transmission power and amount of interference 

that can be tolerated by a FAP as shown in Figure 4.2. 

 

 

Figure 4.2: Safety distance thD  measurements for FAP deployments at different transmission powers 

 

Algorithm 1 provides the pseudo code representation of the VCF algorithm, which 

comprises three steps. STEP I initialises all key parameters including; the number of FAPs 

and MSs connected to it; the safety distance thD  and the number of available channels for 

the area under consideration. It also creates the reserve set RS  and determines both the 
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VCC number VM  from (4.1) and the inter-FAP distance matrix for N  FAPs which is given 

by:  
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where ijd  is the Euclidian distance between 
iFAP  and jFAP  and jiij dd = . Note, all 

diagonal elements of D  are zero, i.e., Niford ii ,,2,10 L==  and are excluded from the 

minimum distance calculations. ijd  is calculated according to the following relationship 

 

( ) ( )22

jFAPiFAPjFAPiFAPij yyxxd −+−=  (4.3) 

where x and y are the Cartesian co-ordinates for each of the N FAPs. 

 

Following initialisation, STEP II is firstly preceded by an allocation loop, which identifies 

the FAP pair from D  in (4.2) with the minimum Euclidean distance. STEP II checks 

whether this FAP pair have already been allocated. For an unallocated FAP, it ascertains 

whether there are any empty VCC and if so, the FAP is duly allocated to an empty VCC. 

Otherwise, it moves to STEP III. If both FAPs have already been assigned, then the 

distance pair is excluded from D  and both FAPs are expunged from the list of unallocated 

FAP. The next closest pair of FAPs from D  is then sought and STEP II repeated.  

 

In STEP III, the VCF algorithm selects the distances from D  of the candidate FAP to all 

FAPs already assigned to the VCCs, and the minimum distance to each VCC is found. The 

FAP is assigned to the VCC with ))(max( minmin ndd h = subject to th

h Dd ≥min. , where n=1, 

2,…MV, and )(min nd  is the minimum distance of the candidate FAP to the members of the 
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nth VCC. If the FAP cannot uphold thD , it is assigned to the reserve set RS  instead, whose 

members are allocated reserved channels. D  is then updated, with the FAP pair assigned 

during this iteration being excluded.  This procedure is repeated until all FAPs have been 

allocated.  
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If a new FAP is now switched on within the area, only STEP III needs to be executed and 

the FAP is assigned to the VCC with the highest minimum distance to ensure it both 

receives and generates the minimum interference compared to the other clusters. It also 

means the VCF algorithm is very computationally efficient once the initialisation and FAP 

allocation STEPS I and II have been completed, because the only extra overhead involves 

FAP co-ordinate calculations. 

 

In exceptional circumstances where an MS fails to meet the minimum SINR requirement 

due to severe interference, the affected FAP attempts to switch to a new channel with a 

higher SINR. If it is still unable to uphold the minimum SINR threshold, the FAP then 

forwards the MS to the VCC with a severe interferer ID tag, which then allots a reserve 

channel, provided one is available.  

 

4.3 System Model and Simulation Environment 

The system model and its associated parameters described in Chapter 3, is also applied to 

the new virtual clustering architecture, with some minor modifications. The varying wall 

penetration loss model is replaced by fixed wall penetration loss of 10 dB for external wall 

and 5 dB for internal walls. Although it was advantageous to have a realistic measure of 

the total loss when cross and co-tier interference was evaluated, it made it difficult to 

compare the impact of the interference of one scenario to another. Also the transmit power 

of the FAP is increased to 10 dBm, the maximum allowed limit in the various standards. 

The advantage of doing this is that by increasing all the FAP power simultaneously, better 

protection against macrocell interference is ensured, while keeping the co-tier interference 

the same, since increased FAP interference is cancelled out by higher transmission powers.  
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In Chapter 3, the whole area under a macrocell was evaluated. This was necessary as both 

cross-tier and co-tier interference components were being considered. However, in this 

chapter since the focus has now shifted to only co-tier interference, instead only the area 

belonging to a femtocell gateway is chosen. To evaluate the performance of the VCF 

algorithm, a 200 m X 200 m area of one sector in a hexagonal macrocell was considered, 

for three specific FAP node deployments of 50, 100 and 200. It was assumed 12 channels 

were available for femtocell downlink operation, so from (4.1) the requisite number of VCC 

was 3. As a performance comparator for VCF, a distributed resource allocation framework 

was implemented here each FAP independently chose its operating spectrum. This scheme 

will be referred to as the Non-Clustering System (NCS) in the ensuing discussion.  

 

 

Figure 4.3: Approximated received interference power from the macro BS at various distances. 

 

Before analysing the performance of the VCF algorithm in detail, some preliminary 

measurements were taken. Figure 4.3 shows the femtocell interference generated by the 

downlink transmission of a macrocell BS at two different power levels. Depending on the 

admissible macro-to-femto interference, a free-zone distance threshold th

mD  can be 
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obtained from the curves. For values greater than this threshold, FAP interference will be 

negligible so a FAP can freely operate on any channel used by the macrocell system. The 

higher the permitted interference, the smaller the 
mD  and vice versa, so if for example the 

interference limit is -110 dBm, then th

mD  will be approximately 300 m for a transmission 

power of 46 dBm. Note that this value varies with the macrocell BS transmission power, 

with a lower power giving a commensurately smaller th

mD . 

 

4.4 Results Discussion 

Analogously, to minimise the interference between a FAP and the MS connected to other 

FAPs, the safety distance, thD  is applied. This is highlighted on Figure 4.2, which shows 

the MS interference at various distances from an interfering FAP at three different 

transmission power levels. The results reveal the safety distance threshold varies with 

tolerable interference level, so if the tolerable interference requirements are for example:  

-110 dBm and -120 dBm respectively, then the corresponding thD  values are 16 m and 36 

m for a transmission power of 10 dBm. This means that lowering 
thD  enables more FAP to 

be successfully deployed within the same area.  

 

The three plots in Figure 4.4 represent simulation snapshots which illustrates the cluster 

formations for 40 FAPs both before (Figure 4(a)) and after application of the new VCF 

algorithm (Figure 4(b)), together with the NCS in Figure 4(c) within a 100 m-square area. 

It can be seen that in the case of NCS, many neighbouring FAPs operate on the same 

portion of spectrum which will cause severe interference while for VCF, neighbouring 

FAPs will always on a different spectrum chunk. This highlights why it is essential to 

employ appropriate post deployment network planning techniques in order to avoid severe 

interference. 
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Figure 4.4: FAP deployment scenarios: (a) before cluster formation, (b) after clustering (applying VCF), and (c) 

the non-clustered system (NCS) where each colour represents channels of a VCC. (Red circles represent FAPs 

operating on reserve channel sets.) 

 

The performance of both VCF and NCS were evaluated in terms of three key system 

metrics; the safety distance
thD , the received SINR and the spectral efficiency. These will 

now be individually analysed. 

 

 

Figure 4.5: Performance comparison between clustered and non-clustered network for various FAP deployments 
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Figure 4.5 displays the average distance between a FAP and its nearest interfering FAP for 

both VCF and NCS at thD =20 m. The clustering system consistently maintained the 

minimum safety distance to give significantly improved performance over NCS at different 

FAP deployment densities. Table 4.1 contrasts the corresponding number of FAP failures 

in upholding
thD , with the VCF model clearly affording lower failure rates. For example, 

when clustering is employed for 50 FAPs, no spectrum reuse was required for any 

femtocell within the safety distance threshold, whereas 18% of FAPs failed to maintain this 

threshold for the traditional NCS. This trend is even more palpable at higher femtocell 

densities, where for 200 FAPs around 46% of FAP failed to preserve the threshold 

compared with just 16 % for VCF.  

 

Table 4.1: Comparison of the average number of FAP failing to maintain the safety distance 

FAP Deployed Clustered System Non Clustered System 

50 0% 18% 

100 04% 31% 

200 16% 46% 

 

Figure 4.6 plots the SINR performance for both the VCF and NCS models at various FAP 

deployments. While predictably the received SINR is attenuated at higher FAP densities, 

the VCF model still outperformed its non-clustering counterpart in providing superior 

SINR. For instance, with 50 FAPs, only 40% of FAP transmissions achieved a received 

SINR greater than 15 dB for NCS compared with over 70% for VCF, with similar 

judgements applicable at the other FAP densities.  

 

It is also evident from the Figure 4.6 that when 200 FAP is deployed, average received 

SINR is approximately 13 dB and 18 dB for NCS and VCF models respectively. And for a 

100 FAP deployment, the average received SINR is approximately 16 and 21dB for NCS 
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and VCF respectively. So, in both cases, VCF outperforms the NCS by an approximate 5 

dB margin. Similar judgements can be observed for the 90th percentile values, with in this 

case VCF outperforming NCS by a 6 to 7dB margin as evidenced in Figure 4.6. 

 

 

Figure 4.6: SINR performance comparison for clustered and non-clustered system at different deployment 

densities. 

 

Finally, the spectral efficiency of the new VCF algorithm was evaluated in terms of the 

throughput achieved with the corresponding comparison shown in Figure 4.7. For 200 

FAP, the 50th percentile throughput value, i.e. the average bit rates were 4.25 and 3.7 

bps/Hz respectively for VCF and NCS, with similar performance improvements readily 

apparent for the other deployment scenarios. For 90
th

 percentile performance, in case of the 

200 FAP, NCS and VCF achieved 2.5 bps/Hz and 3.5 bps/Hz respectively which 

corresponds to an approximate 1bps/Hz improvement. Interestingly, Figure 4.6 and Figure 

4.7 reveal that for a FAP density of 200, the new VCF algorithm afforded a superior 

performance to the corresponding NCS solution for 100 FAP from both a spectral 

efficiency and SINR perspective.  
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Wireless channels are inherently dynamic and the traffic patterns of the system exhibit 

considerable variability over time. So in order to maximise the performance efficiency, 

dynamic adaptation to instantaneous changes in the environment is necessary. Though the 

new VCF architecture in the current design has exhibited consistent and significant 

performance gains over the NCS implementation, the architecture is inflexible in that the 

number of clusters is fixed. This means it is not able to readily adapt to any changes in the 

radio environment which cannot be predicted.  

 

 

Figure 4.7: Spectral Efficiency performance comparison for clustered and non-clustered system at different FAP 

deployment densities. 

 

Although, the macro-tier updates the femto-tier with changes in channel usage, any free 

channel reported is added to the reserve set which is used to manage disputes. In the 

current design the system is unable to respond to radio environment changes and certain 

QoS requirements. VCF is also unable to predict the requisite radio resources to maintain a 

defined performance target and this may lead to either lower performance or wastage of 

channels in the case of higher availability of resources. A more generalised framework is 
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therefore necessary which can adapt to the changes in the network and resources. It is also 

necessary to design a system capable of intelligently deciding the most appropriate number 

of clusters and to demand either more resources from the RNC or to liberate channels in 

order to maintain a prescribed QoS. 

 

The analysis and simulations in this chapter have concentrated on logical cluster formation 

based upon the available channels and FAP distribution. Despite notable performance 

gains, the VCF algorithm is unable to adapt to changes in the traffic and channel 

availability. In the next chapter, dynamic adaption to changes in the radio network 

environment and resource availability will be analysed in detail together with their 

corresponding impact. A rigorous analysis will be undertaken to develop a framework for 

selecting the best possible cluster number and the resource requirement for maintaining 

particular SINR and throughput settings.  

 

4.5 Conclusion 

This chapter has presented a new virtual clustering framework for femtocell networks 

based upon a minimax interference solution which maximises the minimum distance of the 

FAPs operating on the same channel. The virtual cluster formation (VCF) algorithm shares 

certain resource management functionalities with both the RNC and individual FAPs to not 

only reduce redundant data transfers but maintain a flexible and simple implementation 

with minimal computational overheads. Simulations have corroborated the VCF algorithm 

provides significant performance improvements over distributed non-clustered systems in 

terms of interference reduction, increased spectral efficiency and higher received SINR.  
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5 A Generalized Virtual Cluster Formation: An Adaptive 

Flexible Architecture for Co-tier Interference Mitigation 

 

5.1 Introduction 

The key to efficient system performance in jointly deployed co-located macro femto 

networks is to dynamically adapt to the changes in the radio environment and to the 

changes in either traffic pattern or resource availability. The initial idea of logical 

clustering was introduced in the previous chapter, with a virtual cluster formation (VCF) 

algorithm being applied to a rigid clustering framework, and FAP location information 

used to create the respective virtual (logical) FAP clusters. Due to this inflexibility and 

inability to adapt to the changes, network management decisions taken by the VCF may 

not necessarily be optimal if there are changes in the radio environment, traffic patterns or 

resources. 

 

The traffic load and interference scenario of any space can vary greatly over time. For 

example, during the daytime, the number of active users in a residential area will tend to be 

much lower compared to the load during evening as people are usually out of their homes. 

In contrast, traffic loads at offices, shopping malls and in other public places will generally 

be much higher during the day time and very low during other times. Some specific places 

such as airports may have high demand with some variations all the time. To accommodate 

all these diverse profiles, the network architecture and management algorithms must be 
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both flexible and intelligent. Also it is important to properly understand the estimated 

resource requirement of these various scenarios.  

 

In this chapter, a new generalized virtual cluster formation (GVCF) paradigm is 

introduced which offers much greater flexibility as it can automatically adapt to changes in 

both the available resources and radio environment, seamlessly handling situations such as 

when users either leave or join the network. To achieve this efficiency, several scenarios 

have been firstly investigated which helps to constitute a performance map or look-up table 

(LUT). This information is later exploited for decision making and adapting to the changes 

in radio environment and resource availability. Furthermore, based on this information, 

negotiation is carried out with the central controller when more resources are required to 

ensure the requisite QoS is upheld.  

 

 

Figure 5.1: Logical diagram of the generalized virtual clustering femtocell (GVCF) network system 

 

The fixed cluster structure described in the Chapter 4 is relaxed in the GVCF model by 

regular monitoring and performance evaluation. The model has the ability to adapt the 
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cluster numbers and their respective FAP members in accordance with fluctuations in both 

the available resources and a prescribed set of network design constraints, including the 

minimum throughput requirement and maximum transmit power. The corresponding 

results analysis corroborates the enhanced interference management performance and 

adaptive capability of the new GVCF model in various network scenarios, particularly in 

high density deployments. 

 

In the following sections, the GVCF paradigm and the flowchart of the algorithm is 

discussed briefly, as many of the model’s components have already been presented in 

Chapter 4. An extensive simulation is performed, with a comprehensive results analysis. 

Finally, the chapter concludes by summarising the contribution. 

 

5.2 GVCF Paradigm 

As mentioned in Chapter 4, the original VCF algorithm maximised the minimum distance 

between the FAPs of any cluster, thereby minimising the overall interference. The logical 

diagram of the GVCF architecture is shown in Figure 5.1. While there is no fundamental 

difference with the architecture presented for the VCF model in Figure 4.1, some of the 

key functionality such as cluster formation and membership delegation has been 

repositioned by moving them from the RNC to the FGW. FAP registration is also now 

performed by the RNC, via the FGW which is also supported by the emerging multi-tier 

cellular standards such as LTE Advanced [110].  

 

The cluster member distribution technique remains the same as described in Section 4.2 in 

Chapter 4. This means that after initialization of the number of VCC and calculation of 

inter-FAP distance matrix D , a temporary matrix, tempD  is created by copying D . The 
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reason for using tempD  is to retain D  as a reference and then execute the various 

processing steps of the clustering algorithm on tempD .   

 

 

Figure 5.2: Flowchart for the generalised virtual clustering femtocell (GVCF) algorithm 

 

Then the closest FAP pair is taken from tempD and allocated to an empty VCC in step I. The 

process continues until every VCC has at least one member. Then the algorithm enters step 

II and for any further FAP allocation, the VCF algorithm needs to consider the distance of 

the candidate FAP to the members of each clusters which is taken from the distance matrix 

D  (4.2). From these inter-FAP distances, the nearest distance of the candidate FAP to the 

member of each VCC is selected and the FAP is assigned to the VCC which has the 
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highest minimum distance mmd  in the nearest distance set calculated earlier, subject to the 

safety distance thD  being maintained. If the FAP cannot uphold thD , it is assigned to the 

reserve set RS  instead, whose members are allocated reserved channels. tempD  is then 

updated, with the FAP pair assigned during this iteration being excluded, and the 

procedure repeated until all FAPs have been allocated. The adaptation phase then starts 

which is the key enhancement of the algorithm developed from Chapter 4. 

 

5.2.1 Adaptation Phase 

In this phase, the GVCF model continually monitors and evaluates the performance of the 

current FAP clustering arrangement as highlighted in the box in Figure 5.2. For a given 

constraint such as, an application specific data-rate requirement, if the existing cluster 

arrangement cannot uphold the requisite performance, then the RNC is requested to 

allocate more channels in order to increase the number of clusters. Upon receiving these, 

the iterative virtual clustering process is repeated. Also, if the performance of the system is 

better than the requisite level, it can reduce the cluster number at which the performance 

remains above the required QoS and thereby either liberate or report back unnecessary 

channels to either the RNC or macrocell BS.  

 

This adaptation mechanism importantly identifies radio environment changes such as a MS 

or FAP either joining or leaving the femtocell network, with the clustering algorithm 

adjusting accordingly the cluster number and reassigns FAPs to other VCCs to either 

improve or sustain performance. It also adjusts its clustering arrangement according the 

changes in resource sharing reported or updated by the macro-tier.  

 

A look up table (LUT) can be formed (exact details of the processes will be discussed in 

the simulation results in Section 5.4) based on the simulated performance of different 
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cluster number and FAP deployment density. This can be exploited or interpolated to find 

the amount of resource required or required clustering arrangement in order to meet certain 

QoS constraint. This uniquely affords the GVCF paradigm flexibility in its ability to 

automatically respond to changing radio environment conditions and unforeseen network 

situations such as a surge or drop in the number of FAPs in certain space and time.  

 

The monitoring of the algorithm is done continually and the adaption process is triggered 

only when the system fails to maintain either a given QoS or when it is found that the 

required performance can be achieved with lower resources or a smaller cluster size. It also 

triggers the adaption process if a departing MS from the femto-tier changes the maximum 

number of MS connected to a FAP in the FGW under consideration. This may in turn 

permit the number of clusters to be increased. The GVCF performance cannot however, 

improve the performance in case of the unavailability of the required resources from either 

the RNC or macro-tier. In these circumstances, the GVCF model will provide the best 

possible arrangement based upon the existing resource availability.  

 

5.2.2 Computational Complexity 

From a computational complexity perspective, the new virtual clustering framework is 

very efficient as it principally involves processing FAP coordinates, so the time complexity 

increases linearly with the number of femtocells deployed. This means compared with 

alternative FAP deployment techniques such as graph colouring, GVCF has significantly 

lower overheads since in graph colouring any changes in the network or in assignment 

causes the graph for each FAP to be reconstructed. In contrast, the main virtual clustering 

task is maintaining the inter-FAP distance matrix D in (5) so when a FAP either joins or 

leaves the system, a corresponding matrix entry change occurs, i.e., a row and column is 

either added or removed from D. Thus, for N FAP, GVCF incurs O(N) complexity. 
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5.3 System Model 

To evaluate the performance of the GVCF paradigm, a 200m x 200m area of one sector in 

a hexagonal macrocell was considered, for four specific FAP node deployments of 50, 100, 

150 and 200. The number of available channels in the area was up to 20. As a performance 

comparator for VCF, a distributed resource allocation framework was implemented where 

each FAP independently chose its operating spectrum. This scheme will be referred to as 

the Non-Clustering System (NCS) in the ensuing discussion. For simplicity of comparison, 

number of channels allocated by VCF and NCS to each FAP is kept equal. The simulation 

test platform was designed and implemented in MATLAB
TM

, with all the various network 

environment parameter being given in Table 3.1.  

 

5.4 Simulation Results Analysis  

Once the parameter values have been set, the new GVCF algorithm is run under different 

deployment densities and various cluster numbers. Firstly, the system is simulated for 

worst case scenario where all the FAPs operate on the same channel set. At this point, all 

the FAPs are members of a single virtual cluster which means there is no difference 

between the clustering and NCS solution. The impact of increasing resource availablity for 

up to 20 channels will then be investigated for different FAP deployment densities. 

 

Figure 5.3 (a) and (b) presents the CDF of the received SINR and the corresponding SE 

respectively for a FAP deployment density of 50. Significant received SINR gains and 

corresponding throughput improvements have been made by the clustered system 

compared to NCS.  
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(a) (b) 

Figure 5.3: Performance comparison of GVCF and NCS system when 50 FAP deployed: (a) Received SINR (b) 

Spectral Efficiency. 

 

Equation (4.1) reveals that the number of virtual clusters increases with the number of 

channels, so the availability of more channels will increase particular channels’ reuse 

distance and correspondingly reduce the average interference experienced by its 

femtocells.  In all cases of channel availability, the clustered system outperformed the NCS 

by a margin of at least 6 to 7dB at 50
th

 percentile value (median received SINR). This 

translates to an average spectral efficiency gain of approximately 0.5 bps/Hz on average 

and up to 0.8 bps/Hz when 90
th

 percentile value is considered. 

 

  

(a) (b) 

Figure 5.4: Performance comparison of GVCF and NCS system when 200 FAP deployed: (a) Received SINR (b) 

Spectral Efficiency 

 

 



    106

In very high density deployment of 200 FAPs, a similar performance pattern is observed 

but with reduced average received SINR and corresponding SE performance as seen in 

Figure 5.4. When 200 FAP deployed, the average received SINR for 2 and 3 clusters are 

14.5 dB and 16 dB. With similar resources, the averaged received SINR drops to 8 dB and 

10.5 dB respectively. Thus in both cases GVCF outperforms NCS by around 6 dB margin. 

Similar performance results can be obtained for other FAP deployment densities, where 

SINR and SE increases with decreasing number of FAP but the clustered system provides 

markedly superior performance to the NCS system. To avoid repetition, the equivalent 

results for the other analyzed FAP densities are included in Appendix A. 

 

   

Figure 5.5: Comparison of the ratio of FAPs failed to maintain minimum distance requirement for different 

number of clusters and non clustered system with equivalent channel set. 

 

Figure 5.5 compares the ratio of FAPs which failed to maintain the safety distance 

threshold ( thD ) or both the logically clustered and non-clustered systems at various FAP 

deployment densities. The single cluster option represents the worst case scenario, where 

all FAPs operate on the same channels. In this case, when the deployment density is very 

high, i.e., 200, almost all FAPs fail to maintain the safety distance threshold thD . 
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Figure 5.6: Comparison of the average minimum distance at various FAP densities for different number of 

clusters and non clustered system with equivalent channel set. 

 

With increasing numbers of either virtual cluster controllers or equivalent numbers of 

channels, many more FAPs are able to maintain the thD  threshold. However the rate of 

improvement is substantially higher for the clustering architecture compared to the NCS. 

For example, when 200 FAP is considered, if 5 virtual clusters are available, only 10% of 

the FAPs failed to maintain safety distance compared with nearly 70% for NCS. This 

confirms a significant improvement in terms of upholding the safety distance. Conversely, 

when FAP deployment density is low, i.e., 50 FAP in the given area, very little if any 

improvement is achieved with more than two virtual clusters.  

 

Analyzing the performance from a different point of view, a distance related plot is shown 

in Figure 5.6. This plot is obtained by averaging the distance of the nearest interferer for 

each femtocell for the same scenarios given above. Again, by having more clusters, the 

average minimum distance increases at a higher rate when the FAP density is greater. In all 

cases, the virtual clustered approach consistently out-performed the NCS, though while 

these results are a good indicator of system performance, this distance measure alone is not 
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enough to decide on resource distribution. Ultimately, SINR and achieved throughput are 

the key QoS parameters which need to be evaluated in equitably assessing the GVCF 

model performance. 

 

 

Figure 5.7: Comparison of the received SINR at 90th percentile for various FAP densities with different number 

of clusters and non clustered system with equivalent channel set. 

 

 

Figure 5.8: Comparison of the 90th percentile spectral efficiency (SE) for various FAP densities with different 

number of clusters and non clustered system with equivalent channel sets. 
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Figure 5.7 and Figure 5.8 respectively show the 90
th

 percentile SINR and the 

corresponding SE performance at various FAP densities and cluster numbers or equivalent 

channel sets. It can be seen that, by clustering with FAP numbers as high as 200 can 

exhibit similar performance to that achieved by NCS with only 50 FAPs. In summary, the 

GVCF model provided a performance margin over the NCS of between 6 and 7dB. 

 

 

Figure 5.9: Comparison of the average received SINR for various FAP densities with different number of clusters 

and non clustered system with equivalent channel set. 

 

While at higher FAP densities, the performance of both GVCF and NCS models begins to 

degrade and interference increase, the clustering system is still able to maintain a 6 to 7dB 

improvement margin at all deployment densities analysed. Figure 5.9 and Figure 5.10 

reveal similar results this time for the 50
th

 percentile or average performance. The same 

conclusions can be drawn for these figures in terms of supporting the enhanced 

performance of the GVCF paradigm in minimizing femto tier interference. 

 

These figures also provide another insight which is important from the network 

management viewpoint. A LUT can be constructed for various SINR and SE values and 

the corresponding amount of resources required then estimated accordingly, for different 
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sets of constraints. The GVCF paradigm can thus facilitate specific FAP clustering designs 

for different QoS requirements. For example, if the number of FAPs in an area is more 

than 150 and the average bit rate requirement is 3.5 bps/Hz, then the RNC must allocate 8 

channels to the femtocell tier to form 2 virtual cluster controllers in order to achieve the 

required performance. However, if the same QoS requirement is to be upheld at the more 

demanding 90
th

 percentile, then the RNC must allocate at least 20 channels to the femtocell 

tier.  

 

 

Figure 5.10: Comparison of the average SE for various FAP densities with different number of VCC and NCS 

with equivalent channel set 

 

With increasing FAP density, the probability of using the same channel by neighbouring 

FAPs increases and the performance degrades as a result. In order to reduce this, a much 

higher number of channels is required in the case of higher deployment density (200 FAP) 

compared to the lower deployment density (50 FAP). This also confirms the need for 

intelligent and coordinated resource management at high density FAP deployments. 

 

Conversely, if the maximum number of channels available in the femtocell tier is 12 and 

the required average SINR=14 dB, then GVCF can serve at least 200 femtocells. However, 
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at the 90
th

 percentile, for identical QoS requirements, the system cannot serve more than 50 

FAP, while if 16 channels are available and there are 150 FAPs, then the maximum 

achievable SINR=10 dB at the 90
th

 percentile. This means the RNC has to supply more 

channels if better performance is to be achieved.  

 

This means for a given set of constraints and QoS requirements, a LUT can be formed 

from these performance figures which can be used by the FGW to communicate with the 

RNC in order to demand the necessary resources for the femto tier to achieve certain QoS 

requirement. Subsequently based upon the received resources, the FGW can then adapt to 

the best possible number of clusters. Conversely, if the number of available channels 

required to achieve the desired performance is higher than the requirement then extra 

channels are either liberated or reported back to the RNC. 

 

From these results, it is clear that GVCF performance is significantly superior compared 

with the NCS, with the average bit rate achieved in all cases being around 4 bps/Hz, and 

even using the more conservative 90th percentile, a 3 bps/Hz improvement is achieved. 

This achieved throughput will be sufficient to satisfy the data rate requirement of most 

applications. This actually gives flexibility and opportunity to look at a drawback of the 

femtocell system. Since the coverage of the femtocell is very low, even the users with very 

low mobility can easily move out of the FAP coverage.  

 

Although GVCF performs very well in mitigating interference to a sufficient level to meet 

certain QoS requirement mentioned above in all the evaluated scenarios, one drawback is 

that it does not consider the issue of small coverage range. Due to this small coverage, 

users may move out of range and trigger a handover. The problem is particularly severe in 

the case of users with some mobility. In these scenarios, users are handed over to the MBS 
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when a closed access policy is adopted. In high density deployment, there is a potential 

danger of generating too many handovers and the so-called ping pong effect [111].  

 

To avoid handovers, users may be kept connected to the FAP for longer time which needs 

the coverage to be expanded if necessary. This can solve the problem provided the overall 

network performance remains above the required level. Therefore, a detailed investigation 

on the impact of range expansion needs to be performed to make the GVCF model more 

robust and prevent these adverse effects. The next chapter will address the issue of 

avoiding excessive handovers by making FAP coverage range more flexible. The 

corresponding impact of this range flexibility on both the SINR and throughput 

performance of the femtocell network will be analysed. 

 

5.5 Conclusion  

In this chapter the issue of interference aware resource management for femtocells has 

been discussed in detail. Both cross tier and co-tier interference issues have been addressed 

with more particular emphasis on femto-to-femto interference management in the 

downlink. A new adaptive and flexible virtual clustering architecture (GVCF) has been 

presented and extensive simulations undertaken to rigorously evaluate the performance. 

Simulation results show that the GVCF successfully mitigate cross and co-tier interference 

to achieve desired performance. It also outperforms the distributed random channel 

allocation system in all the scenarios, achieving significant performance improvements in 

terms of both SINR and throughput. The creation of LUT from a network management 

point of view has also been discussed to provide the FGW with the necessary information 

so that it can better fulfil its resource requirement to either the RNC or macro-tier.  
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6 Femtocell Range Coverage Analysis in the 

Generalised Virtual Clustering Framework  

 

 

6.1 Introduction 

The key driver for this research into femtocell networks is that they represent a promising 

solution for extending high data rate wireless services in indoor environments, where the 

comparative radio signal quality is poor in conventional cellular systems. In the previous 

chapters, it has been proven that high data rates can be achieved even in dense femtocell 

deployments (200 FAP) by applying novel hybrid resource management techniques. 

Despite the many benefits of short coverage distances such as, low power consumption, 

robust links and high data rates, there are a number of drawbacks. Amongst these, severe 

cross and co-tier interference is the most prominent, with innovative solutions to these 

issues already having been proposed in Chapters 4 and 5. However, there is another 

problem that arises due to short coverage range. Frequent handoffs may occur between the 

macrocell and femtocells even for users having low mobility. This may potentially 

generate a large amount of redundant control data for handover management. Furthermore, 

frequent handovers between the femto and macrocell (also known as the ping pong effect) 

can occur.  

 

In densely deployed areas, if high numbers of users are continually being handed over to 

the macrocell, then due to the limited resources available, users may incur a long delay to 

be scheduled for transmission. The paradox is that this will cause a significant drop in the 
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average throughput despite achieving superior SINR performance. An added potential 

danger is this may trigger a sudden load imbalance between the cells.  

  

To address these problems, the MS can be kept connected to the FAP by expanding the 

coverage range of the femtocell. Integrating a coverage range expansion policy into the 

GVCF architecture has a number of advantages. It will not only make the system more 

robust, but will enable it to better adapt to radio environment changes and crucially provide 

a flexible mechanism for maintaining the required QoS provision, while minimising 

excessive user handoffs to the macro-tier, by keeping the MS connected for longer periods 

of time. As a result, the total number of handovers can be substantially reduced. The 

inherent limitation of extending the coverage range however is that it also increases 

interference in the femto-tier. In dense deployments, MS moving away from one FAP may 

become closer to another FAP and experience severe interference. Thus, before 

incorporating a range expansion policy to tackle handover related problems, it is important 

to investigate and analyse their impact on the overall system performance. 

 

In the following sections, an overview of existing range expansion approaches is firstly 

examined before a detailed analysis of the corresponding simulation results is presented. 

Finally, the chapter makes some concluding comments.  

 

6.2 Review of Range Expansion Techniques and Policies 

Dynamic coverage shrinking and expansion techniques for cellular networks have 

previously been studied [112] to ensure various performance metrics, such as load 

balancing, system throughput maximization and fairness, coverage hole elimination and 

energy saving are considered. Some recent studies [113] have approached coverage 

expansion from a different perspective, namely how best to support users in neighbouring 

cells in the case of either an outage or fault in the BS of the neighbouring cell.  
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Cell zooming is one technique that adaptively adjusts the cell coverage range depending on 

the traffic load, channel condition and user requirements [112]. There are many ways of 

implementing cell zooming. The most conventional one is increasing the power of the 

transmitter for zooming out and then decreasing the power for zooming in. An alternative 

way of achieving this is by changing the antenna tilt, where tilting down shrinks the 

coverage while tilting up conversely expands it [114]. However, received SINR will be 

lower in the expanded region if the transmission power level is kept unchanged.  

 

Cell zooming, particularly expansion, cannot be readily performed to cover areas far away 

from the cell that lie deep inside the neighbouring cells as this may either require higher 

transmission powers and also increases the risk of higher traffic loads. In these cases, more 

cell site deployment may be required. The work in [115] introduces a new parameter for 

traffic estimation, called the low traffic time ratio, which is used for deciding when to 

switch off a particular cell BS and zooming the neighbours to cover the area. If a cell is 

overburdened with traffic during busy hours, cell breathing [116] provides an excellent 

load balancing mechanism to handle client congestion in a wireless LAN. The solution also 

includes various power management algorithms for adjusting the coverage of access points 

to handle dynamic changes. The cost of hand-off also needs to be considered in this kind of 

scenario. In CR-based systems, sensing information can be exploited to extend the 

coverage while maintaining the required QoS [117]. In dynamically varying networks, 

automatic methods are essential if the coverage is to be maximised while the overall 

system interference [118] is minimised.  

 

All of this implies the formulation of an objective function which can then be subsequently 

optimised. However, optimising wireless networks is a very complex task as it directly 

affects many system parameters and issues like quality, cost, coverage and capacity, so a 
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detailed investigation of the mutual influences among key parameters is necessary [119]. 

The optimization of these parameters is usually undertaken by applying established 

techniques such as: linear and integer programming, heuristics [120], genetic algorithms 

[121], and RL or fuzzy logic [122]. 

 

Existing coverage range modification research which relates to cellular networks has so far 

mainly focused upon pre-planned network architectures and coverage, which is typically 

much higher than FAP coverage. Also as mentioned earlier, unplanned femtocell 

deployments and their short coverage distance make the handover related problem distinct 

from the conventional cellular network. This provided the motivation to undertake a 

detailed study of the coverage range issue in a femtocell network context.   

 

Recent work relating to range expansion for dual-tier cellular networks predominantly 

addresses open access multi-tier heterogeneous networks with the focus being upon the 

mobility and handover issue between the tiers. Mobility management between network 

tiers has been addressed in [123], while the handover and ping-pong effect involved in 

range expansion has been analysed in detail in [124]. In a randomly deployed open access 

femtocell scenario, dynamic coverage adjustment is very important for balancing the load 

among the collocated FAPs, while minimising the overall coverage [125]. Also, along with 

load balancing, the level of transmission power can be adjusted to provide energy savings. 

From a design perspective therefore, to achieve individual throughput fairness among the 

users, both the power and resources need to be carefully allocated. 

 

While some literature [126] [127] has sought to address range expansion within dual-tier 

heterogeneous networks, the impact on closed access femtocell networks has been largely 

ignored. In this chapter, a pragmatic approach has been adopted where range expansion in 

closed access femtocell network has been studied. The investigation focuses on analysing 
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the impact of coverage expansion in closed access femtocell networks at various FAP 

deployments. The aim is to firstly understand how both the throughput (SE) and SINR 

performance varies as FAP coverage range is expanded, before analysing how the 

deployment density influences the overall system performance alongside range expansion. 

This provided the basis for the development of a cross-tier handover minimisation 

framework for closed-access femtocell networks. 

 

To evaluate the impact of range expansion, the comparative performance of two different 

resource management techniques has been studied, namely i) the GVCF clustering 

paradigm developed in Chapters 4 and 5 and ii) the benchmark randomly allocated NCS 

algorithm. To maintain consistency in the thesis, the performance analysis was again 

undertaken in terms of both SINR and throughput. In the following section, the system 

model will firstly be discussed before a rigorous analysis is presented on the corresponding 

coverage range expansion performance. 

 

6.3 System Model, Simulation Results and Analysis 

As in the earlier thesis chapters, a 200m x 200m area of one sector in a hexagonal 

macrocell was considered. Four FAP node deployments of 50, 100, 150 and 200 were 

used, with the number of channels available varying between 4 and 20 for the femtocell 

DL operation. From (4.1), this meant the requisite number of VCC (clusters) varied from 

between 1 (the NCS model) to 5. All other systems parameters and their corresponding 

values remained the same as in Table 3.1, except for the FAP coverage range, which in the 

simulations was varied between 9m and 18m. It was assumed that despite the coverage 

extension, all users remained within the indoor radio environment.  

 

Up to 4 MS could connect to a FAP at any particular time, and they were allowed to 

remain connected until they reached the coverage range, assuming that the necessary 



    118

amount of handover bias has been applied for each respective FAP, instead of handing 

them over to the macrocell BS. Since MS were never handed over to the macrocell, the 

handover cost was not measured, so instead the penalty incurred in terms of the reduction 

in the received SINR and average throughput performance was evaluated.  

 

(a) (b) 

Figure 6.1: Performance of NCS with 50 FAP deployed and using the same channels set: (a) the received SINR 

and (b) SE (Spectral Efficiency) 
 

The performance of the worst case scenario was firstly analysed, where each FAP uses the 

same channel set. This means no clustering is possible or in other words, all the FAPs are 

members of a single cluster. Figure 6.1(a) shows the NCS received SINR results when 50 

FAP are deployed and use the same channels set, while the corresponding throughput 

performance is displayed in Figure 6.1(b). With a coverage range of 9m, the average 

achievable SINR is 11dB and intuitively, this will decrease to 5.5dB when the coverage 

range doubles to 18m. However, the received SINR falls by more than 6dB when the 

coverage is increased from 9m to 18m, while the achieved SE remains approximately 

constant at ≈3 bps/Hz. Similar to the findings identified in Chapters 4 and 5, when FAP 

deployment density is low, interference is also low, so in this particular scenario the system 

is able to be flexible in expanding the FAP coverage range while still maintaining the 

defined QoS requirements. 
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(a) (b) 

Figure 6.2: Performance of NCS with 200 FAP deployed and using the same channels set: (a) the received SINR 

and (b) Spectral Efficiency 
 

If FAP deployment density is now increased to 200, it can be seen from Figure 6.2 (a) that 

even at 9 m coverage, the average SINR is less than 5 dB which reduces to -3 dB when the 

range coverage is extended to 18 m. Thus for high FAP deployment densities, increasing 

the coverage severely degrades the system performance compared to lower numbers of 

FAPs. 

(a) (b) 

Figure 6.3: Performance comparison between GVCF and of NCS with 200 FAP deployed when VCC=3: (a) the 

received SINR and (b) Spectral Efficiency 
 

When the number of available channels for the femto tier was increased to 12, the 

corresponding number of clusters in the GVCF model becomes 3 i.e., VCC=3. The SINR 
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and throughput performance of the GVCF and NCS models for 200 FAP in this new 

scenario are respectively shown in Figure 6.3 (a) and Figure 6.3 (b). The results clearly 

reveal that GVCF outperforms NCS across all coverage ranges by a margin of at least 6 dB 

in all cases.  

 

As explained in Section 4.2, the central idea behind the GVCF (and VCF) paradigm is to 

maximise the average spectrum reuse distance amongst those FAPs operating on the same 

spectrum, thereby reducing interference and increasing the network performance in terms 

of both SINR and SE. As the MS moving away from the FAP to which they are connected, 

they will be less close to the FAP operating on the same spectrum, compared with the NCS 

model, so these FAP are better able to handle the inherent losses which occur during 

coverage range expansion. 

 

(a) (b) 

Figure 6.4: Performance comparison between GVCF and of NCS with 200 FAP deployed when VCC=5: (a) the 

received SINR and (b) Spectral Efficiency 
 

If the channel availability is increased further to 20, from (4.1) the corresponding number 

of VCC=5. As mentioned previously, since GVCF always seeks to maximise the minimum 

reuse distance, and because more channels are available, the received SINR improves 

significantly compared with the NCS system. The respective SINR and throughput 

performances of GVCF and NCS for 200 FAP with 5 clusters are shown in Figure 6.4(a) 
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and Figure 6.4(b). Comparing Figure 6.3 and Figure 6.4, it can be seen that the average 

throughput has increased from 3.3 bps/Hz to nearly 3.6 bps/Hz when the number of 

clusters has been increased from 3 to 5. Thus for larger cluster sizes, the system 

performance improves, and this is especially noteworthy at high density FAP deployments 

because at these densities, the achieved SINR is generally low as evidenced from the 

results above. While the results discussion in this chapter has focused particularly on the 

low (50) and high (200) FAP density deployment scenarios, for completeness the 

corresponding received SINR and SE results for the intermediate FAP densities (100 and 

150) for different numbers of clusters, are presented in Appendix B.  

 

Table 6.1: LUT for QoS requirement of 0 dB SINR 

Cluster Size No. of FAP 

deployed 

Coverage Range (m) 

9m 12m 15m 18m 

% of MS failing to meet the QoS for various 

coverage ranges 

1 50 5 9 14 22 

100 15 22 29 38 

150 25 36 44 51 

200 31 42 52 58 

3 50 0 0 0 1 

100 0 0 2 3 

150 1 3 6 11 

200 1 5 9 14 

5 50 0 0 0 0 

100 0 0 1 1 

150 0 0 1 2 

200 0 1 3 4 
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An alternative way of interpreting these findings is to consider whether the minimum QoS 

requirement has been upheld. Table 6.1 shows the LUT that represents the percentage of 

MS failing to achieve the QoS criterion for a minimum SINR=0 dB. Similar LUTs can be 

developed for different QoS constraints. It is evident from the Table that at higher FAP 

densities, the capability of the GVCF model to adaptively increase the number of clusters 

in very beneficial in significantly improving system performance. For example, for 3 

clusters and a 50 FAP deployment, all the MS were able to achieve the required QoS even 

when the coverage was extended to 15m. Similar observations can be made for the 

performance at 100 FAP leading to the conclusion that for low-to-medium FAP 

deployments of 50 and 100, there is no need to have more than 3 clusters. However, the 

situation worsens at higher FAP deployment densities, i.e., 150 and 200.  

 

In case of a 200 FAP deployment, the percentage of MS failing to reach the minimum 

SINR requirement drops from 14% to only 4% by increasing the cluster number from 3 to 

5 at the maximum coverage range of 18m. However, for a coverage range of 9m, there is 

no improvement in terms of achieving the minimum SINR of 0dB as 3 clusters were 

sufficient to meet SINR requirement for all the FAPs.  

 

Since the available spectrum is always very precious, careful utilization is vital for 

ensuring the best possible use of the available resources. Figure 6.5 displays a series of 3-

dimensional graphs of the average received SINR performance for various coverage ranges 

at different FAP deployment densities. Figure 6.5 (a) shows the baseline performance or 

the worst case scenario when all the FAP operate on the same channels set and there is no 

clustering (NCS). At every FAP deployment and coverage range, the system performance 

remains very low. However, the performance significantly improves with higher numbers 
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of clusters as confirmed in both Figure 6.5 (b) and Figure 6.5 (d). Figure 6.5 (c) and Figure 

6.5 (e) provide the corresponding NCS performance. 

 

 

(a) No Clustering System (NCS) when all FAPs use the same set of channels 

(b) NCS with an equivalent channel set (3) (c) GVCF with VCC=3 

  

(d) NCS with an equivalent channel set (5) GVCF with VCC=5 

Figure 6.5: Mesh grid representation of the average received SINR performance comparison between GVCF and 

NCS for different FAP coverage ranges and numbers of clusters at various FAP densities. 
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The results in Figure 6.5 and LUT presented in Table 6.1 can be exploited to develop a 

mechanism for incorporating an adaptive range expansion policy into the GVCF paradigm. 

For a given minimum QoS constraint and average SINR requirement, the best cluster size 

(and hence the minimum number of channels) can be recommended for different coverage 

ranges. For example, when the FAP density is 50, and the QoS and average SINR 

requirements are 0 dB and 10 dB respectively, then the number of clusters needed will be 3 

and the maximum allowable coverage 18 m. 

 

Now applying the same criteria to a 150 FAP deployment, the corresponding maximum 

allowable coverage range becomes only 15 m. To extend the coverage to 18 m, the GVCF 

model must have at least 5 clusters as otherwise the system fails to meet the average 

received SINR requirement. Using the same criteria for the 200 FAP case is even more 

demanding as in order to maintain the average SINR requirement, the cluster size must be 

5, though the range has to remain at the minimum (9 m), as increasing the coverage causes 

the SINR to fall below the defined threshold of 0 dB. 

 

From the above discussion it is clear that incorporating a range expansion policy into the 

GVCF paradigm affords much greater flexibility and robustness by making it more 

adaptive to changes in both the radio environment and resources availability. Based upon 

the framework developed in this chapter, different LUTs (similar to Table 6.1) can be 

formed for different QoS constraints. The cluster size and FAP coverage range can be 

dynamically adjusted according to the LUT to meet certain QoS requirement. Importantly 

these results form the basis for the development of either a FAP handover minimisation or 

optimization strategy jointly with the macro-tier, though this objective is beyond the scope 

of this thesis.  
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6.4 Conclusion 

In this chapter the influence of range expansion on the performance of the femtocell 

network has been studied. The investigation has focused on analysing the impact on 

received SINR and corresponding SE performance regardless of any handover 

implications. Since it can be reasonably argued that the number of handovers will reduce if 

the MS remain connected to the FAP while it moves away from the FAP, the emphasis has 

been to examine if the received SINR and corresponding SE can be maintained to a 

satisfactory level. From the detailed analysis presented in this chapter it has been clear that 

the GVCF paradigm performance is more robust and flexible by incorporating a coverage 

range expansion policy. 
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7 Future Directions 

 

 

In the thesis, a novel multi tier cellular system management architecture is presented.  The 

presented resource management model is flexible and adaptive to network environment 

changes and has been rigorously analysed to ensure successful robust management of joint 

macro-femtocell deployments when sharing the same spectrum. Some suggestions for 

possible new avenues of future research which extend the findings presented in this thesis 

will now be briefly outlined.  

 

7.1 Theoretical Modelling of the Proposed Framework 

The work presented in the thesis was focused on analysing the performance of the 

emerging multi-tier networks. The model developed here is tested in a simulated platform. 

The theoretical modelling of the presented architecture can be done to analytically derive 

the fundamental limits of performance under certain resource constraints and deployment 

densities. This will also validate the model developed. As mentioned earlier, the 

fundamental difference between single tier to multi tier system is that the later includes 

unplanned deployment of FAPs. Hence the analytical modelling techniques used for the 

planned macrocell system may not be suitable for the multi tier system. Thus, a detailed 

statistical and mathematical modelling of FAP deployment and their performance 

evaluation would be a valuable extension of the work. Stochastic geometry and point 

processes can be exploited for theoretical modelling of this complex networks architecture. 
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7.2 Macrocell MS Protection at Cell Boundaries 

The dynamic FFR has been implemented in the work for resource partitioning between 

femto tier and macro tier. Although, mutually exclusive channels are assigned to macrocell 

MS and femtocell MS in any area, macrocell MS particularly situated at the collocated 

neighbouring CER may be particularly vulnerable to cross tier interference. To avoid this 

particular type of cross tier interference, special measures need to be taken. One alternative 

can be create a buffer zone where exclusive set of channels will be used by the macro MS. 

A careful investigation is required to find the appropriate area of the buffer zone depending 

on various parameters including deployment density and transmit power.  

 

Another alternative can be employing cooperative resource allocation and localised and 

distributed negotiation between the interferer and the interfered MS. Also cognitive radio 

techniques can be examined for suitability in these scenarios. 

 

7.3 Network Assisted Power Control 

While femtocells inherently save significant power compared with their macrocell 

counterparts, further energy efficiencies are going to be mandated to reduce the 

environmental impact of next generation networks. This is particularly important as this 

topic moves up the political, economic and social agenda for operators and customers 

alike. In this thesis, the transmit power of the femtocells has been assumed to remain the 

same regardless of the QoS requirement. However, the new presented virtual clustering 

architecture can be exploited to save more energy by allowing the VCC to negotiate 

amongst its FAP members for jointly reducing transmission power, while maintaining the 

minimum QoS for each FAP. Despite lower transmission power, the effective SINR will 
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remain above the required threshold as the level of interference between FAPs is reduced. 

Minimum supervision from the various cluster controllers enables the FAP to 

independently take the majority of the decisions in a distributed fashion, thereby making 

the framework scalable for higher density FAP deployments.  

 

In the case of open access femtocell networks, as the MS move away from the coverage of 

the FAP to which it is connected, it can be seamlessly handed over to another adjacent 

open access FAP, if one is available. For multiple FAP availability, one possibility to 

investigate is a cell selection algorithm to enable multiple objective functions to be 

constructed and optimised involving such design issues as: handover minimization, load 

balancing, system capacity maximisation and energy efficiency.  

 

7.4  Heterogeneous Networks 

Apart from femtocells, there are other technologies such pico-cells, distributed antenna 

system (DAS) [128] [129] and cooperative relay nodes [130] which are also widely 

investigated technologies for enhancing the cellular network coverage and performance. 

However, most of the solutions consider these technologies individually alongside the 

macrocell system. All these together can form a truly heterogeneous network and there are 

number of research challenges to be addressed. When multiple access points are available 

for an MS to connect, an efficient access point selection algorithm is needed which will 

optimize certain performance metrics such as the number of handovers, the required 

bandwidth to achieve a certain QoS, energy consumption and scheduling delays. A 

modified or enhanced version of Cooperative Multi-Point Transmission (CoMP) [131] 

may also represent a suitable alternative for these particular scenarios.  
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7.5 Self-organising Femtocell Networks (SOFN) 

The main idea behind self-organizing femtocell networks (SOFN) is that they are capable 

of managing their operation autonomously without human intervention. SOFN typically 

exhibit particular characteristics such as, being adaptive and reconfigurable to dynamic 

network conditions and self maintaining so faults can be repaired and alleviated. They also 

optimise coverage to coexist with their neighbours, undertake load balancing to guarantee 

certain performance criterion and fairness, ensure robustness against FAP failures and self-

management of disputes with neighbouring femto and macrocells. 

 

At increasing FAP deployments, network management becomes more complex and 

expensive. A viable solution for reducing both the capital and operating expenditure is to 

integrate self-organizing functionalities into the network management. Research to date 

has been preoccupied with strategies and solutions to specific SOFN design issues, with 

the corollary being that for instance, new load balancing implementations are 

concomitantly developed without reflecting on for instance, the self-healing functionality 

of the solution. There is a clear synergy between these seemingly different SOFN features 

as they either implicitly or explicitly impact upon each other. In order to truly exploit the 

self-organizing capability of these networks, a more holistic approach to SOFN design is 

necessary which takes cognisance of the panoply of features rather than focusing on 

particular network metrics in isolation. 

 

7.6 Interference Alignment and Cancellation  

Interference alignment is a promising technique for interference free communicating over 

multiuser interference channels. In this technique, cooperating transmitters jointly design 

the transmission signal in a way so that it is aligned in one dimension at all the non 

intended receivers and in the other dimension at the intended receiver. Aligning 
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interference for multiple non-intended receivers is the major design challenge for this 

practical application. In femtocell networks, backhaul networks can be used for 

information sharing among the interfering femtocells. A detailed investigation is necessary 

however, to achieve significant interference reduction and throughput enhancements by 

applying an interference alignment technique in the femtocell networks.  

 

7.7 Communication Hub for Smart Home and Smart Grid 

A smart home has been somewhat prosaically defined as “a dwelling incorporating a 

communications network that connects the key electrical appliances and services, and 

allows them to be remotely controlled, monitored or accessed” [132]. FAP technology 

may afford an effective communications hub for a smart home where it can form an ad hoc 

network for the home appliances and act as a de facto clusterhead. To facilitate remote 

control of the network, the FAP can integrate the system with any external networks.  

 

For smart grid communications, FAP technology represents a promising solution for 

developing home area network (HAN) and neighbouring area network (NAN) which 

collects data from household devices that consumes energy. If the data volume of this 

application is very high, then it may require significant bandwidth or communication time 

which may hinder the voice and internet activity of the FAP and its user. This means 

careful investigation is necessary for proper management of multiple functionalities in this 

emerging application domain.  
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8 Conclusion 

 

The emerging technology of cognitive femtocell networks is changing the accepted 

paradigm in both vision and concept of cellular networks from the well-planned single-tier 

arrangement, to a multi-tier system comprising a mixture of both planned and arbitrarily 

deployed nodes. This offers a multi-fold data rate increase for indoor radio environments 

and fulfils the dream of high speed wireless and mobile broadband services which is able 

to fully support multimedia steaming, online gaming and other data intensive applications. 

This potential for significant data rate growth however, can be severely diminished by the 

dual challenges of cross and co-tier interference, which need to be very carefully managed. 

This means new dynamic resource management techniques are of prime importance if 

cognitive femtocell networks are to successfully achieve their goals.  

 

This thesis has focused upon a dual-tier cellular system, where the femtocell network has 

been overlaid onto the macrocell network and so shares a common bandwidth with the 

macrocells. This dual-tier arrangement provides a substantial increase in system capacity, 

if as anticipated, the density of deployed low-powered nodes expands in next generation 

networks, with most importantly, higher capacity being available for indoor radio 

environments from where most future data demand is envisaged. The dual or multi-tier 

system means the traditional radio resource management techniques and architectures 

which have been used in cellular networks are either not applicable or operate inefficiently 

for this new scenario.  
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The dual-tier model developed in this thesis wherever possible, faithfully followed the 

3GPP LTE standard. Since the femto-tier is a composition of unplanned deployments, 

uniform random distribution of both FAP and MS has been assumed. The femto-tier 

composition and performance however, varied considerably depending upon the density, 

distribution and location of the BS, FAP and MS, so equitably comparing and validating 

results with alternative solutions was challenging. To achieve an accurate estimation, 

theoretical modelling of the system is necessary and as most system parameter settings 

were specified in the LTE standard, the corresponding 3GPP LTE performance boundaries 

were adopted for validation purposes in evaluating the results and verifying the 

performance of the proposed system under various test scenarios. 

 

New architectures and algorithms have been presented for managing radio resources in 

dual-tier, joint macro-femto deployments, with particular emphasis upon intra and cross-

tier interference awareness. After initially providing a detailed review of the state-of-the-

art in joint macro-femto network research, the spectrum sharing relationship between the 

macro and femto tiers has been rigorously investigated. Special emphasis has been given to 

maintaining, wherever possible, existing macro cellular resource management designs, 

while at the same time creating new opportunities for the femto-tier to access the same 

resources by exploiting these designs in the spatio-temporal domain.  

 

The most significant of the contributions made is the Generalised Virtual Clustering 

Framework (GVCF) presented in Chapter 5 for managing cross and co-tier interference in 

a joint macro-femtocell deployment arrangement. Since co-tier interference mainly occurs 

because of random node deployment, a novel resource management model was developed 

as existing designs for managing planned cellular networks were not suitable. 
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The original virtual clustering architecture was proposed in Chapter 4 for managing 

resources in femtocell networks by introducing the concept of logically grouping together 

FAPs, with each group operating on the same frequency. Group membership is allocated 

based on firstly maintaining a prescribed safety distance threshold (at which the level of 

interference is deemed acceptable) and then maximizing the minimum distance between 

the cluster members. This ensures co-tier interference is always minimised. The initial 

virtual clustering formation (VCF) algorithm was developed for only a fixed set-up of 

radio resource availability before being subsequently generalised to afford enhanced 

flexibility and robustness in the GVCF architecture 

 

Based upon a rigorous analysis of the GVCF model, especially in highly dense FAP 

scenarios, a formal framework has been developed which not only has the capability to 

flexibly manage interference under dynamic resource conditions, but also consistently 

provides superior performance across the range of FAP densities. 

 

In a related contribution, the GVCF paradigm has been further enhanced by analysing FAP 

coverage range expansion as a strategy for combating excessive cross-tier handovers. Since 

FAP coverage is usually very low, there always exists the potential danger of an increased 

number of handovers occurring between tiers with correspondingly sudden load 

imbalances in the macrocells. To minimise these occurrences, the impact of FAP coverage 

range has been rigorously analysed. By gradually expanded the FAP coverage, the 

resulting effect upon overall system capacity and performance has been evaluated. 

Following extensive simulations, a look up table (LUT) approach has been implemented 

for the GVCF framework which enables the model to adaptively choose the best possible 

coverage range for both a particular FAP deployment density and a given set of resource 

constraints including: the number of clusters, the required minimum SINR and the average 

throughput.  
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In dense femtocell deployments, co-tier interference is the dominant source of interference. 

However, cross-tier interference remains a significant bottleneck. As the macro-tier is 

deployed after rigorous planning, the resource allocation for the macro-tier needs to remain 

as intact as possible. To ensure this, a new dynamic fractional frequency reuse (FFR) 

hybrid resource management scheme has been introduced. It minimises both cross and co-

tier interference in low-to-moderate density FAP deployments.  

 

A hybrid resource management architecture was developed to cope with new radio 

environments which consist of well-planned macrocell systems overlaid by randomly 

deployed FAP. A novel technique has been devised for sharing spectrum between the 

macro and femto tiers with dynamic updating between the tiers being realised to avoid any 

cross-tier interference. A femto-tier spectrum management technique has also been 

developed and tested to enable each FAP to maintain a neighbouring interferer list 

alongside their spectrum allocation so a FAP can independently allocate channels to its 

users in a distributed fashion. A dispute mechanism has been included to locally manage 

dispute amongst femtocells, and if this fails to resolve a dispute, then the additional 

assistance of the RNC is sought. An extensive evaluation has been undertaken which 

proved this new dynamic FFR-based approach significantly mitigated both cross and co-

tier interference.  

 

In summarising, this thesis has presented four original contributions to the field of radio 

resource management in cognitive and next generation networks, with the formal 

development of a generalised virtual clustering femtocell framework for cross and co-tier 

interference aware resource management. The system architecture is flexible and adaptive 

to network environment changes and has been rigorously analysed to ensure successful 
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robust management of joint macro-femtocell deployments when sharing the same 

spectrum.  
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Appendix A: Received SINR and SE Performance of 

GVCF Algorithm 

 

The following set of figures represent the SINR and SE performances of the GVCF 

paradigm and corresponding non-clustered system (NCS) for the FAP densities of 100 and 

150 in the given area of 200m squared. 

 

 

Figure A.1: CDF of received SINR with 100 FAP deployed 

  

 

Figure A.2: CDF of received SE with 100 FAP deployed 



    137

 

 

 

Figure A.3: CDF of received SINR with 150 FAP deployed 

 

 

 

Figure A.4: CDF of received SE with 150 FAP deployed 
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Appendix B: Received SINR and SE Performance of 

GVCF Algorithm 

 

 

Figure B.1: Received SINR performance of NCS with 100 FAP deployed and using the same channels sets. 

 

 

Figure B.2: Received SE performance of NCS with 100 FAP deployed and using the same channels sets. 
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Figure B.3: Received SINR performance of NCS with 150 FAP deployed and using the same channels sets. 

 

 

 

Figure B.4: Received SE performance of NCS with 150 FAP deployed and using the same channels sets. 
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Figure B.5: Received SINR performance comparison for GVCF and NCS with 50 FAP deployed when VCC=3 

(equivalent channel sets for NCS) 

 

 

 

Figure B.6: Received SE performance comparison for GVCF and NCS with 50 FAP deployed when VCC=3 

(equivalent channel sets for NCS) 
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Figure B.7: Received SINR performance comparison for GVCF and NCS with 100 FAP deployed when VCC=3 

(equivalent channel sets for NCS) 

 

 

 

Figure B.8: Received SE performance comparison for GVCF and NCS with 100 FAP deployed when VCC=3 

(equivalent channel sets for NCS) 
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Figure B.9: Received SINR performance comparison for GVCF and NCS with 150 FAP deployed when VCC=3 

(equivalent channel sets for NCS) 

 

 

 

Figure B.10: Received SE performance comparison for GVCF and NCS with 150 FAP deployed when VCC=3 

(equivalent channel sets for NCS) 
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Figure B.11: Received SINR performance comparison for GVCF and NCS with 50 FAP deployed when VCC=5 

(equivalent channel sets for NCS) 

 

 

 

Figure B.12: Received SE performance comparison for GVCF and NCS with 50 FAP deployed when VCC=5 

(equivalent channel sets for NCS) 
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Figure B.13:  Received SINR performance comparison for GVCF and NCS with 100 FAP deployed when VCC=5 

(equivalent channel sets for NCS) 

 

 

 

 

Figure B.14: Received SE performance comparison for GVCF and NCS with 100 FAP deployed when VCC=5 

(equivalent channel sets for NCS) 



    145

 

 

Figure B.15: Received SINR performance comparison for GVCF and NCS with 150 FAP deployed when VCC=5 

(equivalent channel sets for NCS) 

 

 

 

 

Figure B.16: Received SE performance comparison for GVCF and NCS with 150 FAP deployed when VCC=5 

(equivalent channel sets for NCS) 
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