
Borrowed Contexts for Attributed Graphs

Fernando Orejas ?1, Artur Boronat ??12, and Nikos Mylonakis1

1 Universitat Politècnica de Catalunya, Spain
2 University of Leicester, UK

Abstract. Borrowed context graph transformation is a simple and pow-
erful technique developed by Ehrig and König that allow us to derive la-
beled transitions and bisimulation congruences for graph transformation
systems or, in general, for process calculi that can be defined in terms
of graph transformation systems. Moreover, the same authors have also
shown how to use this technique for the verification of bisimilarity. In
principle, the main results about borrowed context transformation do
not apply only to plain graphs, but they are generic in the sense that
they apply to all categories that satisfy certain properties related to the
notion of adhesivity. In particular, this is the case of attributed graphs.
However, as we show in the paper, the techniques used for checking bisim-
ilarity are not equally generic and, in particular they fail, if we want to
apply them to attributed graphs. To solve this problem, in this paper,
we define a special notion of symbolic graph bisimulation and show how
it can be used to check bisimilarity of attributed graphs.

Key words: Attributed graph transformation, symbolic graph transfor-
mation, borrowed contexts, bisimilarity.

1 Introduction

Bisimilarity is possibly the most adequate behavioural equivalence relation. In
[5] Ehrig and König they show how a notion of bisimilarity could be defined for
graph transformation systems. In particular, they introduced borrowed context
graph transformation as a simple and powerful technique that allow us to de-
rive labelled transitions and bisimulation congruences for graph transformation
systems or, in general, for process calculi that can be defined in terms of graph
transformation systems (e.g. [1]). These results are quite general since they apply
to any kind of transformation system on a category that satisfies some properties
related to adhesivity [6, 3], as the category of attributed graphs. Moreover, in [11],
Rangel, König and Ehrig showed how to use these techniques for the verification
of bisimilarity. Unfortunately, the approach to verification introduced informally
in [5] and studied in detail in [11] does not work when dealing with attributed
graphs. This is especially unfortunate, because one of the motivations for [11] is

? This work has been partially supported by the CICYT project (ref. TIN2007-66523)
and by the AGAUR grant to the research group ALBCOM (ref. 00516)

?? Supported by a Study Leave from University of Leicester

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/46610348?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

being able to show that model transformations (and, in particular, refactorings)
preserve behavioural equivalence, and in these cases we work with attributed
graphs. The problem is related with the fact that, when applying an attributed
graph transformation rule, we must match all the variables in the left-hand side
of the rule to some given values. This implies, in the case of borrowed context
transformation, that the partial application of a single rule may give rise to an
infinite number of different borrowed context transformation, where all of them
have different labels. The reason is that, if the borrowed context includes some
variable, each substitution of that variable by any data value defines a different
borrowed context transformation.

The nature of the problem immediately suggests using borrowed context
symbolic graph transformation to check bisimilarity of attributed graphs, since
in symbolic graph transformation variables do not need to be immediately sub-
stituted by values [7, 9]. Actually, since symbolic graphs form an adhesive HLR
category, all the results in [5] apply to this class of graphs. Unfortunately, as a
counter-example in Sect. 4 shows, bisimilarity for symbolic graphs, as defined in
[5], does not coincide with bisimilarity for attributed graphs. Hence, in this work
we define a new notion of symbolic bisimilarity, which is also a congruence, and
we show that it coincides with attributed graph bisimilarity. Moreover, using a
variation of the case study presented in [5], we show how this new notion can be
used for checking bisimilarity for attributed graphs. In particular, the example
not only shows that the problem with the substitution of the variables is solved,
but it also shows how symbolic graphs allow us to decouple a bisimilarity proof
in two parts. The first one, that has to do with graph structure, is based on
borrowed context transformation, while the second one, which is related to data
in the graphs, has to do with reasoning in the given data algebra.

The paper is organized as follows. In Sect. 2 we introduce the main results and
constructions presented in [5] and we introduce our case study, describing the
problems when attributed graph transformation is considered. In the following
section we introduce symbolic graph transformation. Sect. 4 is the core of the
paper, where we present our main constructions and results. In Sect 5, we extend
some techniques used in [5] for the verification of bisimilarity and we apply them
to our case study. Finally, in Sect. 6 we present some related work and draw some
conclusions. An Appendix includes the proofs of our results.

2 Graph transformation with borrowed contexts

Given a set of transformation rules, graph transformation with borrowed con-
texts is a technique that allows us to describe and analyze how a graph could
evolve when embedded in different contexts. This technique is based on several
ideas. The first one is that we have to specify explicitly what is the open (or
visible) part of the given graph G, i.e. what part of G can be extended by a
context. This part is called the interface of the graph and, in general, it may
be any arbitrary subgraph of G. A consequence of this is that a context should
be a graph with two interfaces. The reason is that, when we connect a context

to G, by matching the interface of the graph with a corresponding interface of
the context, the result is also a graph G′ with an interface, so that it can also
be embedded into a new context. More precisely, the resulting graph is obtained
gluing together, by means of a pushout, G and the context.

Definition 1. A graph with interface J is an injective morphism (usually an
inclusion) J → G, and a context is a cospan of injective morphisms J → C ← J ′.
The result of embedding J → G into the context J → C ← J ′ is the graph
J ′ → G′, defined by the pushout diagram:

J

(PO)

//

��

C

��

J ′oo

~~
G // G′

the resulting graph G′ will also be denoted as C[G].

The second idea underlying this technique is to allow for a partial match
between the left-hand side of a rule L and the graph G. Then, the associated
transformation would start adding to G the missing part of L and, afterwards,
applying a standard graph transformation. That is, we add to G a minimal
context, so that the given rule can be applied. As this context is the part of L
that has not been matched with G, we say that G borrows this context from the
rule. The third idea is to consider that the interface of the resulting graph is
the old interface plus the borrowed context, minus the parts deleted by the rule.
Finally, the last idea is to label the borrowed context transformations with the
context used in the transformation step.

Definition 2. Given a graph with interface J → G and a graph transformation
rule p : L ← K → R, we say that J → G reduces to I → H with label J →
F ← I, denoted (J → G)

J→F←I−−−−−→ (I → H) if there are graphs C,G+, D and
additional morphisms such that all the squares in the diagram below are pushouts
(PO) or pullbacks (PB) and all the morphisms are injective:

C

(PO)

//

��

L

(PO)
��

K

(PO)

oo

��

// R

��
G

(PO)

// G+

(PB)

Doo // H

J //

OO

F

OO

I

OO

oo

>>

The intuition here is that C is the subgraph of L that completely matches
G; J → F ← I is the context borrowed to extend G; and G+ is the graph G
enriched with the borrowed context. In particular, F , defined as the pushout
complement (if it exists) of the left lower square, extends J with all the elements
in G+ which are not in G. For instance, in Fig. 3 we can see an example of

attributed borrowed context transformation that is explained in Example 1.
But not all borrowed context transformations are useful for characterizing the
behaviour of a graph when embedded in any arbitrary context. This is the case
of transformation where the partial match is included in the part of the interface
that remains invariant after the transformation, since the same transformation
could be applied to any graph with the same interface. These transformations
are called independent.

In labelled transition systems, a bisimulation is a symmetric relation between
states that is compatible with their observational behaviour. This means that if
two states s1 and s2 are related then for every transition from s1 labelled with l
there should be a transition from s2 with the same label and the resulting states
should again be related. Then, bisimilarity is the largest bisimulation relation.

Definition 3. Given a set T of transformation rules, a relation R on graphs
with interface is a bisimulation if it is symmetric and moreover if (J → G1)R(J →
G2), for every transformation (J → G1)

J→F←I−−−−−→ (I → H1) there exists a trans-

formation (J → G2)
J→F←I−−−−−→ (I → H2) such that (I → H1)R(I → H2).

Bisimilarity, denoted ∼ is the largest bisimulation relation (or, equivalently,
the union of all bisimulation relations).

In [5] it is proved that the condition to prove that a relation is a bisimulation
can be restricted to dependent transformations. Moreover, the main result in
that paper is that bisimilarity is a congruence.

Example 1. The running example that we use in this paper is an adaptation
of the example used in [5], but now including some attributes. The rules in
Fig. 1 describe communication in a network. For simplicity we have omitted the
interface part of the rules, which is assumed to be the common part between
their left and right-hand sides. Round nodes represent locations in the network
and edges between these nodes represent communication links. There are two
kinds of links, simplex communication links, represented by thin arrows, and
duplex communication links, represented by thick arrows. The rules specify that
messages can be sent in one direction via simplex links and in two directions via
duplex links. The difference with respect to the example in [5], is that we use some
attributes to describe a simple form of encrypted communication. We assume
that the data algebra includes two sorts of values, messages and keys, and two
operations, e and d, for encrypting and decrypting messages, respectively. Both
operations have two parameters, a key and a message, and return a message. In
this sense, the rules also include square and elliptic nodes that include some data
values (i.e. they are attributed). Square nodes represent messages and include a
value of sort message, and elliptic nodes represent keys and include a value of
sort key. Message nodes may be connected to a round node meaning that the
message is at that location. Elliptic nodes may also be connected to round nodes
indicating that this key is shared by the connected locations.

The three rules describe how (encrypted) messages are sent through the
network. In particular, the first rule describes how a message is sent from the

Fig. 1. Transformation rules

source to the target node of a simplex communication link, while the second
and third rules show how a message can be sent in both directions through a
duplex communication link. Moreover, the three rules describe in a different (and
rather artificial) way that the messages are assumed to be encrypted before they
are sent, and they are decrypted when they are received. In the first rule, the
message to be sent is explicitly assumed to be encrypted, since it is the result
of the term e(k,m), where k is the key shared by the two locations. After the
transformation, the decrypted message m is associated to the target node. In
the other two rules, it is not explicitly stated if the message m attached to the
sending node is encrypted or not. However, the message received is explicitly
decrypted, since the message received is the result of d(k,m).

Fig. 2. Bisimilar graphs

The example used in [5] is similar but graphs have no attributes: there are
no keys or encryption/decryption of messages, and messages are not assumed to
be values of any kind, but just nodes. Then, using the techniques described in
the paper, it is shown that the two graphs J → G and J → G′, depicted in Fig.
2, are bisimilar. In particular, they analyze what are all the borrowed context
transformations that can be applied to the two graphs and check that for every
transformation applied to one of them, there is another transformation that can
be applied to the other one, with the same label, such that the resulting graphs
I → H and I → H ′ are extensions, with the same context, of J → G and J → G,
respectively. And this means that J → G and J → G′ are bisimilar.

Fig. 3. Attributed borrowed context transformation

However, in our example, that kind of proof is not possible. The main problem
is that, when applying an attributed graph transformation rule to an attributed
graph, all the variables in the rule must be matched to some given data values
and, accordingly, the terms included must be evaluated. This applies also to
borrowed context transformation, but variables in the context would not be
matched but must be substituted by arbitrary values. For instance, in Fig. 3 we
show a possible borrowed context transformation by applying the second rule
in Fig. 1 to the graph J → G′ on the left in Fig. 2, assuming that messages
and keys are integers, that the variables m and k are substituted by 23 and 15,
respectively, and that the value of d(23, 15) = 135. and other substitutions of m
and k would lead to a different borrowed context transformation. This causes
that, to prove the bisimilarity of the above two graphs we would need to prove
the bisimilarity of an infinite number of graphs. A second problem is that the
data (the attributes) in the rules do not exactly coincide. Actually, as we will
see in Sect. 5, the two graphs are bisimilar if the encrypting and decrypting
operations are the inverse of each other. Then it may be unclear how to prove
this fact in the context of attributed graph transformation.

3 Symbolic graphs and symbolic graph transformation

A symbolic graph is a graph that specifies a class of attributed graphs. More
precisely, a symbolic graph SG = 〈G,Φ〉 over a given data algebra A is a kind
of labelled graph G (technically, an E-graph [3]), whose nodes and edges may
be decorated with labels from a given set of variables X, together with a set of
formulas Φ over these variables and over the values in A. The intuition is that
each substitution σ : X → A of the variables in X by values of A such that
A |= σ(Φ), defines an attributed graph σ(G) in the semantics of G, obtained
replacing each variable x in G by the corresponding data value σ(x). That is,
the semantics of SG is defined:

Sem(SG) = {σ(G) | A |= σ(Φ)}

For instance, the graph below on the left specifies a class of attributed graphs,
including distances in the edges, that satisfy the well-known triangle inequality,
and the graph in the center would belong to its semantics

It may be noticed that every attributed graph may be seen as a symbolic
graph by just replacing all its values by variables, and by including an equation
xv = v, into the corresponding set of formulas, for each value v, where xv is the
variable that has replaced the value v. We call these kind of symbolic graphs
grounded symbolic graphs. In particular, GSG(G) denotes the grounded symbolic
graph defined by G. For instance, the graph above on the right, can be seen as
the symbolic representation of the attributed graph in the center.

A morphism h : 〈G1, Φ1〉 → 〈G2, Φ2〉 is a graph morphism h : G1 → G2 such
that A |= Φ2 ⇒ h(Φ1), where h(Φ1) is the set of formulas obtained when replac-
ing in Φ1 every variable x1 in the set of labels of G1 by h(x1). Symbolic graphs
and morphisms over a given data algebra A form the category SymbGraphA.

For (technical) simplicity, we assume that in our graphs no variable is bound
to two different elements of the graph. We call these graphs in normal form. It
should be clear that this is not a limitation since every symbolic graph SG is
equivalent to a symbolic graph SG′ in normal form, in the sense that Sem(SG) =
Sem(SG′). It is enough to replace each repeated occurrence of a variable x by
a fresh variable y, and to include the equality x = y in ΦG′ .

In [7], we showed that SymbGraphA is an adhesive HLR category [6, 4] tak-
ing as M-morphisms all injective graph morphisms where the formulas constrain-
ing the source and target graphs are equivalent. In particular, the proposition
below shows how pushouts of symbolic graphs are defined:

Proposition 1. [7] Diagram (1) below is a pushout if and only if diagram (2)
is also a pushout and A |= Φ3 ⇔ (g1(Φ1) ∪ g2(Φ2)).

〈G0, Φ0〉

(1)

h1 //

h2

��

〈G1, Φ1〉

g1

��

G0
h1 //

(2)h2

��

G1

g1

��
〈G2, Φ2〉 g2

// 〈G3, Φ3〉 G2 g2
// G3

In this paper, a symbolic graph transformation rule is a pair 〈L ←↩ K ↪→
R,Φ〉, where L,K and R are graphs over the sets of variables XL, XK and XR,
respectively, and Φ is a set of formulas over XR and over the values in A. We
consider that a rule is a span of symbolic graph inclusions 〈L, ∅〉 ←↩ 〈K, ∅〉 ↪→

〈R,Φ〉, Intuitively, Φ relates the attributes in the left and right-hand side of the
rule. This means that we implicitly assume that XL = XK ⊆ XR. In [9] we allow
for more general rules.

As usual, we can define the application of a graph transformation rule 〈L←↩
K ↪→ R,Φ〉 by a double pushout in the category of symbolic graphs [9]).

Definition 4. Given a transformation rule r = 〈L ←↩ K ↪→ R,Φ〉 over a data
algebra A and a morphism m : L → G, 〈G,Φ′〉 =⇒r,m 〈H,Φ′ ∪ m′(Φ)〉 if and
only if the diagram below is a double pushout and Φ′ ∪m′(Φ) is satisfiable in the
given data algebra.

L

(1)m

��

K

(2)

? _oo � � //

��

R

m′

��
G D?

_oo � � // H

For instance in the upper part of the figure below, we can see a symbolic graph
transformation rule stating that if a given graph has two consecutive edges, e1
and e2, with some given distances d1 and d2, respectively, then we can add a new
edge from the source of e1 to the target of e2 whose distance must be smaller or
equal than d1 + d2. Moreover, in the bottom part of the figure we may see the
result of applying that rule to the graph on the left.

We may notice that, in general, Φ′ ∪m′(Φ) may be unsatisfiable. This would
mean that the resulting graph 〈H,Φ′ ∪m′(Φ)〉 would have an empty semantics,
i.e. it would be inconsistent. This is avoided by requiring explicitly that Φ′∪m′(Φ)
must be satisfiable. It is not difficult to show that the above construction defines
a double pushout in the category of symbolic graphs [9].

A symbolic graph transformation rule can be seen as a specification of a class
of attributed graph transformation rules. More precisely, we may consider that
the rule r = 〈L ←↩ K ↪→ R,Φ〉 denotes the class of all rules σ(L) ←↩ σ(K) ↪→
σ(R), where σ is a substitution such that A |= σ(Φ), i.e.:

Sem(r) = {σ(L)←↩ σ(K) ↪→ σ(R) | A |= σ(Φ)}

Fig. 4. Symbolic transformation rules

It is not difficult to see that given a rule r and a symbolic graph SG,
SG =⇒r SG

′ if and only if for every graph G ∈ Sem(SG), G =⇒r G
′, with

G′ ∈ Sem(SG′) and moreover, for every graph G′ ∈ Sem(SG′), G =⇒r G
′, for

some G ∈ Sem(SG) [7].

We will require that transformation rules must be strict meaning that the
result of a rule application to a grounded model must also be grounded3:

Definition 5. A transformation rule 〈L ←↩ K ↪→ R,Φ〉 is strict if for every
transformation 〈G,Φ′〉 =⇒p,m 〈H,Φ′ ∪ m′(Φ)〉, whenever 〈G,Φ′〉 is grounded
〈H,Φ′ ∪m′(Φ)〉 is also grounded.

For instance, the rule in the figure above is not strict. However, assuming
that all rules must be strict is not really a restriction since every non-strict
rule may be made strict including in XL all the variables in XR. This forces
to match every variable in XR to some given value causing that the result of
the transformation 〈H,Φ′ ∪ m′(Φ)〉 must be grounded. Moreover, it is easy to
see that the semantics of a non-strict rule (as defined above) and its associated
strict one coincide.

As shown in [7], symbolic graph transformation is more powerful than at-
tributed graph transformation. In particular, any attributed graph transforma-
tion rule r can be represented by a symbolic graph transformation rule SR(r)
such that an attributed graph G can be transformed by r into a graph H if and
only if the grounded graph associated to G, SG, can be transformed by SR(r)
into the grounded graph associated to H. However, the converse is not true.

For example, in Fig 4 we show the symbolic rules associated to the attributed
rules depicted in Fig 1.

3 This does not mean that the result of a borrowed context transformation of a
grounded graph using a strict rule must also be grounded. In particular, the rules
in Example 1 are strict but, as shown in Example 3, the results of their borrowed
context application to two grounded graphs are not grounded.

4 Symbolic bisimilarity

In this section we study a notion of bisimilarity for symbolic graphs to be used
for proving the bisimilarity of attributed graphs. First we show that a definition
of symbolic bisimulation just applying the concepts introduced in Section 2 to
SymbGraphA is not adequate for checking the bisimilarity of attributed graphs.
Then, we define a notion of symbolic bisimulation and show that it coincides with
attributed bisimulation, when restricted to grounded graphs. Finally, we show
that this symbolic bisimilarity is also a congruence on SymbGraphA.

Symbolic graphs form an M-adhesive category [7]. Hence, all the definitions
and results in [5] concerning borrowed context transformation and bisimilarity
apply to this category. For instance, we have notions of symbolic graph with
interface, of context, and of borrowed context transformation exactly as in Sec-
tion 2, but within the category of symbolic graphs. To be precise, we consider
that graph interfaces are not arbitrary symbolic graphs, but graphs with an
empty set of conditions, since we consider that the interface must only specify
the open part of a graph. Then, we may think that a direct application of these
results may be a solution for the problem of checking bisimilarity for attributed
graphs, since we may directly work with terms and variables, without having to
compute all its possible substitutions, as described in Example 1. This means
that for deciding if two attributed graphs are bisimilar we could check if their
associated grounded graphs are bisimilar in the category of symbolic graphs. Un-
fortunately, as we can see in the counter-example below, two attributed graphs
may be bisimilar as attributed graphs, while their associated grounded symbolic
graphs are not bisimilar as symbolic graphs.

Example 2. Let us consider the attributed graph transformation system, con-
sisting of three rules, depicted below.

The first rule includes a variable x used in different expressions including x2.
The remaining two rules are simple attributed rules with integer values. Now,
let us consider the two attributed graphs, including as interface just the source
node of the edges in the graphs, I → G1 and I → G2 that are depicted below.

We can see that these graphs are bisimilar. The only dependent borrowed
context transformations that we can apply on both graphs are depicted below
and, in both cases, the resulting graphs are equal.

Notice that, in the figure, we do not depict the data values that are not bound
to any node or edge. However, if we consider the symbolic versions of the above
rules we can show that GSG(I → G1) and GSG(I → G2) are not bisimilar. In
particular, below we can find the symbolic borrowed context transformation of
the two grounded graphs using the symbolic versions of r3 and r1, and we may
see that no direct transformation can be applied to the resulting graph on the
left, GSG(I → G4). However, we may also see that the conditions associated to
the resulting graph on the right are equivalent to (z = 4 ∧ x = 2 ∧ t = 3 ∧ u =
9)∨ (z = 4 ∧ x = −2 ∧ t = −1 ∧ u = 5), which means that we can transform
this graph using the symbolic version of r1 (matching x to 3).

The problem in the above counter-example is that, when considering at-
tributed graph transformation, each instance of the rule r1 (i.e. when x = 2 or
when x = −2) is simulated by r2 and r3, respectively, and vice versa. However,
when considering symbolic transformation, we need to say that r1 is simulated
by r2 and r3 together, and vice versa. This is not possible if we define symbolic
bisimulation as in [5]. Instead, we define a new notion that solves this problem:

Definition 6. A relation R on symbolic graphs with interface is a symbolic
bisimulation with respect to a set of transformation rules, if it is symmetric
and moreover if (J → SG1)R(J → SG2), for every transformation (J →
SG1)

J→F←I−−−−−→ (I → SG′1), with SG′1 = 〈G′1, Φ′1〉 there exist a family of con-

ditions {Ψi}i∈I and a family of transformations {(J → SG2)
J→F←I−−−−−→ (I →

SHi)}i∈I , with SHi = 〈Hi, Πi〉 such that:

– For every substitution σ′1 such that A |= σ′1(Φ′1), there is an index i and a
substitution σi such that A |= σi(Ψi ∪ Πi) and σ′1 �F= σi �F , where σ �F
denotes the restriction of σ to the variables in F .

– For every i, (I → 〈G′1, Φ′1 ∪ Ψi〉) R (I → 〈Hi, Πi ∪ Ψi〉).

Symbolic bisimilarity, denoted ∼S, is the largest symbolic bisimulation relation.

For instance, in the above counter-example, to show GSG(I → G1) ∼S
GSG(I → G2), the symbolic transformation of GSG(I → G2) via r3 depicted
above on the left, would be simulated by the transformation of GSG(I → G1)
via rule r1, together with the condition x = −2. Similarly, the symbolic transfor-
mation of GSG(I → G1) via r1 depicted above on the right, would be simulated
by the transformations of GSG(I → G2) via rule r2, together with the condition
x = 2 and of GSG(I → G2) via rule r3, together with the condition x = −2.

Using symbolic bisimilarity we can prove the bisimilarity of attributed graphs:

Theorem 1. Given transformation rules T , (J → G1) ∼ (J → G2) with respect
to Sem(T) if and only if GSG(J → G1) ∼S GSG(J → G2) with respect to T .

To prove this theorem we use two lemmas:

Lemma 1. Let R be the following relation defined on symbolic graphs. (J →
SG1)R(J → SG2) if:

– For every attributed graph σ1(J → SG1) ∈ Sem(J → SG1) there is an
attributed graph σ2(J → SG2) ∈ Sem(J → SG2) such that σ1(J → SG1) ∼
σ2(J → SG2).

– For every attributed graph σ2(J → SG2) ∈ Sem(J → SG2) there is an
attributed graph σ1(J → SG1) ∈ Sem(J → SG1) such that σ1(J → SG1) ∼
σ2(J → SG2).

Then, R is a bisimulation.

Lemma 2. The relation on attributed graphs (J → G1)R(J → G2) if GSG(J →
G1) ∼S GSG(J → G2) is a bisimulation.

To prove this theorem we have that, if (J → G1) ∼ (J → G2) then GSG(J →
G1) and GSG(J → G2) satisfy the conditions of Lemma 1. So they must be
bisimilar. Conversely, if GSG(J → G1) ∼S GSG(J → G2), lemma 2 directly
implies that (J → G1) and (J → G2) are bisimilar.

The last theorem shows that symbolic bisimilarity is a congruence:

Theorem 2. If (J → SG1) ∼S (J → SG2) then, for every context J → C ← I,
(I → C[SG1]) ∼S (I → C[SG2]).

The proof uses a property shown in [5] that if a graph J → G is embedded
in J ′ → G′ with a given context and if J ′ → F ′ ← I ′ is a possible label
for transforming J ′ → G′ then there is a context I → C ′ ← I ′ and a label
J → F ← I, such that any transformation of J ′ → G′ with label J ′ → F ′ ← I ′

can be obtained by first transforming J → G with a label J → F ← I and, then,
embedding the result in the context I → C ← I ′.

5 Checking bisimilarity

In this section we show the basic ideas of how we can use the previous results
to show that two attributed graphs (J → G1) and (J → G2) are bisimilar. In
principle, we would need to consider all the possible borrowed context transfor-
mations with the same label of their associated grounded graphs and show that
we can group them in pairs, so that under suitable conditions Ψi, the resulting
graphs are bisimilar. The obvious problem is that this clearly leads to a non-
terminating process. To avoid this non-termination (if possible) Sangiorgi [12]
defined the notion of bisimulation up to context that is adapted to the case of
graph transformation in [5]. In our case this notion would be defined as follows:

Definition 7. A relation R is a symbolic bisimulation up to context if whenever

(J → SG1)R(J → SG2), then for every transformation (J → SG1)
J→F←I−−−−−→

(I → SG′1), with SG′1 = 〈G′1, Φ′1〉 there exist a family of conditions {Ψi}i∈I
and a family of transformations {(J → SG2)

J→F←I−−−−−→ (I → SHi)}i∈I , with
SHi = 〈Hi, Πi〉 such that:

– For every substitution σ′1 such that A |= σ′1(Φ′1), there is an index i and a
substitution σi such that A |= σi(Ψi ∪Πi) and σ′1 �F= σi �F .

– For every i, (I → 〈G′1, Φ′1 ∪ Ψi〉) and (I → 〈Hi, Πi ∪ Ψi〉) are the result of
embedding (J → SG1) and (J → SG2) in the same context.

Proposition 2. [5] If R is a symbolic bisimulation up to context then R ⊆∼S.

This means that if, when trying to check if (J → SG1) and (J → SG2), we
have to prove that (I → SG′1) and (I → SG′2) are also bisimilar and if the latter
graphs can be obtained by embedding the former graphs into the same context,
then we can consider that (I → SG′1) and (I → SG′2) are bisimilar. So, if this
happens for all the pairs of graphs that we have to prove bisimilar, then we can
conclude that (J → SG1) and (J → SG2) are indeed bisimilar.

Moreover, as in [5], we can restrict ourselves to checking only dependent
transformations. This is important since, if the number of transformation rules
is finite, and the given graph, J → G, is also finite, then there is a finite number
of possible borrowed context transformations that can be applied to J → G. Let
us now show how these ideas would be applied to the example in Section 2.

Example 3. We want to check if the graphs J → G and J → G′ depicted in
Fig. 2 are bisimilar. In this case, since G and G′ include no explicit attributes,
their associated grounded graphs would look similar. Now, there are only two
dependent borrowed context transformations that can be applied to each of the
two graphs. In Fig. 5 we depict the transformations that can be applied to J → G
and J → G′, using the first and the second rule in Fig. 4, respectively, when we
add to the two graphs a context consisting of a common key k and a message m
attached to the leftmost node. In particular, on the left and the right of the figure
we depict the transformations of G and G′ and, in the middle, we depict the label

of the transformation. Fig. 6 is similar, and describes the transformations over
J → G and J → G′, using the first and the third rules, respectively.

To prove J → G ∼S J → G′, according to the definition of symbolic bisim-
ulation, we have to show, on the one hand, that the conditions associated to
the transformations, {m = e(k,m′)} and {m′ = d(k,m)} are equivalent; and,
on the other hand, that the resulting graphs are bisimilar, (I → SH1) ∼S (I →
SH ′1), with SH1 = 〈H1, {m = e(k,m′)}〉 and SH ′1 = 〈H1′, {m′ = d(k,m)}〉,
and (I → SH2) ∼S (I → SH ′2), with SH2 = 〈H2, {m = e(k,m′)}〉 and
SH ′2 = 〈H2′, {m′ = d(k,m)}〉. But if the conditions are equivalent, SHi and SH ′i
(i = 1, 2) are just the original graphs extended by the same context. Therefore,
the bisimilarity of the graphs J → G and J → G′ depends on the equivalence of
the above conditions. More precisely, if the given data algebra A satisfies:

d(k, e(k,m)) = m

e(k, d(k,m)) = m

i.e. if encryption and decryption are the inverse of each other.

Fig. 5. Transformation 1 Fig. 6. Transformation 2

6 Conclusion and related work

Bisimilarity was introduced by Park in [10] and, since then, it has been studied
by many authors in relation to many different formalisms. In [5], Ehrig and König
not only introduced a notion of bisimilarity for graph transformation systems,
but they provided a simple and general technique to derive labelled transitions
and bisimulation congruences from unlabelled ones. This paper was followed by

[11] where they showed how these techniques could be used for the verification of
bisimilarity. Unfortunately, as we have seen in this paper, these techniques do not
work in the case of attributed graphs. Borrowed context transformations have
been used for the definition of other behavioral equivalence relations [2]. On the
other hand, symbolic graphs were introduced in [8] in order to define constraints
on attributed graphs. Then symbolic graph transformation was studied in detail
in [7, 9].

In this paper we have presented a new notion of bisimulation for symbolic
graph transformation that has been shown to be useful for checking the bisimilar-
ity of attributed graphs. The key issue is that in symbolic graph transformation
we do not need to replace all the variables by values. Moreover, the neat sepa-
ration in symbolic graphs between the graph structure and the algebra of data
also helps for this purpose. Currently we are working in devising a specific proof
method to implement these ideas.

References

1. Bonchi, F., Gadducci, F., König, B.: Synthesising ccs bisimulation using graph
rewriting. Inf. Comput. 207(1), 14–40 (2009)

2. Bonchi, F., Gadducci, F., Monreale, G.V., Montanari, U.: Saturated ltss for adhe-
sive rewriting systems. In: Graph Transformations - 5th International Conference,
ICGT 2010. Lect. Notes in Comp. Sc., vol. 6372, pp. 123–138. Springer (2010)

3. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs of Theoretical Comp. Sc., Springer (2006)

4. Ehrig, H., Padberg, J., Prange, U., Habel, A.: Adhesive high-level replacement
systems: A new categorical framework for graph transformation. Fundamenta In-
formaticae 74(1), 1–29 (2006)

5. Ehrig, H., König, B.: Deriving bisimulation congruences in the dpo approach to
graph rewriting with borrowed contexts. Mathematical Structures in Computer
Science 16(6), 1133–1163 (2006)

6. Lack, S., Sobocinski, P.: Adhesive and quasiadhesive categories. Theoretical Infor-
matics and Applications 39, 511–545 (2005)

7. Orejas, F., Lambers, L.: Symbolic attributed graphs for attributed graph transfor-
mation. In: Int. Coll. on Graph and Model Transformation On the occasion of the
65th birthday of Hartmut Ehrig (2010)

8. Orejas, F.: Symbolic graphs for attributed graph constraints. J. Symb. Comput.
46(3), 294–315 (2011)

9. Orejas, F., Lambers, L.: Lazy graph transformation. Fundamenta Informaticae To
appear (2011)

10. Park, D.: Concurrency and automata on infinite sequences. In: Theoretical Com-
puter Science, 5th GI-Conference. Lecture Notes in Computer Science, vol. 104,
pp. 167–183. Springer (1981)

11. Rangel, G., König, B., Ehrig, H.: Bisimulation verification for the dpo approach
with borrowed contexts. ECEASST 6 (2007)

12. Sangiorgi, D.: On the proof method for bisimulation. In: Mathematical Founda-
tions of Computer Science 1995, 20th International Symposium, MFCS’95. Lecture
Notes in Computer Science, vol. 969, pp. 479–488. Springer (1995)

APPENDIX

In this appendix we provide the proofs of the results that are omitted in the
paper. Moreover, the proposition below is used in some proofs below:

Proposition 3. If (J → 〈G1, Φ1〉) ∼S (J → 〈G2, Φ2〉)) then, for any set of
conditions Φ over the common variables of Φ1 and Φ2, (J → 〈G1, Φ1 ∪ Φ〉) ∼S
(J → 〈G2, Φ2 ∪ Φ〉).

Proof. If (J → 〈G1, Φ1∪Φ〉)
J→C←I−−−−−→ J → (〈G′1, Φ′1〉) then (J → 〈G1, Φ1〉)

J→C←I−−−−−→
J → (〈G′1, Φ′′1〉) and, by definition of symbolic graph transformation, (Φ′′1 ∪Φ) ≡
Φ′1. But this means that there exist a family of conditions {Ψi}i∈I and a family

of transformations {(J → SG2)
J→F←I−−−−−→ (I → SHi)}i∈I , with SHi = 〈Hi, Πi〉

such that:

– For every substitution σ′1 such that A |= σ′1(Φ′′1), there is an index i and a
substitution σi such that A |= σi(Ψi∪Πi) and σ′1 �F= σi �F . But this implies
that for every substitution σ′1 such that A |= σ′1(Φ′′1 ∪Φ), there is an index i
and a substitution σi such that A |= σi(Ψi ∪Πi ∪ Φ) and σ′1 �F= σi �F .

– For every i, (I → 〈G′1, Φ′1∪Ψi〉) R (I → 〈Hi, Πi∪Ψi〉), and by coinduction we
may assume that for every i, (I → 〈G′1, Φ′1∪Ψi∪Φ〉)R (I → 〈Hi, Πi∪Ψi∪Φ〉).

Therefore, (J → 〈G1, Φ1 ∪ Φ〉) ∼S (J → 〈G2, Φ2 ∪ Φ〉). ut

Proof of Lemma 1 Assume there is a transformation J → SG1
J→C←I−−−−−→ I →

〈G,Φ〉, we have to show that there is a family of conditions {Ψi}i∈I and a family

of transformations J → SG2
J→C←I−−−−−→ I → 〈Hi, Πi〉, such that for every σ with

A |= σ(Φ), there is an index i and a substitution σi such that A |= σi(Ψi ∪Πi),
and σ �F= σi �F and 〈G,Φ ∪ Ψi〉 R 〈Hi, Πi ∪ Ψi〉.

For every transformation J → SG2
J→C←I−−−−−→ I → 〈Hr,m, Πr,m〉 via a rule r

with (partial) matching m, we define the following family of sets of conditions:

Ψr,m = {σ1 �C | σ1(J → SG1)
σ1(J→C←I)−−−−−−−−→ σ1(I → G),

σ2(J → SG2)
σ2(J→C←I)−−−−−−−−→ σ2(I → Hr,m),

σ1 �C= σ2 �C ,
σ1(I → G) ∼ σ2(I → Hr,m)}

Note that in the above definition, we consider that a substitution (σ1 �C) denotes
a set of conditions. Actually, any substitution σ : X → A may be considered to
denote the set of equations {x = v | x ∈ X ∧ σ(x) = v}.

Then, by construction, we have that, for all sets of conditions Ψr,m, 〈G,Φ ∪
Ψr,m〉 R 〈Hr,m, Πr,m ∪ Ψr,m〉 and for every σ1 with A |= σ′1(Φ), there are r, m
and σr,m such that A |= σi(Ψr,m ∪Πr,m), and σ1 �F= σr,m �F .

The converse direction can be shown in a similar way, showing that Rs is a
symbolic bisimulation. ut

Proof of Lemma 2 Let us suppose that (J → G1)
σ(J→F←I)−−−−−−−→ (I → G′1) via an in-

stance σ(r) of a given symbolic rule r. This means thatGSG(J → G1)
J′→F ′←I′−−−−−−−→

(I ′ → 〈G′′1 , Φ′′1〉) via r and I → G′1 is in the semantics of I ′ → 〈G′′1 , Φ′′1〉. Therefore,

there is a symbolic transformation GSG(J → G2)
J′→F ′←I′−−−−−−−→ (I ′ → 〈G′2, Φ′2〉)

such that I ′ → 〈G′′1 , Φ′′1〉 ∼S I ′ → 〈G′2, Φ′2〉. But according to Proposition ?? this
means that I ′ → 〈G′′1 , Φ′′1 ∪ σ〉 ∼S I ′ → 〈G′2, Φ′2 ∪ σ〉. But since we assume that
transformation rules are strict then I ′ → 〈G′′1 , Φ′′1 ∪ σ〉 and I ′ → 〈G′2, Φ′2 ∪ σ〉
must be grounded and GSG((I → G′1)) = (I ′ → 〈G′′1 , Φ′′1 ∪ σ〉). Moreover if

I → G′2 is in the semantics of 〈G′2, Φ′2 ∪ σ〉 then (J → G2)
σ(J→F←I)−−−−−−−→ (I → G′2)

and (I → G′1)R(I → G′2). Implying that R is a bisimulation. ut

A key step to prove that symbolic bisimilarity is a congruence, is the following
property that is proved in [5]

Proposition 4. [5] For any two contexts J1 → C ← J ′1 and J ′1 → C ′1 ← J ′2
there exist contexts J1 → C1 ← J2 and J2 → C ′ ← J ′2 such that, for every

graph J1 → G1, (J ′1 → C[G1])
J′
1→C

′
1←J

′
2−−−−−−−→ (J ′2 → H ′1) if and only if (J1 →

G1)
J1→C1←J2−−−−−−−→ (J2 → H1) and J ′2 → H ′1 = J ′2 → C ′[H1].

Proof of Theorem 2 Let us assume that (I → C[SG1])
I→F←I′−−−−−−→ (I ′ → SG′1)

then, according to Prop. 4, there are contexts J ′ → C ′ ← I ′ and J → F ′ ←
J ′, such that (J → SG1)

J→F ′←J′

−−−−−−−→ (J ′ → SG) and (I ′ → SG′1) = (I ′ →
C ′[SG]). This means that there exist a family of conditions {Ψi}i∈I and a family

of transformations {(J → SG2)
J→F←I−−−−−→ (I → SHi)}i∈I , with SHi = 〈Hi, Πi〉

such that:

– For every substitution σ such that A |= σ(Φ), there is an index i and a
substitution σi such that A |= σi(Ψi ∪ Πi) and σ �F= σi �F . Then, for
every substitution σ′ such that A |= σ′(Φ) ∪ ΦC′ , there is an index i and a
substitution σ′i such that A |= σ′i(Ψi ∪Πi ∪ ΦC′) and σ′ �F ′= σ′i �F ′ .

– For every i, (I → 〈G,Φ ∪ Ψi〉) ∼S (I → 〈Hi, Πi ∪ Ψi〉).

But, by Prop. 4, for every i, we have that (I → C[SG2])
I→F←I′−−−−−−→ (I ′ →

C ′[SHi]). But, by coinduction, we may assume that for every i, (I ′ → C ′[〈G,Φ∪
Ψi〉]) ∼S (I ′ → C ′[〈Hi, Πi∪Ψi〉]), and this implies that (I → C[SG1]) ∼S (I →
C[SG2]). ut

Proof of Proposition 2 Let R′ be the relation (J ′ → SG′1)R′(J ′ → SG′2) if
there is a context J → C ← J ′ and graphs (J → SG1) and (J → SG2),
such that (J ′ → SG′1) = (J ′ → C[SG1]), (J ′ → SG′2) = (J ′ → C[SG2]) and
(J → SG1)R(J → SG2). Let us show that R′ is a bisimulation.

If (J ′ → SG′1)
J′→F ′←I′−−−−−−−→ (I ′ → SG′), with SG′ = 〈G′, Φ′〉, according to

Prop. 4, there are contexts I → C ′ ← I ′ and J → F ← I, such that (J →
SG1)

J→F←I−−−−−→ (I → SH) and (I ′ → SH ′) = (I ′ → C ′[SH]).

This means that there exist a family of conditions {Ψi}i∈I and a family of

transformations {(J → SG2)
J→F←I−−−−−→ (I → SHi)}i∈I , with SHi = 〈Hi, Πi〉

such that:

– For every substitution σ such that A |= σ(Φ), there is an index i and a
substitution σi such that A |= σi(Ψi ∪Πi) and σ �F= σi �F , and this means
that, for every substitution σ′ such that A |= σ′(Φ ∪ ΦC′), there is an index
i and a substitution σ′i such that A |= σ′i(Ψi ∪Πi ∪ΦC′) and σ′ �F ′= σ′i �F ′ .

– For every i, (I → 〈G,Φ ∪ Ψi〉) and (I → 〈Hi, Πi ∪ Ψi〉) are the result of
embedding (J → SG1) and (J → SG2) into the same context J → Ki ← I.

But by Prop. 4, we know that {(J ′ → SG′2)
J′→F ′←I′−−−−−−−→ (I ′ → C ′[SHi])}i∈I .

Hence, (I ′ → 〈G′, Φ′ ∪ Ψi〉) and (I ′ → C ′[〈Hi, Πi ∪ Ψi〉]) are the result
of embedding (J → SG1) and (J → SG2) into the composition of the
contexts J → Ki ← I and I → C ′ ← I ′. Thus (I ′ → 〈G′, Φ′ ∪ Ψi〉)R′(I ′ →
C ′[〈Hi, Πi ∪ Ψi〉]).

Now, from the definitions of bisimulation and bisimulation up to context, and
from the facts that R is a bisimulation up to context and R′ is a bisimulation
we have that R ⊆∼S . ut

