
Checking Bisimilarity for Attributed Graph
Transformation

Fernando Orejas ?1, Artur Boronat ??12, Ulrike Golas3, and Nikos Mylonakis1

1 Universitat Politècnica de Catalunya, Spain
{orejas, nicos}@lsi.upc.edu

2 University of Leicester, UK
aboronat@mcs.le.ac.uk

3 Konrad-Zuse-Zentrum für Informationstechnik Berlin, Germany
golas@zib.de

Abstract. Borrowed context graph transformation is a technique developed by
Ehrig and Koenig to define bisimilarity congruences from reduction semantics
defined by graph transformation. This means that, for instance, this technique
can be used for defining bisimilarity congruences for process calculi whose op-
erational semantics can be defined by graph transformation. Moreover, given a
set of graph transformation rules, the technique can be used for checking bisim-
ilarity of two given graphs. Unfortunately, we can not use this ideas to check if
attributed graphs are bisimilar, i.e. graphs whose nodes or edges are labelled with
values from some given data algebra and where graph transformation involves
computation on that algebra. The problem is that, in the case of attributed graphs,
borrowed context transformation may be infinitely branching. In this paper, based
on borrowed context transformation of what we call symbolic graphs, we present
a sound and relatively complete inference system for checking bisimilarity of at-
tributed graphs. In particular, this means that, if using our inference system we
are able to prove that two graphs are bisimilar then they are indeed bisimilar.
Conversely, two graphs are not bisimilar if and only if we can find a proof saying
so, provided that we are able to prove some formulas over the given data algebra.
Moreover, since the proof system is complex to use, we also present a tableau
method based on the inference system that is also sound and relatively complete.

Key words: Attributed graph transformation, symbolic graph transformation,
borrowed contexts, bisimilarity.

1 Introduction

Bisimilarity [17] is a core concept in Computer Science and, thus, it has been studied
in very different contexts, especially in the framework of process calculi. However, the
case where processes include data and computation has received relatively little atten-
tion. We think that there are two main reasons for this. On the one hand, abstracting

? This work has been partially supported by the CICYT project (ref. TIN2007-66523) and by
the AGAUR grant to the research group ALBCOM (ref. 00516)

?? Supported by a Study Leave from University of Leicester

from data allows us to concentrate better on the study of communication and interac-
tion. On the other hand, in general, bisimilarity is already undecidable. Hence, adding
values and computation will not only add another source of undecidability, but also of
incompleteness, if the data domain is rich enough.

Borrowed context (BC) graph transformation [5] is a technique developed by Ehrig
and Koenig to define bisimilarity congruences from reduction semantics defined by
graph transformation. This means that, for instance, this technique can be used for
defining bisimilarity congruences for process calculi whose operational semantics can
be defined by graph transformation (as e.g. CCS [1], the π-calculus [6], or the ambient
calculus [2]). As usual in the area of graph transformation [3], the results in [5] apply to
all kinds of graphs that form a category that is M-adhesive [12, 4], i.e. most classes of
graphical structures. In [5] they also show how this technique can be used for checking
bisimilarity of two given graphs. Unfortunately, even if attributed graphs (i.e. graphs
whose nodes or edges are labelled with values from some given data algebra and where
graph transformation involves computation on that algebra) are an M-adhesive cate-
gory, their techniques can not be used for checking bisimilarity of this kind of graphs,
because BC transformation may be infinitely branching.

In this paper, using BC transformation, but applied to a class of symbolic graphs, we
present an inference system for checking bisimilarity of attributed graphs. The key issue
is that, using symbolic graphs, we can decouple the proof of properties about the graph
structure of the given graphs from the proof of properties of data and computations, in a
similar way that constraint logic programming [11] decouples computation or constraint
solving from deduction. The paper builds on [14], where we showed that bisimilarity
of attributed graphs is in a way equivalent to a relation, which we call s-bisimilarity,
of symbolic graphs. However, in [14] it was unclear how we could use those results to
define techniques to check bisimilarity, since the notion of s-bisimilarity is somewhat
involved.

Our inference system is shown to be sound and refutationally complete. This means
that, if using our inference system we are able to prove that two graphs are bisimilar,
then they are indeed bisimilar. Conversely, two graphs are not bisimilar if and only if
we can find a proof saying so, provided that we are able to prove some formulas over
the given data algebra. In this sense, it could be better said that our inference system is
relatively complete. In addition, since it may be not obvious how to use this inference
system, we also present a related tableau method that is also sound and complete.

The paper is organized as follows. In sections 2 and 3, we introduce borrowed con-
text transformation and attributed and symbolic graphs. In section 4, we recall the main
results from [14]. Sections 5 and 6 are devoted to present the inference system and the
tableau method. Finally, in Section 7 we review some related work and we draw some
conclusions. An appendix includes the detailed proofs of our results.

2 Graph Transformation with Borrowed Contexts

Graph transformation is a powerful approach to describe local computations on systems
whose states can be described by graphs. In our context, transformations are specified

2

by rules p : L l← K r→ R, which are spans of graph inclusions (or, in general, of some
kind of monomorphisms).

L

(1)m
��

K

(2)

oo //

��

R

��

G Doo // H

A rule p can be applied to a graph G if there is a match
monomorphism m : L → G such that pushout (1) on the
right exists. The result is the transformation G =⇒p,m H (or
just G =⇒ H if p and m are implicit), where H is defined
by the diagram on the right and (2) is also a pushout.

Intuitively, the pushout complement D is obtained by deleting from G the images
through m of all the elements (nodes and edges) in L which are not in K, and H is
obtained by adding to D all the elements in R that are not in K.

Graph transformation with borrowed contexts [5] is a technique that allows us to
study the behavior of systems described by graph transformation. In particular, it allows
us to analyze how a graph can evolve when embedded in different contexts for a given
set of transformation rules.

J

(PO)

//

��

C

��

J′oo

}}
G // C[G]

The first idea behind this technique is that we have
to specify explicitly what is the open (or visible) part of
the given graph G, i.e. what part of G can be extended
by a context. This is called the interface of the graph and
it may be any arbitrary subgraph of G. This means that
a graph with interface is an inclusion or, in general, a monomorphism J → G. Then,
a context should be a graph with two interfaces J→C← J′, so that, when we embed
J→G in the context J→C← J′, the result is a graph J′→C[G], where C[G] is obtained
gluing G and C by a pushout, as shown on the diagram on the right.

Then, we can model the behavior of a graph G by extending it with minimal contexts
allowing the application of the given rules. This means that, to apply a rule p : L←K→
R, we look for a partial match of L in G and add to G the missing part of L, so that we
can apply a standard transformation via p. As this context is the part of L that has not
been matched with G, we say that G borrows this context from the rule. We consider
these transformations as transitions labelled by the context borrowed.

Definition 1. Given a graph with interface J → G and a graph transformation rule
p : L← K → R, we say that there is a transition from J → G to I → H with label
J→ F ← I, denoted (J→ G)

J→F←I−−−−→p,m (I→ H) (or just (J→ G)
J→F←I−−−−→ (I→ H),

if the partial match m and the rule p can remain implicit) if there are graphs C,G+,D
and additional morphisms such that all the squares in the diagram below are pushouts
(PO) or pullbacks (PB) and all the morphisms are injective:

C

(PO)

//

m
��

L

(PO)
��

K

(PO)

oo

��

// R

��
G

(PO)

// G+

(PB)

Doo // H

J //

OO

F

OO

I

OO

oo

??

3

The intuition is that C is the subgraph of L that completely matches G; J→ F ← I
is the context borrowed to extend G; G+ is the graph G enriched with the borrowed
context, and H is the result of the transformation. More precisely, F , defined as the
pushout complement (if it exists) of the left lower square, extends J with all the elements
in G+ which are not in G. For instance, given the rule below on the left, and the graph
with interface J→ G below on the right

<<
""//

<<
⇥⇥

""

⇥⇥
<<
oo

""
<<

""
<<

⌧⌧

the diagram below depicts a BC transformation of J→ G using that rule.

""
<<

<<

""//
<<

⇥⇥
""

⇥⇥
<<
oo

""
<<

<<
//

<<
⇥⇥

""

⇥⇥
<<

⌧⌧ oo
""//

<<
⌧⌧ ⇥⇥""

<<
⌧⌧ ""

<<
⌧⌧

Some BC transformations are not useful for studying the behavior of a graph. This
is the case when the partial match is included in the part of the interface that remains
invariant after the transformation [5]. These transformations are called independent.

Bisimilarity is the largest symmetric relation between states that is compatible with
their observational behaviour. This means that if two states s1 and s2 are bisimilar then
for every transition from s1 labelled with ` there should be a transition from s2 with the
same label such that the resulting states should again be bisimilar. In our case, states are
graphs with interface and transitions are borrowed context transformations.

Definition 2. Given a set T of transformation rules, bisimilarity, denoted ∼, is the
largest symmetric relation on graphs with interface satisfying that if (J→ G1)∼ (J→
G2), for every label ` = J→ F ← I and every transition (J→ G1)

`−→ (I→ H1) there

exists a transition (J→ G2)
`−→ (I→ H2) such that (I→ H1)∼ (I→ H2).

Ehrig and König [5] proved that bisimilarity is a congruence, providing a relatively
simple technique for deriving bisimulation congruences out of a (graph transformation)
reduction semantics. They also proved some properties that are useful for checking
bisimilarity, for instance, that the condition to show bisimilarity can be restricted to
dependent transformations or that it is possible to use up to context techniques [19].

3 Attributed Graphs and Symbolic Graphs

There are different approaches in the literature to work with attributed graphs. We con-
sider two of them: attributed graphs as studied in [3] and symbolic graphs [15]. They

4

are both defined as a special kind of labeled graphs called E-graphs (e.g., see [3]). An
attributed graph G in the sense of [3], consists of two parts: an algebra A, and an E-
graph EG, where the labels of EG are the values of A. Similarly, an attributed graph
morphism h : 〈EG,A〉 → 〈EG′,A′〉 consists of two parts: an algebra homomorphism
halg and an E-graph morphism hgr, such that they are compatible, meaning that, for ev-
ery value v in A, halg(v) = hgr(v). Attributed graphs and morphisms form the category
AttGraphs, which is M-adhesive [3].

Attributed graph transformation rules are usually defined as spans p : L← K→ R,
where L,K and R are attributed graphs over a term algebra TΣ(X). A match morphism
m : L→ G, where G is an attributed graph over a Σ-algebra A must bind each term t
in TΣ(X) (and, in particular, each variable in X) to some value in A. The fact that malg
must be a homomorphism ensures that m(t) must be the result of the evaluation of t,
after replacing every variable x in t by m(x).

We also work with symbolic graphs because we use
them as a tool for checking bisimilarity of attributed
graphs. Intuitively, a symbolic graph may be seen as a
graph that specifies a class of attributed graphs sharing
the same data algebra. In particular, a symbolic graph SG
over the algebraA is an E-graph G, whose labels are vari-
ables from a given set X , together with a first-order formula Φ over these variables and
over the values in A. For instance, the graph on the right specifies a class of attributed
graphs, including distances in the edges, that satisfy the well-known triangle inequal-
ity. The intuition is that each substitution σ : X →A, such that A |= σ(Φ), defines an
attributed graph in the semantics of SG, obtained replacing each variable x in G by the
corresponding data value σ(x). Formally, the semantics of SG is defined:

Sem(SG) = {〈σ(G),A〉 | A |= σ(Φ)}
To enhance readability, we refer to the attributed graphs in the semantics of SG

just as σ(SG), leaving the algebra A implicit. Moreover, for (technical) simplicity, we
assume that in our symbolic graphs no variable is bound to two different elements of the
graph. It should be clear that this is not a limitation since it is enough to replace each
repeated occurrence of a variable x by a fresh variable y, and to include the equality
x = y in the associated formula.

Every attributed graph may be seen as a symbolic graph by just replacing all its
values by variables, and by including, for each value v in the graph, an equation xv = v,
in the corresponding formula Φ, where xv is the variable that has replaced the value v.
We call these kind of symbolic graphs grounded symbolic graphs. In particular, GSG(G)
denotes the grounded symbolic graph defined by G.

A morphism h : 〈G1,Φ1〉 → 〈G2,Φ2〉 is a graph morphism h : G1 → G2 such that
A |= Φ2 ⇒ h(Φ1), where h(Φ1) is the formula obtained when replacing in Φ1 every
variable x1 in the set of labels of G1 by h(x1). Symbolic graphs and morphisms over a
given data algebra A form the category SymbGraphA, which is M-adhesive [15].

In this paper, a symbolic graph transformation rule is a pair 〈L ←↩ K ↪→ R,Φ〉,
where L,K and R are graphs over a set of variables X and Φ is a formula over X and
over the values in A. We consider that a rule is a span of symbolic graph inclusions

5

〈L, true〉 ←↩ 〈K, true〉 ↪→ 〈R,Φ〉. Intuitively, Φ defines applicability conditions and re-
lates the attributes in the left and right-hand side of the rule. As usual, we can define the
application of a graph transformation rule 〈L←↩ K ↪→ R,Φ〉 by a double pushout in the
category of symbolic graphs [16]).

Definition 3. Given a transformation rule p = 〈L←↩ K ↪→ R,Φ〉 over a data algebraA
and a morphism m : L→ G, 〈G,Φ′〉=⇒r,m 〈H,Φ′∧m′(Φ)〉 if (1) and (2) are pushouts
and Φ′∧m′(Φ) is satisfiable in A.

L

(1)m
��

K

(2)

? _oo � � //

��

R

m′
��

G D? _oo � � // H

If Φ′ ∧m′(Φ) are unsatisfiable, the resulting graph 〈H,Φ′ ∧m′(Φ)〉 has an empty
semantics. This is avoided by requiring Φ′∧m′(Φ) satisfiable. The above construction
defines a double pushout in SymbGraphA [16].

A symbolic graph transformation rule can be seen as a specification of a class of
attributed graph transformation rules. More precisely, we may consider that the rule
p = 〈L←↩ K ↪→ R,Φ〉 denotes the class of all rules σ(L)←↩ σ(K) ↪→ σ(R), where σ is
a substitution such that A |= σ(Φ), i.e.:

Sem(p) = {σ(L)←↩ σ(K) ↪→ σ(R) | A |= σ(Φ)}
It is not difficult to see [15] that given a rule p and a symbolic graph SG, SG =⇒p

SG′ if for every graph G ∈ Sem(SG), G =⇒p′ G′, with G′ ∈ Sem(SG′) and p′ ∈ Sem(p).
Vice versa for every G′ ∈ Sem(SG′), there is a graph G ∈ Sem(SG) and a rule p′ ∈
Sem(p) such that G =⇒p′ G′.

4 Bisimilarity of Attributed Graphs and S-bisimilarity

Checking bisimilarity of attributed graphs, using directly the notions presented in Sec-
tion 2, faces a main problem: given an attributed graph with interface J→G and a finite
set of transformation rules, there may exist an infinite number of different transitions
(J→ G)

`−→ (I→ H). For instance, in the example in Section 6, the borrowed context
application of any of the given rules to any of the given graphs would require the assign-
ment of a value to the variable x. Hence we would have an infinite number of possible
matches, each of them corresponding to each different value.

We may think that we may avoid this infinite branching by using symbolic graph
transformation, where we are not forced to substitute every variable in the interface. So
that for deciding if two attributed graphs are bisimilar we could check if their associated
grounded graphs are bisimilar in the category of symbolic graphs. Unfortunately, in [14]
we proved that two attributed graphs may be bisimilar as attributed graphs, while their
associated grounded symbolic graphs are not bisimilar as symbolic graphs.

However, in [14] we also proved that the following notion of S-bisimilarity over
symbolic graphs could be used for proving bisimilarity of attributed graphs.

6

Definition 4. S-bisimilarity, ∼S, is the largest symmetric relation on symbolic graphs
with interface satisfying that if (J→ SG1)∼S (J→ SG2) then for every dependent tran-

sition (J→ SG1)
`−→ (I→ SG′1), with SG′1 = 〈G′1,Φ′1〉 there exists a family of conditions

{Ψi}i∈I and a family of transitions {(J→ SG2)
`−→ (I→ SHi)}i∈I , with SHi = 〈Hi,Πi〉

such that:

1. For every substitution σ′1 such that A |= σ′1(Φ
′
1), there is an index i and a substitu-

tion σi such thatA |= σi(Ψi∧Πi) and σ′1|I = σi|I , where σ|I denotes the restriction
of σ to the variables in I.

2. For every i, (I→ 〈G′1,Φ′1∧Ψi〉) ∼S (I→ 〈Hi,Πi∧Ψi〉).

Moreover, given a label `, we write (J→ SG1)∼`
S (J→ SG2) if for every dependent

transition (J → SG1)
`−→ (I → SG′1) there exists a family of conditions {Ψi}i∈I and

a family of transitions {(J → SG2)
`−→ (I → SHi)}i∈I , with SHi = 〈Hi,Πi〉 such that

conditions 1 and 2 above hold.

The definition of S-bisimilarity is easy to understand if we think that every symbolic
transition tr = (J → SG1)

`−→ (I → SG′1) denotes a family of attributed transitions. In
particular, every substitution σ′1 of the variables in SG′1 such that A |= σ(Φ′1) denotes

an attributed transition σ′1(tr) = σ′1(J→G1)
σ′1(`)−−−→ σ′1(I→ SG′1). Then, each condition

Ψi should characterize which attributed transitions denoted by tr are simulated by an
attributed transition denoted by tr′i = (J→ SG2)

`−→ (I → SHi). In this context, condi-
tions 1 and 2 just state that each σ′1(tr) must be simulated by some attributed transition
denoted by tr′i, for some i. Then, as said above, we have:

Theorem 1. [14] Given transformation rules T , (J→G1)∼ (J→G2) with respect to
Sem(T) if and only if GSG(J→ G1)∼S GSG(J→ G2) with respect to T .

In [14] we also proved that S-bisimilarity is a congruence and that up-to-context
techniques can also be applied in this setting.

5 An Inference System for Proving Bisimilarity

The results in [14], and in particular Theorem 1, provide a convenient characterization
of the bisimilarity relation for attributed graphs that avoids the infinite branching prob-
lem associated to the direct application of the results in [5]. However, it is not obvious
how this characterization can be actually used for checking bisimilarity. In particular,
the main problem is to find the conditions Ψi that are needed, according to Def. 4,
to play the bisimulation game. Below, we present seven inference rules that describe
implicitly how we can compute these conditions.

The judgements that we use in our rules are constrained sequents of the form Γ `
(J→ SG1)∼S (J→ SG2)[Ψ

+,Ψ−] or Γ ` (J→ SG1)∼`
S (J→ SG2)[Ψ

+,Ψ−], where:

– The antecedent Γ is the context, i.e. a set of facts (I→ SG) ∼S (I→ SG′) that we
assume to hold. Contexts are used for up-to inference steps.

7

– The only common variables of SG1 and SG2 are the variables in J.
– The succedent (J→ SG1)R(J→ SG2)[Ψ

+,Ψ−], where R is either ∼S or ∼`
S and

where Ψ+ and Ψ− are formulas including the variables in SG1 and SG2, is a state-
ment whose intended meaning is:
• Ψ+ is a formula where all its variables not in SG1 or in SG2 are (implicitly)

quantified universally, such that if it holds then (J→ SG1∧Ψ+)R(J→ SG2∧
Ψ+) must hold.

• If Ψ− is satisfiable then (J→ SG1)R(J→ SG2) does not hold.
where, if SG = 〈G,Φ〉, SG∧Ψ denotes the symbolic graph 〈G,Φ∧Ψ〉.

As a consequence, if we want to check if two attributed graphs, J→ G and J→ G′

are bisimilar, and if Φ and Φ′ are the conditions of GSG(G) and GSG(G′), respectively,
we will try to infer judgements of the form /0`GSG(J→G)∼S GSG(J→G′)[Ψ+,Ψ−],
where /0 is the empty context. If Φ and Φ′ imply Ψ+ then we would conclude that J→G
and J→G′ are bisimilar. The reason is that if Φ and Φ′ imply Ψ+, then GSG(J→G) =
(GSG(J)→ GSG(G)∧Ψ+) ∼S (GSG(J)→ GSG(G′)∧Ψ+) = GSG(J→ G′) and, by
Thm 1, (J→ G) ∼ (J→ G′). However, if Ψ− is satisfiable, also by Thm 1, we would
conclude that J→ G and J→ G′ are not bisimilar.

The first rule is just a consequence of how the relation ∼`
S is defined. In particular

the rule says that if for each label `, (J→ SG1)∼`
S (J→ SG2) under the condition Ψ

+
` ,

then (J→ SG1) ∼S (J→ SG2) under the conjunction of all the Ψ
+
` . Conversely, if for

each label `, (J → SG1) �`
S (J → SG2) under the condition Ψ

−
` , then (J → SG1) �S

(J→ SG2) under the disjunction of all the Ψ
−
` .

1. Labels
Γ ` (J→ SG1)∼`1

S (J→ SG2)[Ψ
+
`1
,Ψ−`1

]

. . .

Γ ` (J→ SG1)∼`n
S (J→ SG2)[Ψ

+
`n
,Ψ−`n

]

Γ ` (J→ SG1)∼S (J→ SG2)[
n∧

i=1

Ψ
+
`i
,

n∨
i=1

Ψ
−
`i
]

If {`1, . . . , `n} is the set of all labels ` such that there is a dependent transformation

(J→ SG1)
`−→ (I→ SG′1) or (J→ SG2)

`−→ (I→ SG′2).

If two graphs are equal then they are obviously bisimilar. However, if their underly-
ing E-graphs are equal, but their conditions are different, the rule below tells us that the
two graphs are bisimilar under the conjunction of their associated conditions.

2. Equality
Γ ` (J→ 〈G,Φ〉)∼S (J→ 〈G,Φ′〉)[Φ∧Φ

′, false]

A trivial rule that is needed for technical reasons in the completeness proof:

3. Trivial
Γ ` (I→ SG)∼`

S (I→ SG′)[false, false]

8

The fourth rule is also quite simple. Let us assume that Cond(SG, `) is the condition
that covers all possible transitions of SG with label `, i.e.

Cond(SG, `) =
∨

p,m Φp,m,

such that (J → SG)
`−→p,m (I → 〈G′,Φp,m〉). Then, if ¬Cond(SG, `) holds, no tran-

sition of SG with label ` is possible. Therefore, if ¬Cond(SG1, `)∧¬Cond(SG2, `)
holds no transition with label ` is possible of neither SG1 nor SG2. Thus, under
that condition they are `-bisimilar. Conversely, when (Cond(SG1, `)\Cond(SG2, `))∨
(Cond(SG2, `)\Cond(SG1, `)) holds, either there is a transition with label ` from SG1,
but not from SG2, or vice versa, meaning that are not `-bisimilar.

4. Complement
Γ ` (J→ SG1)∼`

S (J→ SG2)[Ψ
+,Ψ−]

where

Ψ
+ =¬Cond(SG1, `)∧¬Cond(SG2, `)

Ψ
− =(Cond(SG1, `)\Cond(SG2, `))∨

(Cond(SG2, `)\Cond(SG1, `))

The next rule states that if (J→ SG1) and (J→ SG2) are bisimilar when Ψ
+
1 holds

and, also, when Ψ
+
2 holds, then they are bisimilar when either of them hold. Conversely,

If (J → SG1) and (J → SG2) are not bisimilar when Ψ
−
1 is satisfiable and also when

Ψ
−
2 is satisfiable, then if any of them are satisfiable the two graphs are not bisimilar.

5. Disjunction

Γ ` (J→ SG1)∼`
S (J→ SG2)[Ψ

+
1 ,Ψ

−
1] Γ ` (J→ SG1)∼`

S (J→ SG2)[Ψ
+
2 ,Ψ

−
2]

Γ ` (J→ SG1)∼`
S (J→ SG2)[Ψ

+
1 ∨Ψ

+
2 ,Ψ

−
1 ∨Ψ

−
2]

The following rule is a bit more involved. It essentially follows the definition of
∼`

S. If (J → SG)
`−→(p,m) (I → SH(p,m)), the disjunction of all the conditions associ-

ated with the transformations (J → SG′) `−→(p′,m′) (I → SH ′(p′,m′)) that are bisimilar to
(I→ SH(p,m)) should cover Φ(p,m). But, in general, we cannot ensure this. We can only
ensure that, under the condition Ψ

+
(p,m) =

∨
(p′,m′) Ψ

+
(p,m),(p′,m′), the attributed transitions

denoted by `−→(p,m) are simulated by transitions denoted by `−→(p′,m′). This means that

under the condition Φ(p,m) ∧Ψ
+
(p,m) the transition (J → SG)

`−→(p,m) (I → SH(p,m)) is
simulated by transitions from (J→ SG′). On the other hand, it may happen that on the

condition Φ(p,m) \Ψ
+
(p,m) the transition (J→ SG)

`−→(p,m) (I→ SH(p,m)) is not simulated
by any transition from (J → SG′). Hence, if Φ(p,m) \Ψ

+
(p,m) holds, we cannot ensure

that (J→ SG) ∼`
S (J→ SG′). Since this is true for each (p,m), all `- transitions from

(J→ SG) are simulated by `′- transitions from (J→ SG′) when any of the conditions

9

Φ(p,m)∧Ψ
+
(p,m) holds, unless any of the conditions Φ(p,m) \Ψ

+
(p,m) holds, and vice versa

for the `- transitions from (J → SG′). Altogether, this means that we can ensure that
(J→ SG)∼`

S (J→ SG′) on the condition Ψ+ as defined in the rule.

Conversely, if Ψ
−
(p,m),(p′,m′) is satisfied then (J→ SG)

`−→(p,m) (I → SH(p,m)) is not

simulated by (J → SG′) `−→(p′,m′) (I → SH ′(p′,m′)). So, if the conjunction of conditions

Ψ
−
(p,m) =

∧
(p′,m′) Ψ

−
(p,m),(p′,m′) is satisfied then (J → SG)

`−→(p,m) (I → SH(p,m)) is not
simulated by any `-transition from (J→ SG′). But this means that if any of the condi-
tions Ψ

−
(p,m) is satisfied then no transition from (J→ SG) can be simulated, and some-

thing similar happens with respect to (J→ SG′). In short, this means that we can ensure
that if Ψ−, as defined in the rule, is satisfied then (J→ SG)�`

S (J→ SG′).
Finally, the rule also states that, when proving (I → SH(p,m)) ∼S (I → SH ′(p′,m′))

we may assume that (J→ SG) ∼S (J→ SG′) already holds, so that we can use up-to-
context techniques that have been shown valid for S-bisimilarity [14].

6. Bisimulation

Γ∪{(J→ SG)∼S (J→ SG′)} `∧
(p,m),(p′,m′)

(I→ SH(p,m))∼S (I→ SH ′(p′,m′))[Ψ
+
(p,m),(p′,m′),Ψ

−
(p,m),(p′,m′)]

Γ ` (J→ SG)∼`
S (J→ SG′)[Ψ+,Ψ−]

For all rules p, p′ and partial matches m,m′ such that (J→ SG)
`−→(p,m) (I→ SH(p,m))

and (J→ SG′) `−→(p′,m′) (I→ SH ′(p′,m′)), and where, if SH(p,m) = 〈H(p,m),Φ(p,m)〉 and
SH ′(p′,m′) = 〈H ′(p′,m′),Φ

′
(p′,m′)〉, then Ψ+,Ψ− are defined:

Ψ
+ =

(∨
(Φ(p,m)∧Ψ

+
(p,m))\

∨
(Φ(p,m) \Ψ

+
(p,m))

)
∧(∨

(Φ(p′,m′)∧Ψ
+
(p′,m′))\

∨
(Φ(p′,m′) \Ψ

+
(p′,m′))

)
Ψ
− =(

∨
(Ψ−(p,m)∧Φ(p,m))∨

∨
(Ψ−(p′,m′)∧Φ(p′,m′))

and where

Ψ
+
(p,m) =

∨
(p′,m′)

Ψ
+
(p,m),(p′,m′) Ψ

+
(p′,m′) =

∨
(p,m)

Ψ
+
(p,m),(p′,m′)

Ψ
−
(p,m) =

∧
(p′,m′)

Ψ
−
(p,m),(p′,m′) Ψ

−
(p′,m′) =

∧
(p,m)

Ψ
−
(p,m),(p′,m′)

The last rule is based on the result from [14] that shows that the up to con-
text technique is sound for proving S-bisimilarity. This means that, when trying to
prove (J → SG) ∼S (J → SG′), we may assume that for all contexts J → F ← I:
(I → F [SG1]) ∼S (I → F [SG2]). That is that if (J → SG) ∼S (J → SG′) is part of the
context, then we could infer (I → F [SG1]) ∼S (I → F [SG2])[true, false]. But this can

10

be generalized to the case where the judgement to infer does not exactly include F [SG1]
and F [SG2], but (F [SG1]∧Φ) and (F [SG2]∧Φ′) as the rule shows:

7. Up-to-context

Γ∪{(J→ SG)∼S (J→ SG′)} ` (I→ SH)∼S (I→ SH ′)[¬Φ1∧¬Φ
′
1, false]

where, SH = 〈H,Φ∨Φ1〉 and SH ′ = 〈H ′,Φ′ ∨Φ′1〉, and 〈H,Φ〉 and 〈H ′,Φ′〉 are the
result of embedding SG and SG′, respectively, in a context J→ F ← I.

We can prove that the above rules are sound and complete. More precisely:

Theorem 2 (Soundness of the inference rules). Given attributed graphs J→ G1 and
J→ G2, then:

– If we can infer /0 ` (J→ GSG(G1))∼S (J→ GSG(G2))[Ψ
+,Ψ−], and ΦGSG(G1)∧

ΦGSG(G2) implies Ψ+ in A then J→ G1 ∼ J→ G2.
– If we can infer /0 ` (J→ GSG(G1))∼S (J→ GSG(G2))[Ψ

+,Ψ−] and Ψ− is satis-
fiable in A then J→ G1 � J→ G2.

The proof essentially follows the intuitions of the rules that are given above.

Theorem 3 (Completeness of the inference rules). Given attributed graphs J→ G1
and J → G2, if (J → G1) � (J → G2) then, using the above rules, we can infer
/0 ` (J→ GSG(G1))∼S (J→ GSG(G2))[Ψ

+,Ψ−], where /0 is the empty context and
Ψ− is a satisfiable condition.

The proof is done by induction, using the standard definition of stratified bisimilarity
[9]. This is sound, since for each J→G and each ` there is a finite number of transitions
(J→ SG)

`−→ (I→ SH).

6 A Tableau Method for Checking Bisimilarity

In the previous section we have presented a set of rules for proving or disproving bisim-
ilarity of attributed graphs. The problem with these rules is that it may not be obvious
how to use them to check whether two given graphs J→G1 and J→G2 are bisimilar. In
this section, we describe a method with this purpose, based on the construction of a kind
of constrained tableau [7], i.e. a tableau whose nodes include constraints, following the
inference rules from the previous section.

More precisely, our tableaux are trees whose nodes are labelled by formulas (J→
SG1)∼S (J→ SG2) or (J→ SG1)∼`

S (J→ SG2) and by constraints Ψ+ and Ψ−, as our
judgements in the proof rules. To construct a tableau for J→ G1 and J→ G2, to check
if they are bisimilar, we start creating the root, labelling it with GSG((J → G1)) ∼S
GSG((J → G2))[false, false]. Then, we start with an iteration where, at each step, we
choose a node in the tableau and we apply to it either an expansion step (just when the
node is a leaf) or a constraint computation step. We stop when the tableau is closed, i.e.

11

either when ΦGSG(G1) and ΦGSG(G2) imply Ψ+ or when Ψ− is satisfiable in A, where
Ψ+ and Ψ− are the constraints in the root. In the former case we would conclude that
J → G1 and J → G2 are bisimilar, and in the latter case we would conclude that they
are not.

As said above, the steps for the construction of the tableau can be either expansion
steps or constraint computation steps. There are two kinds of expansion steps:
1. Label Expansion If a leaf n is labelled with the formula (J→ SG1)∼S (J→ SG2),
we create a child of n and we label it with (J → SG1) ∼`

S (J → SG2)[false, false], for
each ` such that there is a dependent transition labelled with ` from (J→ SG1) or from
(J→ SG2).
2. Bisimulation Expansion If a leaf n is labelled with the formula (J→ SG1)∼`

S (J→
SG2), for each pair of transitions (J→ SG1)

`−→ (I→ SG′1) and (J→ SG2)
`−→ (I→ SG′2),

we create a child of n and we label it with (I→ SG′1)∼S (I→ SG′2)[false, false].
There are five kinds of constraint computation steps:

3. Labels Computation If a node n is labelled with (J→ SG1)∼S (J→ SG2)[Π
+,Π−],

we can compute new constraints Ψ+ = Π+∨∧n
i=1 Ψ

+
i and Ψ− = Π−∨∨n

i=1 Ψ
−
i , where

Ψ
+
1 ,Ψ

−
1 . . . ,Ψ+

n ,Ψ
−
n are the constraints of the descendants of that node.

4. Complement Computation If a node n is labelled with (J → SG1) ∼S (J →
SG2)[Ψ

+
1 ,Ψ

−
1] then we can compute new constraints Ψ+ and Ψ− for n as follows:

Ψ+ = Ψ
+
1 ∨ (¬Cond(SG1, `)∧¬Cond(SG2, `))

Ψ− = Ψ
−
1 ∨ (Cond(SG1, `)\Cond(SG2, `))∨ (Cond(SG2, `)\Cond(SG1, `))

5. Equality Computation If a node n is labelled with (J → SG1) ∼S (J →
SG2)[Ψ

+
1 ,Ψ

−
1], then we can compute a new constraint Ψ+ = Ψ

+
1 ∨ (Φ1 ∧Φ′1) for n,

leaving the negative constraint Ψ
−
1 unchanged.

6. Bisimulation Computation If a node n is labelled with (J → SG1) ∼S (J →
SG2)[Ψ

+
1 ,Ψ

−
1] then we can compute new constraints Ψ+ and Ψ− for n as follows:

Ψ
+ = Ψ

+
1 ∨

(∨
(Φ(p,m)∧Ψ

+
(p,m))\

∨
(Φ(p,m) \Ψ

+
(p,m))

)
∧(∨

(Φ(p′,m′)∧Ψ
+
(p′,m′))\

∨
(Φ(p′,m′) \Ψ

+
(p′,m′))

)
Ψ
− = Ψ

−
1 ∨(

∨
(Ψ−(p,m)∧Φ(p,m))∨

∨
(Ψ−(p′,m′)∧Φ(p′,m′))

where the conditions Φ(p,m), Ψ
+
(p,m), Ψ

−
(p,m), Φ(p′,m′), Ψ

+
(p′,m′), and Ψ

−
(p′,m′) are as in the

Bisimulation inference rule.
7. Up-to-Context Computation If a node n is labelled with (J → SG1) ∼S (J →
SG2)[Ψ

+
1 ,Ψ

−
1], if there is an ancestor of n labelled with the formula (I→ SG2)∼S (I→

SG′2), and if there is a context I → F ← J, where F [SG2] = 〈G1,Π1〉 and F [SG′2] =
〈G′1,Π′1〉 then we can compute a new constraint Ψ+ = Ψ

+
1 ∨(¬(Φ1 \Π1)∧¬(Φ′1 \Π′1))

for n, leaving unchanged the negative constraint Ψ
−
1 .

Then, we have:

Theorem 4 (Soundness). If we can construct a closed tableau for graphs J→ G1 and
J→ G2 whose root is labelled by the constraints Ψ+ and Ψ−, then:

12

– If ΦGSG(G1)∧ΦGSG(G2) implies Ψ+ in A then J→ G1 ∼ J→ G2.
– If Ψ− is satisfiable in A then J→ G1 � J→ G2.

The proof is a direct consequence of the soundness of the inference rules presented
in the previous section.

Theorem 5 (Completeness). If (J → G1) � (J → G2), we can construct a closed
tableau for J → G1 and J → G2 whose negative constraint at the root Ψ− is satisfi-
able in A.

The proof is very similar to the completeness proof of the inference rules.

""

⇥⇥
<<
oo

SG1 SG2

""
<<

""//
<<

JLet us now see an example of the construction
of a tableau. Suppose that we want to check if the
graphs (J→ SG1) and (J→ SG2) on the right are
bisimilar with respect to the rules depicted below (for simplicity, the rules are presented
including only the left and right-hand sides, leaving the intermediate part implicit). Part
of the tableau that we would use for this proof is shown in Fig. 1. The interfaces of the
graphs are not depicted because, in the transformations considered, J (with the obvious
inclusions) would be the interface of all the graphs in the tableau.

!! !!

⇥⇥

x oo //
==

x>0+3
==

//oo x

// x

x oo //

>>
x<0+3

>>

// x

>>

+3 x oo

>>

//

!!

⇥⇥

!!

⇥⇥

x oo
==
oo x 6=0+3

==
//oo x

!!

⇥⇥

!!

⇥⇥
==
oo x// +3 x oo

==
oo

(1)

(2)

(3)

(4)

(5)

The construction of the tableau starts with the creation of the root and the appli-
cation of a label expansion step. Due to lack of space, we suppose that we can only
transform SG1 using rules (1) and (2) and SG2 using rule (4), and using a borrowed
context consisting of the square node, together with the attribute x and an edge to the
leftmost round node. Actually, there are other transformations with other borrowed con-
texts that we will not consider. This means that this step would create just one node, cor-
responding to that borrowed context. Let us call this context (and label) `1. Then, we
proceed with bisimulation expansion corresponding to the BC transformations men-
tioned above. This step creates two nodes. We can see that the graphs in the node on the
left are equal (except for the condition), so we can apply an equality computation step,
yielding [Ψ+

3 ,Ψ
−
3] = [x > 0, false]. Now, we apply label expansion followed by bisim-

ulation expansion to the node on the right. Again, we consider that the only possible
BC transformations of these graphs correspond to the application of rules (3) and (5)
without adding any context (i.e. the label would be J→ J← J). Now, we can apply up
to context computation to the bottom right node of the tableau, with respect to the node
on the root and the context `1, yielding [Ψ+

6 ,Ψ
−
6] = [x < 0∧ x 6= 0, false]. Then, going

bottom up, using twice labels and bisimulation computation, we can compute the con-
straints [Ψ+

5 ,Ψ
−
5] = [x < 0∧x 6= 0, false], [Ψ+

4 ,Ψ
−
4] = [x < 0∧x 6= 0, false], [Ψ+

2 ,Ψ
−
2] =

13

with x 6= 0 with x < 0

[+
1 , �

1]

[+
2 , �

2]

[+
3 , �

3] [+
4 , �

4]

[+
5 , �

5]

[+
6 , �

6]

with x > 0 with x 6= 0

with x 6= 0with x < 0

⇠

⇠ ⇠

⇠

""//
<<

!!
x oo //

==
!!

⇥⇥

x

==
oo oo

""

⇥⇥
<<
oo

!!

⇥⇥
==

//oo x
!!
// x==

""//
<<

""

⇥⇥
<<
oo

!!

⇥⇥
==

//oo x
!!

⇥⇥
==

//oo x

with x < 0 with x 6= 0

!!
// x==

!!

⇥⇥
==

//oo x

⇠`1

⇠`2

Fig. 1. (Part of a) Tableau.

[x > 0∨ (x < 0∧ x 6= 0), false], and [Ψ+
1 ,Ψ

−
1] = [x > 0∨ (x < 0∧ x 6= 0), false]. Finally,

since we supposed that there are no other BC-transformations of the root, applying com-
plement computation to it, we have [Ψ+

1 ,Ψ
−
1] = [x > 0∨ (x < 0∧ x 6= 0)∨ x = 0, false].

To end, since (x > 0∨ (x < 0∧ x 6= 0)∨ x = 0)≡ true, we would conclude that the two
graphs are bisimilar.

7 Related Work and Conclusion

As said in the introduction, bisimilarity [17] has been studied in many different con-
texts, but the case where processes include data and computation has received relatively
little attention. An exception is [8], where the authors define a symbolic bisimilarity
relation for value-passing CCS and present a proof system that is complete for finite
symbolic transition systems. Our approach shares a number of ideas with [8]. Name-
passing processes, like the processes in the π-calculus [13], can be seen as a special case
of value-passing processes. In that context, open bisimilarity [20] could correspond to
bisimilarity of attributed graphs, as defined directly in terms of BC transformations on
that category, and its symbolic version would be somewhat related to S-bisimilarity.

With respect to BC graph transformation [5], in [18] an algorithm for checking
bisimilarity of graphs is presented, but this algorithm would not be applicable to the
case of attributed graphs. Moreover, no correctness proof is included. On the other hand,
in [10], the authors extend BC-transformation to the case of conditional transformation
systems. Even if their results mainly apply to the case of non-attributed graphs, their
notion of context transition is, in a way, related to our symbolic transitions and so they
are the corresponding notions of bisimilarity.

14

In this paper, we have presented a proof system and a related tableau method for
checking bisimilarity of attributed graphs, using the notion of S-bisimilarity presented
in [14], proving their soundness and refutational completeness. We think that the main
advantages of our approach are, first, its generality, since it could be used to check
bisimilarity of any kind of formalism whose semantics is expressed in terms of graph
transformation; and, second, the way in which our approach decouples the proofs on
the graph structure from the proofs on the given data algebra.

References

1. Bonchi, F., Gadducci, F., König, B.: Synthesising CCS bisimulation using graph rewriting.
Inf. Comput. 207(1), 14–40 (2009)

2. Bonchi, F., Gadducci, F., Monreale, G.V.: Labelled transitions for mobile ambients (as syn-
thesized via a graphical encoding). Electr. Notes Theor. Comput. Sci. 242(1), 73–98 (2009)

3. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transfor-
mation. EATCS Monographs of Theoretical Comp. Sc., Springer (2006)

4. Ehrig, H., Golas, U., Habel, A., Lambers, L., Orejas, F.: M-adhesive transformation systems
with nested application conditions. part 1. Math. Struct. in Com. Sc. to appear (2012)

5. Ehrig, H., König, B.: Deriving bisimulation congruences in the DPO approach to graph
rewriting with borrowed contexts. Math. Struct. in Com. Sc. 16(6), 1133–1163 (2006)

6. Gadducci, F.: Graph rewriting for the pi-calculus. Math. Struct. in Com. Sc. 17(3), 407–437
(2007)

7. Giese, M., Hähnle, R.: Tableaux + constraints. In: TABLEAUX 2003 position paper (2003)
8. Hennessy, M., Lin, H.: Symbolic bisimulations. Theor. Comput. Sci. 138(2), 353–389 (1995)
9. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J. ACM

32(1), 137–161 (1985)
10. Hülsbusch, M., König, B.: Deriving bisimulation congruences for conditional reactive sys-

tems. In: Proc. of FOSSACS ’12. pp. 361–375. Springer (2012), LNCS/ARCoSS 7213
11. Jaffar, J., Maher, M., Marriot, K., Stuckey, P.: The semantics of constraint logic programs.

The Journal of Logic Programming 37, 1–46 (1998)
12. Lack, S., Sobocinski, P.: Adhesive and quasiadhesive categories. Theor. Inf. App. 39, 511–

545 (2005)
13. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I and II. Inf. Comput.

100(1), 1–77 (1992)
14. Orejas, F., Boronat, A., Mylonakis, N.: Borrowed contexts for attributed graphs. In: Graph

Transformations (ICGT 2012). LNCS, vol. 7562, pp. 126–140. Springer (2012)
15. Orejas, F., Lambers, L.: Symbolic attributed graphs for attributed graph transformation. ECE-

ASST 30 (2010)
16. Orejas, F., Lambers, L.: Lazy graph transformation. Fund. Inf. 118, 65–96 (2012)
17. Park, D.: Concurrency and automata on infinite sequences. In: Theoretical Computer Sci-

ence, 5th GI-Conference. LNCS, vol. 104, pp. 167–183. Springer (1981)
18. Rangel, G., König, B., Ehrig, H.: Bisimulation verification for the DPO approach with bor-

rowed contexts. ECEASST 6 (2007)
19. Sangiorgi, D.: On the proof method for bisimulation. In: Mathematical Foundations of Com-

puter Science 1995, 20th International Symposium, MFCS’95. LNCS, vol. 969, pp. 479–488.
Springer (1995)

20. Sangiorgi, D.: A theory of bisimulation for the pi-calculus. Acta Inf. 33(1), 69–97 (1996)

15

APPENDIX
In this appendix we provide some basic definitions and results that are omitted in

the paper. The appendix also includes the proofs of the results presented in the paper.
In Section 2 we introduced the notion of independent borrowed context transfor-

mation only informally. As said, these are transformations where the partial match is
included in the part of the interface that remains invariant after the transformation. For-
mally:

Definition 5. The borrowed context transformation depicted in the diagram below is
independent if there are morphisms j1 : C→ K and j2 : C→ J such that i1 = l ◦ j1 and
m = i2 ◦ j2.

C

(PO)

i1 //

m
��

L

(PO)
��

K

(PO)

loo

��

// R

��
G

(PO)

// G+

(PB)

Doo // H

J //

i2

OO

F

OO

I

OO

oo

??

The following proposition is used in the the proof of Theorem 2.

Proposition 1. [14] If (J → 〈G1,Φ1〉) ∼S (J → 〈G2,Φ2〉)) then, for any set of con-
ditions Φ over the common variable s of Φ1 and Φ2, (J → 〈G1,Φ1 ∪Φ〉) ∼S (J →
〈G2,Φ2∪Φ〉).

Proof of Theorem 2
We have to prove that, for each inference rule, if the premises hold, then the conclu-

sions also hold. We consider each rule separately:

1. Labels Let us assume that the conditions in Γ hold and (J → SG1) ∼`
S (J →

SG2)[Ψ
+
`1
,Ψ−`1

], . . .Γ ` (J → SG1) ∼`
S (J → SG2)[Ψ

+
`n
,Ψ−`n

] also hold. Therefore, we
have to prove that (J→ SG1) ∼S (J→ SG2)[

∧n
i=1 Ψ

+
`i
,
∨n

i=1 Ψ
−
`i
]. Suppose that SG1 =

〈G1,Φ1〉 and SG2 = 〈G2,Φ2〉:

– We have to show that 〈G1,Φ1 ∧
∧n

i=1 Ψ
+
`i
〉 ∼S 〈G2,Φ2 ∧

∧n
i=1 Ψ

+
`i
〉 or, equiva-

lently, that for every label ` j, 〈G1,Φ1∧
∧n

i=1 Ψ
+
`i
〉 ∼` j

S 〈G2,Φ2∧
∧n

i=1 Ψ
+
`i
〉. But, by

Proposition 1, if 〈G1,Φ1 ∧Ψ
+
` j
〉 ∼` j

S 〈G2,Φ2 ∧Ψ
+
` j
〉 then 〈G1,Φ1 ∧

∧n
i=1 Ψ

+
`i
〉 ∼` j

S

〈G2,Φ2∧
∧n

i=1 Ψ
+
`i
〉.

– Suppose that
∨n

i=1 Ψ
−
`i

is satisfiable. This means that there is a j : 1 ≤ j ≤ n such

that Ψ
−
`i

is satisfiable. This means that GS1 �
` j
S GS2, implying GS1 �S GS2.

2. Equality Trivial, since equal graphs are always bisimilar and never non-bisimilar.

16

3. Trivial The soundness of this rule is straightforward.

4. Complement Suppose that SG1 = 〈G1,Φ1〉 and SG2 = 〈G2,Φ2〉
– It is straightforward that 〈G1,Φ1∧Ψ+〉 ∼`

S 〈G2,Φ2∧Ψ+〉, since no transformation
with label ` can be applied neither to G1 nor to G2 when Ψ+ holds.

– Suppose that Ψ− is satifiable, this means that either there is a transformation (J→
SG1)

`−→ (I→ SG′1) and there is no transformation from (J→ SG2) with label `, or
vice versa. Thus, (J→ SG1)�`

S (J→ SG2).

5. Disjunction

– If we know that (J→ SG1) and (J→ SG2) are bisimilar when Ψ
+
1 holds and also

when Ψ
+
2 holds, then we also know that they are bisimilar when either of them

hold.
– Assuming that (J→ SG1) and (J→ SG2) are not bisimilar when Ψ

−
1 is satisfiable

and also when Ψ
−
2 is satisfiable, then if Ψ

−
1 ∨Ψ

−
2 is satisfiable this means that either

Ψ
−
1 or Ψ

−
2 are satisfiable. Therefore, in that case, (J→ SG1) and (J→ SG2) are not

bisimilar.

6. Bisimulation Suppose that SG = 〈G,Φ〉 and SG′ = 〈G′,Φ′〉
– To prove, under a given set of assumptions Γ, that (J → 〈G,Φ ∧ Ψ+〉) ∼`

S
(J → 〈G′,Φ′ ∧ Ψ+〉) we have to show that for every transformation (J →
〈G,Φ∧Ψ+〉 `−→(p,m) (I→ 〈H(p,m),Φ(p,m)∧Ψ+〉) there exist a family of conditions

{Π(p′,m′)} and a family of transformations {(J → 〈G′,Φ′ ∧Ψ+〉) `−→(p′,m′) (I →
〈H ′(p′,m′),Φ

′
(p′,m′)∧Ψ+〉) such that:

1. For every substitution σ such that A |= σ(Φ(p,m) ∧Ψ+), there is an index
(p′,m′) and a substitution σ(p′,m′) such that A |= σ(p′,m′)(Φ

′
(p′,m′) ∧Ψ+ ∧

Π(p′,m′)) and σ|I = σ(p′,m′)|I .
2. For every (p′,m′), (I → 〈H(p,m),Φ(p,m) ∧ Ψ+ ∧ Π(p′,m′)〉) ∼S (I →
〈H ′(p′,m′),Φ(p′,m′)∧Ψ+∧Π(p′,m′)〉).

Moreover, since the assumptions in Γ are used in connection with rule 5 to prove the
above properties 1. and 2., according to [14], where we have proved the soundness
of up to context proofs, in addition to Γ, we may use the assumption (J→ SG)∼S
(J→ SG′).
Now, let Π(p′,m′) = Ψ

+
(p,m),(p′,m′). If A |= σ(Φ(p,m) ∧Ψ+) then there must be

a pair (p′,m′) such that A |= σ(Φ(p,m) ∧Ψ
+
(p,m),(p′,m′)) and σ|I(Φ′(p′,m′) ∧Ψ+ ∧

Ψ
+
(p,m),(p′,m′)) is satisfiable, otherwise, according to the definitions of Ψ

+
(p,m) and

Ψ+, A 2 σ(Φ(p,m) ∧Ψ
+
(p,m),(p′,m′)) and, hence, A 2 σ((Φ(p,m) ∧Ψ+), against the

hypothesis.
On the other hand, by hypothesis, we have that for every (p′,m′)(J→ SG(p,m))∼`

S
(J → SG(p′,m′))[Ψ

+
(p,m),(p′,m′),Ψ

−
(p,m),(p′,m′)], and this means that for every (p′,m′),

(I → 〈G′1,Φ ∧Ψ+ ∧Ψ
+
(p,m),(p′,m′)〉) ≡ (I → 〈G′1,Φ ∧Ψ

+
(p,m),(p′,m′)〉) ∼S (I →

〈Hi,Φ(p′,m′)∧Ψ
+
(p,m),(p′,m′)〉)≡ (I→ 〈Hi,Φ(p′,m′)∧Ψ+∧Ψ

+
(p,m),(p′,m′)〉).

17

– Suppose that Ψ− is satisfiable. By definition of Ψ−, there must exist (p,m) or
(p′,m′) such that (Ψ−(p,m)∧Φ(p,m)) or (Ψ−(p′,m′)∧Φ(p′,m′)) are satisfiable. Let us sup-
pose that (Ψ−(p,m) ∧Φ(p,m)) is satisfiable. By definition of Ψ

−
(p,m) this implies that,

for every (p′,m′), Ψ
−
(p,m),(p′,m′) is also satisfiable. Let σ be a substitution that satis-

fies all the previous conditions. Then, given the transformation (J→〈G,Φ〉 `−→(p,m)

(I→ 〈H(p,m),Φ(p,m)〉), there is no condition Π′(p′,m′) such that A |= σ(Π′(p′,m′)) and

such that, if (J→〈G′,Φ′∧Π′(p′,m′)〉)
`−→(p′,m′) (I→〈H ′(p′,m′),Φ

′
(p′,m′)∧Π′(p′,m′)〉), we

have (I→ 〈H(p,m),Φ(p,m)∧Π(p′,m′)〉) ∼S (I→ 〈H ′(p′,m′),Φ(p′,m′)∧Π(p′,m′)〉). Oth-

erwise, we would have (J→ 〈H(p,m),Φ(p,m)〉) ∼`
S (J→ 〈H ′(p′,m′),Φ

′
(p′,m′)〉) against

the hypothesis.

7. Up to context The soundness of this rule is a direct consequence of the fact that up
to context proofs are valid for S-bisimilarity [14]. ut

Proof of Theorem 3
Let us suppose that J → G1 and J → G2 are not bisimilar. Assuming that the set

of transformation rules is finite, we know that for every graph J → G there is a finite
number of transformations (J → G)

`−→ (I → H) for each label `. As a consequence,
we may assume that there is an n ≥ 0 such that (J → G1) �n (J → G2), where ∼0

is the total relation and ∼n+1 is the largest symmetric relation satisfying that if (J →
G1)∼n+1 (J→G2), then for every transformation (J→G1)

`−→ (I→H1) there exists a

transformation (J→ G2)
`−→ (I→ H2) such that (I→ H1)∼n (I→ H2).

Let us now prove by induction that for every n, if (J→G1)�n (J→G2) then, using
the above rules, for every contex Γ and for all symbolic graphs with interface J′→ SG1
and J′→ SG2, such that the only common variables of SG1 and SG2 are the variables in
J′, and such that if σ is a substitution of the variables of SG1 and SG2 where (J→Gi) =
σ(J′→ SGi) with i = 1,2, then we can infer Γ ` (J′→ SG1)∼S (J′→ SG2)[Ψ

+,Ψ−],
where σ(Ψ−) is satisfiable.

The case n = 0 is trivial since all graphs are bisimilar at level 0. Suppose that (J→
G1)�n+1 (J→G2). Then, there is a borrowed context transformation (J→G1)

`−→ (I→
H1) and there is no transition (J→ G2)

`−→ (I→ H2) such that (I→ H1) ∼n (I→ H2).
We consider two cases:

1. There is no transition (J→ G2)
`−→ (I→ H2):

If (J→ G1)
`−→ (I→ H1) this means that there is a transition (J′→ SG1)

`′−→ (I′→
SH1) and a substitution σ′ extending σ to the new variables added by the rule, which
are in the interface I′, with ` = σ′(`′) and (I→ H1) = σ′(I′→ SH1). Hence, A |=
σ′(Cond(SG1, `

′)). On the other hand, if there is no transition (J → G2)
`−→ (I →

H2), for every transition (J′ → SG2)
`′−→ (I′ → 〈H2,Φ2〉), σ′(Φ2) is not satisfiable

since, otherwise, if σ′′ is a substitution extending σ′ such that A |= σ′′(Φ2), we

18

would have (J → G2)
`−→ (I → σ′′(H2)), against the hypothesis. This means that

A |= σ′(¬Cond(SG2, `
′)).

Now, if we apply the Trivial rule and then the Complement rule we can infer
Γ ` (J′→ SG1)∼`′

S (J′→ SG2)[Ψ
+
`′ ,Ψ

−
`′], where Ψ

+
`′ and Ψ

−
`′ are defined accord-

ing to the rule. Moreover, since we have proved that A |= σ′(Cond(SG1, `
′)) and

A |= σ′(¬Cond(SG2, `
′)), we know that Ψ

−
`′ is satisfiable. Finally, using the Labels

rule, we would infer, Γ ` (J′→ SG1)∼S (J′→ SG2)[Ψ
+,Ψ−] where Ψ− is satisfi-

able.
2. There are transformations (J→ G2)

`−→ (I→ H2) but (I→ H1)�n (I→ H2):

As in the previous case, if (J → G1)
`−→ (I → H1) this means that there is a

transition (J′ → SG1)
`′−→ (I′ → SH1) and a substitution σ1 extending σ, with

` = σ1(`
′) and (I → H1) = σ1(I′ → SH1). On the other hand, for every tran-

sition (I → SG2)
`′−→ (I → SH2) and every substitution σ2 of the variables

of SG2 such that I = σ1(I′) = σ2(I′) we have that (I → σ1(SH1)) � (I →
σ2(SH2)), or, if we define σ′ as the union of σ1 and σ2, (I → σ′(SH1)) �
(I → σ′(SH2)). Then, by induction, for every transformation (I → SG2)

`′−→ (I →
SH2) we can infer Γ1 ` (I→ SH1)∼S (I→ SH2)[Ψ

+
1 ,Ψ

−
1], where Ψ

−
1 is satis-

fiable. Now, according to the Bisimulation rule, this means that we can infer
Γ ` (I→ SG1)∼`′

S (I→ SG2)[Ψ
+
`′ ,Ψ

−
`′], where Ψ

−
`′ is satisfiable. Finally, by the La-

bels rule, we can infer Γ ` (I→ SG1)∼S (I→ SG2)[Ψ
+,Ψ−], where Ψ− is satisfi-

able.

ut

Proof of Theorem 4 Direct consequence of Theorem 2 of the inference rules, since the
rules for the construction of the tableau coincide essentially with the inference rules.

ut

Proof of Theorem 5 This proof is very similar to the proof of Theorem 3. In particular,
we prove by induction on stratified bisimilarity that if (J→ G1) �n (J→ G2) then for
all symbolic graphs with interface J′→ SG1 and J′→ SG2, such that the only common
variables of SG1 and SG2 are the variables in J′, and such that if σ is a substitution
of the variables of SG1 and SG2 where (J → Gi) = σ(J′ → SGi) with i = 1,2, we
can build a tableau with the constrained formula (J′→ SG1)∼S (J′→ SG2)[Ψ

+,Ψ−],
where σ(Ψ−) is satisfiable.

The case n = 0 is trivial since all graphs are bisimilar at level 0. Suppose that (J→
G1)�n+1 (J→G2). Then, there is a borrowed context transformation (J→G1)

`−→ (I→
H1) and there is no transition (J→ G2)

`−→ (I→ H2) such that (I→ H1) ∼n (I→ H2).
We consider two cases:

1. There is no transition (J→ G2)
`−→ (I→ H2):

If (J→ G1)
`−→ (I→ H1) this means that there is a transition (J′→ SG1)

`′−→ (I′→
SH1) and a substitution σ′ extending σ to the new variables added by the rule, which
are in the interface I′, with ` = σ′(`′) and (I→ H1) = σ′(I′→ SH1). Hence, A |=

19

σ′(Cond(SG1, `
′)). On the other hand, if there is no transition (J → G2)

`−→ (I →
H2), for every transition (J′ → SG2)

`′−→ (I′ → 〈H2,Φ2〉), σ′(Φ2) is not satisfiable
since, otherwise, if σ′′ is a substitution extending σ′ such that A |= σ′′(Φ2), we

would have (J → G2)
`−→ (I → σ′′(H2)), against the hypothesis. This means that

A |= σ′(¬Cond(SG2, `
′)).

Now, we can build the tableau as follows. First, we create the root with the con-
strained formula (J′→ SG1)∼S (J′→ SG2)[false, false]. Then, we apply Label
Expansion to the root. This means that one of the sons of the root would be the
constrained formula (J′→ SG1)∼`′

S (J′→ SG2)[false, false]. Now we apply Com-
plement Computation to that node, obtaining a constrained formula (J′→ SG1)∼`′

S
(J′→ SG2)[Ψ

+,Ψ−], where Ψ− is satisfiable. If now we apply Labels Computation
to the root, we obtain the constrained formula (J′→ SG1)∼S (J′→ SG2)[Ψ

+
1 ,Ψ

−],
where Ψ

+
1 is either false (if the root has other descendants) or Ψ+ (otherwise) and

where Ψ− is satisfiable.
2. There are transformations (J→ G2)

`−→ (I→ H2) but (I→ H1)�n (I→ H2):

As in the previous case, if (J→G1)
`−→ (I→H1) this means that there is a transition

(J′→ SG1)
`′−→ (I′→ SH1) and a substitution σ1 extending σ, with ` = σ1(`

′) and

(I → H1) = σ1(I′ → SH1). Given the transition (I → SG2)
`′−→ (I → SH2) where

there is a substitution σ2 of the variables of SG2 such that I = σ1(I′) = σ2(I′), we
have that (I → σ1(SH1)) � (I → σ2(SH2)), or, if we define σ′ as the union of σ1
and σ2, (I→ σ′(SH1))� (I→ σ′(SH2)).
Now, we can build the tableau as follows. First, we create the root with the
constrained formula (J′→ SG1)∼S (J′→ SG2)[false, false]. Then, we apply La-
bel Expansion to the root. This means that one of the sons of the root would
be the constrained formula (J′→ SG1)∼`′

S (J′→ SG2)[false, false]. Then, using
Bisimulation Expansion, one of the descendants of the previous node will be a
node labelled with the formula (J′→ SH1)∼S (J′→ SH2)[false, false]. By induc-
tion, we know that using that node as if it was the root of a tableau, we can
build a subtableau, starting at that node, whose final label would be a formula
(I→ SH1)∼`′

S (I→ SH2)[Ψ
+
`′ ,Ψ

−
`′], where Ψ

−
`′] is satisfiable. Now, applying Bisim-

ulation Computation to the parent of that node, the new label would be a constrained
formula (I→ SG1)∼`′

S (I→ SG2)[Ψ
+
1 ,Ψ

−
1], where Ψ

−
1 is satisfiable. Finally, ap-

plying Labels Computation to the root of the tableau, the new label would be a
constrained formula Γ ` (I→ SG1)∼S (I→ SG2)[Ψ

+,Ψ−], where Ψ− is satisfi-
able.

ut

20

