14,981 research outputs found

    Borrowed contexts for attributed graphs

    Get PDF
    Borrowed context graph transformation is a simple and powerful technique developed by Ehrig and König that allow us to derive labeled transitions and bisimulation congruences for graph transformation systems or, in general, for pocess calculi that can be defined in terms of graph transformation systems. Moreover, the same authors have also shown how to use this technique for the verification of bisimilarity. In principle, the main results about borrowed context transformation do not apply only to plain graphs, but they are generic in the sense that they apply to all categories tha satisfy certain properties related to the notion of adhesivity. In particular, this is the case of attributed graphs. However, as we show in the paper, the techniques used for checking bisimilarity are not equally generic and, in particular they fail, if we want to apply them to attributed graphs. To solve this problem, in this paper, we define a special notion of symbolic graph bisimulation and show how it can be used to check bisimilarity of attributed graphs.Postprint (published version

    Checking bisimilarity for attributed graph transformation

    Get PDF
    Borrowed context graph transformation is a technique developed by Ehrig and Koenig to define bisimilarity congruences from reduction semantics defined by graph transformation. This means that, for instance, this technique can be used for defining bisimilarity congruences for process calculi whose operational semantics can be defined by graph transformation. Moreover, given a set of graph transformation rules, the technique can be used for checking bisimilarity of two given graphs. Unfortunately, we can not use this ideas to check if attributed graphs are bisimilar, i.e. graphs whose nodes or edges are labelled with values from some given data algebra and where graph transformation involves computation on that algebra. The problem is that, in the case of attributed graphs, borrowed context transformation may be infinitely branching. In this paper, based on borrowed context transformation of what we call symbolic graphs, we present a sound and relatively complete inference system for checking bisimilarity of attributed graphs. In particular, this means that, if using our inference system we are able to prove that two graphs are bisimilar then they are indeed bisimilar. Conversely, two graphs are not bisimilar if and only if we can find a proof saying so, provided that we are able to prove some formulas over the given data algebra. Moreover, since the proof system is complex to use, we also present a tableau method based on the inference system that is also sound and relatively complete.Postprint (published version

    An Algebra of Hierarchical Graphs

    Get PDF
    We define an algebraic theory of hierarchical graphs, whose axioms characterise graph isomorphism: two terms are equated exactly when they represent the same graph. Our algebra can be understood as a high-level language for describing graphs with a node-sharing, embedding structure, and it is then well suited for defining graphical representations of software models where nesting and linking are key aspects

    On the Effect of Semantically Enriched Context Models on Software Modularization

    Full text link
    Many of the existing approaches for program comprehension rely on the linguistic information found in source code, such as identifier names and comments. Semantic clustering is one such technique for modularization of the system that relies on the informal semantics of the program, encoded in the vocabulary used in the source code. Treating the source code as a collection of tokens loses the semantic information embedded within the identifiers. We try to overcome this problem by introducing context models for source code identifiers to obtain a semantic kernel, which can be used for both deriving the topics that run through the system as well as their clustering. In the first model, we abstract an identifier to its type representation and build on this notion of context to construct contextual vector representation of the source code. The second notion of context is defined based on the flow of data between identifiers to represent a module as a dependency graph where the nodes correspond to identifiers and the edges represent the data dependencies between pairs of identifiers. We have applied our approach to 10 medium-sized open source Java projects, and show that by introducing contexts for identifiers, the quality of the modularization of the software systems is improved. Both of the context models give results that are superior to the plain vector representation of documents. In some cases, the authoritativeness of decompositions is improved by 67%. Furthermore, a more detailed evaluation of our approach on JEdit, an open source editor, demonstrates that inferred topics through performing topic analysis on the contextual representations are more meaningful compared to the plain representation of the documents. The proposed approach in introducing a context model for source code identifiers paves the way for building tools that support developers in program comprehension tasks such as application and domain concept location, software modularization and topic analysis

    Intertextuality in Early Chinese Masters-Texts: Shared Narratives in Shi Zi

    Get PDF
    (Introduction) Prior to Chinese unification in 221 bc and the beginning of imperial history, there was a “golden age” of philosophical debate among various scholars about the best way to live life, construct a social contract, and act in harmony with heaven and earth. The most influential of these scholars, collectively called the “various masters,” or zhu zi 諸子, attracted disciples who recorded the teachings of their “masters” and passed these teachings on. These texts, collectively called “masters- texts” (zi shu 子書), became the bedrock of Chinese intellectual history

    Policy compass: FCM-based policy impact evaluation using public open data

    Get PDF
    This paper presents how Fuzzy Cognitive Map (FCM) technique can be applied by a policy maker to support the policy impact evaluation using the example of Policy Compass, an EU research project. The practical usage example on interest rate policy shows the potential of FCMs as a policy impact modelling tool. Through the provision of a more intuitive and easier means of using open data based on FCM techniques, the Policy Compass project can play a critical role for both policy maker and lay public to evaluate the policy impact and prepare for future policy making

    GCSE subject level conditions and requirements for mathematics, April 2014

    Get PDF
    corecore