
Detecting Prominent Features and Classifying Network Traffic for

Securing Internet of Things Based on Ensemble Methods

by

Ramu Ponneganti

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved April 2019 by the

Graduate Supervisory Committee:

Stephen Yau, Chair

Andrea Richa

Yezhou Yang

ARIZONA STATE UNIVERSITY

May 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ASU Digital Repository

https://core.ac.uk/display/200249916?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

Rapid growth of internet and connected devices ranging from cloud systems to

internet of things have raised critical concerns for securing these systems. In the recent

past, security attacks on different kinds of devices have evolved in terms of complexity and

diversity. One of the challenges is establishing secure communication in the network

among various devices and systems. Despite being protected with authentication and

encryption, the network still needs to be protected against cyber-attacks. For this, the

network traffic has to be closely monitored and should detect anomalies and intrusions.

Intrusion detection can be categorized as a network traffic classification problem in

machine learning. Existing network traffic classification methods require a lot of training

and data preprocessing, and this problem is more serious if the dataset size is huge. In

addition, the machine learning and deep learning methods that have been used so far were

trained on datasets that contain obsolete attacks. In this thesis, these problems are addressed

by using ensemble methods applied on an up to date network attacks dataset. Ensemble

methods use multiple learning algorithms to get better classification accuracy that could be

obtained when the corresponding learning algorithm is applied alone. This dataset for

network traffic classification has recent attack scenarios and contains over fifteen attacks.

This approach shows that ensemble methods can be used to classify network traffic and

detect intrusions with less training times of the model, and lesser pre-processing without

feature selection. In addition, this thesis also shows that only with less than ten percent of

the total features of input dataset will lead to similar accuracy that is achieved on whole

dataset. This can heavily reduce the training times and classification duration in real-time

scenarios.

ACKNOWLEDGMENTS

I would like to thank Professor Stephen S. Yau for providing me motivation, guidance and

the opportunity to work on this research. He is a source of inspiration to me. I would also

like to thank my committee members Dr. Yezhou Yang and Dr. Andrea Richa for being

the part of my graduate supervisory committee, and helping throughout the process with

their valuable suggestions.

iii

TABLE OF CONTENTS

 Page

LIST OF TABLES ... iv

LIST OF FIGURES .. v

CHAPTER

1 INTRODUCTION .. 1

2 BACKGROUND .. 3

3 OUR APPROACH ... 13

 Overview .. 13

 Dataset Collection .. 13

 Preprocessing ... 14

 Algorithms Used in this Approach .. 14

4 EXPERIMENTS AND EVALUATION ... 30

 Dataset .. 30

 Experiment Setup ... 33

 Evaluation Metrics ... 34

 Results .. 35

5 CONCLUSION AND FUTURE WORK .. 48

iv

LIST OF TABLES

Table Page

1. Comparison of Various Methods for Intrusion Detection 36

2. Random Forest Metrics for Multi-Class Classification ... 36

3. AdaBoost Metrics for Multi-Class Classification ... 37

4. Number of Records in Each Class ... 37

5. Random Forest Metrics After Feature Selection ... 41

6. AdaBoost Metrics After Feature Selection .. 41

7. Gradient Boosting Metrics After Feature Selection .. 41

8. Random Forest for Multi-Class Classification After Feature Selection 46

9. AdaBoost for Multi-Class Classification After Feature Selection 46

10. Gradient Boosting for Multi-Class Classification After Feature Selection 46

v

LIST OF FIGURES

Figure Page

1. Bias and Variance Tradeoff .. 11

2. Bias and Variance Curve .. 12

3. Random Forest Overview .. 16

4. Our Overall Approach .. 29

5. Decrease in Error with Change in Estimators ... 42

1

Chapter 1

INTRODUCTION

There is a popularity in the usage of internet, various devices ranging from mobile phones,

internet of things, and cloud systems and computer networks associated with these systems

and devices. Hence the security of these has become a prominent research area [4].

Attackers try to figure out the security weaknesses of the networks, vulnerability in the

system and try to break through them to cause potential damage or steal vital information,

and also attacks like denial of service to cause trouble to the service providers. Firewalls

are a sort of network protection technology that is one of the earliest of all the protection

measures of the network, which can exclude all the network threads that are not from the

inside of the known network. As there is continuous and rapid development in the

technology, new attacks are also becoming complex, difficult and diverse. Thus, firewalls

may not be able to protect these other categories of complex attacks, and we cannot rely

on them. Along with the firewall, another important component in network security, is an

intrusion detection system IDS [1] which proactively protects the system. This helps a lot

in protecting the integrity of entire security system.

There are two kinds of intrusion detection systems: feature based IDS and anomaly

detection IDS [2] [3]. Feature-based IDS can be updated constantly, and it needs the model

library of known intrusions. Then, this model is used to detect intrusions based on its model

library. One advantage of this kind of IDS is that it reacts quickly to intrusion types in

model library. However, feature-based IDS cannot detect new attacks, and it also has to

2

update uninterruptedly to detect more types of new attacks. Anomaly detection IDS needs

to create a complete model of normal data flow to detect intrusions. The model will be able

to identify new intrusions.

In this thesis, we will present an approach that gives intrusion detection with minimal

misclassification. The approach uses Random Forest, an ensemble learning method,

achieves 99.91% accuracy in detecting intrusions. This method also achieves similar

accuracy in classifying different types of network attacks. We will show that this approach

does not require any feature selection nor conversion of input features in the dataset. This

reduces the preprocessing time for the network traffic in real time, and the benefit of

Random Forest is that this can be run in parallel for faster processing in real time. We

compare this approach with traditional machine learning approaches, other ensemble

methods and also explain why this is effective both in accuracy detection and application

in real-time. This thesis also shows that ensemble methods are better than deep learning

approaches for this kind of intrusion detection problem in terms of both prediction accuracy

and performance for training and testing the data. Ensemble methods build a classifier by

combining several different independent base classifiers. The independence is theoretically

enforced by training each base classifier on a training set sampled with replacement from

the original training set. This technique helps in building more generalization of the

classifier based on randomness and helps in reducing the variance of the classifier and is

shown to be efficient in and accurate in our approach to detect intrusions.

3

Chapter 2

BACKGROUND

Many works are being carried out in this context to find the best parameters and results for

the detection of intrusion in various kinds of systems based on the network traffic. Some

recent studies have addressed intrusion detection based on network traffic, such as the work

of Ahmed [7], which shows that detection is an important task and that it detects anomalous

data from a given data set. The author points out that intrusion detection is an interesting

area and that it has been extensively studied in statistics and machine learning. Costa et al.

[8] also highlighted the importance of using intelligent tools to assist intrusion detection

but in the context of computer networks. In their work, the authors employed the

unsupervised Optimum-Path Forest OPF classifier [8] for intrusion detection in computer

networks. The authors proposed a nature-based approach to estimate the probability density

function pdf used for clustering purposes, which strongly influences the quality of the

classification process. Regarding the OPF classifier, Pereira et al. [9] proposed a similar

approach to the one presented by Costa et al. [10] but in the context of supervised intrusion

detection [11], [12], [13].

In their 2011 work, Le et al. [26] followed the approach of organizing the network in

regions. With this approach, they use a hybrid placement strategy to build a backbone of

monitor nodes, one per region. The function of monitor nodes is to sniff the communication

from its neighbors and define whether a node is compromised. One of the advantages of

this solution is that there is no communication overhead. The detection method used is

4

specification-based focused on detecting RPL attacks. In the paper [27] Liu et al. propose

a signature-based IDS that employs Artificial Immune System mechanisms. Detectors with

attack signatures were modeled as immune cells that can classify datagrams as malicious

or normal, non-self or self-element respectively. The article does not present which

placement strategy should be adopted and does not introduce the way that this approach

could be implemented in IoT resource constraint networks. In this approach, the

computational overhead needed to run learning algorithms might be a disadvantage. Misra

et al. [28] present a solution to prevent DDoS attacks over IoT middleware. This

specification based detection method, use the maximum capacity of each middleware layer

to detect the attacks. The system will generate an alert when the number of requests to a

layer exceeds the specified threshold.

Gupta et al. [29] propose an architecture for a wireless IDS. In the architecture proposed,

the normal behavior profiles for network devices would be constructed applying

Computational Intelligence algorithms. Thus, there would be a specific behavior profile

for each device with an IP address assigned. The placement strategy was not presented by

the authors neither the type of attacks that could be detected by their solution.

In the following text, background about intrusion detection systems is given in much detail

[30]. Monitoring and analyzing user information, networks, and services through passive

traffic collection and analysis are useful tools for managing networks and discovering

security vulnerabilities in a timely manner [35, 36]. An IDS is a tool for monitoring traffic

data to identify and protect against intrusions that threaten the confidentiality, integrity,

and availability of an information system [37]. The operations of an IDS can be divided

5

into three stages. The first stage is the monitoring stage, which relies on network-based or

host-based sensors. The second stage is the analysis stage, which relies on feature

extraction methods or pattern identification methods. The final stage is the detection stage,

which relies on anomaly or misuse intrusion detection. An IDS captures a copy of the data

traffic in an information system and then analyzes this copy to detect potentially harmful

activities [38].

The concept of an IDS as an information security system has evolved considerably over

the past 30 years. During these years, researchers have proposed various methods and

techniques for protecting different types of systems using IDSs. In 1987, Denning

presented an intrusion detection model that could compare malicious attack behavior

against the normal model for the system of interest [39]. The implementation of an IDS

depends on the environment. A host-based intrusion detection system HIDS is designed to

be implemented on a single system and to protect that system from intrusions or malicious

attacks that will harm its operating system or data [41]. A HIDS generally depends on

metrics in the host environment, such as the log files in a computer system [42]. These

metrics or features are used as input to the decision engine of the HIDS. Thus, feature

extraction from the host environment serves as the basis for any HIDS. A network-based

intrusion detection system NIDS sniffs network traffic packets to detect intrusions and

malicious attacks [41]. A NIDS can be either a software-based system or a hardware-based

system. For example, Snort NIDS is a software-based NIDS [42].

An IDS depends on algorithms for implementing the various stages of intrusion detection.

There are a vast number of algorithms for all IDS types and methods. Principal component

6

analysis PCA is a lightweight algorithm that can be used for various detection techniques

in IDSs. Machine learning is a subfield of computer science, and is a type of Artificial

Intelligence that provides machines with the ability to learn without explicit programming.

Machine learning evolved from pattern recognition and computational learning theory.

A security mechanism used to monitor the abnormal behavior of the network is an Intrusion

Detection System (IDS) [48]. The IDS identifies and informs that whether the user activity

is normal or not. The users activities are compared by the IDS with the already stored

intrusion records to identify the intrusion. Accurate predictive models can be built for large

data sets using supervised machine learning techniques, that is not possible by traditional

methods. As specified by Tom Mitchell [49], machine learning based intrusion detection

falls under two categories Anomaly and Misuse. IDS learns the patterns by the training

data, so the misuse based method is used. Misuse based detection can detect only the known

attack, new attacks cannot be identified. Anomaly based IDS observes the normal behavior

and if there is a change in the behavior then it considers that behavior as anomaly. So

anomaly based IDS can detect new attacks that are not learned from the training model.

Till now different machine learning techniques such as Artificial neural networks [50],

Support Vector Machine4andNaive Bayes [51], [52], based techniques are proposed for

the intrusion detection. A new detection by combining different techniques, a hybrid

detection technique is proposed by [52].

7

Nadiammai [53] proposed semi supervised machine learning based intrusion detection.

Authors have not considered the resource consumption. Combination of different

classifiers to identify the intrusion is proposed by Panda [52]. They used supervised

classification or unsupervised clustering for filtering of the data. They used NSL-KDD

dataset and tested with decision tree classifier. But the proposed method works only for

binary class classification.

Sangkatsanee [54] proposed intrusion detection system using supervised machine learning

techniques to identify the on line network data as normal or not. The proposed method

identifies probe and Denial of Service attacks only, but the other attacks are not considered.

A framework of machine learning approach is proposed by Yu [48] and Campos [55].

Intrusion is identified by analyzing the local features. Levent [56] proposed Naive Bayes

based multiclass classifier to identify the intrusions. They suggested that intrusion

detection is possible by Hidden Naive Bayes (HNB) model. Denial of Service attacks are

identified with good accuracy compared to other attacks.

Li proposed [57] Intrusion detection technique using Support Vector Machine (SVM).

They also used feature removal method to improve the efficiency. Using the proposed

feature removal method they selected best nineteen features from the KDD-CUP99 data-

set. In the proposed method the data set used is very small. A light weight IDS is proposed

by Sivatha Sindhu [58]. The proposed method mainly focused on pre-processing of the

data so that only important attributes can be used. The first step is to remove the redundant

data so that the learning algorithms give the unbiased result.

8

A survey on intrusion detection systems was conducted by Butan [59] Information about

IDSs such as classification, Intrusion type, computing location and infrastructure are

discussed. They discussed about the Mobile Ad hoc Networks (MANET) IDS. They

compared MANETIDS and the Wireless Sensor Networks (WSN) IDS. Authors suggested

that for mobile applications distributed and cooperative IDS schemes are suitable. For

stationary applications centralized IDSs are suitable and for cluster based applications

hierarchical IDSs are suitable. Farooqi [60] proposed intrusion detection framework to

detect routing attacks. Specification based approach is used to detect routing attacks.

Authors claim that the proposed method has low False Positive Rate (FPR) and good

intrusion detection rate. The proposed method works only for static networks. Wang [61]

developed IDS for Sink, Cluster Head (CH) and for a Sensor Node (SN) separately and

combined altogether to identify the intrusion in heterogeneous Cluster Based Wireless

Sensor Networks (CWSN) but the detection rate for U2R, R2L and Probe attacks is very

low.

Following are the supervised machine learning techniques that are traditional machine

learning techniques:

Logistic Regression: Following description of this classifier is taken from Wikipedia. In

statistics, the logistic model (or logit model) is a widely used statistical model that, in its

basic form, uses a logistic function to model a binary dependent variable; many more

complex extensions exist. In regression analysis, logistic regression (or logit regression) is

estimating the parameters of a logistic model; it is a form of binomial regression.

Mathematically, a binary logistic model has a dependent variable with two possible values,

9

such as pass/fail, win/lose, alive/dead or healthy/sick; these are represented by an indicator

variable, where the two values are labeled "0" and "1". The binary logistic regression

model has extensions to more than two levels of the dependent variable: categorical outputs

with more than two values are modeled by multinomial logistic regression, and if the

multiple categories are ordered, by ordinal logistic regression, for example the proportional

odds ordinal logistic model. The model itself simply models probability of output in terms

of input, and does not perform statistical classification (it is not a classifier), though it can

be used to make a classifier, for instance by choosing a cutoff value and classifying inputs

with probability greater than the cutoff as one class, below the cutoff as the other; this is a

common way to make a binary classifier. The coefficients are generally not computed by

a closed-form expression, unlike linear least squares. Following equation generally

represents the logistic function:

ℎ(𝑋; 𝑊) = 𝑔(
1

1 + 𝑒−𝑊𝑇𝑋
)

Support Vector Machine: The following text of SVM is taken from Wikipedia. In machine

learning, support-vector machines (SVMs, also support-vector networks) are supervised

learning models with associated learning algorithms that analyze data used for

classification and regression analysis. Given a set of training examples, each marked as

belonging to one or the other of two categories, an SVM training algorithm builds a model

that assigns new examples to one category or the other, making it a non-probabilistic binary

linear classifier (although methods such as Platt scaling exist to use SVM in a probabilistic

classification setting). A SVM model is a representation of the examples as points in space,

10

mapped so that the examples of the separate categories are divided by a clear gap that is as

wide as possible. New examples are then mapped into that same space and predicted to

belong to a category based on which side of the gap they fall. In addition to performing

linear classification, SVMs can efficiently perform a non-linear classification using what

is called the kernel trick, implicitly mapping their inputs into high-dimensional feature

spaces.

Gaussian Naïve Bayes: The Gaussian Naive Bayes algorithm is the supervised learning

method. Probabilities of each attribute which belongs to each class are considered for a

prediction. This algorithm is assumes that the probability of each attribute belonging to a

given class value is not depends on all other attributes. If the value of the attribute is known

the probability of a class value is called as the conditional probabilities. Data instances

provability can be found out by multiplying all attributes conditional probabilities together.

Prediction can be made by calculating the each class instance probabilities and by selecting

the highest probability class value [21]. Following the popular Bayes Theorem:

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴) 𝑃(𝐴)

𝑃(𝐵)

We model this problem as supervised learning. We first describe what are the problems

with traditional machine learning methods, then explain how ensemble methods overcome

why Random Forest is robust and achieves great accuracy in detecting intrusions on this

dataset.

In the following two sections, some problems with the traditional methods of machine

learning are discussed.

11

Bias and Variance Tradeoff: The small part of this section is borrowed from [20]. A model

is biased if it systematically under or over predicts the target variable. In machine learning,

this is often the result either of the statistical assumptions made by our model of choice or

of bias in the training data. Variance, on the other hand, in some sense captures the

generalizability of the model. Put more precisely, it is a measure of how much our

prediction would change if we trained it on different data. High variance typically means

that we are overfitting to our training data, finding patterns and complexity that are a

product of randomness as opposed to some real trend. Generally, a more complex or

flexible model will tend to have high variance due to overfitting but lower bias because,

averaged over several predictions, our model more accurately predicts the target variable.

On the other hand, an underfit or oversimplified model, while having lower variance, will

likely be more biased since it lacks the tools to fully capture trends in the data. This is

shown in figure 1.

Figure 1: Bias and Variance Trade-off [20]

12

What we would like, ideally, is low bias-low variance. To see how to achieve this, lets first

look at a typical bias squared-variance curve in Figure 2.

Figure 2: Bias and Variance Curve [20]

From the above figure 2, we can see that as the model complexity increases the variance

of the model increases and is not generalized for new test samples, on the other hand, if the

model is not well trained on the test dataset, it will be with high bias, and cannot even fit

properly for the training dataset. So, in practicality, we need to choose a model that has a

balance of both bias and variance, this essentially means that model should generalize to

test dataset well, and should not overfit

13

Chapter 3

OUR APPROACH

3.1 Overview

We start with the drawbacks of machine learning methods on large datasets with

imbalanced data, and explain it in section 3.2. In section 3.3 we explain the dataset, and in

section 3.4 we explain the data preprocessing. We explain the algorithms used in this

approach in section 3.5 and how we test the model in section 3.6.

Following are the steps in our approach:

1. Dataset collection

2. Preprocess the dataset by creating the labels to each class and split into training data

set and test data set

3. Use the random forest algorithm to train the data – it handles outliers in the training

set, and also bias and variance problems, without any hyper parameter tuning as

described in the following sections

4. Run the model on the test dataset for evaluation

3.2 Dataset Collection

CICIDS dataset [19] was used for experiments. It contains PCAP packet capture files of

network traffic data. More details are given in section 4.1

3.3 Preprocessing

Outliers [23]: Outliers are generally defined as cases that are removed from the main body

of the data. Outliers are cases whose proximities to all other cases in the data are generally

small. A useful revision is to define outliers relative to their class.

14

Data Normalization: Ensemble methods like Random Forest are robust to unscaled data,

but the normalization process helps to train faster and handling small values without any

overflows or datatype errors. This also helps to compare with other machine learning

models that perform best with normalized data. In our approach, we normalized the data.

The ensemble methods that we used in this approach are:

1. Random Forest

2. AdaBoost

3. Gradient Boosting

Each of these methods is used for the following classification types:

1. Detecting intrusions with full features dataset

2. Classifying network traffic with full features dataset

3. Detecting intrusions with selected features and show that the top features also are

enough for intrusion detection

3.4 Algorithms used in this approach

3.4.1 Random Forest

Random forests overcome these by using an ensemble method of learners and voting

mechanism and this process is described in the following paragraphs in detail. We first

start with ensemble methods in detail, then followed by random forest, and how it handles

outliers, missing data and without a need for cross validation dataset and minimal hyper

parameter tuning.

Ensemble methods [21]: Ensemble methods use multiple learning algorithms to obtain

better predictive performance than could be obtained from any of the constituent learning

15

algorithms alone. A machine learning ensemble consists of only a concrete finite set of

alternative models, but typically allows for much more flexible structure to exist among

those alternatives.

Supervised learning algorithms are most commonly described as performing the task of

searching through a hypothesis space to find a suitable hypothesis that will make good

predictions with a particular problem. Even if the hypothesis space contains hypotheses

that are very well-suited for a particular problem, it may be very difficult to find a good

one. Ensembles combine multiple hypotheses to form a hopefully better hypothesis. The

term ensemble is usually reserved for methods that generate multiple hypotheses using the

same base learner. The broader term of multiple classifier systems also covers

hybridization of hypotheses that are not induced by the same base learner.

Evaluating the prediction of an ensemble typically requires more computation than

evaluating the prediction of a single model, so ensembles may be thought of as a way to

compensate for poor learning algorithms by performing a lot of extra computation. Fast

algorithms such as decision trees are commonly used in ensemble methods for example,

random forests, although slower algorithms can benefit from ensemble techniques as well.

Random Forest boosting and bagging methods are robust to missing data, outliers and they

can be used without any feature scaling and normalization. These methods do not even

need hyper-parameter setting, which is one of the most difficult task in training machine

learning models.

Random Forest is also considered as a very handy and easy to use algorithm, because its

default hyperparameters often produce a good prediction result. The number of

16

hyperparameters is also not that high and they are straightforward to understand. One of

the big problems in machine learning is overfitting, but most of the time this will not

happen that easy to a random forest classifier. That is because if there are enough trees in

the forest, the classifier wont overfit the model. Figure 3 gives overview of Random Forest.

Figure 3: Overview of Random Forest [47]

Random Forest Training Algorithm: Random forest is uses a method called Bootstrap

Aggregation bagging [22]. Bootstrap aggregating, also called bagging, is a machine

learning ensemble meta-algorithm designed to improve the stability and accuracy of

machine learning algorithms used in statistical classification and regression. It also reduces

variance and helps to avoid overfitting. Although it is usually applied to decision tree

methods, it can be used with any type of method. Bagging is a special case of the model

averaging approach.

17

The training algorithm for random forests applies the general technique of bootstrap

aggregating, to tree learners. Given a training dataset 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑛 with class

labels 𝑌 = 𝑦1, 𝑦2, … , 𝑦𝑛 , bagging approach selects a random sample repeatedly 𝐵 times

with replacement of the training set and fits decision trees to these samples:

For 𝑏 = 1, 2, … , 𝐵:

1. Sample, with replacement, 𝑛 training examples from 𝑋, 𝑌 and call

these 𝑋𝑏 , 𝑌𝑏.

2. Train a classification tree 𝑓𝑏 on 𝑋𝑏 , 𝑌𝑏.

After training, predictions for unseen samples 𝑥 can be made by averaging the predictions

from all the individual regression trees on x or by taking the majority vote from the decision

trees.

This bootstrapping procedure leads to better model performance because it decreases

the variance of the model, without increasing the bias. This means that while the

predictions of a single tree are highly sensitive to noise in its training set, the average of

many trees is not, as long as the trees are not correlated. Simply training many trees on a

single training set would give strongly correlated trees or even the same tree many times,

if the training algorithm is deterministic; bootstrap sampling is a way of de-correlating the

trees by showing them different training sets.

Additionally, an estimate of the uncertainty of the prediction can be made as the standard

deviation of the predictions from all the individual regression trees on x.

The number of samples/trees, B, is a free parameter. Typically, a few hundred to several

thousand trees are used, depending on the size and nature of the training set. An optimal

18

number of trees B can be found using cross-validation, or by observing the out-of-bag

error, the mean prediction error on each training sample xᵢ, using only the trees that did not

have xᵢ in their bootstrap sample. The training and test error tend to level off after some

number of trees have been fit.

From bagging to random forests: The above procedure describes the original bagging

algorithm for trees. Random forests differ in only one way from this general scheme: they

use a modified tree learning algorithm that selects, at each candidate split in the learning

process, a random subset of the features. This process is sometimes called "feature

bagging". The reason for doing this is the correlation of the trees in an ordinary bootstrap

sample: if one or a few features are very strong predictors for the response variable target

output, these features will be selected in many of the B trees, causing them to become

correlated. An analysis of how bagging and random subspace projection contribute to

accuracy gains under different conditions is given by Ho.

When the training set for the current tree is drawn by sampling with replacement, about

one-third of the cases are left out of the sample. This out-of-bag OOB data is used to get a

running unbiased estimate of the classification error as trees are added to the forest. It is

also used to get estimates of variable importance.

After each tree is built, all of the data are run down the tree, and proximities are computed

for each pair of cases. If two cases occupy the same terminal node, their proximity is

increased by one. At the end of the run, the proximities are normalized by dividing by the

number of trees. Proximities are used in replacing missing data, locating outliers, and

producing illuminating low-dimensional views of the data.

https://en.wikipedia.org/wiki/Random_subspace_method
https://en.wikipedia.org/wiki/Feature_(machine_learning)

19

The out-of-bag (OOB) error estimate [23]: In random forests, there is no need for cross-

validation or a separate test set to get an unbiased estimate of the test set error. It is

estimated internally, during the run, as follows: Each tree is constructed using a different

bootstrap sample from the original data. About one-third of the cases are left out of the

bootstrap sample and not used in the construction of the kth tree. Put each case left out in

the construction of the kth tree down the kth tree to get a classification. In this way, a test

set classification is obtained for each case in about one-third of the trees. At the end of the

run, take j to be the class that got most of the votes every time case n was OOB. The

proportion of times that j is not equal to the true class of n averaged over all cases is the

OOB error estimate. This has proven to be unbiased in many tests.

Variable importance: In every tree grown in the forest, put down the OOB cases and count

the number of votes cast for the correct class [23]. Now randomly permute the values of

variable m in the OOB cases and put these cases down the tree. Subtract the number of

votes for the correct class in the variable-m-permuted OOB data from the number of votes

for the correct class in the untouched OOB data. The average of this number over all trees

in the forest is the raw importance score for variable m. If the values of this score from tree

to tree are independent, then the standard error can be computed by a standard computation.

The correlations of these scores between trees have been computed for a number of data

sets and proved to be quite low, therefore we compute standard errors in the classical way,

divide the raw score by its standard error to get a z-score, ands assign a significance level

to the z-score assuming normality.

20

If the number of variables is very large, forests can be run once with all the variables, then

run again using only the most important variables from the first run. For each case, consider

all the trees for which it is OOB. Subtract the percentage of votes for the correct class in

the variable-m-permuted OOB data from the percentage of votes for the correct class in the

untouched OOB data. This is the local importance score for variable m for this case.

Gini importance: Every time a split of a node is made on variable m the Gini impurity

criterion for the two descendent nodes is less than the parent node [23]. Adding up the Gini

decreases for each individual variable over all trees in the forest gives a fast variable

importance that is often very consistent with the permutation importance measure.

Interactions [23]: The operating definition of interaction used is that variables m and k

interact if a split on one variable, say m, in a tree makes a split on k either systematically

less possible or more possible. The implementation used is based on the Gini values gm

for each tree in the forest. These are ranked for each tree and for each two variables, the

absolute difference of their ranks are averaged over all trees. This number is also computed

under the hypothesis that the two variables are independent of each other and the latter

subtracted from the former. A large positive number implies that a split on one variable

inhibits a split on the other and conversely. This is an experimental procedure whose

conclusions need to be regarded with caution. It has been tested on only a few data sets.

Interactions: The operating definition of interaction used is that variables m and k interact

if a split on one variable, say m, in a tree makes a split on k either systematically less

possible or more possible. The implementation used is based on the gini values g(m) for

21

each tree in the forest. These are ranked for each tree and for each two variables, the

absolute difference of their ranks are averaged over all trees.

This number is also computed under the hypothesis that the two variables are independent

of each other and the latter subtracted from the former. A large positive number implies

that a split on one variable inhibits a split on the other and conversely. This is an

experimental procedure whose conclusions need to be regarded with caution. It has been

tested on only a few data sets.

Proximities [23]: These are one of the most useful tools in random forests. The proximities

originally formed NxN matrix. After a tree is grown, put all of the data, both training and

oob, down the tree. If cases k and n are in the same terminal node increase their proximity

by one. At the end, normalize the proximities by dividing by the number of trees.

Users noted that with large data sets, they could not fit an NxN matrix into fast memory.

A modification reduced the required memory size to NxT where T is the number of trees

in the forest. To speed up the computation-intensive scaling and iterative missing value

replacement, the user is given the option of retaining only the nrnn largest proximities to

each case. When a test set is present, the proximities of each case in the test set with each

case in the training set can also be computed. The amount of additional computing is

moderate.

Missing value replacement for the training set [23]: Random forests has two ways of

replacing missing values. The first way is fast. If the m variable is not categorical, the

method computes the median of all values of this variable in class j, then it uses this value

to replace all missing values of the m variable in class j. If the m variable is categorical,

22

the replacement is the most frequent non-missing value in class j. These replacement values

are called fills. The second way of replacing missing values is computationally more

expensive but has given better performance than the first, even with large amounts of

missing data. It replaces missing values only in the training set. It begins by doing a rough

and inaccurate filling in of the missing values. Then it does a forest run and computes

proximities. If x(m, n) is a missing continuous value, estimate its fill as an average over

the non-missing values of the m variables weighted by the proximities between the nth case

and the non-missing value case. If it is a missing categorical variable, replace it by the most

frequent non-missing value where frequency is weighted by proximity. Now iterate-

construct a forest again using these newly filled in values, find new fills and iterate again.

Our experience is that 4-6 iterations are enough.

Missing value replacement for the test set: When there is a test set, there are two different

methods of replacement depending on whether labels exist for the test set. If they do, then

the fills derived from the training set are used as replacements. If labels no not exist, then

each case in the test set is replicated n-class times (n-class = number of classes). The first

replicate of a case is assumed to be class 1 and the class one fills used to replace missing

values. The 2nd replicate is assumed class 2 and the class 2 fills used on it. This augmented

test set is run down the tree. In each set of replicates, the one receiving the most votes

determines the class of the original case.

Balancing prediction error [23]: In some data sets, the prediction error between classes is

highly unbalanced. Some classes have a low prediction error, others a high. This occurs

usually when one class is much larger than another. Then random forests, trying to

23

minimize overall error rate, will keep the error rate low on the large class while letting the

smaller classes have a larger error rate. For instance, in drug discovery, where a given

molecule is classified as active or not, it is common to have the actives outnumbered by 10

to 1, up to 100 to 1. In these situations, the error rate on the interesting class (actives) will

be very high. The user can detect the imbalance by outputs the error rates for the individual

classes. To illustrate 20 dimensional synthetic data is used. Class 1 occurs in one spherical

Gaussian, class 2 on another. A training set of 1000 class 1's and 50 class 2's is generated,

together with a test set of 5000 class 1's and 250 class 2's. The final output of a forest of

500 trees on this data is:

500 3.7 0.0 78.4

There is a low overall test set error (3.73%) but class 2 has over 3/4 of its cases

misclassified. The error can balancing can be done by setting different weights for the

classes. The higher the weight a class is given, the more its error rate is decreased. A guide

as to what weights to give is to make them inversely proportional to the class populations.

So set weights to 1 on class 1, and 20 on class 2, and run again.

The output is: 500 12.1 12.7 0.0

The weight of 20 on class 2 is too high. Set it to 10 and try again, getting 500 4.3 4.2 5.2.

This is pretty close to balance. If exact balance is wanted, the weight on class 2 could be

jiggled around a bit more. Note that in getting this balance, the overall error rate went up.

This is the usual result - to get better balance, the overall error rate will be increased.

Following are the features of Random Forest [23]:

 It is unexcelled in accuracy among current algorithms.

24

 It runs efficiently on large datasets.

 It can handle thousands of input variables without variable deletion.

 It gives estimates of what variables are important in the classification.

 It generates an internal unbiased estimate of the generalization error as the forest

building progresses.

 It has an effective method for estimating missing data and maintains accuracy when

a large proportion of the data are missing.

 It has methods for balancing error in class population unbalanced data sets.

 Generated forests can be saved for future use on other data.

 Prototypes are computed that give information about the relation between the

variables and the classification.

 It computes proximities between pairs of cases that can be used in clustering,

locating outliers, or (by scaling) give interesting views of the data.

 The capabilities of the above can be extended to unlabeled data, leading to

unsupervised clustering, data views and outlier detection.

 It offers an experimental method for detecting variable interactions.

3.4.2 AdaBoost

AdaBoost is short form of Adaptive Boosting [43] is a machine learning algorithm used

along with many other algorithms to improve the performance. The output of other

algorithms is combined into a weighted sum that represents the final output of the boosted

classifier. AdaBoost is called adaptive because following weak learners are adjusted in

25

favor of those instances misclassified by previous classifiers. AdaBoost is sensitive to noisy

data and outliers. In some problems it can be less susceptible to the overfitting problem

than other learning algorithms. The individual learners can be weak, but as long as the

performance of each one is slightly better than random guessing, the final model can be

proved to converge to a strong learner.

During each iteration of the training process, a weight is assigned to each sample in the

training set equal to the current error on that sample. These weights can be used to inform

the training of the weak learner and can be grown that favor splitting sets of samples with

high weights. Following explains the mathematics involved in building the model.

A general boosting classifier is of the following form

𝐹𝑇(𝑥) = ∑ 𝑓𝑡𝑥

𝑇

𝑡=1

Where, 𝑓𝑡 is a weak learner and takes an input 𝑥 and returns a value indicating the

classification prediction. In a two class problem, the sign will be predicted object category.

Likewise, 𝑇𝑡ℎ classifier is positive if the sample belongs to positive class and otherwise it

is negative.

So, each weak learner will produce a hypothesis, ℎ𝑥𝑖, for each sample in the training

dataset. At each iteration 𝑡, a weak learner is selected and assigned a coefficient such that

the sum traininig error 𝐸𝑡 of the resulting t-stage boost classifier is minimized. Following

equation explains this concept.

𝐸𝑡 = ∑ 𝐸[𝐹𝑇−1(𝑥𝑖) + 𝑎𝑡ℎ𝑥𝑖]
𝑖

26

Where 𝐹𝑇−1(𝑥𝑖) is the boosted classifier that is built up to the previous stage, and 𝐸[𝐹] is

an error function and 𝑎𝑡ℎ𝑥𝑖 is a weak learner that is under consideration.

At each iteration in the training process, a weight 𝑤𝑖,𝑡 is assigned to each sample in the

training dataset that is same as the current error on that sample. These weights can be used

to inform the training of weak learner and can be grown in the favor of splitting sets of

samples with high weights. Another variation of this boosting algorithm is called Gradient

Boosting explained in further section 3.5.3.

Training AdaBoost Model [43]: In the first step, a weak classifier is prepared on the

training data using the weighted samples. Only binary two-class classification problems

are supported, so each decision classifier makes one decision on one input variable and

outputs a +1.0 or -1.0 value. The misclassification rate is calculated for the trained model.

Traditionally, this is calculated using the formula: E = C – N / N

Where E is the misclassification rate, C is the number of training instance predicted

correctly by the model and N is the total number of training instances. This is modified to

use the weighting of the training instances and is the weighted sum of the misclassification

rate, where W is the weight for training instance I, and TE is the prediction error for training

instance i which is 1 if misclassified and 0 if correctly classified.

Early Termination: This is taken from Wikipedia: A technique for speeding up processing

of boosted classifiers, early termination refers to only testing each potential object with as

many layers of the final classifier necessary to meet some confidence threshold, speeding

up computation for cases where the class of the object can easily be determined. If 50% of

negative samples are filtered out by each stage, only a very small number of objects would

27

pass through the entire classifier, reducing computation effort. This method has since been

generalized, with a formula provided for choosing optimal thresholds at each stage to

achieve some desired false positive and false negative rate.

In the field of statistics, where AdaBoost is more commonly applied to problems of

moderate dimensionality, early stopping is used as a strategy to reduce overfitting. A

validation set of samples is separated from the training set, performance of the classifier

on the samples used for training is compared to performance on the validation samples,

and training is terminated if performance on the validation sample is seen to decrease even

as performance on the training set continues to improve.

Pruning: Pruning is the process of removing poorly performing weak classifiers to improve

memory and execution time cost of the boosted classifier. The simplest methods, which

can be particularly effective in conjunction with totally corrective training, are weight- or

margin-trimming: when the coefficient, or the contribution to the total test error, of some

weak classifier falls below a certain threshold, that classifier is dropped.

3.4.3 Gradient Boosting Classifier [44]:

Gradient Boosting classifier [44] is a machine learning algorithm that produces a model

based on the ensemble of weak prediction models like decision trees. Gradient boosting

has three components in it.

1. Weak learner

2. Loss Function

3. An additive model to weak learners to minimize the loss function

28

An advantage of this algorithm is that new boosting does not have to be derived for each

loss function and it is generic that any loss function can be used. Decision trees are the

weak learners in gradient boosting algorithm. These are constructed in a greedy way and

Gini scores are used to choose the best split to minimize the loss function. Trees are added

at one time, and the trees that are already in the model will not be changed. The typical

gradient descent procedure is used to minimize the loss function. The output from the new

tree is added to the existing sequence of trees to improve the output of the model. Another

version of this algorithm stochastic gradient boosting is also present, in which a subsample

is taken at random. Following explains the mathematical explanation [44] of this algorithm.

Gradient boosting also combines a set of weak learners to a single strong learner in an

iterative manner. It is easiest to explain in the least squares setting where the goal is to

teach a model to predict values in the form of minimizing the least squares error.

At each stage 𝑚, 1 ≤ 𝑚 ≤ 𝑀, of gradient boosting algorithm, we can assume that there is

an imperfect model 𝐹𝑚. The gradient boosting algorithm improves this 𝐹𝑚 by constructing

a new model 𝐹𝑚+1(𝑥) = 𝐹𝑚(𝑥) + ℎ(𝑥), that adds an estimator to produce a better model.

To find this estimator, the gradient boosting starts with observation that a perfect estimator

ℎ(𝑥) would imply

𝐹𝑚+1(𝑥) = 𝐹𝑚(𝑥) + ℎ(𝑥) = 𝑦

Hence, gradient boosting will fit ℎ(𝑥) to the residual function. Similar to the other boosting

variants, 𝐹𝑚+1(𝑥) attempts to correct the errors of 𝐹𝑚(𝑥). The generalization of this to loss

functions other than squared error, and to classification.

29

Regularization in Gradient Boosting: Fitting the training set too closely can lead to

degradation of the model's generalization ability. Several so-called regularization

techniques reduce this overfitting effect by constraining the fitting procedure. One natural

regularization parameter is the number of gradient boosting iterations M (i.e. the number

of trees in the model when the base learner is a decision tree). Increasing M reduces the

error on training set, but setting it too high may lead to overfitting. An optimal value of M

is often selected by monitoring prediction error on a separate validation data set. Besides

controlling M, several other regularization techniques are used.

Penalizing Complexity of Tree: Another useful regularization techniques for gradient

boosted trees is to penalize model complexity of the learned model. The model complexity

can be defined as the proportional number of leaves in the learned trees.

Following figure outlines our approach:

Figure 4: Our Overall Approach

30

Chapter 4

EXPERIMENTS AND EVALUATION

First, we describe the dataset used, followed by the libraries/tools for the experiments.

Then, we describe the evaluation metrics and their importance for classification problems,

especially network traffic classification. Then, we show the ensemble methods results, and

compare them with different kinds of machine learning algorithms

4.1 Dataset

 The CICIDS dataset [19] was used in our experiments. It contains PCAP packet capture

files of network traffic data as described in the following paragraphs.

Many of the previous datasets such as DARPA98, KDD99, ISC2012, and ADFA13 are out

of date and are not reliable to use as there is a rapid change in the network attacks. This

dataset contains benign traffic and common attack network flows, and covers all the eleven

necessary criteria with common updated attacks such as DoS, DDoS, Brute Force, XSS,

SQL Injection, Infiltration, Port scan and Botnet. The dataset is completely labelled and

more than 80 network traffic features extracted and calculated for all benign and intrusive

flows by using CICFlowMeter software, which is publicly available in Canadian Institute

for Cybersecurity website. The following sections are borrowed from the dataset website

[19] and publication [19] associated with it.

Dataset generation [19]: For this dataset, they used their proposed B-Profile system which

is responsible for profiling the abstract behavior of human interactions and generate a

naturalistic benign background traffic. The BProfile for this dataset extracts the abstract

behavior of 25 users based on the HTTP, HTTPS, FTP, SSH, and email protocols. At First,

31

it tries to encapsulate network events produced by users with machine learning and

statistical analysis techniques. The encapsulated features are distributions of packet sizes

of a protocol, the number of packets per flow, certain patterns in the payload, the size of

the payload, and request time distribution of protocols. Then, after deriving the B-Profiles

from users, an agent which has been developed by Java is used to generating realistic

benign events and simultaneously perform B-Profile on the Victim-Network for predefined

five protocols.

4.1.1 Types of Attacks:

Common attack families are Brute Force Attack, Heartbleed Attack, Botnet, DoS Attack,

and DDoS Attack [19], Web Attack, and Infiltration Attack which are described as follows:

Brute Force Attack: This is one of the most popular attacks that only cannot be used for

password cracking, but also to discover hidden pages and content in a web application. It

is basically a hit and try attack, then the victim succeeds.

Heartbleed Attack: It comes from a bug in the OpenSSL cryptography library, which is a

widely used implementation of the Transport Layer Security TLS protocol. It is normally

exploited by sending a malformed heartbeat request with a small payload and large length

field to the vulnerable party usually a server in order to elicit the victims response.

Botnet: A number of Internet-connected devices used by a botnet owner to perform various

tasks. It can be used to steal data, send spam, and allow the attacker access to the device

and its connection.

32

DoS Attack: The attacker seeks to make a machine or network resource unavailable

temporarily. It typically accomplished by flooding the targeted machine or resource with

superfluous requests in an attempt to overload systems and prevent some or all legitimate

requests from being fulfilled.

DDoS Attack: It typically occurs when multiple systems, flood the bandwidth or resources

of a victim. Such an attack is often the result of multiple compromised systems for example,

a botnet flooding the targeted system with generating the huge network traffic.

Web Attack: This attack types are coming out every day, because individuals and

organizations take security seriously now. We use the SQL Injection, which an attacker

can create a string of SQL commands, and then use it to force the database to reply the

information, Cross-Site Scripting XSS which is happening when developers dont test their

code properly to find the possibility of script injection, and Brute Force over HTTP which

can tries a list of passwords to find the administrators password.

Infiltration Attack: The infiltration of the network from inside is normally exploiting a

vulnerable software such as Adobe Acrobat Reader. After successful exploitation, a

backdoor will be executed on the victims’ computer and can conduct different attacks on

the victims’ network such as IP sweep, full port scan and service enumerations using

Nmap.

From PCAP files 80 traffic features from the dataset using CICFlowMeter. CICFlowMeter

is a flow based feature extractor and can extract 80 features from a pcap file. The flow label

in this application includes SourceIP, SourcePort, DestinationIP, DestinationPort and

Protocol.

33

Criterial for this dataset [19]: Regarding to the last dataset evaluation framework published

on 2016, covering eleven criteria is necessary for each dataset. None of the previous IDS

available datasets could cover all of the criteria. Complete Traffic, Labelled Dataset,

Complete Interaction, Complete Capture, Available Protocols, Attack Diversity,

Heterogeneity, Feature Set, Meta Data. We show that random forest is the best machine-

learning algorithm for classifying network traffic with high accuracy compared to other

algorithms.

4.2 Experiment setup

NumPy and Pandas were used to convert the raw dataset into a format that can be given as

input to the scikit-learn library. The dataset is split into train and test randomly in 80-20

ratio for intrusion detection and same ratio for the network traffic classification with

stratified sampling. To choose the model parameters, we have used five-fold cross

validation on ensemble methods, and also show that there is no need to hyper-parameter

tuning for ensemble methods.

Numpy [45]: NumPy is the fundamental package for scientific computing with Python.

NumPy can also be used as an efficient multi-dimensional container of generic data.

Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily

integrate with a wide variety of databases. Besides its obvious scientific uses, NumPy can

also be used as an efficient multi-dimensional container of generic data. Arbitrary data-

types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide

variety of databases. NumPy is licensed under the BSD license, enabling reuse with few

restrictions.

34

Pandas [46]: pandas is an open source, BSD-licensed library providing high-performance,

easy-to-use data structures and data analysis tools for the Python programming language.

Scikit-Learn: Scikit-learn is a free software machine learning library for the Python

programming language. It features various classification, regression and clustering

algorithms including support vector machines, random forests, gradient boosting, k-means

and DBSCAN, and is designed to interoperate with the Python numerical and scientific

libraries NumPy and SciPy.

4.3 Evaluation Metrics

As the main goal of this task is intrusion detection and network classification, accuracy of

the model is not just enough to show the capacity of the model. We also need few other

evaluation metrics like precision, recall, confusion matrix, true positive rate, false positive

rate, and area under the curve. These definitions are explained as follows:

Precision: precision is the fraction of retrieved documents that are relevant to the query

Recall: recall is the fraction of the relevant documents that are successfully retrieved.

Confusion Matrix: This is also called an error matrix. It is a specific table layout that allows

visualization of the performance of an algorithm, typically a supervised learning

classification algorithm. Each row of the matrix represents the instances in a predicted class

while each column represents the instances in an actual class or vice versa. This is named

as a confusion matrix, because using this matrix, we can see if the system is confusing two

classes and if it is commonly mislabeling one as another. Following is the terminology

used in confusion matrix metrics and is important.

35

True positive = correctly identified

False positive = incorrectly identified

True negative = correctly rejected

False negative = incorrectly rejected

True Positive Rate: It measures the proportion of actual positives that are correctly

identified out of the total positive classified instances. It indicates the percentage of true

positives out of the total positive.

True Negative Rate: This measures the proportion of actual negatives that are correctly

identified out of the total negative classified instances. It indicates the percentage of true

negatives out of the total negatives.

4.4 Results

The experiments are conducted in four ways indicated as follows:

1. Binary classification on dataset with all features

2. Multi-class classification on dataset with all features

3. Binary classification on dataset with selected features

4. Multi-class classification on dataset with selected features

Splitting the dataset: For the purpose of testing, the dataset is split into five different

datasets. Each dataset contains 20% for test and 80% for training. Each individual dataset

is trained and tuned for hyper-parameters and then applied of the test dataset which is the

remaining 20%. The average of all metrics is taken and indicated in the tables. The models

are trained on Google Colab with the libraries mentioned above. Following table shows

the results of various methods without feature selection. It has all features, and shows that

36

Random Forest outperforms all other methods and gives best accuracy, precision and

recall.

Metric/Method Naïve

Bayes

Logistic

Regression

Random

Forest

AdaBoost Gradient

Boosting

Precision 0.963 0.887 1.0 0.996 0.999

Recall 0.062 0.983 0.999 0.996 0.999

F1 score 0.116 0.932 0.999 0.996 0.999

Accuracy 24% 88.62% 99.91% 99.37% 99.82%

Table 1: Comparison of Various Methods for Intrusion Detection

From the above tables, we can see that ensemble methods outperform other machine

learning algorithms; especially Random Forest takes very less time compared to other

ensemble methods. We can conclude that this is the efficient approach for intrusion

detection on huge network traffic datasets considering the efficiency of usage of resources.

Following table shows the confusion matrix for when all classes of network traffic are

considered: Benign, DDoS, PortScan, Bot, Infiltration, Web Attacks, FTP and SSH, DoS,

Heartbleed. In the following we show the results of different ensemble methods applied on

whole dataset as multi-class classification. The accuracy of Random Forest is 99.89% and

that of AdaBoost is 99.88% and Gradient Boosting is 99.72

 Benign DoS PortScan DDoS FTP Web

Attack

Bot Infiltration Heartbleed

Precision 0.99 0.99 0.76 0.85 0.94 0.99 0.99 0.5 0.99

Recall 0.99 0.99 0.83 1 0.99 0.99 0.99 1 0.99

F1 Score 0.99 0.99 0.80 0.92 0.96 0.99 0.99 0.66 0.99

Table 2: Random Forest Metrics for Multi-Class Classification

37

 Benign DoS PortScan DDoS FTP Web

Attack

Bot Infiltration Heartbleed

Precision 0.99 0.99 0.78 0.42 0.94 0.99 0.99 0.5 0.99

Recall 0.99 0.99 0.79 1 0.96 0.99 0.99 1 0.99

F1 Score 0.99 0.99 0.79 0.6 0.95 0.99 0.99 0.66 0.99

Table 3: AdaBoost Metrics for Multi-Class Classification

Benign 2272688

DoS 251712

PortScan 158930

DDoS 128027

Patator 13835

Web Attack 2180

Bot 1966

Infiltration 36

HeartBleed 11

Table 4: Number of Records in Each Class

It can be seen from the results, the lower precision/recall is because of the less number of

samples

Feature Ranking and Importance: Feature selection is an important aspect of classification,

as it reduces the training times and also eliminates duplication and feature correlation.

Hence, it is important to extract features and study the results on it. Random Forest

algorithm can also be used for feature selection for top features that contribute to the

classification. Following list shows the list of features of according to their importance

scores.

1. Average Packet Size - 0.059870

2. Packet Length Variance - 0.058659

3. Init_Win_bytes_forward - 0.052030

4. Packet Length Mean - 0.049313

38

5. Bwd Packet Length Mean - 0.048438

6. Max Packet Length - 0.045777

7. Avg Bwd Segment Size - 0.041463

8. Packet Length Std - 0.036997

9. Subflow Fwd Bytes - 0.036723

10. Total Length of Bwd Packets - 0.034983

11. Bwd Packet Length Max - 0.034087

12. Total Length of Fwd Packets - 0.032715

13. Bwd Packet Length Std - 0.031212

14. Subflow Bwd Bytes - 0.025415

15. Bwd Header Length - 0.023039

16. Init_Win_bytes_backward - 0.022483

17. Fwd Header Length.1 - 0.019853

18. Fwd Packet Length Max - 0.019110

19. Fwd Packet Length Mean - 0.017535

20. Fwd Header Length - 0.017184

21. Idle Max - 0.015595

22. Subflow Fwd Packets - 0.014848

23. min_seg_size_forward - 0.014448

24. Flow IAT Max - 0.013813

25. Avg Fwd Segment Size - 0.013166

26. Fwd IAT Max - 0.012664

39

27. Subflow Bwd Packets - 0.012458

28. Fwd IAT Std - 0.012287

29. Total Backward Packets - 0.012179

30. Fwd IAT Mean0.011560

31. Bwd Packet Length Min - 0.011324

32. Flow IAT Mean - 0.010899

33. Bwd Packets/s - 0.010371

34. Flow Duration - 0.009993

35. Fwd IAT Min - 0.009900

36. Total Fwd Packets - 0.009758

37. Fwd IAT Total - 0.009668

38. ACK Flag Count - 0.009291

39. Flow IAT Std - 0.009291

40. act_data_pkt_fwd - 0.008445

41. Idle Mean - 0.007799

42. PSH Flag Count - 0.007739

43. Fwd Packets/s - 0.007038

44. Flow IAT Min - 0.005220

45. Min Packet Length - 0.004304

46. Fwd Packet Length Min - 0.004213

47. Fwd Packet Length Std - 0.003784

48. Bwd IAT Total - 0.003096

40

49. Bwd IAT Max - 0.003071

50. URG Flag Count - 0.002949

51. Bwd IAT Mean - 0.001970

52. Active Max - 0.001433

53. Down/Up Ratio - 0.001284

54. Bwd IAT Min - 0.001249

55. Active Std - 0.001201

56. Active Mean - 0.001177

57. FIN Flag Count - 0.001132

58. Bwd IAT Std - 0.000999

59. Active Min - 0.000575

60. Fwd PSH Flags - 0.000483

61. SYN Flag Count - 0.000194

62. Idle Std - 0.000193

63. Fwd URG Flags - 0.000029

64. CWE Flag Count - 0.000022

65. ECE Flag Count - 0.000000

66. RST Flag Count - 0.000000

67. Bwd URG Flags - 0.000000

68. Bwd Avg Bulk Rate - 0.000000

69. Bwd Avg Packets/Bulk - 0.000000

70. Bwd Avg Bytes/Bulk - 0.000000

41

71. Fwd Avg Packets/Bulk - 0.000000

72. Bwd PSH Flags - 0.000000

73. Fwd Avg Bulk Rate - 0.000000

74. Fwd Avg Bytes/Bulk - 0.000000

75. Flow Bytes/s – 0.000000

76. Flow Packets/s - 0.000000

Following is the metrics for Random Forest after feature selection of top 10 features,

which is nearly the square root of total features.

Accuracy 99.4%

Precision 0.995

Recall 0.997

F1-score 0.996

Table 5: Performance metrics of Random Forest after feature selection

Accuracy 95.7%

Precision 0.957

Recall 0.991

F1-score 0.974

Table 6: Performance metrics of AdaBoost after feature selection

Accuracy 96.5%

Precision 0.997

Recall 0.959

F1-score 0.978

Table 7: Performance metrics of Gradient Boosting after feature selection

42

Figure 5: Decrease in Error with Change in Estimators

Following is the list of features ranking score according to Random Forest when all classes

are considered for classification:

1. Packet Length Variance - 0.060135

2. Average Packet Size - 0.050755

3. Init Win bytes forward - 0.047369

4. Packet Length Std - 0.045532

5. Bwd Packet Length Std - 0.042913

6. Subflow Fwd Bytes - 0.039410

7. Max Packet Length - 0.038972

8. Bwd Packet Length Mean - 0.034768

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 20 40 60 80 100 120

O
O

B
 E

rr
o

r
an

d
 T

es
t

Er
ro

r

Number of Estimators

43

9. Total Length of Fwd Packets - 0.033940

10. Subflow Bwd Bytes - 0.029878

11. Total Length of Bwd Packets - 0.029695

12. Fwd Packet Length Max - 0.029362

13. Avg Bwd Segment Size - 0.028650

14. Bwd Packet Length Max - 0.028421

15. Avg Fwd Segment Size - 0.025790

16. Packet Length Mean - 0.024116

17. Fwd Header Length.1 - 0.021989

18. Fwd Packet Length Mean - 0.020529

19. Bwd Packet Length Min - 0.019887

20. Idle Max - 0.019702

21. Flow IAT Max - 0.019023

22. Init_Win_bytes_backward - 0.018273

23. Fwd Header Length - 0.016255

24. Bwd Header Length - 0.015772

25. min_seg_size_forward - 0.015354

26. Fwd IAT Std - 0.015225

27. Total Fwd Packets - 0.014804

28. Bwd Packets/s - 0.013868

29. PSH Flag Count - 0.013584

30. Subflow Fwd Packets - 0.013062

44

31. Fwd IAT Max - 0.012878

32. Flow IAT Std - 0.012141

33. Fwd Packet Length Std - 0.011951

34. Fwd Packets/s - 0.010991

35. act_data_pkt_fwd - 0.010353

36. Fwd IAT Mean - 0.009543

37. Total Backward Packets - 0.009385

38. Fwd IAT Total - 0.008448

39. Subflow Bwd Packets - 0.007992

40. Fwd Packet Length Min - 0.007897

41. Flow IAT Mean - 0.007104

42. ACK Flag Count - 0.006895

43. Flow Duration - 0.006736

44. Fwd IAT Min - 0.006689

45. Idle Mean - 0.005290

46. Flow IAT Min - 0.004899

47. Min Packet Length - 0.004544

48. Active Min - 0.003649

49. Bwd IAT Mean - 0.002895

50. Down/Up Ratio - 0.002893

51. Active Mean - 0.002864

52. Bwd IAT Total - 0.002742

45

53. Active Max - 0.002588

54. Bwd IAT Max - 0.002530

55. URG Flag Count - 0.002377

56. Bwd IAT Min - 0.002104

57. FIN Flag Count - 0.001633

58. Bwd IAT Std - 0.000907

59. SYN Flag Count - 0.000714

60. Fwd PSH Flags - 0.000653

61. Active Std - 0.000361

62. Idle Std - 0.000291

63. CWE Flag Count - 0.000017

64. Fwd URG Flags - 0.000013

65. RST Flag Count - 0.000000

66. ECE Flag Count - 0.000000

67. Bwd PSH Flags - 0.000000

68. Bwd URG Flags - 0.000000

69. Bwd Avg Bulk Rate - 0.000000

70. Fwd Avg Packets/Bulk - 0.000000

71. Bwd Avg Packets/Bulk - 0.000000

72. Bwd Avg Bytes/Bulk - 0.000000

73. Fwd Avg Bulk Rate - 0.000000

74. Fwd Avg Bytes/Bulk - 0.000000

46

Following three tables shows the precision, recall and F1 scores of the ensemble methods

used. The accuracy of Random Forest is 99.35, and that of AdaBoost is 99.29 and that of

Gradient Boosting is 99.31. We see that Random Forest performs best.

 Benign DoS PortScan DDoS FTP Web

Attack

Bot Infiltration Heartbleed

Precision 0.99 0.98 0.98 0.75 0.90 0.99 0.96 0.98 0.99

Recall 0.99 0.99 0.38 0.6 0.06 0.99 0.97 1 0.99

F1 Score 0.99 0.99 0.55 0.66 0.12 0.98 0.97 1 0.99

Table 8: Random Forest on all classes after feature selection

 Benign DoS PortScan DDoS FTP Web

Attack

Bot Infiltration Heartbleed

Precision 0.99 0.98 0.60 0.75 0.8 0.96 0.97 1 0.99

Recall 0.99 0.99 0.72 0.6 0.06 0.99 0.96 .96 0.99

F1 Score 0.99 0.99 0.65 0.66 0.12 0.98 0.97 1 0.99

Table 9: AdaBoost on all classes after feature selection

 Benign DoS PortScan DDoS FTP Web

Attack

Bot Infiltration Heartbleed

Precision 0.99 0.98 0.95 0.5 0.71 0.96 0.98 1 0.99

Recall 0.99 0.99 0.38 0.6 0.06 0.99 0.97 1 0.99

F1 Score 0.99 0.99 0.54 0.54 0.11 0.98 0.97 1 0.99

Table 10: Gradient Boosting on all classes after feature selection

Results Discussion: From the above results, we can see that as expected, the traditional

methods do not perform well, as they suffer from bias and variance and cannot generalize

the models for test dataset with high accuracy. The ensemble methods perform very well,

and especially random forest stands out of all the methods. Not only that random forest

does well in terms of performance, but also training it takes less time compared to other

ensemble methods, due to the nature of the independence of the algorithm, and also, it

clearly explains that the other boosting methods are prone to a bit of overfitting when

compared to bagging approaches. Random forest performs well both on intrusion detection

47

as binary classification and network traffic classification. On the subset of features, the

ensemble methods perform well, and random forest performs the best even with only ten

percent of the entire features. This has reduced a dramatic training time without

compromising the accuracy. Hence, we can say that ensemble methods perform very well

compared to the traditional methods in terms of both performance and training times.

48

Chapter 5

CONCLUSION AND FUTURE WORK

In this thesis, an approach using ensemble methods for intrusion detection with network

traffic data has been presented. This approach can be generalized to any application, as the

network traffic does not vary. The dataset used for training the model is comprehensive,

and provides an up-to-date attack scenarios at network level traffic, with imbalanced

classes as well. Previous works and datasets did not address these issues. In this thesis,

and analysis of ensemble methods is also done to give new insights to the intrusion

detection approach as an anomaly detection approach. The advantages of ensemble

methods, especially as highlighted, they are robust to outliers, feature scaling and missing

values. From the experiments, it can be seen that the ensemble methods outperform

traditional methods on this kind of complex dataset and Random Forest is the best classifier

in terms of accuracy and the feature selection for dataset size reduction. One interesting

fact about Random Forest is that it requires minimum hyper-parameter tuning and just

selecting the number of trees in the forest.

As mentioned, one of the problems with ensemble methods is they may take longer time

to test as they have aggregate the results from various small classifiers. This can be handled

by using distributed computing approaches like Apache Spark. The models can be trained

faster, and robust to node failure and provides fault tolerant computing approach. Also, the

model can be saved in the memory as the size of the model is not huge. This provides speed

up of hundreds of times in real-time testing if a network traffic is intrusion or not.

49

REFERENCES

1. A. Mayank, P. Sanketh, B. Santosh, N Sukumar, "Intrusion detection system for PS-

Poll DoS attack in 802.11 networks using real time discrete event system", IEEE/CAA

Journal of Automatica Sinica, vol. 4, no. 4, pp. 792-808, 2017.

2. E. Denning Dorothy, "An intrusion detection model", IEEE Transactions on Software

Engineering, vol. 13, no. 2, pp. 222-232, 1987.

3. P. Shengyi, M. Thomas, A. Uttam, "Developing a Hybrid Intrusion Detection System

Using Data Mining for Power Systems", IEEE Transactions on Smart Grid, vol. 6,

no. 6, pp. 3104-3113, 2015.

4. D. He, X. Chen, D. Zou, L. Pei and L. Jiang, "An Improved Kernel Clustering

Algorithm Used in Computer Network Intrusion Detection," 2018 IEEE International

Symposium on Circuits and Systems ISCAS, Florence, 2018, pp. 1-5

5. E. Kabir, J. Hu, H. Wang, G. Zhuo A novel statistical technique for intrusion

detection systems Future Gener. Comput. Syst., 79 2018, pp. 303-318

6. V. Adat, B.B. Gupta, Security in internet of things: issues, challenges, taxonomy, and

architecture, Telecommun. Syst., 67 3 2018, pp. 423-441

7. M. Ahmed, A.N. Mahmood, J. Hu, A survey of network anomaly detection

techniques J. Netw. Comput. Appl., 60 2016, pp. 19-31

8. L.M. Rocha, F.A.M. Cappabianco, A.X. Falcão, Data clustering as an optimum-path

forest problem with applications in image analysis. Int. J. Imaging Syst. Technol., 19

2 2009, pp. 50-68

9. C.R. Pereira, R.Y.M. Nakamura, K.A.P. Costa, J.P. Papa An optimum-path forest

framework for intrusion detection in computer networks Eng. Appl. Artif.

Intell., 25 6 2012, pp. 1226-1234

10. K.A.P. Costa, Pereira, R.Y.M. Nakamura, C.R. Pereira, J.P. Papa, A.X. Falcão, A

nature-inspired approach to speed up optimum-path forest clustering and its

application to intrusion detection in computer networks. Inf. Sci., 294 2015, pp. 95-

108

11. J.P. Papa, A.X. Falcão, C.T.N. Suzuki, Supervised pattern classification based on

optimum-path forest. Int. J. Imaging Syst. Technol., 19 2 2009, pp. 120-131

50

12. J.P. Papa, A.X. Falcão, V.H.C. Albuquerque, J.M.R.S. Tavares. Efficient supervised

optimum-path forest classification for large datasets. Pattern Recognit., 45 1 2012, pp.

512-520

13. J.P. Papa, G.H. Rosa, L.P. Papa, A binary-constrained geometric semantic genetic

programming for feature selection purposes. Pattern Recognit. Lett., 100 Supplement

C 2017, pp. 59-66

14. F. Javed, M.K. Afzal, M. Sharif, B. Kim, Internet of things IoTs operating systems

support, networking technologies, applications, and challenges: a comparative review.

IEEE Commun. Surv. Tut. 2018, p. 1

15. B. Arrington, L. Barnett, R. Rufus, A. Esterline. Behavioral modeling intrusion

detection system BMIDS using internet of things IoT behavior-based anomaly

detection via immunity-inspired algorithms. 25th International Conference on

Computer Communication and Networks ICCCN, IEEE 2016

16. S. Alharbi, P. Rodriguez, R. Maharaja, P. Iyer, N. Bose, Z. Ye, FOCUS: a fog

computing-based security system for the internet of things. 15th IEEE Annual

Consumer Communications & Networking Conference CCNC, IEEE 2018

17. D. Evans, The internet of things: how the next evolution of the internet is changing

everything. Cisco White Paper 2011, pp. 1-11

18. H. Bostani, M. Sheikhan. Hybrid of anomaly-based and specification-based ids for

internet of things using unsupervised opf based on map-reduce approach. Comput.

Commun., 98 Supplement C 2017, pp. 52-71

19. https://www.unb.ca/cic/datasets/ids-2018.html

20. P. Ramchandani, Random Forests and the Bias-Variance Tradeoff, Towards Data

Science

21. Opitz, D.; Maclin, R. 1999. "Popular ensemble methods: An empirical study". Journal

of Artificial Intelligence Research. 11: 169–198

22. Ho, Tin Kam 1995. Random Decision Forests PDF. Proceedings of the 3rd

International Conference on Document Analysis and Recognition, Montreal, QC, 14–

16 August 1995. pp. 278–282

23. https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#workings

24. L. Santos, C. Rabadao and R. Gonçalves, "Intrusion detection systems in Internet of

Things: A literature review," 2018 13th Iberian Conference on Information Systems

and Technologies CISTI, Caceres, 2018, pp. 1-7.

https://www.unb.ca/cic/datasets/ids-2018.html
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#workings

51

25. E. Cho, J. Kim, and C. Hong, “Attack model and detection scheme for botnet on

6LoWPAN,” In Management Enabling the Future Internet for Changing Business and

New Computing Services, Lecture Notes in Computer Science 5787. Springer, Berlin,

Heidelberg, 515-518, 2009.

26. A. Le, J. Loo, Y. Luo, and A. Lasebae, “Specification-based IDS for securing RPL

from topology attacks,” In: Wireless Days WD, 2011 IFIP, pp. 1-3, 2011.

27. C. Liu, J. Yang, Y. Zhang, R. Chen, and J. Zeng, “Research on immunitybased

intrusion detection technology for the Internet of Things,” In: Natural Computation

ICNC, 2011 Proceedings of the Seventh International Conference, Vol. 1, pp. 212-

216, 2011

28. S. Misra, P. Krishna, H. Agarwal, A. Saxena, and M. Obaidat, “A learning automata-

based solution for preventing Distributed Denial of Service in Internet of Things,” In:

Internet of Things iThings/CPSCom, 2011 International Conference on and

Proceedings of the 4th International Conference on Cyber, Physical and Social

Computing, pp. 114-122, 2011.

29. A. Gupta, O. Pandey, M. Shukla, A. Dadhich, S. Mathur, and A. Ingle,

“Computational intelligence-based intrusion detection systems for wireless

communication and pervasive computing networks,” In: Computational Intelligence

and Computing Research ICCIC, 2013 IEEE International Conference on, pp. 1-7,

2013.

30. M. Rebbah, D. El Hak Rebbah and O. Smail, "Intrusion detection in Cloud Internet of

Things environment," 2017 International Conference on Mathematics and

Information Technology ICMIT, Adrar, 2017, pp. 65-70.

31. IEEE 2015 Standards, Internet of Things, IEEE P2413.

32. Bandyopadhyay D, Sen J 2011 Internet of things: Applications and challenges in

technology and standardization. Wirel Pers Commun 581:49–69.

33. Han C, Jornet JM, Fadel E, Akyildiz IF 2013 A cross-layer communication module

for the internet of things. Comput Netw 573:622–633.

34. Khan R, Khan S, Zaheer R, Khan S 2012 Future internet: The internet of things

architecture, possible applications and key challenges In: 2012 10th International

Conference on Frontiers of Information Technology, 257–260.. IEEE, Islamabad.

52

35. Rubio-Loyola J, Sala D, Ali AI 2008 Accurate real-time monitoring of bottlenecks

and performance of packet trace collection In: 2008 33rd IEEE Conference on Local

Computer Networks LCN, 884–891.. IEEE, Montreal

36. Rubio-Loyola J, Sala D, Ali AI 2008 Maximizing packet loss monitoring accuracy for

reliable trace collections In: 2008 16th IEEE Workshop on Local and Metropolitan

Area Networks, 61–66.. IEEE, Chij-Napoca.

37. Ghorbani AA, Lu W, Tavallaee M 2010 Network Intrusion Detection and Prevention,

Advances in Information Security, vol. 47. Springer, US.

38. Anwar S, Mohamad Zain J, Zolkipli MF, Inayat Z, Khan S, Anthony B, Chang V

2017 From intrusion detection to an intrusion response system: Fundamentals,

requirements, and future directions. Algorithms 102:1–24.

39. Denning DE 1987 An intrusion-detection model. IEEE Trans Softw Eng SE-

132:222–232.

40. Creech G, Hu J 2014 A semantic approach to host-based intrusion detection systems

using contiguousand discontiguous system call patterns. IEEE Trans Comput

634:807–819.

41. Kumar S, Gautam, Om H 2016 Computational neural network regression model for

host based intrusion detection system. Perspect Sci 8:93–95.

42. Snort The Open Source Network Intrusion Detection System. https://www.snort.org.

Accessed 1 Nov 2016.

43. Wikipedia Contributors, AdaBoost, from Wikipedia the free Encyclopedia, April 1,

2019 https://en.wikipedia.org/wiki/AdaBoost

44. Wikipedia Contributors, Gradient Boosting, from Wikipedia the free Encyclopedia,

April 1, 2019, https://en.wikipedia.org/wiki/Gradient_boosting

45. http://www.numpy.org/

46. https://pandas.pydata.org/

47. Medium.com, Will Koehersen, Random Forest Simple Explanation, Dec 27, 2017

48. J. J. T. Zhenwei Yu, A Framework of Machine Learning Based Intrusion Detection

for Wireless Sensor Networks, IEEE International Conference on Sensor Networks,

Ubiquitous, and Trustworthy Computing, vol. 6, no. 9, pp. 272–279, (2008).

https://en.wikipedia.org/wiki/AdaBoost
https://en.wikipedia.org/wiki/Gradient_boosting
https://pandas.pydata.org/

53

49. T. M. Mitchell, Machine Learning, 1st ed, New York, NY, USA: McGraw-Hill, Inc.,

(1997).

50. G. Poojitha, K. N. Kumar and P. J. Reddy, Intrusion Detection Using Artificial

Neural Network, In 2010 International Conference on Computing Communication

and Networking Technologies (ICCCNT), pp. 1–7, July (2010).

51. H. Altwaijry and S. Algarny, Bayesian Based Intrusion Detection System, Journal of

King Saud University – Computer and Information Sciences, vol. 24, no. 1, pp. 1–6,

(2012).

52. 52. M. Panda and M. R. Patra, Semi-naive Bayesian Method for Network Intrusion

Detection System, In Neural Information Processing, 16th International Conference,

ICONIP 2009, Bangkok, Thailand, December 1–5, 2009, Proceedings, Part I, pp.

614–621, (2009).

53. 53. G. Nadiammai and M. Hemalatha, Effective Approach Toward Intrusion

Detection System Using Data Mining Techniques, Egyptian Informatics Journal, vol.

15, no. 1, pp. 37–50, (2014).

54. P. Sangkatsanee, N. Wattanapongsakorn and C. Charnsripinyo, Practical Real-Time

Intrusion Detection Using Machine Learning Approaches, Computer

Communications, vol. 34, no. 18, pp. 2227–2235, (2011).

55. L. M. L. Campos, R. C. L. de Oliveira and M. Roisenberg, Network Intrusion

Detection System Using Data Mining, Engineering Applications of Neural Networks:

13th International Conference, EANN 2012, London, UK, September 20–23, 2012.

56. L. Koc, T. A. Mazzuchi and S. Sarkani, A Network Intrusion Detection System Based

on a Hidden Naive Bayes Multiclass Classifier, Expert Systems with Applications,

vol. 39, no. 18, pp. 13 492–13 500, (2012).

57. Y. Li, J. Xia, S. Zhang, J. Yan, X. Ai and K. Dai, An Efficient Intrusion Detection

System Based on Support Vector Machines and Gradually Feature Removal Method,

Expert Systems with Applications, vol. 39, no. 1, pp. 424–430, (2012).

58. S. S. S. Sindhu, S. Geetha and A. Kannan, Decision Tree Based Light Weight

Intrusion Detection Using a Wrapper Approach, Expert Systems with Applications,

vol. 39, no. 1, pp. 129–141, (2012).

59. I. Butun, S. D. Morgera and R. Sankar, A Survey of Intrusion Detection Systems in

Wireless Sensor Networks, Communications Surveys and Tutorials IEEE, vol. 16, pp.

54

266–282, (2013).

60. A. H. Farooqi, F. A. Khan, J. Wang and S. Lee, A Novel Intrusion Detection

Framework for Wireless Sensor Networks, Personal and Ubiquitous Computing, vol.

17, no. 5, pp. 907–919, (2013).

61. S.-S. Wang, K.-Q. Yan, S.-C. Wang and C.-W. Liu, An Integrated Intrusion

Detection System for Cluster-Based Wireless Sensor Networks, Expert Syst. Appl.,

vol. 38, no. 12, pp. 15 234–15 243, (2011).

