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ABSTRACT  

   

Rapid growth of internet and connected devices ranging from cloud systems to 

internet of things have raised critical concerns for securing these systems. In the recent 

past, security attacks on different kinds of devices have evolved in terms of complexity and 

diversity. One of the challenges is establishing secure communication in the network 

among various devices and systems. Despite being protected with authentication and 

encryption, the network still needs to be protected against cyber-attacks. For this, the 

network traffic has to be closely monitored and should detect anomalies and intrusions. 

Intrusion detection can be categorized as a network traffic classification problem in 

machine learning. Existing network traffic classification methods require a lot of training 

and data preprocessing, and this problem is more serious if the dataset size is huge. In 

addition, the machine learning and deep learning methods that have been used so far were 

trained on datasets that contain obsolete attacks. In this thesis, these problems are addressed 

by using ensemble methods applied on an up to date network attacks dataset. Ensemble 

methods use multiple learning algorithms to get better classification accuracy that could be 

obtained when the corresponding learning algorithm is applied alone. This dataset for 

network traffic classification has recent attack scenarios and contains over fifteen attacks. 

This approach shows that ensemble methods can be used to classify network traffic and 

detect intrusions with less training times of the model, and lesser pre-processing without 

feature selection. In addition, this thesis also shows that only with less than ten percent of 

the total features of input dataset will lead to similar accuracy that is achieved on whole 

dataset. This can heavily reduce the training times and classification duration in real-time 

scenarios.  
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Chapter 1 

INTRODUCTION 

 

There is a popularity in the usage of internet, various devices ranging from mobile phones, 

internet of things, and cloud systems and computer networks associated with these systems 

and devices. Hence the security of these has become a prominent research area [4]. 

Attackers try to figure out the security weaknesses of the networks, vulnerability in the 

system and try to break through them to cause potential damage or steal vital information, 

and also attacks like denial of service to cause trouble to the service providers. Firewalls 

are a sort of network protection technology that is one of the earliest of all the protection 

measures of the network, which can exclude all the network threads that are not from the 

inside of the known network. As there is continuous and rapid development in the 

technology, new attacks are also becoming complex, difficult and diverse.  Thus, firewalls 

may not be able to protect these other categories of complex attacks, and we cannot rely 

on them.  Along with the firewall, another important component in network security, is an 

intrusion detection system IDS [1] which proactively protects the system. This helps a lot 

in protecting the integrity of entire security system. 

There are two kinds of intrusion detection systems: feature based IDS and anomaly 

detection IDS [2] [3]. Feature-based IDS can be updated constantly, and it needs the model 

library of known intrusions. Then, this model is used to detect intrusions based on its model 

library. One advantage of this kind of IDS is that it reacts quickly to intrusion types in 

model library. However, feature-based IDS cannot detect  new attacks, and it also has to 
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update uninterruptedly to detect more types of new attacks. Anomaly detection IDS needs 

to create a complete model of normal data flow to detect intrusions. The model will be able 

to identify new intrusions. 

In this thesis, we will present  an approach that gives  intrusion detection with minimal 

misclassification. The approach uses Random Forest, an ensemble learning method, 

achieves 99.91% accuracy in detecting intrusions. This method also achieves similar 

accuracy in classifying different types of network attacks. We will show that this approach 

does not require any feature selection nor conversion of input features in the dataset. This 

reduces the preprocessing time for the network traffic in real time, and the benefit of 

Random Forest is that this can be run in parallel for faster processing in real time. We 

compare this approach with traditional machine learning approaches, other ensemble 

methods and also explain why this is effective both in accuracy detection and application 

in real-time. This thesis also shows that ensemble methods are better than deep learning 

approaches for this kind of intrusion detection problem in terms of both prediction accuracy 

and performance for training and testing the data. Ensemble methods build a classifier by 

combining several different independent base classifiers. The independence is theoretically 

enforced by training each base classifier on a training set sampled with replacement from 

the original training set. This technique helps in building more generalization of the 

classifier based on randomness and helps in reducing the variance of the classifier and is 

shown to be efficient in and accurate in our approach to detect intrusions. 
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Chapter 2 

BACKGROUND 

 

Many works are being carried out in this context to find the best parameters and results for 

the detection of intrusion in various kinds of systems based on the network traffic. Some 

recent studies have addressed intrusion detection based on network traffic, such as the work 

of Ahmed [7], which shows that detection is an important task and that it detects anomalous 

data from a given data set. The author points out that intrusion detection is an interesting 

area and that it has been extensively studied in statistics and machine learning. Costa et al. 

[8] also highlighted the importance of using intelligent tools to assist intrusion detection 

but in the context of computer networks. In their work, the authors employed the 

unsupervised Optimum-Path Forest OPF classifier [8] for intrusion detection in computer 

networks. The authors proposed a nature-based approach to estimate the probability density 

function pdf used for clustering purposes, which strongly influences the quality of the 

classification process. Regarding the OPF classifier, Pereira et al. [9] proposed a similar 

approach to the one presented by Costa et al. [10] but in the context of supervised intrusion 

detection [11], [12], [13]. 

In their 2011 work, Le et al. [26] followed the approach of organizing the network in 

regions. With this approach, they use a hybrid placement strategy to build a backbone of 

monitor nodes, one per region. The function of monitor nodes is to sniff the communication 

from its neighbors and define whether a node is compromised. One of the advantages of 

this solution is that there is no communication overhead. The detection method used is 
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specification-based focused on detecting RPL attacks.  In the paper [27] Liu et al. propose 

a signature-based IDS that employs Artificial Immune System mechanisms. Detectors with 

attack signatures were modeled as immune cells that can classify datagrams as malicious 

or normal, non-self or self-element respectively. The article does not present which 

placement strategy should be adopted and does not introduce the way that this approach 

could be implemented in IoT resource constraint networks. In this approach, the 

computational overhead needed to run learning algorithms might be a disadvantage. Misra 

et al. [28] present a solution to prevent DDoS attacks over IoT middleware. This 

specification based detection method, use the maximum capacity of each middleware layer 

to detect the attacks. The system will generate an alert when the number of requests to a 

layer exceeds the specified threshold. 

Gupta et al. [29] propose an architecture for a wireless IDS. In the architecture proposed, 

the normal behavior profiles for network devices would be constructed applying 

Computational Intelligence algorithms. Thus, there would be a specific behavior profile 

for each device with an IP address assigned. The placement strategy was not presented by 

the authors neither the type of attacks that could be detected by their solution.  

In the following text, background about intrusion detection systems is given in much detail 

[30]. Monitoring and analyzing user information, networks, and services through passive 

traffic collection and analysis are useful tools for managing networks and discovering 

security vulnerabilities in a timely manner [35, 36]. An IDS is a tool for monitoring traffic 

data to identify and protect against intrusions that threaten the confidentiality, integrity, 

and availability of an information system [37]. The operations of an IDS can be divided 
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into three stages. The first stage is the monitoring stage, which relies on network-based or 

host-based sensors. The second stage is the analysis stage, which relies on feature 

extraction methods or pattern identification methods. The final stage is the detection stage, 

which relies on anomaly or misuse intrusion detection. An IDS captures a copy of the data 

traffic in an information system and then analyzes this copy to detect potentially harmful 

activities [38]. 

The concept of an IDS as an information security system has evolved considerably over 

the past 30 years. During these years, researchers have proposed various methods and 

techniques for protecting different types of systems using IDSs. In 1987, Denning 

presented an intrusion detection model that could compare malicious attack behavior 

against the normal model for the system of interest [39]. The implementation of an IDS 

depends on the environment. A host-based intrusion detection system HIDS is designed to 

be implemented on a single system and to protect that system from intrusions or malicious 

attacks that will harm its operating system or data [41]. A HIDS generally depends on 

metrics in the host environment, such as the log files in a computer system [42]. These 

metrics or features are used as input to the decision engine of the HIDS. Thus, feature 

extraction from the host environment serves as the basis for any HIDS. A network-based 

intrusion detection system NIDS sniffs network traffic packets to detect intrusions and 

malicious attacks [41]. A NIDS can be either a software-based system or a hardware-based 

system. For example, Snort NIDS is a software-based NIDS [42]. 

An IDS depends on algorithms for implementing the various stages of intrusion detection. 

There are a vast number of algorithms for all IDS types and methods. Principal component 
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analysis PCA is a lightweight algorithm that can be used for various detection techniques 

in IDSs. Machine learning is a subfield of computer science, and is a type of Artificial 

Intelligence that provides machines with the ability to learn without explicit programming. 

Machine learning evolved from pattern recognition and computational learning theory.   

 

A security mechanism used to monitor the abnormal behavior of the network is an Intrusion 

Detection System (IDS) [48]. The IDS identifies and informs that whether the user activity 

is normal or not. The users activities are compared by the IDS with the already stored 

intrusion records to identify the intrusion. Accurate predictive models can be built for large 

data sets using supervised machine learning techniques, that is not possible by traditional 

methods. As specified by Tom Mitchell [49], machine learning based intrusion detection 

falls under two categories Anomaly and Misuse. IDS learns the patterns by the training 

data, so the misuse based method is used. Misuse based detection can detect only the known 

attack, new attacks cannot be identified. Anomaly based IDS observes the normal behavior 

and if there is a change in the behavior then it considers that behavior as anomaly. So 

anomaly based IDS can detect new attacks that are not learned from the training model. 

Till now different machine learning techniques such as Artificial neural networks [50], 

Support Vector Machine4andNaive Bayes [51], [52], based techniques are proposed for 

the intrusion detection. A new detection by combining different techniques, a hybrid 

detection technique is proposed by [52].   
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Nadiammai [53] proposed semi supervised machine learning based intrusion detection. 

Authors have not considered the resource consumption. Combination of different 

classifiers to identify the intrusion is proposed by Panda [52]. They used supervised 

classification or unsupervised clustering for filtering of the data. They used NSL-KDD 

dataset and tested with decision tree classifier. But the proposed method works only for 

binary class classification.  

Sangkatsanee [54] proposed intrusion detection system using supervised machine learning 

techniques to identify the on line network data as normal or not. The proposed method 

identifies probe and Denial of Service attacks only, but the other attacks are not considered. 

A framework of machine learning approach is proposed by Yu [48] and Campos [55]. 

Intrusion is identified by analyzing the local features. Levent [56] proposed Naive Bayes 

based multiclass classifier to identify the intrusions. They suggested that intrusion 

detection is possible by Hidden Naive Bayes (HNB) model. Denial of Service attacks are 

identified with good accuracy compared to other attacks.  

Li proposed [57] Intrusion detection technique using Support Vector Machine (SVM). 

They also used feature removal method to improve the efficiency. Using the proposed 

feature removal method they selected best nineteen features from the KDD-CUP99 data-

set. In the proposed method the data set used is very small. A light weight IDS is proposed 

by Sivatha Sindhu [58]. The proposed method mainly focused on pre-processing of the 

data so that only important attributes can be used. The first step is to remove the redundant 

data so that the learning algorithms give the unbiased result. 
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A survey on intrusion detection systems was conducted by Butan [59] Information about 

IDSs such as classification, Intrusion type, computing location and infrastructure are 

discussed. They discussed about the Mobile Ad hoc Networks (MANET) IDS. They 

compared MANETIDS and the Wireless Sensor Networks (WSN) IDS. Authors suggested 

that for mobile applications distributed and cooperative IDS schemes are suitable. For 

stationary applications centralized IDSs are suitable and for cluster based applications 

hierarchical IDSs are suitable. Farooqi [60] proposed intrusion detection framework to 

detect routing attacks. Specification based approach is used to detect routing attacks. 

Authors claim that the proposed method has low False Positive Rate (FPR) and good 

intrusion detection rate. The proposed method works only for static networks. Wang [61] 

developed IDS for Sink, Cluster Head (CH) and for a Sensor Node (SN) separately and 

combined altogether to identify the intrusion in heterogeneous Cluster Based Wireless 

Sensor Networks (CWSN) but the detection rate for U2R, R2L and Probe attacks is very 

low. 

Following are the supervised machine learning techniques that are traditional machine 

learning techniques: 

Logistic Regression: Following description of this classifier is taken from Wikipedia. In 

statistics, the logistic model (or logit model) is a widely used statistical model that, in its 

basic form, uses a logistic function to model a binary dependent variable; many more 

complex extensions exist. In regression analysis, logistic regression (or logit regression) is 

estimating the parameters of a logistic model; it is a form of binomial regression. 

Mathematically, a binary logistic model has a dependent variable with two possible values, 
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such as pass/fail, win/lose, alive/dead or healthy/sick; these are represented by an indicator 

variable, where the two values are labeled "0" and "1".  The binary logistic regression 

model has extensions to more than two levels of the dependent variable: categorical outputs 

with more than two values are modeled by multinomial logistic regression, and if the 

multiple categories are ordered, by ordinal logistic regression, for example the proportional 

odds ordinal logistic model. The model itself simply models probability of output in terms 

of input, and does not perform statistical classification (it is not a classifier), though it can 

be used to make a classifier, for instance by choosing a cutoff value and classifying inputs 

with probability greater than the cutoff as one class, below the cutoff as the other; this is a 

common way to make a binary classifier. The coefficients are generally not computed by 

a closed-form expression, unlike linear least squares. Following equation generally 

represents the logistic function: 

ℎ(𝑋; 𝑊) = 𝑔(
1

1 +  𝑒−𝑊𝑇𝑋
)  

 

Support Vector Machine: The following text of SVM is taken from Wikipedia. In machine 

learning, support-vector machines (SVMs, also support-vector networks) are supervised 

learning models with associated learning algorithms that analyze data used for 

classification and regression analysis. Given a set of training examples, each marked as 

belonging to one or the other of two categories, an SVM training algorithm builds a model 

that assigns new examples to one category or the other, making it a non-probabilistic binary 

linear classifier (although methods such as Platt scaling exist to use SVM in a probabilistic 

classification setting). A SVM model is a representation of the examples as points in space, 
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mapped so that the examples of the separate categories are divided by a clear gap that is as 

wide as possible. New examples are then mapped into that same space and predicted to 

belong to a category based on which side of the gap they fall. In addition to performing 

linear classification, SVMs can efficiently perform a non-linear classification using what 

is called the kernel trick, implicitly mapping their inputs into high-dimensional feature 

spaces.  

Gaussian Naïve Bayes: The Gaussian Naive Bayes algorithm is the supervised learning 

method. Probabilities of each attribute which belongs to each class are considered for a 

prediction. This algorithm is assumes that the probability of each attribute belonging to a 

given class value is not depends on all other attributes. If the value of the attribute is known 

the probability of a class value is called as the conditional probabilities. Data instances 

provability can be found out by multiplying all attributes conditional probabilities together. 

Prediction can be made by calculating the each class instance probabilities and by selecting 

the highest probability class value [21]. Following the popular Bayes Theorem:  

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴) 𝑃(𝐴)

𝑃(𝐵)
 

We model this problem as supervised learning. We first describe what are the problems 

with traditional machine learning methods, then explain how ensemble methods overcome 

why Random Forest is robust and achieves great accuracy in detecting intrusions on this 

dataset.  

In the following two sections, some problems with the traditional methods of machine 

learning are discussed. 
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Bias and Variance Tradeoff:  The small part of this section is borrowed from [20]. A model 

is biased if it systematically under or over predicts the target variable. In machine learning, 

this is often the result either of the statistical assumptions made by our model of choice or 

of bias in the training data. Variance, on the other hand, in some sense captures the 

generalizability of the model. Put more precisely, it is a measure of how much our 

prediction would change if we trained it on different data. High variance typically means 

that we are overfitting to our training data, finding patterns and complexity that are a 

product of randomness as opposed to some real trend. Generally, a more complex or 

flexible model will tend to have high variance due to overfitting but lower bias because, 

averaged over several predictions, our model more accurately predicts the target variable. 

On the other hand, an underfit or oversimplified model, while having lower variance, will 

likely be more biased since it lacks the tools to fully capture trends in the data. This is 

shown in figure 1. 

 

Figure 1: Bias and Variance Trade-off [20] 
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What we would like, ideally, is low bias-low variance. To see how to achieve this, lets first 

look at a typical bias squared-variance curve in Figure 2. 

 

Figure 2: Bias and Variance Curve [20] 

From the above figure 2, we can see that as the model complexity increases the variance 

of the model increases and is not generalized for new test samples, on the other hand, if the 

model is not well trained on the test dataset, it will be with high bias, and cannot even fit 

properly for the training dataset. So, in practicality, we need to choose a model that has a 

balance of both bias and variance, this essentially means that model should generalize to 

test dataset well, and should not overfit 
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Chapter 3 

OUR APPROACH 

3.1 Overview  

We start with the drawbacks of machine learning methods on large datasets with 

imbalanced data, and explain it in section 3.2. In section 3.3 we explain the dataset, and in 

section 3.4 we explain the data preprocessing. We explain the algorithms used in this 

approach in section 3.5 and how we test the model in section 3.6.  

Following are the steps in our approach:  

1. Dataset collection 

2. Preprocess the dataset by creating the labels to each class and split into training data 

set and test data set 

3. Use the random forest algorithm to train the data – it handles outliers in the training 

set, and also bias and variance problems, without any hyper parameter tuning as 

described in the following sections 

4. Run the model on the test dataset for evaluation  

3.2 Dataset Collection 

CICIDS dataset [19] was used for experiments. It contains PCAP packet capture files of 

network traffic data. More details are given in section 4.1 

3.3 Preprocessing 

Outliers [23]:  Outliers are generally defined as cases that are removed from the main body 

of the data. Outliers are cases whose proximities to all other cases in the data are generally 

small. A useful revision is to define outliers relative to their class.  
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Data Normalization: Ensemble methods like Random Forest are robust to unscaled data, 

but the normalization process helps to train faster and handling small values without any 

overflows or datatype errors. This also helps to compare with other machine learning 

models that perform best with normalized data. In our approach, we normalized the data. 

The ensemble methods that we used in this approach are: 

1. Random Forest  

2. AdaBoost  

3. Gradient Boosting 

Each of these methods is used for the following classification types: 

1. Detecting intrusions with full features dataset 

2. Classifying network traffic with full features dataset 

3. Detecting intrusions with selected features and show that the top features also are 

enough for intrusion detection 

3.4 Algorithms used in this approach 

3.4.1 Random Forest 

Random forests overcome these by using an ensemble method of learners and voting 

mechanism and this process is described in the following paragraphs in detail.  We first 

start with ensemble methods in detail, then followed by random forest, and how it handles 

outliers, missing data and without a need for cross validation dataset and minimal hyper 

parameter tuning.  

Ensemble methods [21]: Ensemble methods use multiple learning algorithms to obtain 

better predictive performance than could be obtained from any of the constituent learning 
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algorithms alone. A machine learning ensemble consists of only a concrete finite set of 

alternative models, but typically allows for much more flexible structure to exist among 

those alternatives. 

Supervised learning algorithms are most commonly described as performing the task of 

searching through a hypothesis space to find a suitable hypothesis that will make good 

predictions with a particular problem. Even if the hypothesis space contains hypotheses 

that are very well-suited for a particular problem, it may be very difficult to find a good 

one. Ensembles combine multiple hypotheses to form a hopefully better hypothesis. The 

term ensemble is usually reserved for methods that generate multiple hypotheses using the 

same base learner. The broader term of multiple classifier systems also covers 

hybridization of hypotheses that are not induced by the same base learner. 

Evaluating the prediction of an ensemble typically requires more computation than 

evaluating the prediction of a single model, so ensembles may be thought of as a way to 

compensate for poor learning algorithms by performing a lot of extra computation. Fast 

algorithms such as decision trees are commonly used in ensemble methods for example, 

random forests, although slower algorithms can benefit from ensemble techniques as well. 

Random Forest boosting and bagging methods are robust to missing data, outliers and they 

can be used without any feature scaling and normalization. These methods do not even 

need hyper-parameter setting, which is one of the most difficult task in training machine 

learning models. 

Random Forest is also considered as a very handy and easy to use algorithm, because its 

default hyperparameters often produce a good prediction result. The number of 
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hyperparameters is also not that high and they are straightforward to understand. One of 

the big problems in machine learning is overfitting, but most of the time this will not 

happen that easy to a random forest classifier. That is because if there are enough trees in 

the forest, the classifier wont overfit the model. Figure 3 gives overview of Random Forest. 

 

Figure 3: Overview of Random Forest [47] 

Random Forest Training Algorithm: Random forest is uses a method called Bootstrap 

Aggregation bagging [22]. Bootstrap aggregating, also called bagging, is a machine 

learning ensemble meta-algorithm designed to improve the stability and accuracy of 

machine learning algorithms used in statistical classification and regression. It also reduces 

variance and helps to avoid overfitting. Although it is usually applied to decision tree 

methods, it can be used with any type of method. Bagging is a special case of the model 

averaging approach. 
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The training algorithm for random forests applies the general technique of bootstrap 

aggregating, to tree learners. Given a training dataset 𝑋 =  𝑥1, 𝑥2, … , 𝑥𝑛   with class 

labels 𝑌 =  𝑦1, 𝑦2, … , 𝑦𝑛 , bagging approach selects a random sample repeatedly 𝐵 times 

with replacement of the training set and fits decision trees to these samples: 

For 𝑏 =  1, 2, … , 𝐵: 

1. Sample, with replacement, 𝑛 training examples from 𝑋, 𝑌 and call 

these 𝑋𝑏 , 𝑌𝑏. 

2. Train a classification tree 𝑓𝑏 on 𝑋𝑏 , 𝑌𝑏. 

After training, predictions for unseen samples 𝑥 can be made by averaging the predictions 

from all the individual regression trees on x or by taking the majority vote from the decision 

trees. 

This bootstrapping procedure leads to better model performance because it decreases 

the variance of the model, without increasing the bias. This means that while the 

predictions of a single tree are highly sensitive to noise in its training set, the average of 

many trees is not, as long as the trees are not correlated. Simply training many trees on a 

single training set would give strongly correlated trees or even the same tree many times, 

if the training algorithm is deterministic; bootstrap sampling is a way of de-correlating the 

trees by showing them different training sets. 

Additionally, an estimate of the uncertainty of the prediction can be made as the standard 

deviation of the predictions from all the individual regression trees on x.  

The number of samples/trees, B, is a free parameter. Typically, a few hundred to several 

thousand trees are used, depending on the size and nature of the training set. An optimal 
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number of trees B can be found using cross-validation, or by observing the out-of-bag 

error, the mean prediction error on each training sample xᵢ, using only the trees that did not 

have xᵢ in their bootstrap sample. The training and test error tend to level off after some 

number of trees have been fit. 

From bagging to random forests: The above procedure describes the original bagging 

algorithm for trees. Random forests differ in only one way from this general scheme: they 

use a modified tree learning algorithm that selects, at each candidate split in the learning 

process, a random subset of the features. This process is sometimes called "feature 

bagging". The reason for doing this is the correlation of the trees in an ordinary bootstrap 

sample: if one or a few features are very strong predictors for the response variable target 

output, these features will be selected in many of the B trees, causing them to become 

correlated. An analysis of how bagging and random subspace projection contribute to 

accuracy gains under different conditions is given by Ho.  

When the training set for the current tree is drawn by sampling with replacement, about 

one-third of the cases are left out of the sample. This out-of-bag OOB data is used to get a 

running unbiased estimate of the classification error as trees are added to the forest. It is 

also used to get estimates of variable importance. 

After each tree is built, all of the data are run down the tree, and proximities are computed 

for each pair of cases. If two cases occupy the same terminal node, their proximity is 

increased by one. At the end of the run, the proximities are normalized by dividing by the 

number of trees. Proximities are used in replacing missing data, locating outliers, and 

producing illuminating low-dimensional views of the data. 

https://en.wikipedia.org/wiki/Random_subspace_method
https://en.wikipedia.org/wiki/Feature_(machine_learning)
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The out-of-bag (OOB) error estimate [23]: In random forests, there is no need for cross-

validation or a separate test set to get an unbiased estimate of the test set error. It is 

estimated internally, during the run, as follows: Each tree is constructed using a different 

bootstrap sample from the original data. About one-third of the cases are left out of the 

bootstrap sample and not used in the construction of the kth tree. Put each case left out in 

the construction of the kth tree down the kth tree to get a classification. In this way, a test 

set classification is obtained for each case in about one-third of the trees. At the end of the 

run, take j to be the class that got most of the votes every time case n was OOB. The 

proportion of times that j is not equal to the true class of n averaged over all cases is the 

OOB error estimate. This has proven to be unbiased in many tests. 

Variable importance: In every tree grown in the forest, put down the OOB cases and count 

the number of votes cast for the correct class [23]. Now randomly permute the values of 

variable m in the OOB cases and put these cases down the tree. Subtract the number of 

votes for the correct class in the variable-m-permuted OOB data from the number of votes 

for the correct class in the untouched OOB data. The average of this number over all trees 

in the forest is the raw importance score for variable m. If the values of this score from tree 

to tree are independent, then the standard error can be computed by a standard computation. 

The correlations of these scores between trees have been computed for a number of data 

sets and proved to be quite low, therefore we compute standard errors in the classical way, 

divide the raw score by its standard error to get a z-score, ands assign a significance level 

to the z-score assuming normality. 
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If the number of variables is very large, forests can be run once with all the variables, then 

run again using only the most important variables from the first run. For each case, consider 

all the trees for which it is OOB. Subtract the percentage of votes for the correct class in 

the variable-m-permuted OOB data from the percentage of votes for the correct class in the 

untouched OOB data. This is the local importance score for variable m for this case. 

Gini importance: Every time a split of a node is made on variable m the Gini impurity 

criterion for the two descendent nodes is less than the parent node [23]. Adding up the Gini 

decreases for each individual variable over all trees in the forest gives a fast variable 

importance that is often very consistent with the permutation importance measure. 

Interactions [23]:  The operating definition of interaction used is that variables m and k 

interact if a split on one variable, say m, in a tree makes a split on k either systematically 

less possible or more possible. The implementation used is based on the Gini values gm 

for each tree in the forest. These are ranked for each tree and for each two variables, the 

absolute difference of their ranks are averaged over all trees. This number is also computed 

under the hypothesis that the two variables are independent of each other and the latter 

subtracted from the former. A large positive number implies that a split on one variable 

inhibits a split on the other and conversely. This is an experimental procedure whose 

conclusions need to be regarded with caution. It has been tested on only a few data sets. 

Interactions:  The operating definition of interaction used is that variables m and k interact 

if a split on one variable, say m, in a tree makes a split on k either systematically less 

possible or more possible. The implementation used is based on the gini values g(m) for 
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each tree in the forest. These are ranked for each tree and for each two variables, the 

absolute difference of their ranks are averaged over all trees. 

This number is also computed under the hypothesis that the two variables are independent 

of each other and the latter subtracted from the former. A large positive number implies 

that a split on one variable inhibits a split on the other and conversely. This is an 

experimental procedure whose conclusions need to be regarded with caution. It has been 

tested on only a few data sets. 

Proximities [23]:  These are one of the most useful tools in random forests. The proximities 

originally formed  NxN matrix. After a tree is grown, put all of the data, both training and 

oob, down the tree. If cases k and n are in the same terminal node increase their proximity 

by one. At the end, normalize the proximities by dividing by the number of trees. 

Users noted that with large data sets, they could not fit an NxN matrix into fast memory. 

A modification reduced the required memory size to NxT where T is the number of trees 

in the forest. To speed up the computation-intensive scaling and iterative missing value 

replacement, the user is given the option of retaining only the nrnn largest proximities to 

each case. When a test set is present, the proximities of each case in the test set with each 

case in the training set can also be computed. The amount of additional computing is 

moderate. 

Missing value replacement for the training set [23]: Random forests has two ways of 

replacing missing values. The first way is fast. If the m variable is not categorical, the 

method computes the median of all values of this variable in class j, then it uses this value 

to replace all missing values of the m variable in class j. If the m variable is categorical, 
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the replacement is the most frequent non-missing value in class j. These replacement values 

are called fills. The second way of replacing missing values is computationally more 

expensive but has given better performance than the first, even with large amounts of 

missing data. It replaces missing values only in the training set. It begins by doing a rough 

and inaccurate filling in of the missing values. Then it does a forest run and computes 

proximities. If x(m, n) is a missing continuous value, estimate its fill as an average over 

the non-missing values of the m variables weighted by the proximities between the nth case 

and the non-missing value case. If it is a missing categorical variable, replace it by the most 

frequent non-missing value where frequency is weighted by proximity. Now iterate-

construct a forest again using these newly filled in values, find new fills and iterate again. 

Our experience is that 4-6 iterations are enough. 

Missing value replacement for the test set: When there is a test set, there are two different 

methods of replacement depending on whether labels exist for the test set. If they do, then 

the fills derived from the training set are used as replacements. If labels no not exist, then 

each case in the test set is replicated n-class times (n-class = number of classes). The first 

replicate of a case is assumed to be class 1 and the class one fills used to replace missing 

values. The 2nd replicate is assumed class 2 and the class 2 fills used on it. This augmented 

test set is run down the tree. In each set of replicates, the one receiving the most votes 

determines the class of the original case. 

Balancing prediction error [23]: In some data sets, the prediction error between classes is 

highly unbalanced. Some classes have a low prediction error, others a high. This occurs 

usually when one class is much larger than another. Then random forests, trying to 
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minimize overall error rate, will keep the error rate low on the large class while letting the 

smaller classes have a larger error rate. For instance, in drug discovery, where a given 

molecule is classified as active or not, it is common to have the actives outnumbered by 10 

to 1, up to 100 to 1. In these situations, the error rate on the interesting class (actives) will 

be very high. The user can detect the imbalance by outputs the error rates for the individual 

classes. To illustrate 20 dimensional synthetic data is used. Class 1 occurs in one spherical 

Gaussian, class 2 on another. A training set of 1000 class 1's and 50 class 2's is generated, 

together with a test set of 5000 class 1's and 250 class 2's. The final output of a forest of 

500 trees on this data is: 

500 3.7 0.0 78.4  

There is a low overall test set error (3.73%) but class 2 has over 3/4 of its cases 

misclassified. The error can balancing can be done by setting different weights for the 

classes. The higher the weight a class is given, the more its error rate is decreased. A guide 

as to what weights to give is to make them inversely proportional to the class populations. 

So set weights to 1 on class 1, and 20 on class 2, and run again.  

The output is: 500 12.1 12.7 0.0 

The weight of 20 on class 2 is too high. Set it to 10 and try again, getting 500 4.3 4.2 5.2. 

This is pretty close to balance. If exact balance is wanted, the weight on class 2 could be 

jiggled around a bit more. Note that in getting this balance, the overall error rate went up. 

This is the usual result - to get better balance, the overall error rate will be increased. 

Following are the features of Random Forest [23]: 

 It is unexcelled in accuracy among current algorithms. 
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 It runs efficiently on large datasets. 

 It can handle thousands of input variables without variable deletion. 

 It gives estimates of what variables are important in the classification. 

 It generates an internal unbiased estimate of the generalization error as the forest 

building progresses. 

 It has an effective method for estimating missing data and maintains accuracy when 

a large proportion of the data are missing. 

 It has methods for balancing error in class population unbalanced data sets. 

 Generated forests can be saved for future use on other data. 

 Prototypes are computed that give information about the relation between the 

variables and the classification. 

 It computes proximities between pairs of cases that can be used in clustering, 

locating outliers, or (by scaling) give interesting views of the data. 

 The capabilities of the above can be extended to unlabeled data, leading to 

unsupervised clustering, data views and outlier detection. 

 It offers an experimental method for detecting variable interactions. 

 

3.4.2 AdaBoost 

AdaBoost is short form of Adaptive Boosting [43] is a machine learning algorithm used 

along with many other algorithms to improve the performance. The output of other 

algorithms is combined into a weighted sum that represents the final output of the boosted 

classifier. AdaBoost is called adaptive because following weak learners are adjusted in 
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favor of those instances misclassified by previous classifiers. AdaBoost is sensitive to noisy 

data and outliers. In some problems it can be less susceptible to the overfitting problem 

than other learning algorithms. The individual learners can be weak, but as long as the 

performance of each one is slightly better than random guessing, the final model can be 

proved to converge to a strong learner.  

During each iteration of the training process, a weight  is assigned to each sample in the 

training set equal to the current error on that sample. These weights can be used to inform 

the training of the weak learner and can be grown that favor splitting sets of samples with 

high weights. Following explains the mathematics involved in building the model. 

A general boosting classifier is of the following form 

𝐹𝑇(𝑥) =  ∑ 𝑓𝑡𝑥

𝑇

𝑡=1

 

 

Where, 𝑓𝑡 is a weak learner and takes an input 𝑥 and returns a value indicating the 

classification prediction. In a two class problem, the sign will be predicted object category. 

Likewise, 𝑇𝑡ℎ classifier is positive if the sample belongs to positive class and otherwise it 

is negative. 

So, each weak learner will produce a hypothesis, ℎ𝑥𝑖, for each sample in the training 

dataset. At each iteration 𝑡, a weak learner is selected and assigned a coefficient such that 

the sum traininig error 𝐸𝑡 of the resulting t-stage boost classifier is minimized. Following 

equation explains this concept.  

𝐸𝑡 =  ∑ 𝐸[𝐹𝑇−1(𝑥𝑖) +  𝑎𝑡ℎ𝑥𝑖]
𝑖
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Where 𝐹𝑇−1(𝑥𝑖) is the boosted classifier that is built up to the previous stage, and 𝐸[𝐹] is 

an error function and 𝑎𝑡ℎ𝑥𝑖 is a weak learner that is under consideration.  

At each iteration in the training process, a weight 𝑤𝑖,𝑡 is assigned to each sample in the 

training dataset that is same as the current error on that sample. These weights can be used 

to inform the training of weak learner and can be grown in the favor of splitting sets of 

samples with high weights. Another variation of this boosting algorithm is called Gradient 

Boosting explained in further section 3.5.3. 

Training AdaBoost Model [43]:  In the first step, a weak classifier is prepared on the 

training data using the weighted samples. Only binary two-class classification problems 

are supported, so each decision classifier makes one decision on one input variable and 

outputs a +1.0 or -1.0 value. The misclassification rate is calculated for the trained model. 

Traditionally, this is calculated using the formula: E = C – N / N 

Where E is the misclassification rate, C is the number of training instance predicted 

correctly by the model and N is the total number of training instances.  This is modified to 

use the weighting of the training instances and is the weighted sum of the misclassification 

rate, where W is the weight for training instance I, and TE is the prediction error for training 

instance i which is 1 if misclassified and 0 if correctly classified. 

Early Termination: This is taken from Wikipedia: A technique for speeding up processing 

of boosted classifiers, early termination refers to only testing each potential object with as 

many layers of the final classifier necessary to meet some confidence threshold, speeding 

up computation for cases where the class of the object can easily be determined. If 50% of 

negative samples are filtered out by each stage, only a very small number of objects would 
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pass through the entire classifier, reducing computation effort. This method has since been 

generalized, with a formula provided for choosing optimal thresholds at each stage to 

achieve some desired false positive and false negative rate.  

In the field of statistics, where AdaBoost is more commonly applied to problems of 

moderate dimensionality, early stopping is used as a strategy to reduce overfitting. A 

validation set of samples is separated from the training set, performance of the classifier 

on the samples used for training is compared to performance on the validation samples, 

and training is terminated if performance on the validation sample is seen to decrease even 

as performance on the training set continues to improve. 

Pruning: Pruning is the process of removing poorly performing weak classifiers to improve 

memory and execution time cost of the boosted classifier. The simplest methods, which 

can be particularly effective in conjunction with totally corrective training, are weight- or 

margin-trimming: when the coefficient, or the contribution to the total test error, of some 

weak classifier falls below a certain threshold, that classifier is dropped. 

 

3.4.3 Gradient Boosting Classifier [44]:  

Gradient Boosting classifier [44] is a machine learning algorithm that produces a model 

based on the ensemble of weak prediction models like decision trees. Gradient boosting 

has three components in it. 

1. Weak learner 

2. Loss Function 

3. An additive model to weak learners to minimize the loss function 
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An advantage of this algorithm is that new boosting does not have to be derived for each 

loss function and it is generic that any loss function can be used. Decision trees are the 

weak learners in gradient boosting algorithm. These are constructed in a greedy way and 

Gini scores are used to choose the best split to minimize the loss function. Trees are added 

at one time, and the trees that are already in the model will not be changed. The typical 

gradient descent procedure is used to minimize the loss function. The output from the new 

tree is added to the existing sequence of trees to improve the output of the model. Another 

version of this algorithm stochastic gradient boosting is also present, in which a subsample 

is taken at random. Following explains the mathematical explanation [44] of this algorithm. 

Gradient boosting also combines a set of weak learners to a single strong learner in an 

iterative manner. It is easiest to explain in the least squares setting where the goal is to 

teach a model to predict values in the form of minimizing the least squares error. 

At each stage 𝑚, 1 ≤ 𝑚 ≤ 𝑀, of gradient boosting algorithm, we can assume that there is 

an imperfect model 𝐹𝑚. The gradient boosting algorithm improves this 𝐹𝑚 by constructing 

a new model 𝐹𝑚+1(𝑥) =  𝐹𝑚(𝑥) + ℎ(𝑥), that adds an estimator to produce a better model. 

To find this estimator, the gradient boosting starts with observation that a perfect estimator  

ℎ(𝑥) would imply 

𝐹𝑚+1(𝑥) =  𝐹𝑚(𝑥) + ℎ(𝑥) = 𝑦 

Hence, gradient boosting will fit ℎ(𝑥) to the residual function. Similar to the other boosting 

variants, 𝐹𝑚+1(𝑥) attempts to correct the errors of 𝐹𝑚(𝑥). The generalization of this to loss 

functions other than squared error, and to classification. 
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Regularization in Gradient Boosting: Fitting the training set too closely can lead to 

degradation of the model's generalization ability. Several so-called regularization 

techniques reduce this overfitting effect by constraining the fitting procedure. One natural 

regularization parameter is the number of gradient boosting iterations M (i.e. the number 

of trees in the model when the base learner is a decision tree). Increasing M reduces the 

error on training set, but setting it too high may lead to overfitting. An optimal value of M 

is often selected by monitoring prediction error on a separate validation data set. Besides 

controlling M, several other regularization techniques are used.  

Penalizing Complexity of Tree: Another useful regularization techniques for gradient 

boosted trees is to penalize model complexity of the learned model. The model complexity 

can be defined as the proportional number of leaves in the learned trees.  

Following figure outlines our approach: 

 

Figure 4: Our Overall Approach 
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Chapter 4 

EXPERIMENTS AND EVALUATION 

First, we describe the dataset used, followed by the libraries/tools for the experiments. 

Then, we describe the evaluation metrics and their importance for classification problems, 

especially network traffic classification. Then, we show the ensemble methods results, and 

compare them with different kinds of machine learning algorithms 

4.1 Dataset 

 The CICIDS dataset [19] was used in our experiments.  It contains PCAP packet capture 

files of network traffic data as described in the following paragraphs. 

Many of the previous datasets such as DARPA98, KDD99, ISC2012, and ADFA13 are out 

of date and are not reliable to use as there is a rapid change in the network attacks. This 

dataset contains benign traffic and common attack network flows, and covers all the eleven 

necessary criteria with common updated attacks such as DoS, DDoS, Brute Force, XSS, 

SQL Injection, Infiltration, Port scan and Botnet. The dataset is completely labelled and 

more than 80 network traffic features extracted and calculated for all benign and intrusive 

flows by using CICFlowMeter software, which is publicly available in Canadian Institute 

for Cybersecurity website. The following sections are borrowed from the dataset website 

[19] and publication [19] associated with it.  

Dataset generation [19]: For this dataset, they used their proposed B-Profile system which 

is responsible for profiling the abstract behavior of human interactions and generate a 

naturalistic benign background traffic. The BProfile for this dataset extracts the abstract 

behavior of 25 users based on the HTTP, HTTPS, FTP, SSH, and email protocols. At First, 
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it tries to encapsulate network events produced by users with machine learning and 

statistical analysis techniques. The encapsulated features are distributions of packet sizes 

of a protocol, the number of packets per flow, certain patterns in the payload, the size of 

the payload, and request time distribution of protocols. Then, after deriving the B-Profiles 

from users, an agent which has been developed by Java is used to generating realistic 

benign events and simultaneously perform B-Profile on the Victim-Network for predefined 

five protocols. 

 

4.1.1 Types of Attacks: 

Common attack families are Brute Force Attack, Heartbleed Attack, Botnet, DoS Attack, 

and DDoS Attack [19], Web Attack, and Infiltration Attack which are described as follows: 

Brute Force Attack: This is one of the most popular attacks that only cannot be used for 

password cracking, but also to discover hidden pages and content in a web application. It 

is basically a hit and try attack, then the victim succeeds. 

Heartbleed Attack: It comes from a bug in the OpenSSL cryptography library, which is a 

widely used implementation of the Transport Layer Security TLS protocol. It is normally 

exploited by sending a malformed heartbeat request with a small payload and large length 

field to the vulnerable party usually a server in order to elicit the victims response. 

Botnet: A number of Internet-connected devices used by a botnet owner to perform various 

tasks. It can be used to steal data, send spam, and allow the attacker access to the device 

and its connection. 
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DoS Attack: The attacker seeks to make a machine or network resource unavailable 

temporarily. It typically accomplished by flooding the targeted machine or resource with 

superfluous requests in an attempt to overload systems and prevent some or all legitimate 

requests from being fulfilled. 

DDoS Attack: It typically occurs when multiple systems, flood the bandwidth or resources 

of a victim. Such an attack is often the result of multiple compromised systems for example, 

a botnet flooding the targeted system with generating the huge network traffic. 

Web Attack: This attack types are coming out every day, because individuals and 

organizations take security seriously now. We use the SQL Injection, which an attacker 

can create a string of SQL commands, and then use it to force the database to reply the 

information, Cross-Site Scripting XSS which is happening when developers dont test their 

code properly to find the possibility of script injection, and Brute Force over HTTP which 

can tries a list of passwords to find the administrators password. 

Infiltration Attack: The infiltration of the network from inside is normally exploiting a 

vulnerable software such as Adobe Acrobat Reader. After successful exploitation, a 

backdoor will be executed on the victims’ computer and can conduct different attacks on 

the victims’ network such as IP sweep, full port scan and service enumerations using 

Nmap. 

From PCAP files 80 traffic features from the dataset using CICFlowMeter. CICFlowMeter 

is a flow based feature extractor and can extract 80 features from a pcap file. The flow label 

in this application includes SourceIP, SourcePort, DestinationIP, DestinationPort and 

Protocol. 
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Criterial for this dataset [19]: Regarding to the last dataset evaluation framework published 

on 2016, covering eleven criteria is necessary for each dataset. None of the previous IDS 

available datasets could cover all of the criteria. Complete Traffic, Labelled Dataset, 

Complete Interaction, Complete Capture, Available Protocols, Attack Diversity, 

Heterogeneity, Feature Set, Meta Data. We show that random forest is the best machine-

learning algorithm for classifying network traffic with high accuracy compared to other 

algorithms.  

4.2 Experiment setup   

NumPy and Pandas were used to convert the raw dataset into a format that can be given as 

input to the scikit-learn library. The dataset is split into train and test randomly in 80-20 

ratio for intrusion detection and same ratio for the network traffic classification with 

stratified sampling. To choose the model parameters, we have used five-fold cross 

validation on ensemble methods, and also show that there is no need to hyper-parameter 

tuning for ensemble methods.  

Numpy [45]: NumPy is the fundamental package for scientific computing with Python. 

NumPy can also be used as an efficient multi-dimensional container of generic data. 

Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily 

integrate with a wide variety of databases. Besides its obvious scientific uses, NumPy can 

also be used as an efficient multi-dimensional container of generic data. Arbitrary data-

types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide 

variety of databases. NumPy is licensed under the BSD license, enabling reuse with few 

restrictions. 
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Pandas [46]: pandas is an open source, BSD-licensed library providing high-performance, 

easy-to-use data structures and data analysis tools for the Python programming language. 

Scikit-Learn: Scikit-learn is a free software machine learning library for the Python 

programming language. It features various classification, regression and clustering 

algorithms including support vector machines, random forests, gradient boosting, k-means 

and DBSCAN, and is designed to interoperate with the Python numerical and scientific 

libraries NumPy and SciPy. 

 

4.3 Evaluation Metrics 

As the main goal of this task is intrusion detection and network classification, accuracy of 

the model is not just enough to show the capacity of the model. We also need few other 

evaluation metrics like precision, recall, confusion matrix, true positive rate, false positive 

rate, and area under the curve. These definitions are explained as follows:  

Precision: precision is the fraction of retrieved documents that are relevant to the query 

Recall: recall is the fraction of the relevant documents that are successfully retrieved. 

Confusion Matrix: This is also called an error matrix. It is a specific table layout that allows 

visualization of the performance of an algorithm, typically a supervised learning 

classification algorithm. Each row of the matrix represents the instances in a predicted class 

while each column represents the instances in an actual class or vice versa. This is named 

as a confusion matrix, because using this matrix, we can see if the system is confusing two 

classes and if it is commonly mislabeling one as another. Following is the terminology 

used in confusion matrix metrics and is important. 
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True positive = correctly identified 

False positive = incorrectly identified 

True negative = correctly rejected 

False negative = incorrectly rejected 

True Positive Rate: It measures the proportion of actual positives that are correctly 

identified out of the total positive classified instances. It indicates the percentage of true 

positives out of the total positive.  

True Negative Rate: This measures the proportion of actual negatives that are correctly 

identified out of the total negative classified instances. It indicates the percentage of true 

negatives out of the total negatives. 

4.4 Results 

The experiments are conducted in four ways indicated as follows:  

1. Binary classification on dataset with all features  

2. Multi-class classification on dataset with all features 

3. Binary classification on dataset with selected features  

4. Multi-class classification on dataset with selected features 

Splitting the dataset: For the purpose of testing, the dataset is split into five different 

datasets. Each dataset contains 20% for test and 80% for training. Each individual dataset 

is trained and tuned for hyper-parameters and then applied of the test dataset which is the 

remaining 20%. The average of all metrics is taken and indicated in the tables. The models 

are trained on Google Colab with the libraries mentioned above.  Following table shows 

the results of various methods without feature selection. It has all features, and shows that 
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Random Forest outperforms all other methods and gives best accuracy, precision and 

recall. 

 

Metric/Method Naïve 

Bayes  

Logistic 

Regression 

Random 

Forest 

AdaBoost Gradient 

Boosting 

Precision 0.963 0.887 1.0 0.996 0.999 

Recall 0.062 0.983 0.999 0.996 0.999 

F1 score 0.116 0.932 0.999 0.996 0.999 

Accuracy 24% 88.62% 99.91% 99.37% 99.82% 

Table 1: Comparison of Various Methods for Intrusion Detection 

 

From the above tables, we can see that ensemble methods outperform other machine 

learning algorithms; especially Random Forest takes very less time compared to other 

ensemble methods. We can conclude that this is the efficient approach for intrusion 

detection on huge network traffic datasets considering the efficiency of usage of resources. 

Following table shows the confusion matrix for when all classes of network traffic are 

considered: Benign, DDoS, PortScan, Bot, Infiltration, Web Attacks, FTP and SSH, DoS, 

Heartbleed. In the following we show the results of different ensemble methods applied on 

whole dataset as multi-class classification. The accuracy of Random Forest is 99.89% and 

that of AdaBoost is 99.88% and Gradient Boosting is 99.72 

 Benign DoS PortScan DDoS FTP Web 

Attack 

Bot Infiltration Heartbleed 

Precision 0.99 0.99 0.76 0.85 0.94 0.99 0.99 0.5 0.99 

Recall 0.99 0.99 0.83 1 0.99 0.99 0.99 1 0.99 

F1 Score 0.99 0.99 0.80 0.92 0.96 0.99 0.99 0.66 0.99 

Table 2: Random Forest Metrics for Multi-Class Classification 
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 Benign DoS PortScan DDoS FTP Web 

Attack 

Bot Infiltration Heartbleed 

Precision 0.99 0.99 0.78 0.42 0.94 0.99 0.99 0.5 0.99 

Recall 0.99 0.99 0.79 1 0.96 0.99 0.99 1 0.99 

F1 Score 0.99 0.99 0.79 0.6 0.95 0.99 0.99 0.66 0.99 

Table 3: AdaBoost Metrics for Multi-Class Classification 

 

 

Benign 2272688 

DoS 251712 

PortScan 158930 

DDoS 128027 

Patator 13835 

Web Attack 2180 

Bot 1966 

Infiltration 36 

HeartBleed 11 

Table 4: Number of Records in Each Class 

 

 

It can be seen from the results, the lower precision/recall is because of the less number of 

samples 

 

Feature Ranking and Importance: Feature selection is an important aspect of classification, 

as it reduces the training times and also eliminates duplication and feature correlation. 

Hence, it is important to extract features and study the results on it. Random Forest 

algorithm can also be used for feature selection for top features that contribute to the 

classification. Following list shows the list of features of according to their importance 

scores.  

1. Average Packet Size - 0.059870  

2. Packet Length Variance - 0.058659  

3. Init_Win_bytes_forward - 0.052030  

4. Packet Length Mean - 0.049313  
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5. Bwd Packet Length Mean - 0.048438  

6. Max Packet Length - 0.045777  

7. Avg Bwd Segment Size - 0.041463  

8. Packet Length Std - 0.036997  

9. Subflow Fwd Bytes - 0.036723  

10. Total Length of Bwd Packets - 0.034983  

11. Bwd Packet Length Max - 0.034087  

12. Total Length of Fwd Packets - 0.032715  

13. Bwd Packet Length Std - 0.031212  

14. Subflow Bwd Bytes - 0.025415  

15. Bwd Header Length - 0.023039  

16. Init_Win_bytes_backward - 0.022483  

17. Fwd Header Length.1 - 0.019853  

18. Fwd Packet Length Max - 0.019110  

19. Fwd Packet Length Mean - 0.017535  

20. Fwd Header Length - 0.017184  

21. Idle Max - 0.015595  

22. Subflow Fwd Packets - 0.014848  

23. min_seg_size_forward - 0.014448  

24. Flow IAT Max - 0.013813  

25. Avg Fwd Segment Size - 0.013166  

26. Fwd IAT Max - 0.012664  
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27. Subflow Bwd Packets - 0.012458  

28. Fwd IAT Std - 0.012287  

29. Total Backward Packets - 0.012179  

30. Fwd IAT Mean0.011560  

31. Bwd Packet Length Min - 0.011324  

32. Flow IAT Mean - 0.010899  

33. Bwd Packets/s - 0.010371  

34. Flow Duration - 0.009993  

35. Fwd IAT Min - 0.009900  

36. Total Fwd Packets - 0.009758  

37. Fwd IAT Total - 0.009668  

38. ACK Flag Count - 0.009291  

39. Flow IAT Std - 0.009291  

40. act_data_pkt_fwd - 0.008445  

41. Idle Mean  - 0.007799  

42. PSH Flag Count - 0.007739  

43. Fwd Packets/s - 0.007038  

44. Flow IAT Min - 0.005220  

45. Min Packet Length - 0.004304  

46. Fwd Packet Length Min - 0.004213  

47. Fwd Packet Length Std - 0.003784  

48. Bwd IAT Total - 0.003096  
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49. Bwd IAT Max - 0.003071  

50. URG Flag Count - 0.002949  

51. Bwd IAT Mean - 0.001970  

52. Active Max - 0.001433  

53. Down/Up Ratio - 0.001284  

54. Bwd IAT Min - 0.001249  

55. Active Std - 0.001201  

56. Active Mean - 0.001177  

57. FIN Flag Count - 0.001132  

58. Bwd IAT Std - 0.000999  

59. Active Min - 0.000575  

60. Fwd PSH Flags - 0.000483  

61. SYN Flag Count - 0.000194  

62. Idle Std - 0.000193  

63. Fwd URG Flags - 0.000029  

64. CWE Flag Count - 0.000022  

65. ECE Flag Count - 0.000000  

66. RST Flag Count - 0.000000  

67. Bwd URG Flags - 0.000000  

68. Bwd Avg Bulk Rate - 0.000000  

69. Bwd Avg Packets/Bulk - 0.000000  

70. Bwd Avg Bytes/Bulk - 0.000000  
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71. Fwd Avg Packets/Bulk - 0.000000  

72. Bwd PSH Flags - 0.000000  

73. Fwd Avg Bulk Rate - 0.000000  

74. Fwd Avg Bytes/Bulk - 0.000000  

75. Flow Bytes/s – 0.000000 

76. Flow Packets/s - 0.000000 

Following is the metrics for Random Forest after feature selection of top 10 features, 

which is nearly the square root of total features.  

Accuracy 99.4% 

Precision 0.995 

Recall 0.997 

F1-score 0.996 

 

Table 5: Performance metrics of Random Forest after feature selection 

 

 

Accuracy  95.7% 

Precision 0.957 

Recall 0.991 

F1-score 0.974 

 

Table 6: Performance metrics of AdaBoost after feature selection 

 

Accuracy  96.5% 

Precision  0.997 

Recall  0.959 

F1-score  0.978 

 

Table 7: Performance metrics of Gradient Boosting after feature selection 
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Figure 5: Decrease in Error with Change in Estimators 

 

 

Following is the list of features ranking score according to Random Forest when all classes 

are considered for classification: 

1. Packet Length Variance - 0.060135 

2. Average Packet Size - 0.050755 

3. Init Win bytes forward - 0.047369 

4. Packet Length Std - 0.045532 

5. Bwd Packet Length Std - 0.042913 

6. Subflow Fwd Bytes - 0.039410 

7. Max Packet Length - 0.038972 

8. Bwd Packet Length Mean - 0.034768 
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9. Total Length of Fwd Packets - 0.033940 

10. Subflow Bwd Bytes - 0.029878 

11. Total Length of Bwd Packets - 0.029695 

12. Fwd Packet Length Max - 0.029362 

13. Avg Bwd Segment Size - 0.028650 

14. Bwd Packet Length Max - 0.028421 

15. Avg Fwd Segment Size - 0.025790 

16. Packet Length Mean - 0.024116 

17. Fwd Header Length.1  - 0.021989 

18. Fwd Packet Length Mean  - 0.020529 

19. Bwd Packet Length Min  - 0.019887 

20. Idle Max - 0.019702 

21. Flow IAT Max - 0.019023 

22. Init_Win_bytes_backward - 0.018273 

23. Fwd Header Length - 0.016255 

24. Bwd Header Length - 0.015772 

25. min_seg_size_forward - 0.015354 

26. Fwd IAT Std - 0.015225 

27. Total Fwd Packets - 0.014804 

28. Bwd Packets/s - 0.013868 

29. PSH Flag Count  - 0.013584 

30. Subflow Fwd Packets - 0.013062 
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31. Fwd IAT Max - 0.012878 

32. Flow IAT Std - 0.012141 

33. Fwd Packet Length Std - 0.011951 

34. Fwd Packets/s - 0.010991 

35. act_data_pkt_fwd - 0.010353 

36. Fwd IAT Mean - 0.009543 

37. Total Backward Packets - 0.009385 

38. Fwd IAT Total - 0.008448 

39. Subflow Bwd Packets - 0.007992 

40. Fwd Packet Length Min - 0.007897 

41. Flow IAT Mean - 0.007104 

42. ACK Flag Count - 0.006895 

43. Flow Duration  - 0.006736 

44. Fwd IAT Min - 0.006689 

45. Idle Mean - 0.005290 

46. Flow IAT Min - 0.004899 

47. Min Packet Length - 0.004544 

48. Active Min - 0.003649 

49. Bwd IAT Mean - 0.002895 

50. Down/Up Ratio - 0.002893 

51. Active Mean - 0.002864 

52. Bwd IAT Total - 0.002742 
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53. Active Max  - 0.002588 

54. Bwd IAT Max - 0.002530 

55. URG Flag Count - 0.002377 

56. Bwd IAT Min - 0.002104 

57. FIN Flag Count - 0.001633 

58. Bwd IAT Std - 0.000907 

59. SYN Flag Count - 0.000714 

60. Fwd PSH Flags - 0.000653 

61. Active Std  - 0.000361 

62. Idle Std - 0.000291 

63. CWE Flag Count  - 0.000017 

64. Fwd URG Flags - 0.000013 

65. RST Flag Count - 0.000000 

66. ECE Flag Count - 0.000000 

67. Bwd PSH Flags - 0.000000 

68. Bwd URG Flags  - 0.000000 

69. Bwd Avg Bulk Rate - 0.000000 

70. Fwd Avg Packets/Bulk - 0.000000 

71. Bwd Avg Packets/Bulk - 0.000000 

72. Bwd Avg Bytes/Bulk - 0.000000 

73. Fwd Avg Bulk Rate - 0.000000 

74. Fwd Avg Bytes/Bulk - 0.000000 
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Following three tables shows the precision, recall and F1 scores of the ensemble methods 

used. The accuracy of Random Forest is 99.35, and that of AdaBoost is 99.29 and that of 

Gradient Boosting is 99.31. We see that Random Forest performs best. 

 Benign DoS PortScan DDoS FTP Web 

Attack 

Bot Infiltration Heartbleed 

Precision 0.99 0.98 0.98 0.75 0.90 0.99 0.96 0.98 0.99 

Recall 0.99 0.99 0.38 0.6 0.06 0.99 0.97 1 0.99 

F1 Score 0.99 0.99 0.55 0.66 0.12 0.98 0.97 1 0.99 

Table 8: Random Forest on all classes after feature selection 

 Benign DoS PortScan DDoS FTP Web 

Attack 

Bot Infiltration Heartbleed 

Precision 0.99 0.98 0.60 0.75 0.8 0.96 0.97 1 0.99 

Recall 0.99 0.99 0.72 0.6 0.06 0.99 0.96 .96 0.99 

F1 Score 0.99 0.99 0.65 0.66 0.12 0.98 0.97 1 0.99 

Table 9: AdaBoost on all classes after feature selection 

 Benign DoS PortScan DDoS FTP Web 

Attack 

Bot Infiltration Heartbleed 

Precision 0.99 0.98 0.95 0.5 0.71 0.96 0.98 1 0.99 

Recall 0.99 0.99 0.38 0.6 0.06 0.99 0.97 1 0.99 

F1 Score 0.99 0.99 0.54 0.54 0.11 0.98 0.97 1 0.99 

Table 10: Gradient Boosting on all classes after feature selection 

 

Results Discussion: From the above results, we can see that as expected, the traditional 

methods do not perform well, as they suffer from bias and variance and cannot generalize 

the models for test dataset with high accuracy. The ensemble methods perform very well, 

and especially random forest stands out of all the methods. Not only that random forest 

does well in terms of performance, but also training it takes less time compared to other 

ensemble methods, due to the nature of the independence of the algorithm, and also, it 

clearly explains that the other boosting methods are prone to a bit of overfitting when 

compared to bagging approaches. Random forest performs well both on intrusion detection 
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as binary classification and network traffic classification. On the subset of features, the 

ensemble methods perform well, and random forest performs the best even with only ten 

percent of the entire features. This has reduced a dramatic training time without 

compromising the accuracy. Hence, we can say that ensemble methods perform very well 

compared to the traditional methods in terms of both performance and training times.  
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Chapter 5 

CONCLUSION AND FUTURE WORK 

In this thesis, an approach using ensemble methods for intrusion detection with network 

traffic data has been presented. This approach can be generalized to any application, as the 

network traffic does not vary. The dataset used for training the model is comprehensive, 

and provides an up-to-date attack scenarios at network level traffic, with imbalanced 

classes as well.  Previous works and datasets did not address these issues. In this thesis, 

and analysis of ensemble methods is also done to give new insights to the intrusion 

detection approach as an anomaly detection approach. The advantages of ensemble 

methods, especially as highlighted, they are robust to outliers, feature scaling and missing 

values.  From the experiments, it can be seen that the ensemble methods outperform 

traditional methods on this kind of complex dataset and Random Forest is the best classifier 

in terms of accuracy and the feature selection for dataset size reduction. One interesting 

fact about Random Forest is that it requires minimum hyper-parameter tuning and just 

selecting the number of trees in the forest.   

As mentioned, one of the problems with ensemble methods is they may take longer time 

to test as they have aggregate the results from various small classifiers. This can be handled 

by using distributed computing approaches like Apache Spark. The models can be trained 

faster, and robust to node failure and provides fault tolerant computing approach. Also, the 

model can be saved in the memory as the size of the model is not huge. This provides speed 

up of hundreds of times in real-time testing if a network traffic is intrusion or not.  
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