697 research outputs found

    Hybridizing 3-dimensional multiple object tracking with neurofeedback to enhance preparation, performance, and learning

    Full text link
    Le vaste domaine de l’amélioration cognitive traverse les applications comportementales, biochimiques et physiques. Aussi nombreuses sont les techniques que les limites de ces premières : des études de pauvre méthodologie, des pratiques éthiquement ambiguës, de faibles effets positifs, des effets secondaires significatifs, des couts financiers importants, un investissement de temps significatif, une accessibilité inégale, et encore un manque de transfert. L’objectif de cette thèse est de proposer une méthode novatrice d’intégration de l’une de ces techniques, le neurofeedback, directement dans un paradigme d’apprentissage afin d’améliorer la performance cognitive et l’apprentissage. Cette thèse propose les modalités, les fondements empiriques et des données à l’appui de ce paradigme efficace d’apprentissage ‘bouclé’. En manipulant la difficulté dans une tâche en fonction de l’activité cérébrale en temps réel, il est démontré que dans un paradigme d’apprentissage traditionnel (3-dimentional multiple object tracking), la vitesse et le degré d’apprentissage peuvent être améliorés de manière significative lorsque comparés au paradigme traditionnel ou encore à un groupe de contrôle actif. La performance améliorée demeure observée même avec un retrait du signal de rétroaction, ce qui suggère que les effets de l’entrainement amélioré sont consolidés et ne dépendent pas d’une rétroaction continue. Ensuite, cette thèse révèle comment de tels effets se produisent, en examinant les corrélés neuronaux des états de préparation et de performance à travers les conditions d’état de base et pendant la tâche, de plus qu’en fonction du résultat (réussite/échec) et de la difficulté (basse/moyenne/haute vitesse). La préparation, la performance et la charge cognitive sont mesurées via des liens robustement établis dans un contexte d’activité cérébrale fonctionnelle mesurée par l’électroencéphalographie quantitative. Il est démontré que l’ajout d’une assistance- à-la-tâche apportée par la fréquence alpha dominante est non seulement appropriée aux conditions de ce paradigme, mais influence la charge cognitive afin de favoriser un maintien du sujet dans sa zone de développement proximale, ce qui facilite l’apprentissage et améliore la performance. Ce type de paradigme d’apprentissage peut contribuer à surmonter, au minimum, un des limites fondamentales du neurofeedback et des autres techniques d’amélioration cognitive : le manque de transfert, en utilisant une méthode pouvant être intégrée directement dans le contexte dans lequel l’amélioration de la performance est souhaitée.The domain of cognitive enhancement is vast, spanning behavioral, biochemical and physical applications. The techniques are as numerous as are the limitations: poorly conducted studies, ethically ambiguous practices, limited positive effects, significant side-effects, high financial costs, significant time investment, unequal accessibility, and lack of transfer. The purpose of this thesis is to propose a novel way of integrating one of these techniques, neurofeedback, directly into a learning context in order to enhance cognitive performance and learning. This thesis provides the framework, empirical foundations, and supporting evidence for a highly efficient ‘closed-loop’ learning paradigm. By manipulating task difficulty based on a measure of cognitive load within a classic learning scenario (3-dimentional multiple object tracking) using real-time brain activity, results demonstrate that over 10 sessions, speed and degree of learning can be substantially improved compared with a classic learning system or an active sham-control group. Superior performance persists even once the feedback signal is removed, which suggests that the effects of enhanced training are consolidated and do not rely on continued feedback. Next, this thesis examines how these effects occur, exploring the neural correlates of the states of preparedness and performance across baseline and task conditions, further examining correlates related to trial results (correct/incorrect) and task difficulty (slow/medium/fast speeds). Cognitive preparedness, performance and load are measured using well-established relationships between real-time quantified brain activity as measured by quantitative electroencephalography. It is shown that the addition of neurofeedback-based task assistance based on peak alpha frequency is appropriate to task conditions and manages to influence cognitive load, keeping the subject in the zone of proximal development more often, facilitating learning and improving performance. This type of learning paradigm could contribute to overcoming at least one of the fundamental limitations of neurofeedback and other cognitive enhancement techniques : a lack of observable transfer effects, by utilizing a method that can be directly integrated into the context in which improved performance is sought

    Rehabilitative devices for a top-down approach

    Get PDF
    In recent years, neurorehabilitation has moved from a "bottom-up" to a "top down" approach. This change has also involved the technological devices developed for motor and cognitive rehabilitation. It implies that during a task or during therapeutic exercises, new "top-down" approaches are being used to stimulate the brain in a more direct way to elicit plasticity-mediated motor re-learning. This is opposed to "Bottom up" approaches, which act at the physical level and attempt to bring about changes at the level of the central neural system. Areas covered: In the present unsystematic review, we present the most promising innovative technological devices that can effectively support rehabilitation based on a top-down approach, according to the most recent neuroscientific and neurocognitive findings. In particular, we explore if and how the use of new technological devices comprising serious exergames, virtual reality, robots, brain computer interfaces, rhythmic music and biofeedback devices might provide a top-down based approach. Expert commentary: Motor and cognitive systems are strongly harnessed in humans and thus cannot be separated in neurorehabilitation. Recently developed technologies in motor-cognitive rehabilitation might have a greater positive effect than conventional therapies

    Validating the efficacy of neurofeedback for optimising performance.

    Get PDF
    The field of neurofeedback training has largely proceeded without validation. Here we review our studies directed at validating SMR, beta and alpha–theta protocols for improving attention, memory, mood and music and dance performance in healthy participants. Important benefits were demonstrable with cognitive and neurophysiological measures which were predicted on the basis of regression models of learning. These are initial steps in providing a much needed scientific basis to neurofeedback, but much remains to be done

    Neuroenhancement in Military Personnel::Conceptual and Methodological Promises and Challenges

    Get PDF
    Military personnel face harsh conditions that strain their physical and mental well-being, depleting resources necessary for sustained operational performance. Future operations will impose even greater demands on soldiers in austere environments with limited support, and new training and technological approaches are essential. This report highlights the progress in cognitive neuroenhancement research, exploring techniques such as neuromodulation and neurofeedback, and emphasizes the inherent challenges and future directions in the field of cognitive neuroenhancement for selection, training, operations, and recovery

    Acquisition, characterization and classification of feedback event-related potentials during a time-estimation task

    Get PDF
    Las señales de feedback son componentes fundamentales dentro de los interfaces cerebro-ordenador (brain-computer interfaces o BCI), ya que suministran información para guiar la tarea ejecutada en cada momento. Se ha demostrado que la presentación de este tipo de estímulos produce cierta actividad en el cerebro que puede ser medida y clasificada. Dado que estos estímulos pueden darse mediante distintas modalidades sensoriales, es importante conocer los efectos que cada tipo de feedback produce en las señales cerebrales, así como cuál es el impacto que tiene en la clasificación de estos potenciales. El objetivo de este trabajo fin de máster es la realización de un estudio sobre los potenciales elicitados en el cerebro tras la presentación de señales de feedback, tanto positivo como negativo, mediante tres vías sensoriales: visual, auditiva y táctil. Se pretende desarrollar una BCI que permita adquirir potenciales evocados por distintos estímulos de feedback para su posterior caracterización y clasificación. La estructura del presente trabajo se divide en cinco bloques principales. El primero de ellos consistió en la búsqueda y estudio de bibliografía relacionada, lo cual permitió al autor crear la base de conocimiento necesaria para realizar el resto del trabajo. En segundo lugar se procedió a diseñar una BCI con un protocolo de experimentación que permitiese adquirir los potenciales cerebrales elicitados por feedback, mediante el registro de señal electroencefalográfica (EEG). Una vez ideado el protocolo, se procedió a la ejecución de una serie de sesiones de experimentación con 15 personas. De ellas, 5 realizaron los experimentos recibiendo la modalidad de feedback visual, 5 recibieron la modalidad auditiva y 5 táctil. Por tanto, la parte práctica de este trabajo se ha basado en la realización de 30 sesiones de experimentación (2 con cada uno de los sujetos), de alrededor de una hora de duración cada una. Cada sesión de experimentación consistió en realizar un montaje de electroencefalograma con 32 electrodos, ejecución y supervisión de la brain-computer interface, y finalmente retirada de todo el equipo de EEG y limpieza del mismo. Las sesiones de experimentos de 5 de los sujetos se realizaron en un laboratorio acondicionado para tal efecto en la Universidad de Zaragoza, las de los restantes 10 sujetos fueron realizadas en Bit&Brain Technologies, empresa spin-off de la Universidad de Zaragoza que se dedica a tareas de I+D utilizando tecnología BCI. Tras la obtención de la actividad EEG de las 15 personas, el siguiente paso consistió en realizar una caracterización de los potenciales adquiridos. Esta caracterización fue llevada a cabo desde el punto de vista de señal (Grand Averages) y de localización de fuentes, estudiando los focos de activación cerebral que generan el EEG medido. En último lugar, se procedió a la evaluación de varias estrategias de clasificación basadas en Support Vector Machines. Mediante la exploración de distintas estrategias se trató de evaluar el porcentaje de clasificación que se obtiene cuando se entrena el sistema con datos del propio sujeto que se va a clasicar y cuando se entrena con datos de sujetos distintos, tanto si sus señales han sido generadas por la misma modalidad de feedback como si han sido generadas por alguna otra. De forma adicional al trabajo inicialmente descrito en la propuesta de este trabajo fin de máster y, partiendo de los buenos resultados obtenidos, se quiso ir más allá, dando una aplicación práctica a las herramientas desarrolladas. Dado que el reconocimiento de potenciales elicitados por feedback tiene un gran potencial en algunas terapias de rehabilitacion, se utilizaron datos de un entrenamiento de neurofeedback para mejoras cognitivas, llevado a cabo en la empresa Bit&Brain Technologies con sujetos sanos. Durante este entrenamiento se adquirieron potenciales de feedback de 5 sujetos, que fueron estudiados y clasificados del mismo modo que los adquiridos con el protocolo incialmente diseñado

    Neuroenhancement: Enhancing brain and mind in health and in disease

    Get PDF
    AbstractHumans have long used cognitive enhancement methods to expand the proficiency and range of the various mental activities that they engage in, including writing to store and retrieve information, and computers that allow them to perform myriad activities that are now commonplace in the internet age. Neuroenhancement describes the use of neuroscience-based techniques for enhancing cognitive function by acting directly on the human brain and nervous system, altering its properties to increase performance. Cognitive neuroscience has now reached the point where it may begin to put theory derived from years of experimentation into practice. This special issue includes 16 articles that employ or examine a variety of neuroenhancement methods currently being developed to increase cognition in healthy people and in patients with neurological or psychiatric illness. This includes transcranial electromagnetic stimulation methods, such as transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS), along with deep brain stimulation, neurofeedback, behavioral training techniques, and these and other techniques in conjunction with neuroimaging. These methods can be used to improve attention, perception, memory and other forms of cognition in healthy individuals, leading to better performance in many aspects of everyday life. They may also reduce the cost, duration and overall impact of brain and mental illness in patients with neurological and psychiatric illness. Potential disadvantages of these techniques are also discussed. Given that the benefits of neuroenhancement outweigh the potential costs, these methods could potentially reduce suffering and improve quality of life for everyone, while further increasing our knowledge about the mechanisms of human cognition

    The Sports Performance Enhancement by Using the Sensorimotor Rhythm Neurofeedback Training

    Get PDF
    Cheng M-Y. The Sports Performance Enhancement by Using the Sensorimotor Rhythm Neurofeedback Training. Bielefeld: Universität Bielefeld; 2019.The brain and the behavior are interconnected. To study the superior performance, a fundamental approach is to get the insight into what happens in the brain during the performance. In this dissertation, the focus is to investigate the missing link between the psychomotor efficiency hypothesis and the electroencephalography (EEG) activity. Psychomotor efficiency hypothesis denotes that the adaptive cortical processes, developed by the expertise, leads to superior performance. The primary goal of this dissertation is to find out the specific EEG index, which reflects the crucial cortical processing in the psychomotor performance, to provide the evidence on establishing an ideal neurofeedback training for sports performance enhancement. Chapter 1 provides an overview of the theoretical backgrounds regarding the relationship between cortical activities and superior sports performance. An introduction of the relevant theories is given to address the unresolved questions between the cortical activities and psychomotor efficiency hypothesis in the superior performance. Then, further missing links are pointed out to explain the rationale of the following studies, especially the candidate EEG index, the sensorimotor rhythm (SMR), and the expected outcomes when applying the SMR for the neurofeedback training. Chapter 2 explores the first evidence on the missing link between the sensorimotor rhythm and superior performance in sports. An overall introduction and discussion on a cross-sectional study between expert dart-throwers and novices on dart-throwing performance are provided. The expert dart-throwers demonstrated a higher activity on the SMR power before releasing the dart when compared to the novices. This main result shed light on the connection of SMR and the psychomotor efficiency hypothesis in precision sports performance. Chapter 3 provides further insights into the detailed accounts of the intra-individual difference in SMR power in air-pistol shooting performance. A study was conducted to investigate the SMR power between the personal best and worst air-pistol shooting performance during the preparation period in pre-elite shooters. The results exhibited that the best shooting performance was related to significant higher SMR power compared to the worst shooting performance during the preparation period. Also, the connectivity of the cortical information processing was reduced during the preparation period of the best shooting performance compared to the worst shooting performance. This study suggests that the activity of the SMR is sensitive on psychomotor performance. Hence, the SMR may serve as the training target for the EEG neurofeedback training on sports performance enhancement. Chapter 4 further investigated the potential application of the EEG neurofeedback training on golf putting performance. An EEG neurofeedback intervention with pre-elite golfers was carried out to investigate the beneficial effects of the augmentation on SMR power. The pre-elite golfers received eight sessions of training, and they demonstrated an improved putting performance after the neurofeedback training. In contrast, the pre-elite golfers in the control group did not show the improvement after a pseudo neurofeedback training. The results indicate the positive effects of augmented SMR neurofeedback training on precision sports performance. Chapter 5 summarizes the key findings of the studies and several recommendations for future studies are provided. In particular, the suggestions for establishing a general EEG neurofeedback training protocol in sports performance enhancement are provided. In sum, the theoretical contributions of the present work elaborated the link between the signature cortical activities and its indication to the psychomotor efficiency hypothesis. From an applied perspective, the current work calls for establishing an ideal protocol for future EEG neurofeedback training research in sports performance enhancement
    corecore