2,704 research outputs found

    Damage to fronto-parietal networks impairs motor imagery ability after stroke : a voxel-based lesion symptom mapping study

    Get PDF
    Background: mental practice with motor imagery has been shown to promote motor skill acquisition in healthy subjects and patients. Although lesions of the common motor imagery and motor execution neural network are expected to impair motor imagery ability, functional equivalence appears to be at least partially preserved in stroke patients.Aim: to identify brain regions that are mandatory for preserved motor imagery ability after stroke.Method: thirty-seven patients with hemiplegia after a first time stroke participated. Motor imagery ability was measured using a Motor Imagery questionnaire and temporal congruence test. A voxelwise lesion symptom mapping approach was used to identify neural correlates of motor imagery in this cohort within the first year post-stroke.Results: poor motor imagery vividness was associated with lesions in the left putamen, left ventral premotor cortex and long association fibres linking parieto-occipital regions with the dorsolateral premotor and prefrontal areas. Poor temporal congruence was otherwise linked to lesions in the more rostrally located white matter of the superior corona radiata. Conclusion: This voxel-based lesion symptom mapping study confirms the association between white matter tract lesions and impaired motor imagery ability, thus emphasizing the importance of an intact fronto-parietal network for motor imagery. Our results further highlight the crucial role of the basal ganglia and premotor cortex when performing motor imagery tasks

    Inside the brain of an elite athlete: The neural processes that support high achievement in sports

    Get PDF
    Events like the World Championships in athletics and the Olympic Games raise the public profile of competitive sports. They may also leave us wondering what sets the competitors in these events apart from those of us who simply watch. Here we attempt to link neural and cognitive processes that have been found to be important for elite performance with computational and physiological theories inspired by much simpler laboratory tasks. In this way we hope to inspire neuroscientists to consider how their basic research might help to explain sporting skill at the highest levels of performance

    Voluntary movement takes shape. the link between movement focusing and sensory input gating

    Get PDF
    The aim of the study was to investigate the relationship between motor surround inhibition (mSI) and the modulation of somatosensory temporal discrimination threshold (STDT) induced by voluntary movement. Seventeen healthy volunteers participated in the study. To assess mSI, we delivered transcranial magnetic stimulation (TMS) single pulses to record motor evoked potentials (MEPs) from the right abductor digiti minimi (ADM; “surround muscle”) during brief right little finger flexion. mSI was expressed as the ratio of ADM MEP amplitude during movement to MEP amplitude at rest. We preliminarily measured STDT values by assessing the shortest interval at which subjects were able to recognize a pair of electric stimuli, delivered over the volar surface of the right little finger, as separate in time. We then evaluated the STDT by using the same motor task used for mSI. mSI and STDT modulation were evaluated at the same time points during movement. mSI and STDT modulation displayed similar time-dependent changes during index finger movement. In both cases, the modulation was maximally present at the onset of the movement and gradually vanished over about 200 ms. Our study provides the first neurophysiological evidence about the relationship between mSI and tactile-motor integration during movement execution

    Motor Representations and Practice Affect Brain Systems Underlying Imagery: An fMRI Study of Internal Imagery in Novices and Active High Jumpers

    Get PDF
    This study used functional magnetic resonance imaging (fMRI) to investigate differences in brain activity between one group of active high jumpers and one group of high jumping novices (controls) when performing motor imagery of a high jump. It was also investigated how internal imagery training affects neural activity. The results showed that active high jumpers primarily activated motor areas, e.g. pre-motor cortex and cerebellum. Novices activated visual areas, e.g. superior occipital cortex. Imagery training resulted in a reduction of activity in parietal cortex. These results indicate that in order to use an internal perspective during motor imagery of a complex skill, one must have well established motor representations of the skill which then translates into a motor/internal pattern of brain activity. If not, an external perspective will be used and the corresponding brain activation will be a visual/external pattern. Moreover, the findings imply that imagery training reduces the activity in parietal cortex suggesting that imagery is performed more automatic and results in a more efficient motor representation more easily accessed during motor performance

    Motor imagery training improves precision of an upper limb movement in patients with hemiparesis

    Get PDF
    BACKGROUND: In healthy participants, beneficial effects of motor imagery training on movement execution have been shown for precision, strength, and speed. In the clinical context, it is still debated whether motor imagery provides an effective rehabilitation technique in patients with motor deficits.OBJECTIVE: To compare the effectiveness of two different types of movement training: motor imagery vs. motor execution.METHODS: Twenty-five patients with hemiparesis were assigned to one of two training groups: the imagery or the execution-training group. Both groups completed a baseline test before they received six training sessions, each of which was followed by a test session. Using a novel and precisely quantifiable test, we assessed how accurately patients performed an upper limb movement. RESULTS: Both training groups improved performance over the six test sessions but the improvement was significantly larger in the imagery group. That is, the imagery group was able to perform more precise movements than the execution group after the sixth training session while there was no difference at the beginning of the training.CONCLUSIONS: The results provide evidence for the benefit of motor imagery training in patients with hemiparesis and thus suggest the integration of cognitive training in conventional physiotherapy practice

    Action observation and motor imagery in performance of complex movements: Evidence from EEG and kinematics analysis

    Get PDF
    Motor imagery (MI) and action observation (AO) are considered effective cognitive tools for motor learning, but little work directly compared their cortical activation correlate in relation with subsequent performance. We compared AO and MI in promoting early learning of a complex four-limb, hand?foot coordination task, using electroencephalographic (EEG) and kinematic analysis. Thirty healthy subjects were randomly assigned into three groups to perform a training period in which AO watched a video of the task, MI had to imagine it, and Control (C) was involved in a distracting computation task. Subjects were then asked to actually perform the motor task with kinematic measurement of error time with respect to the correct motor performance. EEG was recorded during baseline, training and task execution, with task-related power (TRPow) calculation for sensorimotor (alpha and beta) rhythms reactive with respect to rest. During training, the AO group had a stronger alpha desynchronization than the MI and C over frontocentral and bilateral parietal areas. However, during task execution, AO group had greater beta synchronization over bilateral parietal regions than MI and C groups. This beta synchrony furthermore demonstrated the strongest association with kinematic errors, which was also significantly lower in AO than in MI. These data suggest that sensorimotor activation elicited by action observation enhanced motor learning according to motor performance, corresponding to a more efficient activation of cortical resources during task execution. Action observation may be more effective than motor imagery in promoting early learning of a new complex coordination task

    Identification and Intervention for Action Planning Deficits in Children With Hemiplegic Cerebral Palsy

    Get PDF
    The primary purpose of this investigation was to describe and quantify action-planning deficits during goal-directed movements in children with hemiplegic cerebral palsy (HCP). Three specific topics were addressed: brain activation, kinematics, and the use of visual input. First, we assessed prefrontal cortex (PFC) activation during complex goal-directed actions in children with HCP. The outcome suggested that children with HCP have higher PFC activation than age matched typically developing (TD) children during action planning, potentially due to the difficulty in allocating attentional resources for simultaneously processing the cognitive (i.e., attention, memory, information processing) and motor demands of the goal-directed task. Reduced task performance paralleled the increased cortical activation. Secondly, we explored the kinematics of action planning and execution of goal-directed action of children with HCP. We found that children with HCP lack forward planning capacity of sequential action, which further impacts the ability to execute action. Thirdly, we explored anticipatory visual patterns and the temporal coupling between eye and hand in children with HCP. The outcomes from this study indicate delays in anticipatory vision and impaired visuomotor coordination, potential factors responsible for the delay in motor performance in children with HCP. Moreover, we observed increased visual monitoring of the moving arm, a potential compensatory mechanism for impaired proprioception of the arm. A secondary purpose was to evaluate whether hand arm bimanual intensive therapy (HABIT) improves action planning and subsequent action execution deficits, and improves PFC activation. After completion of 50-hours of HABIT program, children with HCP displayed reduction in PFC activation. The reduction in cortical activation was accompanied by clinically relevant improvements in bimanual coordination, affected hand function, and motor task performance. Altogether this investigation provides novel information about the action planning and subsequent action execution deficits and the influence of therapeutic interventions in reducing these deficits to optimize learning motor skills in children with HCP

    C-SMB 2.0:Integrating over 25 years of motor sequencing research with the Discrete Sequence Production task

    Get PDF
    An exhaustive review is reported of over 25 years of research with the Discrete Sequence Production (DSP) task as reported in well over 100 articles. In line with the increasing call for theory development, this culminates into proposing the second version of the Cognitive framework of Sequential Motor Behavior (C-SMB 2.0), which brings together known models from cognitive psychology, cognitive neuroscience, and motor learning. This processing framework accounts for the many different behavioral results obtained with the DSP task and unveils important properties of the cognitive system. C-SMB 2.0 assumes that a versatile central processor (CP) develops multimodal, central-symbolic representations of short motor segments by repeatedly storing the elements of these segments in short-term memory (STM). Independently, the repeated processing by modality-specific perceptual and motor processors (PPs and MPs) and by the CP when executing sequences gradually associates successively used representations at each processing level. The high dependency of these representations on active context information allows for the rapid serial activation of the sequence elements as well as for the executive control of tasks as a whole. Speculations are eventually offered as to how the various cognitive processes could plausibly find their neural underpinnings within the intricate networks of the brain.</p
    corecore