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Abstract 1 

Practice of a motor skill results in improved performance and decreased movement awareness. 2 

The psychomotor efficiency hypothesis proposes that the development of motor expertise through 3 

practice is accompanied by physiological refinements whereby irrelevant processes are 4 

suppressed and relevant processes are enhanced. The present study employed a test-retest design 5 

to evaluate the presence of greater neurophysiological efficiency with practice and mediation 6 

analyses to identify the factors accounting for performance improvements, in a golf putting task. 7 

Putting performance, movement-specific conscious processing, electroencephalographic (EEG) 8 

alpha power and alpha connectivity were measured from 12 right-handed recreational golfers 9 

(age: M = 21 years; handicap: M = 23) before and after three practice sessions. As expected, 10 

performance improved and conscious processing decreased with training. Mediation analyses 11 

revealed that improvements in performance were partly attributable to increased regional gating 12 

of alpha power and reduced cross-regional alpha connectivity. However, changes in conscious 13 

processing were not associated with performance improvements. Increased efficiency was 14 

manifested at the neurophysiological level as selective inhibition and functional isolation of task-15 

irrelevant cortical regions (temporal regions) and concomitant functional activation of task-16 

relevant regions (central regions). These findings provide preliminary evidence for the 17 

development of greater psychomotor efficiency with practice in a precision aiming task. 18 

 19 
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Practice of a motor skill typically results in improved movement execution and 1 

performance. According to the psychomotor efficiency hypothesis (Hatfield & Hillman, 2001), 2 

such improvements are accompanied by the suppression of task-irrelevant processes (e.g., 3 

diverting resources away from cortical regions that have limited relevance for the task) and the 4 

enhancement of task-relevant processes (e.g., redirecting resources to the most important cortical 5 

regions for task-performance). At the neurophysiological level, a compelling body of research 6 

has found indirect support for this hypothesis by revealing that, while performing precision skills 7 

such as golf putting, shooting, and archery, expert athletes manifest greater neural efficiency than 8 

novices (for review see Cooke, 2013; Hatfield et al., 2004). By adopting a test-retest design, the 9 

aim of the current study was to test the psychomotor efficiency hypothesis. Specifically, we 10 

examined (a) whether practice of a motor skill over time leads to neurophysiological adaptations 11 

compatible with increased psychomotor efficiency, and (b) whether such adaptations account for 12 

improvements in movement performance.  13 

Most research relating to neural efficiency in precision sports has examined 14 

electroencephalographic (EEG) activity in preparation for action and during movement 15 

execution. The EEG measures time-varying changes in voltages from an array of scalp electrodes 16 

and reflects post-synaptic potentials in the pyramidal neurons of the cerebral cortex (Nunez & 17 

Srinivasan, 2006). The interplay of these potentials generates oscillations at different 18 

frequencies, including alpha oscillations (around 8-12 Hz), which are thought to play a major 19 

role in shaping the functional architecture of the cortex due to their proposed inhibitory function 20 

(Klimesch, 2012). Specifically, the magnitude of alpha oscillations – i.e., alpha power – can 21 

influence regional activation in the cortex through a gating mechanism whereby resources are 22 

diverted away from regions showing higher alpha power (i.e., more inhibition) and towards 23 
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regions showing lower alpha power (i.e., lower inhibition) (Jensen & Mazaheri, 2010).  1 

The study of alpha oscillations in precision sports has revealed that experts display higher 2 

alpha power over the temporal regions (e.g., Haufler et al., 2000; Janelle et al., 2000) and lower 3 

alpha power over the central regions (e.g., Cooke et al., 2014) of the cortex compared to novices 4 

while preparing for movement execution. Additionally, experts and novices show different time 5 

dynamics of alpha power. For example, Cooke et al. (2014) observed a biphasic pattern of alpha 6 

oscillations that was stronger for experts than novices: alpha power showed an initial increase 7 

followed by a sudden drop in the last second preceding movement initiation. Taken together 8 

these findings suggest the presence of a pattern of cortical activity across the scalp where the 9 

timely inhibition of some cortical regions (e.g., temporal) and the lack of inhibition of other 10 

regions (e.g., central) can be related to the development of motor expertise. 11 

Complementing the study of the regional and temporal dynamics of alpha power, a few 12 

studies have examined the functional connectivity among alpha oscillations across different 13 

regions of the cortex. Alpha connectivity between two regions represents the extent to which the 14 

alpha activity of those regions is functionally connected (i.e., frequency-specific cortico-cortical 15 

communication between different regions). Based on the assumption that alpha reflects inhibition 16 

(Klimesch, 2012), alpha connectivity indicates the strength of the functional connection between 17 

the inhibition of one region and the inhibition of another region. For example, greater alpha 18 

connectivity could be interpreted to reflect two regions engaging in similar and consistent 19 

inhibition, whereas lower connectivity may indicate distinct inhibition profiles.  20 

Research in precision sports has revealed that, compared to novices, experts display lower 21 

left temporal:frontal alpha connectivity, reflecting a functional disconnection between alpha 22 

oscillations of the left temporal region and alpha oscillations of the frontal region (e.g., 23 



5 

 

Gallicchio et al., 2016). Building upon the notion that the left temporal and the frontal regions 1 

are involved in language and movement planning respectively, reduced left temporal:frontal 2 

alpha connectivity has been interpreted as a marker of the selective inhibition of the left-3 

hemisphere and decreased cognitive/verbal interference during preparation for movement 4 

execution (Deeny et al., 2003).  5 

More recently, a series of studies has associated left temporal:frontal alpha connectivity 6 

with the propensity to consciously monitor and control one's movements – i.e., movement-7 

specific conscious processing – during golf putting (Gallicchio et al., 2016; Zhu et al., 2011). 8 

Three lines of evidence support these views. First, lower left temporal:frontal alpha connectivity 9 

in preparation for putting as well as lower putting-related conscious processing were found for 10 

expert golfers compared to novices (Gallicchio et al., 2016). Second, individuals who were 11 

dispositionally less prone to engage in conscious processing displayed lower left temporal:frontal 12 

alpha connectivity prior to putting compared to individuals more prone to engage in conscious 13 

processing (Zhu et al., 2011). Third, novice golfers who were trained implicitly, which was 14 

associated with lower conscious processing, showed decreased left temporal:frontal alpha 15 

connectivity when putting compared to novice golfers who were trained explicitly (Zhu et al., 16 

2011).  17 

Taken together, these findings suggest that decreased left temporal:frontal alpha 18 

connectivity and decreased movement-specific conscious processing are features of expertise. 19 

This is in line with classic theories of motor skill learning that argue that the development of 20 

motor expertise is accompanied by a gradual withdrawal of cognitive analysis and decreased 21 

awareness of one's movements (e.g., Fitts & Posner, 1967). These theories suggest that, 22 

following extensive practice, individuals can progress from a cognitive stage, characterized by 23 
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deliberate and conscious analysis of movement, to an autonomous stage, characterized by 1 

automatic control of movement. 2 

While the extant literature argues for greater neural efficiency as expertise develops, some 3 

potential limitations still need to be overcome. First, the putative link between expertise and 4 

neural efficiency is mostly based on expert-novice differences seen in cross-sectional designs. 5 

These findings do not provide a direct test of the hypothesis that practice leads to greater neural 6 

efficiency because of the unfeasibility of randomly allocating participants to either the expert or 7 

the novice group. For example, it could be that, irrespectively of practice, individuals who show 8 

greater neural efficiency are more likely to become experts compared to individuals who show 9 

lower neural efficiency. To date, only two studies have examined the effects of practice on 10 

neural efficiency using a longitudinal design (Kerick et al., 2004; Landers et al., 1994). These 11 

studies found that performance improvements in archery (Landers et al., 1994) and pistol 12 

shooting (Kerick et al., 2004) after three months of training were associated with increased alpha 13 

power over the left temporal region of the cortex. However, they did not examine any practice-14 

induced changes in cortical connectivity.  15 

Second, no study to date has examined the neurophysiological factors accounting for the 16 

development of expertise. Within-subject mediation analyses (Judd, Kenny & McClelland, 2001) 17 

can be used to examine changes in neural efficiency as a function of performance improvements 18 

and thereby shed some light on the mechanisms responsible for the improvements associated 19 

with practice.  20 

Third, most studies have employed global measures of performance (e.g., hits versus 21 

misses, distance from the target) that can potentially obscure the individual contribution of 22 

distinct parameters involved in movement planning and execution. For example, the movement 23 
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of a golf ball putted on a flat surface can be conceptualized as a vector having a certain direction 1 

and force. Indeed, there is good evidence that there are different neuronal populations that 2 

respond selectively to changes in movement direction and force (e.g., Riehle & Requin, 1995). 3 

Accordingly, the examination of angle and length errors, respectively associated with movement 4 

direction and force, can provide more refined measures of performance that may be differentially 5 

sensitive to changes in neural efficiency. 6 

The present exploratory study was designed to address these limitations. Our aims were 7 

threefold. First, to describe the neurophysiological adaptations that accompany the development 8 

of expertise through practice. Second, to identify neurophysiological mediators that account for 9 

changes in performance and movement-specific conscious processing with practice. Third, to 10 

evaluate the differential impact of movement direction and force planning on neurophysiological 11 

activity. Data were collected in the context of a study designed to examine the efficacy of a 12 

neurofeedback training protocol on golf putting performance (Ring et al., 2015). Here we report 13 

new analyses that were conducted on the data of the control group who underwent putting 14 

training sessions while receiving sham neurofeedback (i.e., who did not receive genuine 15 

feedback of cortical activity). We expected that performance would improve with practice and 16 

that these improvements would be mediated by increased regional gating of alpha power, 17 

reduced cross-regional alpha connectivity, as well as reduced movement-specific conscious 18 

processing, in accord with the predictions of the psychomotor efficiency hypothesis. 19 

Method 20 

Participants 21 

Twelve right-handed male recreational golfers took part in this study (age: M = 21.00, SD 22 

= 2.52 years). The participants reported a mean golf experience of 4.63 years (SD = 2.89) and a 23 
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mean golf handicap of 23.33 (SD = 4.62). All participants provided informed consent.  1 

Putting task 2 

Golf balls (diameter 4.7 cm) were putted on an artificial flat putting surface (Turftiles) to 3 

a hole (diameter 10.8 cm) at a distance of 2.4 m, using a blade-style putter (length 90 cm). The 4 

participants were instructed to get each ball “ideally in the hole, but if unsuccessful, to make them 5 

finish as close to the hole as possible.” 6 

Training 7 

In each 1-hour training session participants practiced putting.  Participants wore a cap 8 

with one frontal scalp electrode and reference and ground electrodes placed on the left and right 9 

mastoids respectively. They were instructed to try to regulate the pitch of a tone by changing 10 

their brain activity while preparing for putting and then to putt the ball when the tone was 11 

silenced. Specifically, they would stand over the ball and hear the pitch of a tone increase and 12 

decrease, and occasionally go silent for 1.5 seconds, which was a cue to putt. In reality, the tone 13 

was independent of their brain activity (i.e., sham neurofeedback), and was yoked to an 14 

experimental participant who received genuine neurofeedback: thus the sham feedback 15 

participants acted as controls in Ring et al. (2015). Each training session comprised twelve 5-16 

minute blocks. 17 

Procedure 18 

A test-retest design was employed, with participants visiting the laboratory on five 19 

different days: putting task on day1 (i.e., test); training on days 2-4; putting task on day 5 (i.e., 20 

retest). On average, the test-retest interval was 8.17 (SD = 5.24) days and the final training 21 

session to retest session interval was 2.00 (SD = 2.59) days.  In the test and retest sessions, 22 

participants were instrumented for EEG recording, instructed, then completed 20 familiarisation 23 
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putts followed by 50 test putts. In each of the three training sessions separating the test and retest 1 

sessions, participants completed a mean of 181.25 (SD = 52.25) practice putts. Thus, the total 2 

number of putts in training was 543.75 (SD = 127.01). The study protocol was approved by the 3 

local research ethics committee. 4 

EEG Recording 5 

In the test and retest sessions 32 active electrodes were positioned on the scalp, according 6 

to the 10-20 system, at: Fp1, Fp2, AF3, AF4, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, 7 

Cz, C4, T8, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, PO3, PO4, O1, Oz, O2. In addition, four 8 

active electrodes were placed at the bottom and at the outer canthus of both eyes. Common mode 9 

sense and driven right leg electrodes were used to enhance the common mode rejection ratio of 10 

the signal. The signal was amplified and digitized at 512 Hz with 24-bit resolution, using the 11 

ActiveTwo recording system (Biosemi, Netherlands). Signals were down-sampled offline to 256 12 

Hz, 1-35 Hz band-pass filtered (FIR, order 512), and re-referenced to the average of all EEG 13 

channels. Channels with bad signals were removed and interpolated prior to averaging. Non-14 

neural activity was minimized using the Artifact Subspace Reconstruction plugin for EEGLAB 15 

(Delorme & Makeig, 2004). Epochs were extracted from –3.25 to +1.25 s relative to the 16 

initiation of the backswing, which was triggered when the putter head broke the beam of an 17 

optical sensor interfaced with the ActiveTwo recording system.  18 

Time-frequency decomposition was performed through short-time Fast Fourier 19 

Transform (FFT) on 33 overlapping segments each of the duration of 0.5 s and linearly spaced 20 

with centre points ranging from –3 to +1 s. Prior to FFT, each segment was also Hanning-21 

windowed to taper both ends to 0 and then 0-padded to reach 2 s duration. This procedure 22 

generated complex-valued FFT coefficients in the time-frequency plane with a precision of 0.125 23 
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s and 0.5 Hz. Six Regions Of Interest (ROIs) were identified: left temporal (FC5, T7, CP5), left 1 

central (FC1, C3, CP1), frontal (F3, Fz, F4), right central (FC2, C4, CP2), right temporal (FC6, 2 

T8, CP6), and occipital (O1, Oz, O2). Signal processing was performed using the EEGLAB 3 

toolbox (Delorme & Makeig, 2004) and MATLAB (MathWorks, USA). 4 

Measures 5 

Putting performance. The number of holed putts out of 50 was recorded in the test and 6 

retest sessions. Additionally, three performance errors – radial (cm), angle (degrees), and length 7 

(cm) errors (Supplementary Material, Figure S1) – were computed for each putt using a camera 8 

system (Neumann & Thomas, 2008) and averaged (geometric mean) to yield measures for the 9 

test and retest sessions. 10 

Alpha power. Power (µV²) was computed in the time-frequency plane separately for 11 

each channel and trial (i.e., putt) as the product between each FFT coefficient and its complex 12 

conjugate (i.e., equivalent to amplitude squared). Importantly, no baseline was employed. 13 

Instead, skewness and inter-individual differences in the power density distributions were dealt 14 

with by employing a median-scaled transformation: each participant’s values were scaled by 15 

their median and then log-transformed (10·log10). This procedure meant that power was normally 16 

distributed with a mean of zero for each participant, without altering within-subject relations. 17 

Power was then averaged across time (–3 to –2 s, –2 to –1 s, –1 to 0 s,0 to +1 s, where zero 18 

represents initiation of the backswing), channels (ROIs), putts, and frequency (10-12 Hz) to yield 19 

estimates of alpha oscillatory power in each session (test, retest). Alpha is typically around 8-12 20 

Hz, however, we focused on the upper portion of this range, (i.e. 10-12 Hz) on the basis of 21 

spectral features that were evident in the current data (see Supplementary Material, Figure S4). 22 

Alpha connectivity. Inter Site Phase Clustering (ISPC) was computed as the length of 23 
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the complex-valued resultant of cross-trial clustering of unitary complex vectors having as angle 1 

the phase difference between channel pairs for each point of the time-frequency plane (M.X. 2 

Cohen, 2014; Lachaux et al., 1999). ISPC measures the phase lag consistency across trials (i.e., 3 

putts) between two channels independently from their power and reflects the functional 4 

connectivity between the oscillatory activity of two underlying cortical regions, with values 5 

ranging from 0 (no connectivity) to 1 (perfect connectivity). The impact of volume conduction 6 

on connectivity was examined by taking the absolute imaginary part of the Inter Site Phase 7 

Clustering (imISPC) (cf. Nolte et al., 2004). Like ISPC, imISPC reflects functional connectivity 8 

with values ranging from 0 to 1, however, imISPC is insensitive to instantaneous connectivity 9 

(i.e., 0- or π- lagged) and therefore values are much smaller than ISPC. No baselines were used. 10 

Instead, to normalize their density distributions, ISPC and imISPC were Fisher Z-transformed 11 

(inverse hyperbolic tangent); values could range then from 0 to ∞. Values were then averaged 12 

(arithmetic mean) across time (–3 to –2 s, –2 to –1 s, –1 to 0 s, 0 to +1 s), channel (ROI) pairs, 13 

and frequency (10-12 Hz) to yield estimates of alpha connectivity in each session (test, retest). 14 

Conscious processing. Self-reported conscious processing was measured immediately 15 

after completing the putting task in the test and retest sessions using a putting-specific version 16 

(Cooke et al., 2011; Vine et al.,2013) of the conscious motor processing sub-scale of the 17 

Movement Specific Reinvestment Scale (Orrell, Masters, & Eves, 2009). This scale consists of 18 

six items scored on a 5-point Likert scale (1 = never, 3 = sometimes, 5 = always) related to the 19 

feeling of awareness of the kinematics involved in execution of the putt and thoughts about putt 20 

outcome. The six items were averaged to generate a single scale score. Past research (Cooke et 21 

al., 2011; Vine et al., 2013) has established the reliability (α = .81-.88) and validity of the 22 

putting-specific version of the conscious motor processing sub-scale of the Movement Specific 23 
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Reinvestment Scale. 1 

Statistical Analyses 2 

Performance and conscious processing. Changes from test to retest in putting 3 

performance and conscious processing were examined by paired-sample t-tests. Within each 4 

session the relation between the number of holed putts and the three performance errors was 5 

examined through Pearson's correlations.  6 

Alpha power and connectivity. Power was subjected to a 2 Session (test, retest) × 6 ROI 7 

(left temporal, left central, frontal, right central, right temporal, and occipital) × 4 Time (–3 to –2, 8 

–2 to –1, –1 to 0, 0 to +1 s) ANOVA. In addition, contrast analyses were performed to examine 9 

changes in power over time. ISPC and imISPC were each subjected to 2 Session × 4 Time 10 

ANOVAs, conducted separately on each of two ROI pairs (left temporal:frontal, right 11 

temporal:frontal), chosen on the basis of previous literature (Deeny et al., 2003, 2009; Gallicchio 12 

et al., 2016; Zhu et al., 2011). The multivariate solution was reported in the ANOVAs where 13 

appropriate (Vasey & Thayer, 1988). Significant main effects were interrogated using post hoc 14 

testing. Partial eta-squared (η²p) and r² are reported as measures of effect size: values of .02, .13, 15 

and .26 were taken to reflect small, medium, and large effects, respectively (J. Cohen, 1992). 16 

Mediation. Mediation analyses were conducted to test whether changes across sessions 17 

in the number of holed putts could be accounted for by changes in performance errors, conscious 18 

processing, alpha power, and alpha connectivity. We also tested whether changes in conscious 19 

processing could be attributed to changes in alpha power and connectivity. We used the 20 

procedure described by Judd et al. (2001) for repeated-measures designs: multiple regression 21 

was used to predict the test to retest change in the dependent variable based on the test to retest 22 

change in the potential mediator variable, while controlling for its mean-centred sum. Full 23 
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mediation can be inferred when the regression coefficient associated with the change in the 1 

mediator variable is significant (i.e., p < .05), and partial mediation is inferred when the 2 

coefficient associated with the intercept is also significant. The following strategy was adopted to 3 

reduce the likelihood of type-I errors: we first assessed whether the change in the number of 4 

holed putts was mediated by changes in any of the potential mediator variables, and only if this 5 

was the case were mediation analyses conducted on the changes in the performance errors and 6 

conscious processing.  7 

Results 8 

Putting performance 9 

Overall, every putting performance measure improved with training from test to re-test 10 

(Table 1). However, there were considerable individual differences: not all participants improved 11 

equally and in fact a few got worse (Supplementary Material, Figure S2). The number of holed 12 

putts was highly negatively correlated with the three performance errors (rs = –.77 to –.92, ps < 13 

.003), with angle error the highest (Supplementary Material, Table S1). 14 

Alpha power  15 

The 2 Session × 6 ROI × 4 Time ANOVA conducted on EEG power revealed a large 16 

main effect of ROI, F(5,7) = 105.49, p < .001, η²p = .987. Post-hoc Scheffé tests indicated (p < 17 

.001) that power was higher in the occipital than left/right temporal and frontal regions, which, in 18 

turn, were higher than left/right central regions (Figure 1A). Power tended to be lower in the 19 

retest session than the test session (Figure 1B), F(1,11) = 0.78, p = .40, η²p =.066, in all regions 20 

(left temporal ∆ = –0.55; left central ∆= –0.40; frontal ∆= –0.28; right central ∆ = –0.23; right 21 

temporal ∆ = –0.66) except the occipital region (∆ = 0.40). Although no clear omnibus time 22 

effect was evident, F(3,9) = 2.93, p = .09, η²p = .494, the effect size was large, and, therefore, we 23 
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performed contrast analyses to characterize the a priori predicted changes in power in the 1 

moments surrounding movement; a series of 4 Time ANOVAs (contrast codes: 0, 1, –2, 1) were 2 

conducted separately for each session and ROI. This quadratic trend was not displayed in the test 3 

session, Fs(1,11) = 0.02-0.74, ps = .41-.89, η²ps = .002-.063,with the sole exception of the left 4 

temporal region, F(1,11) = 4.10, p = .07, η²p = .271, but was clearly evident in all regions in the 5 

retest session, Fs(1,11) = 12.57-4.01, ps = .005-.07, η²ps = .267-.533. This implies a practice-6 

induced time-varying change in alpha power, characterized mainly by a reduction in power 7 

during the final second before movement following practice during the retest session (Figure 8 

1B).  9 

Alpha connectivity 10 

The 2 Session × 4 Time ANOVAs on the left temporal:frontal connectivity indices 11 

(Figure 2) revealed no main effects for session (ISPC: ∆ = 0.01, F(1,11) = 1.02, p = .34, η²p = 12 

.085; imISPC: ∆ = –0.004, F(1,11) = 0.35, p = .57, η²p = .031) or time (ISPC:F(3,9) = 0.77, p = 13 

.54, η²p = .203; imISPC, F(3,9) = 3.46, p = .06, η²p = .536). Similarly, no effects emerged with 14 

right temporal:frontal connectivity (Figure 2) as a function of session (ISPC: ∆ = 0.01, F(1,11) = 15 

0.75, p = .41, η²p = .064; imISPC: ∆ = 0.008, F(1,11) = 2.512, p = .14, η²p = .186) and time 16 

(ISPC:F(3,9) = 0.63, p = .61, η²p = .174; imISPC: F(3,9) = 0.69, p = .58, η²p = .187). No session 17 

by time interactions emerged. Finally, the results from all ROI pairs are reported in the 18 

Supplementary Material (Figure S5) for interested readers.  19 

Conscious processing 20 

Overall conscious processing decreased from test (M = 3.88, SD = 0.20) to retest (M = 21 

3.36, SD = 0.24), t(11) = 2.59, p = .03, r² = .378.  Again, there were large individual differences 22 

in the extent of this change, with four participants opposing the trend by reporting the same or 23 
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greater conscious processing after training (Supplementary Material, Figure S3).  1 

Mediators of the change in putting performance 2 

Putting performance improved with practice. On average, participants holed 4.08 more 3 

balls (i.e., an 8.2% improvement) in the retest session compared to the test session.  Judd et al.’s 4 

(2001) regression-based within-subject mediation analyses indicated that this improvement was 5 

fully mediated by the reduction in angle error from test to retest (b = –9.82, p = .008); the 6 

intercept (a = 1.89, p = .21) indicated that, had angle error not changed from test to retest, the 7 

improvement would have been reduced to only 1.89 additional holed putts, which represents a 8 

non-significant change in performance. Neither radial error (b = –0.88, p = .06) nor length error 9 

(b = –0.81, p = .17) mediated performance improvement. Further, conscious processing did not 10 

mediate the change in performance (b = –1.23, p = .70). 11 

In terms of alpha power, the improvement in putting performance was partially mediated 12 

by the change in left temporal power in the seconds surrounding backswing initiation (–1 to 0 s: 13 

b = 2.46, p = .04; 0 to 1 s: b = 2.07, p = .04). Since power tended to decrease with practice 14 

(Figure 1B), smaller reductions in left temporal power from test to retest were associated with 15 

larger improvements in performance. Based on the associated intercepts (–1 to 0 s: a = 6.07, p = 16 

.005; 0 to 1 s: a = 5.04, p = .01), this means that an individual who increased their left temporal 17 

power from test to retest in the second before backswing initiation would be predicted to hole at 18 

least two more putts whereas someone who increased power from test to retest in the second 19 

after initiation would be predicted to hole at least one more putt.  Furthermore, left temporal 20 

power within the –1 to 0 s interval also partially mediated the reduction in angle (b = –0.19, p = 21 

.03) but not radial (b = –1.72, p = .06) or length (b = –1.33, p = .09) errors (Supplementary 22 

Material, Figure S6). 23 
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In terms of alpha connectivity, putting performance was partially mediated by the inter-1 

session change in left temporal:frontal ISPC within the –2 to –1 s interval (b = –120.60, p = .01). 2 

Since ISPC tended to increase with practice (Figure 2), smaller increases in left temporal:frontal 3 

connectivity from test to retest were associated with larger improvements in putting 4 

performance. Based on the intercept (a = 5.88, p = .004), performance would be predicted to 5 

improve by at least two more holed putts if left temporal:frontal ISPC decreased within this time 6 

interval. The same analysis conducted on imISPC also revealed a negative relation, (b = –53.02, 7 

p = .28). Furthermore, left temporal:frontal ISPC within the –2 to –1 s interval also partially 8 

mediated the reduction in angle (b = 6.35, p = .05), but not radial (b = 56.97, p = .13) and length 9 

(b = 35.52, p = .28) errors.  10 

Right temporal:frontal ISPC and imISPC did not mediate the improvement in putting 11 

performance (ps = .19-.93). Lastly, mediation analyses on all ROI pairs (Supplementary 12 

Material, Figure S7A, B) indicated that the relation between smaller increases in left 13 

temporal:frontal ISPC and greater performance improvement extended to a network linking the 14 

left temporal region to the other cortical regions. 15 

Mediators of the change in conscious processing  16 

On average, participants reported less conscious processing (∆ = –0.52) from test to 17 

retest. This reduction in conscious processing was fully mediated (a = –0.34, p = .09) by the 18 

change in left temporal:frontal ISPC within the –2 to –1 s interval (b = –11.87, p = .03), whereby 19 

decreases in conscious processing were associated with increases in ISPC. Finally, the mediation 20 

analyses involving all ROI pairs (Supplementary Material, Figure S7C, D) showed that changes 21 

in conscious processing were related to changes in connectivity across a broad network of 22 

cortical regions.  23 
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Discussion 1 

Performance improved from test to retest. That retention was assessed a couple of days 2 

after the end of training provided evidence for motor learning (e.g., Salmoni, Schmidt & Walter, 3 

1984). The primary aim of this exploratory study was to identify the neurophysiological factors 4 

that mediate changes in motor performance with practice. Improvements in golf putting 5 

performance from before (test) to after (retest) completing three training sessions were mediated 6 

by EEG alpha power and alpha connectivity in preparation for putting but not by self-reported 7 

conscious processing.  8 

Alpha power 9 

Spectral analyses revealed a distinct 10-12 Hz peak compatible with the alpha rhythm (see 10 

Supplementary Material, Figure S4), and therefore activity within this frequency range was 11 

interpreted as reflecting cortical alpha oscillations. Alpha activity was displayed across the 12 

different regions of the cortex in a focal pattern: power was lowest over the central regions, 13 

medium over the temporal regions, and highest over the occipital region. In line with the gating-14 

by-inhibition hypothesis (Jensen & Mazaheri, 2010) the observed regional pattern suggests that 15 

neuronal resources were taken away from occipital and temporal regions (i.e., highest inhibition) 16 

and diverted towards the central regions (i.e., lowest inhibition) during movement preparation. 17 

This focal pattern, which was evident in both test and retest sessions, could reflect the prior 18 

practice history of our participants, who were all experienced golfers, and therefore had already 19 

developed a degree of psychomotor efficiency related to the putting movement.  20 

Efficiency-based changes in alpha power due to training can be inferred from our 21 

mediation analyses. Importantly, they suggested that participants who were able to sustain a 22 

relatively higher power in the temporal regions from test to retest in the seconds surrounding 23 
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movement improved their putting performance the most. This effect was localized to the left 1 

(and to a lesser extent, the right) temporal region and can be interpreted in terms of alpha gating: 2 

increased inhibition in regions not directly involved in putting-relevant processing is beneficial 3 

to putting. That this effect was absent in the occipital region is most likely because occipital 4 

inhibition was already the strongest among the regions examined and tended to strengthen 5 

further with training. In other words, likely there was a ceiling effect for occipital alpha, whereby 6 

further increases did not benefit performance. 7 

It is also worth noting that while a relatively higher level of temporal alpha power was 8 

beneficial, practice also prompted a decrease in power, especially at the frontal region, in the 9 

final second preceding movement. This quadratic trend for time-varying alpha power in the retest 10 

session could be interpreted as reflecting the timely allocation of resources to putting-relevant 11 

processing (Cooke et al., 2015). Indeed, this quadratic pattern is consistent with previous 12 

research and has been associated with expertise and successful performance in experts (Babiloni 13 

et al., 2008; Cooke et al., 2014). However, as this quadratic decrease in alpha power at retest did 14 

not mediate changes in performance, the inhibition of irrelevant cortical regions seems to have 15 

been more important for performance improvement than the timely activation of relevant ones. 16 

This remains a topic for future research, which may consider variables such as task and 17 

experience as potential moderators of any effects.   18 

Alpha connectivity 19 

Functional connectivity was examined between the temporal and frontal regions using two 20 

indices based on the consistency of cross-regional phase lag across trials: ISPC and imISPC. The 21 

latter is a conservative version of the former that is not biased by volume conduction. The fact 22 

that 10-12 Hz imISPC was non-zero (Figure 2) indicated the likely presence of genuine alpha 23 
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connectivity. Neither connectivity index changed across the time intervals or from test to retest. 1 

However, mediation analyses suggested that greater improvements in performance from test to 2 

retest were achieved by participants displaying relatively lower left temporal:frontal connectivity 3 

a couple of seconds before putt initiation. Low left temporal:frontal alpha connectivity has been 4 

associated with expertise and successful putting performance in experts (Babiloni et al., 2011; 5 

Gallicchio et al., 2016). At the neurophysiological level, lower connectivity represents a stronger 6 

disconnection between the two signals – i.e., left temporal alpha and frontal alpha – provided that 7 

the two signals are not projections of the same source generator because of volume conduction 8 

within the head.  9 

The additional analyses performed on a wider network of regions (Supplementary 10 

Material, Figure S7) revealed that performance improvements were not exclusively associated 11 

with a stronger disconnection of alpha activity between left temporal and frontal regions. Rather, 12 

it is evident that improved performance was associated with a functional isolation of left 13 

temporal alpha from many other regional alpha activities. Taken together, these analyses provide 14 

preliminary support for our hypothesis that improvements in performance with practice would be 15 

mediated by reduced connectivity (i.e., less cortico-cortical communication) between alpha 16 

oscillations in the left temporal region and other regions of the cortex, including the frontal 17 

region (cf., Deeny et al., 2003; Gallicchio et al., 2016; Zhu et al., 2011). 18 

Conscious processing 19 

Movement-specific conscious processing decreased and performance improved with 20 

practice, in line with the classic theories of motor skill learning (e.g., Fitts & Posner, 1967). 21 

However, mediation analyses did not support the putative link between decreased conscious 22 

processing and performance improvement. Similarly, Malhotra et al. (2015) also found no 23 
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relation between improvements in putting performance and changes in conscious processing with 1 

training. It should be noted that these two null findings reflect the absence of a linear relation; 2 

however, our analyses indicate a curvilinear relationship: participants who reported a moderate 3 

decrease in conscious processing improved more than those who reported a large decrease, no 4 

change, and even a small increase in conscious processing (Supplementary Material, Figure S8). 5 

It has been increasingly recognized that conscious processing does not always negatively impact 6 

performance but can foster performance improvements in experts (Toner & Moran, 2014) and 7 

novices (Malhotra et al., 2015). Given these findings it would be fruitful for future research to 8 

seek to identify optimal levels of conscious processing as a function of factors such as task, 9 

expertise and personality. Such research should also consider sub-components of conscious 10 

processing, for instance, distinguishing conscious monitoring and conscious control (Toner & 11 

Moran, 2011), particularly when they are about to putt, which should be able to paint a better 12 

picture of what individuals attend to in the moments before movement initiation.  13 

Mediation analyses suggested that decreases in conscious processing from test to retest 14 

were associated with increases in alpha connectivity across a network involving all cortical 15 

regions examined (Supplementary Material, Figure S7). Higher connectivity represents a 16 

stronger connection between the alpha oscillations, and therefore suggests that decreased 17 

movement-specific conscious processing or awareness of one’s movements is associated with 18 

multiple cortical regions engaging in similar and consistent inhibition (cf. Baars, 2002). This 19 

interpretation awaits confirmation. 20 

Performance errors 21 

The analyses of the three performance metrics – i.e., radial, angle, and length errors – 22 

revealed that improvements in the number of holed putts with practice was largely due to 23 
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reductions in angle error rather than radial or length errors. This finding suggests that a more 1 

precise alignment of the putter head with the ball at the moment of impact is more beneficial to 2 

putting outcome than appropriate impact velocity (Cooke et al., 2010). Additionally, all of the 3 

significant associations observed between EEG activity and putting performance errors were 4 

found for angle error, suggesting that programming of movement direction is better reflected in 5 

alpha activity than movement force. Although there is evidence that movement direction and 6 

force are selectively coded by different neuronal populations (e.g., Riehle & Requin, 1995), 7 

future research is needed to clarify the relationship between alpha oscillations, on the one hand, 8 

and programming of movement parameters, on the other hand. 9 

Limitations and future research 10 

The current study yielded some novel and important findings regarding the causal relations 11 

among practice, cortical efficiency, conscious processing and performance. However, their 12 

interpretation should be considered in light of potential limitations. First, although the putting 13 

task was completed under ecologically valid conditions, the training cannot be considered a form 14 

of discovery learning because participants received sham neurofeedback. Moreover, we did not 15 

employ a control group who did not receive any form of neurofeedback. We cannot determine 16 

the impact of the current training protocol and therefore future research should consider 17 

replicating our findings using other forms of training, including discovery learning, and 18 

appropriate control groups.  19 

Second, we refrained from interpreting activity in different cortical regions in terms of 20 

specific cognitive processes because we did not measure nor manipulate cognition directly. We 21 

acknowledge that the presence of a certain regional activation makes some cognitive processes 22 

more likely to be involved than others, however, we avoided reverse inference (Poldrack, 2006) 23 
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and postponed interpretation. Indeed, it would be worth studying the relation between regional 1 

activation and cognitive processes using experimental designs where cognition is manipulated 2 

(rather than simply measured) in the context of precision aiming.  3 

Third, the use of spectral decomposition on (inherently non-stationary) EEG signals 4 

implies that power is likely to be greater than 0 at any unfiltered frequency, irrespectively of the 5 

presence of actual neural generators oscillating at that frequency. The distinct 10-12 Hz power 6 

peak in the group-averaged frequency plots (see Supplementary Material, Figure S4) supported 7 

the likely presence of cortical oscillations within this frequency band. However, the use of a 8 

fixed range did not account for individual variations. Future studies could individually adjust 9 

these ranges to obtain greater specificity and sensitivity (cf. Klimesch, 1999). 10 

Fourth, we considered measures of alpha as candidates to mediate the main effect of 11 

session on performance despite having non-significant main effects themselves. This strategy is 12 

in line with current guidelines recommending that mediation only requires the existence of an 13 

effect to be mediated (i.e., change in performance) for that effect to be indirectly influenced by 14 

the mediator variables (e.g., alpha power) (Preacher & Hayes, 2004). Our approach satisfies 15 

these criteria, nonetheless, we did not manipulate any of the mediator variables, and therefore the 16 

outcome variable (i.e., performance) may have influenced the mediatior variables (Cooke et al., 17 

2015). It would be useful to replicate these analyses in larger samples with more statistical power 18 

where the mediators are manipulated independently of the outcome variables, using, for instance, 19 

brain stimulation or neurofeedback training.  20 

Fifth, the greater relative importance of the angle error over radial and length errors is 21 

potentially biased by the presence of an actual hole, which may have influenced our performance 22 

measurements, particularly in regards to length error. For example, balls can be redirected by the 23 
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hole (e.g., a lip out) and most balls that dropped into the hole would otherwise have rolled past 1 

the hole had the hole not been present, introducing variability that cannot be accounted for by the 2 

measurements. Future studies could use a mark on the mat instead of a hole to overcome this 3 

limitation. 4 

Finally, we only tested experienced golfers that arguably lay somewhere between the 5 

cognitive and the autonomous stage of learning (cf. Fitts & Posner, 1967). Given that the 6 

particular stage of learning that the individual is in may moderate the adaptations in alpha gating 7 

and connectivity with training, future research could examine these learning-related adaptations 8 

in novices and experts as well as experienced individuals. 9 

Conclusions 10 

This exploratory study provides preliminary evidence that practice of a motor skill leads 11 

to neurophysiological adaptations compatible with the psychomotor efficiency hypothesis 12 

(Hatfield & Hillman, 2001). Efficiency was manifested as selective inhibition and functional 13 

isolation of task-irrelevant cortical regions and concomitant functional activation of task-relevant 14 

regions. Our findings suggest that processing in broadly central regions (cf., Andersen & Buneo, 15 

2002; Desmurget et al., 2009) is more important than processing in temporal regions (cf., Kerick 16 

et al., 2001) while performing a precision aiming task, such as golf putting. These findings imply 17 

that larger improvements in precision aiming performance with practice may be achieved by 18 

employing training protocols that foster suppression of task-irrelevant processes. 19 

 20 
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Table 1. Descriptive statistics of putting performance as a function of session together with the 

results of the paired-sample t-tests. 

 

Test 

M (SD) 

Retest 

M (SD) 

t(11) 

 

p 

 

r² 

 

holed putts (0-50) 12.17 (2.39) 16.25 (2.97) 2.18 .05 .301 

radial error (cm) 10.95 (1.59) 8.05 (1.23) 2.26 .04 .317 

angle error (degrees) 1.39 (0.12) 1.17 (0.14) 1.74 .11 .215 

length error (cm) 8.80 (1.27) 6.42 (0.95) 2.22 .05 .310 
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Figures 

 

 

 

Figure 1. A: Scalp maps representing alpha power (10·log10(µV²)) averaged across 

participants, as a function of session (test, retest), time (–3 to +1 s), and channel. B: Alpha power 

(10·log10(µV²)) averaged across participants, as a function of session (test, retest) and time (–3 

to +1 s) in the six regions. Error bars represent the standard error of the mean. 
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Figure 2. Left / right temporal:frontal alpha ISPC and imISPC averaged across 

participants as a function of session (test, retest) and time (–3 to +1 s). Error bars represent the 

standard error of the mean. 
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Figure 3. A: Scalp maps representing Pearson's correlations conducted on the inter-

session change scores between the number of holed putts and alpha power, as a function of time 

(–3 to +1 s) and channel. B: Time-frequency plots representing Pearson's correlations conducted 

on the inter-session change scores between the left temporal alpha power (10·log10(µV²)) and 

the number of holed putts, as a function of time (–3 to +1 s) and frequency (0 to 32 Hz). 


