3,177 research outputs found

    BagStack Classification for Data Imbalance Problems with Application to Defect Detection and Labeling in Semiconductor Units

    Get PDF
    abstract: Despite the fact that machine learning supports the development of computer vision applications by shortening the development cycle, finding a general learning algorithm that solves a wide range of applications is still bounded by the ”no free lunch theorem”. The search for the right algorithm to solve a specific problem is driven by the problem itself, the data availability and many other requirements. Automated visual inspection (AVI) systems represent a major part of these challenging computer vision applications. They are gaining growing interest in the manufacturing industry to detect defective products and keep these from reaching customers. The process of defect detection and classification in semiconductor units is challenging due to different acceptable variations that the manufacturing process introduces. Other variations are also typically introduced when using optical inspection systems due to changes in lighting conditions and misalignment of the imaged units, which makes the defect detection process more challenging. In this thesis, a BagStack classification framework is proposed, which makes use of stacking and bagging concepts to handle both variance and bias errors. The classifier is designed to handle the data imbalance and overfitting problems by adaptively transforming the multi-class classification problem into multiple binary classification problems, applying a bagging approach to train a set of base learners for each specific problem, adaptively specifying the number of base learners assigned to each problem, adaptively specifying the number of samples to use from each class, applying a novel data-imbalance aware cross-validation technique to generate the meta-data while taking into account the data imbalance problem at the meta-data level and, finally, using a multi-response random forest regression classifier as a meta-classifier. The BagStack classifier makes use of multiple features to solve the defect classification problem. In order to detect defects, a locally adaptive statistical background modeling is proposed. The proposed BagStack classifier outperforms state-of-the-art image classification techniques on our dataset in terms of overall classification accuracy and average per-class classification accuracy. The proposed detection method achieves high performance on the considered dataset in terms of recall and precision.Dissertation/ThesisDoctoral Dissertation Computer Engineering 201

    A review of multi-instance learning assumptions

    Get PDF
    Multi-instance (MI) learning is a variant of inductive machine learning, where each learning example contains a bag of instances instead of a single feature vector. The term commonly refers to the supervised setting, where each bag is associated with a label. This type of representation is a natural fit for a number of real-world learning scenarios, including drug activity prediction and image classification, hence many MI learning algorithms have been proposed. Any MI learning method must relate instances to bag-level class labels, but many types of relationships between instances and class labels are possible. Although all early work in MI learning assumes a specific MI concept class known to be appropriate for a drug activity prediction domain; this ‘standard MI assumption’ is not guaranteed to hold in other domains. Much of the recent work in MI learning has concentrated on a relaxed view of the MI problem, where the standard MI assumption is dropped, and alternative assumptions are considered instead. However, often it is not clearly stated what particular assumption is used and how it relates to other assumptions that have been proposed. In this paper, we aim to clarify the use of alternative MI assumptions by reviewing the work done in this area

    Self-tuned Visual Subclass Learning with Shared Samples An Incremental Approach

    Full text link
    Computer vision tasks are traditionally defined and evaluated using semantic categories. However, it is known to the field that semantic classes do not necessarily correspond to a unique visual class (e.g. inside and outside of a car). Furthermore, many of the feasible learning techniques at hand cannot model a visual class which appears consistent to the human eye. These problems have motivated the use of 1) Unsupervised or supervised clustering as a preprocessing step to identify the visual subclasses to be used in a mixture-of-experts learning regime. 2) Felzenszwalb et al. part model and other works model mixture assignment with latent variables which is optimized during learning 3) Highly non-linear classifiers which are inherently capable of modelling multi-modal input space but are inefficient at the test time. In this work, we promote an incremental view over the recognition of semantic classes with varied appearances. We propose an optimization technique which incrementally finds maximal visual subclasses in a regularized risk minimization framework. Our proposed approach unifies the clustering and classification steps in a single algorithm. The importance of this approach is its compliance with the classification via the fact that it does not need to know about the number of clusters, the representation and similarity measures used in pre-processing clustering methods a priori. Following this approach we show both qualitatively and quantitatively significant results. We show that the visual subclasses demonstrate a long tail distribution. Finally, we show that state of the art object detection methods (e.g. DPM) are unable to use the tails of this distribution comprising 50\% of the training samples. In fact we show that DPM performance slightly increases on average by the removal of this half of the data.Comment: Updated ICCV 2013 submissio

    Efficient Intrusion Detection Model Using Ensemble Methods

    Get PDF
    Ensemble method or any combination model train multiple learners to solve the classification or regression problems, not by simply ordinary learning approaches that can able to construct one learner from training data rather construct a set of learners and combine them. Boosting algorithm is one of the most important recent developments in the area of classification methodology. Boosting belongs to a family of algorithms that has the capability to convert a group of weak learners to strong learners. Boosting works in a sequential manner by adding a classification algorithm to the next updated weight of the training samples by doing the majority voting technique of the sequence of classifiers. The boosting method combines the weak models to produce a powerful one and reduces the bias of the combined model. AdaBoost algorithm is the most influential algorithm that efficiently combines the weak learners to generate a strong classifier that could be able to classify a training data with better accuracy. AdaBoost differs from the current existing boosting methods in detection accuracy, error cost minimization, computational time and detection rate. Detection accuracy and computational cost are the two main metrics used to analyze the performance of AdaBoost classification algorithm. From the simulation result, it is evident that AdaBoost algorithm could able to achieve high detection accuracy with less computational time, and minimum cost compared to a single classifier. We have proposed a predictive model to classify normal class and attack class and an online inference engine is being imposed, either to allow or deny access to a network

    A Robust Online Method for Face Recognition under Illumination Invariant Conditions

    Get PDF
    In case of incremental inputs to an online face recognition with illumination invariant face samples which maximize the class-separation criterion but also incorporates the asymmetrical property of training data distributions In this paper we alleviate this problem with an incremental learning algorithm to effectively adjust a boosted strong classifier with domain-partitioning weak hypotheses to online samples which adopts a novel approach to efficient estimation of training losses received from offline samples An illumination invariant face representation is obtained by extracting local binary pattern LBP features NIR images The Ada-boost procedure is used to learn a powerful face recognition engine based on the invariant representation We use Incremental linear discriminant analysis ILDA in case of sparse function for active near infrared NIR imaging system that is able to produce face images of good condition regardless of visible lights in the environment accuracy by changes in environmental illumination The experiments show convincing results of our incremental method on challenging face detection in extreme illumination

    Detecting Prominent Features and Classifying Network Traffic for Securing Internet of Things Based on Ensemble Methods

    Get PDF
    abstract: Rapid growth of internet and connected devices ranging from cloud systems to internet of things have raised critical concerns for securing these systems. In the recent past, security attacks on different kinds of devices have evolved in terms of complexity and diversity. One of the challenges is establishing secure communication in the network among various devices and systems. Despite being protected with authentication and encryption, the network still needs to be protected against cyber-attacks. For this, the network traffic has to be closely monitored and should detect anomalies and intrusions. Intrusion detection can be categorized as a network traffic classification problem in machine learning. Existing network traffic classification methods require a lot of training and data preprocessing, and this problem is more serious if the dataset size is huge. In addition, the machine learning and deep learning methods that have been used so far were trained on datasets that contain obsolete attacks. In this thesis, these problems are addressed by using ensemble methods applied on an up to date network attacks dataset. Ensemble methods use multiple learning algorithms to get better classification accuracy that could be obtained when the corresponding learning algorithm is applied alone. This dataset for network traffic classification has recent attack scenarios and contains over fifteen attacks. This approach shows that ensemble methods can be used to classify network traffic and detect intrusions with less training times of the model, and lesser pre-processing without feature selection. In addition, this thesis also shows that only with less than ten percent of the total features of input dataset will lead to similar accuracy that is achieved on whole dataset. This can heavily reduce the training times and classification duration in real-time scenarios.Dissertation/ThesisMasters Thesis Computer Science 201

    Sports Analytics With Computer Vision

    Get PDF
    Computer vision in sports analytics is a relatively new development. With multi-million dollar systems like STATS’s SportVu, professional basketball teams are able to collect extremely fine-detailed data better than ever before. This concept can be scaled down to provide similar statistics collection to college and high school basketball teams. Here we investigate the creation of such a system using open-source technologies and less expensive hardware. In addition, using a similar technology, we examine basketball free throws to see whether a shooter’s form has a specific relationship to a shot’s outcome. A system that learns this relationship could be used to provide feedback on a player’s shooting form

    Doctor of Philosophy

    Get PDF
    dissertationScene labeling is the problem of assigning an object label to each pixel of a given image. It is the primary step towards image understanding and unifies object recognition and image segmentation in a single framework. A perfect scene labeling framework detects and densely labels every region and every object that exists in an image. This task is of substantial importance in a wide range of applications in computer vision. Contextual information plays an important role in scene labeling frameworks. A contextual model utilizes the relationships among the objects in a scene to facilitate object detection and image segmentation. Using contextual information in an effective way is one of the main questions that should be answered in any scene labeling framework. In this dissertation, we develop two scene labeling frameworks that rely heavily on contextual information to improve the performance over state-of-the-art methods. The first model, called the multiclass multiscale contextual model (MCMS), uses contextual information from multiple objects and at different scales for learning discriminative models in a supervised setting. The MCMS model incorporates crossobject and interobject information into one probabilistic framework, and thus is able to capture geometrical relationships and dependencies among multiple objects in addition to local information from each single object present in an image. The second model, called the contextual hierarchical model (CHM), learns contextual information in a hierarchy for scene labeling. At each level of the hierarchy, a classifier is trained based on downsampled input images and outputs of previous levels. The CHM then incorporates the resulting multiresolution contextual information into a classifier to segment the input image at original resolution. This training strategy allows for optimization of a joint posterior probability at multiple resolutions through the hierarchy. We demonstrate the performance of CHM on different challenging tasks such as outdoor scene labeling and edge detection in natural images and membrane detection in electron microscopy images. We also introduce two novel classification methods. WNS-AdaBoost speeds up the training of AdaBoost by providing a compact representation of a training set. Disjunctive normal random forest (DNRF) is an ensemble method that is able to learn complex decision boundaries and achieves low generalization error by optimizing a single objective function for each weak classifier in the ensemble. Finally, a segmentation framework is introduced that exploits both shape information and regional statistics to segment irregularly shaped intracellular structures such as mitochondria in electron microscopy images
    corecore