29,008 research outputs found

    On the size of identifying codes in triangle-free graphs

    Get PDF
    In an undirected graph GG, a subset CV(G)C\subseteq V(G) such that CC is a dominating set of GG, and each vertex in V(G)V(G) is dominated by a distinct subset of vertices from CC, is called an identifying code of GG. The concept of identifying codes was introduced by Karpovsky, Chakrabarty and Levitin in 1998. For a given identifiable graph GG, let \M(G) be the minimum cardinality of an identifying code in GG. In this paper, we show that for any connected identifiable triangle-free graph GG on nn vertices having maximum degree Δ3\Delta\geq 3, \M(G)\le n-\tfrac{n}{\Delta+o(\Delta)}. This bound is asymptotically tight up to constants due to various classes of graphs including (Δ1)(\Delta-1)-ary trees, which are known to have their minimum identifying code of size nnΔ1+o(1)n-\tfrac{n}{\Delta-1+o(1)}. We also provide improved bounds for restricted subfamilies of triangle-free graphs, and conjecture that there exists some constant cc such that the bound \M(G)\le n-\tfrac{n}{\Delta}+c holds for any nontrivial connected identifiable graph GG

    Bounds for identifying codes in terms of degree parameters

    Full text link
    An identifying code is a subset of vertices of a graph such that each vertex is uniquely determined by its neighbourhood within the identifying code. If \M(G) denotes the minimum size of an identifying code of a graph GG, it was conjectured by F. Foucaud, R. Klasing, A. Kosowski and A. Raspaud that there exists a constant cc such that if a connected graph GG with nn vertices and maximum degree dd admits an identifying code, then \M(G)\leq n-\tfrac{n}{d}+c. We use probabilistic tools to show that for any d3d\geq 3, \M(G)\leq n-\tfrac{n}{\Theta(d)} holds for a large class of graphs containing, among others, all regular graphs and all graphs of bounded clique number. This settles the conjecture (up to constants) for these classes of graphs. In the general case, we prove \M(G)\leq n-\tfrac{n}{\Theta(d^{3})}. In a second part, we prove that in any graph GG of minimum degree δ\delta and girth at least 5, \M(G)\leq(1+o_\delta(1))\tfrac{3\log\delta}{2\delta}n. Using the former result, we give sharp estimates for the size of the minimum identifying code of random dd-regular graphs, which is about logddn\tfrac{\log d}{d}n

    Centroidal bases in graphs

    Get PDF
    We introduce the notion of a centroidal locating set of a graph GG, that is, a set LL of vertices such that all vertices in GG are uniquely determined by their relative distances to the vertices of LL. A centroidal locating set of GG of minimum size is called a centroidal basis, and its size is the centroidal dimension CD(G)CD(G). This notion, which is related to previous concepts, gives a new way of identifying the vertices of a graph. The centroidal dimension of a graph GG is lower- and upper-bounded by the metric dimension and twice the location-domination number of GG, respectively. The latter two parameters are standard and well-studied notions in the field of graph identification. We show that for any graph GG with nn vertices and maximum degree at least~2, (1+o(1))lnnlnlnnCD(G)n1(1+o(1))\frac{\ln n}{\ln\ln n}\leq CD(G) \leq n-1. We discuss the tightness of these bounds and in particular, we characterize the set of graphs reaching the upper bound. We then show that for graphs in which every pair of vertices is connected via a bounded number of paths, CD(G)=Ω(E(G))CD(G)=\Omega\left(\sqrt{|E(G)|}\right), the bound being tight for paths and cycles. We finally investigate the computational complexity of determining CD(G)CD(G) for an input graph GG, showing that the problem is hard and cannot even be approximated efficiently up to a factor of o(logn)o(\log n). We also give an O(nlnn)O\left(\sqrt{n\ln n}\right)-approximation algorithm

    Characterizing extremal digraphs for identifying codes and extremal cases of Bondy's theorem on induced subsets

    Full text link
    An identifying code of a (di)graph GG is a dominating subset CC of the vertices of GG such that all distinct vertices of GG have distinct (in)neighbourhoods within CC. In this paper, we classify all finite digraphs which only admit their whole vertex set in any identifying code. We also classify all such infinite oriented graphs. Furthermore, by relating this concept to a well known theorem of A. Bondy on set systems we classify the extremal cases for this theorem

    On two variations of identifying codes

    Full text link
    Identifying codes have been introduced in 1998 to model fault-detection in multiprocessor systems. In this paper, we introduce two variations of identifying codes: weak codes and light codes. They correspond to fault-detection by successive rounds. We give exact bounds for those two definitions for the family of cycles

    On global location-domination in graphs

    Full text link
    A dominating set SS of a graph GG is called locating-dominating, LD-set for short, if every vertex vv not in SS is uniquely determined by the set of neighbors of vv belonging to SS. Locating-dominating sets of minimum cardinality are called LDLD-codes and the cardinality of an LD-code is the location-domination number λ(G)\lambda(G). An LD-set SS of a graph GG is global if it is an LD-set of both GG and its complement G\overline{G}. The global location-domination number λg(G)\lambda_g(G) is the minimum cardinality of a global LD-set of GG. In this work, we give some relations between locating-dominating sets and the location-domination number in a graph and its complement.Comment: 15 pages: 2 tables; 8 figures; 20 reference

    Constraint Complexity of Realizations of Linear Codes on Arbitrary Graphs

    Full text link
    A graphical realization of a linear code C consists of an assignment of the coordinates of C to the vertices of a graph, along with a specification of linear state spaces and linear ``local constraint'' codes to be associated with the edges and vertices, respectively, of the graph. The \k-complexity of a graphical realization is defined to be the largest dimension of any of its local constraint codes. \k-complexity is a reasonable measure of the computational complexity of a sum-product decoding algorithm specified by a graphical realization. The main focus of this paper is on the following problem: given a linear code C and a graph G, how small can the \k-complexity of a realization of C on G be? As useful tools for attacking this problem, we introduce the Vertex-Cut Bound, and the notion of ``vc-treewidth'' for a graph, which is closely related to the well-known graph-theoretic notion of treewidth. Using these tools, we derive tight lower bounds on the \k-complexity of any realization of C on G. Our bounds enable us to conclude that good error-correcting codes can have low-complexity realizations only on graphs with large vc-treewidth. Along the way, we also prove the interesting result that the ratio of the \k-complexity of the best conventional trellis realization of a length-n code C to the \k-complexity of the best cycle-free realization of C grows at most logarithmically with codelength n. Such a logarithmic growth rate is, in fact, achievable.Comment: Submitted to IEEE Transactions on Information Theor

    Query Learning with Exponential Query Costs

    Full text link
    In query learning, the goal is to identify an unknown object while minimizing the number of "yes" or "no" questions (queries) posed about that object. A well-studied algorithm for query learning is known as generalized binary search (GBS). We show that GBS is a greedy algorithm to optimize the expected number of queries needed to identify the unknown object. We also generalize GBS in two ways. First, we consider the case where the cost of querying grows exponentially in the number of queries and the goal is to minimize the expected exponential cost. Then, we consider the case where the objects are partitioned into groups, and the objective is to identify only the group to which the object belongs. We derive algorithms to address these issues in a common, information-theoretic framework. In particular, we present an exact formula for the objective function in each case involving Shannon or Renyi entropy, and develop a greedy algorithm for minimizing it. Our algorithms are demonstrated on two applications of query learning, active learning and emergency response.Comment: 15 page
    corecore