
The College of Wooster Libraries
Open Works

Senior Independent Study Theses

2018

Sports Analytics With Computer Vision
Colby T. Jeffries
The College of Wooster, cjeffries18@wooster.edu

Follow this and additional works at: https://openworks.wooster.edu/independentstudy

Part of the Artificial Intelligence and Robotics Commons, Numerical Analysis and Scientific
Computing Commons, Other Applied Mathematics Commons, Other Computer Sciences
Commons, and the Other Mathematics Commons

This Senior Independent Study Thesis Exemplar is brought to you by Open Works, a service of The College of Wooster Libraries. It has been accepted
for inclusion in Senior Independent Study Theses by an authorized administrator of Open Works. For more information, please contact
openworks@wooster.edu.

© Copyright 2018 Colby T. Jeffries

Recommended Citation
Jeffries, Colby T., "Sports Analytics With Computer Vision" (2018). Senior Independent Study Theses. Paper 8103.
https://openworks.wooster.edu/independentstudy/8103

https://openworks.wooster.edu?utm_source=openworks.wooster.edu%2Findependentstudy%2F8103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openworks.wooster.edu/independentstudy?utm_source=openworks.wooster.edu%2Findependentstudy%2F8103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openworks.wooster.edu/independentstudy?utm_source=openworks.wooster.edu%2Findependentstudy%2F8103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=openworks.wooster.edu%2Findependentstudy%2F8103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=openworks.wooster.edu%2Findependentstudy%2F8103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=openworks.wooster.edu%2Findependentstudy%2F8103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/122?utm_source=openworks.wooster.edu%2Findependentstudy%2F8103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=openworks.wooster.edu%2Findependentstudy%2F8103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=openworks.wooster.edu%2Findependentstudy%2F8103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/185?utm_source=openworks.wooster.edu%2Findependentstudy%2F8103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openworks.wooster.edu/independentstudy/8103?utm_source=openworks.wooster.edu%2Findependentstudy%2F8103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openworks.wooster.edu/independentstudy/8103
mailto:openworks@wooster.edu

Sports AnalyticsWith
Computer Vision

Independent Study Thesis

Presented in Partial Fulfillment of the
Requirements for the Degree Bachelor of Arts in
the Department of Mathematics and Computer

Science at The College of Wooster

by
Colby Jeffries

The College of Wooster
2018

Advised by:

Dr. R. Drew Pasteur

Dr. Sofia Visa

Abstract

Computer vision in sports analytics is a relatively new development. With

multi-million dollar systems like STATS’s SportVu, professional basketball

teams are able to collect extremely fine-detailed data better than ever before.

This concept can be scaled down to provide similar statistics collection to

college and high school basketball teams. Here we investigate the creation of

such a system using open-source technologies and less expensive hardware.

In addition, using a similar technology, we examine basketball free throws to

see whether a shooter’s form has a specific relationship to a shot’s outcome. A

system that learns this relationship could be used to provide feedback on a

player’s shooting form.

iii

Acknowledgements

First and foremost, I would like to thank my advisors, Dr. R. Drew Pasteur and

Dr. Sofia Visa. Without their help, I would have been unable to discover and

learn what I did. Their advice and guidance helped make all of this possible. I

would also like to thank the other members of the College of Wooster faculty

and staff that provided advice and technical help: Prof. Nathan Sommer, Dr.

Denise Byrnes and Coach P. J. Kavanagh. I would also like to thank Scott

Stoudt for his help in generating test data. In addition I would like to thank

both the Computer Science and Mathematics departments at the College of

Wooster that provided financial support as well as the College at large for the

educational opportunities it afforded me, including this project.

I would also like to thank those whose support made this project possible:

my mother, Lisa, my fiancée, Katherine, and the rest of my family that

supported me through this endeavor. Finally, I would also like to thank my

friends at the College of Wooster who provided great feedback and ideas:

Scott, Thomas, Tommy, Max, Nick, Todd, Phillip, Gianni, Joe, Dylan, along

with many others.

v

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

1.1 Problem Outline . 2

1.2 Goals . 3

1.2.1 Data Collection System . 3

1.2.2 Shot Analysis System . 5

2 Background: Sports Analytics 7

2.1 Origins . 8

2.2 The Moneyball Revolution . 11

2.3 Basketball and SportVu . 13

2.4 Moving to Other Sports . 17

3 Background: Computer Science 19

3.1 Machine Learning . 19

vii

viii CONTENTS

3.1.1 History . 20

3.1.2 Modern Techniques . 21

3.2 Computer Vision . 24

3.2.1 History . 25

3.2.2 Modern Techniques . 27

4 Optical Statistics Collection: Methodology 29

4.1 Camera System . 30

4.1.1 Cameras . 31

4.1.2 Location Configuration . 33

4.1.3 Recording and Processing 36

4.2 Computer Vision . 40

4.2.1 OpenCV . 41

4.2.2 Video and Image I/O . 42

4.2.3 Image Manipulation . 46

4.2.4 Tracking . 49

4.2.5 Optical Character Recognition 64

4.2.6 Bringing the Data Together 67

4.3 Interface and Management Program 69

4.3.1 Data Collection Manager 70

4.3.2 Game Analysis and Statistics Reports 72

4.4 Statistics Calculations and Reports 73

5 Optical Statistics Collection: Results 75

5.1 Challenges . 76

5.1.1 Cameras . 76

CONTENTS ix

5.1.2 Computer Vision . 77

5.1.3 Logistics . 78

6 Shot Analysis with Pose Estimation: Methodology 81

6.1 Recording Poses . 81

6.1.1 OpenPose . 82

6.1.2 Using OpenPose . 85

6.2 Data Processing and Clustering . 89

6.2.1 Cleaning the Data . 90

6.2.2 Clustering . 93

7 Shot Analysis with Pose Estimation: Results 99

7.1 Challenges . 105

8 Conclusions 113

8.1 Optical Statistics Collection . 113

8.1.1 Future Work . 114

8.2 Shot Analysis with Pose Estimation 116

8.2.1 Future Work . 117

A Recording Software Code 119

A.1 recorder.h . 119

A.2 recorder.cpp . 121

A.3 main.cpp . 127

B Free Throw Analyzer Code 129

B.1 FreeThrowAnalyzer.cpp . 129

C Clustering Code 141

C.1 FreeThrowClustering.py . 141

xii CONTENTS

List of Figures

2.1 A depiction of how the SportVu cameras are laid out [7]. 15

2.2 Chart of the “smoothed empirical acceleration vectors” of LeBron

James during the Heat vs. Nets game [36]. 16

4.1 The Amcrest IP3M-943B security camera [1]. 33

4.2 A mock-up of locations of the ceiling mounted cameras. 34

4.3 A mock-up of locations of the side mounted cameras. 35

4.4 The Amcrest Surveillance Pro Software [1]. 37

4.5 The ZoneMinder CCTV software [10]. 38

4.6 The Qt5 interface for our recorder program. 40

4.7 A graph of the frames from two cameras, perfectly synchronized. 43

4.8 A graph of the frames from two cameras, with consistent frame

rates, that started at slightly different times. 43

4.9 A graph of the frames from two cameras, with inconsistent frame

rates. 44

xiii

xiv LIST OF FIGURES

4.10 Two similar images of guitars, before being stitched by the default

OpenCV stitcher and after. 47

4.11 A sample basketball scoreboard [9]. 66

4.12 The sample scoreboard cropped to a single relevant field [9]. . . . 66

4.13 The relevant field processed for maximum contrast so that it is

optimal for the OCR. 67

4.14 The bounds of our court coordinates. 69

4.15 Python prototype for the Data Collection Manager. 71

6.1 An example of body key point detection in OpenPose [4]. 82

6.2 An example of face key point detection in OpenPose [4]. 83

6.3 An example of hand key point detection in OpenPose [4]. 84

6.4 A pose estimate from the middle of a free throw. 88

6.5 An example of data before and after being smoothed using Lowess

smoothing. 91

6.6 An example of right knee angle data before being normalized. . . 92

6.7 The right knee angle data from Figure 6.6 after being normalized. 93

6.8 An example dendogram of shot data, using the dynamic time

warping distance measure. 96

7.1 The unedited sequence of angles of the right elbow from our data. 100

7.2 The smoothed sequence of angles of the right elbow from our data.100

7.3 The smoothed and normalized sequence of angles of the right

elbow from our data. 101

7.4 The average sequence of right arm angles of the makes/misses

from our data. 101

LIST OF FIGURES i

7.5 The average sequence of right knee angles of the makes/misses

from our data. 102

7.6 The average sequence of right elbow angles of the makes/misses

from our data. 102

7.7 The angle data from the right knee, arm, elbow, and body con-

catenated together for clustering. 103

7.8 Clustering makes and misses together, using cosine distance. . . . 104

7.9 Clustering the made shots together, using cosine distance. 105

7.10 Clustering the missed shots together, using cosine distance. . . . 106

7.11 Clustering makes and misses together, using dynamic time warp-

ing and squared euclidean distance. 107

7.12 Clustering the made shots together, using dynamic time warping

and squared euclidean distance. 108

7.13 Clustering the missed shots together, using dynamic time warp-

ing and squared Euclidean distance. 109

7.14 The averaged representatives from each cluster generated using

just made shots and Cosine distance. 110

7.15 The averaged representatives from each cluster generated using

just missed shots and cosine distance. 111

ii LIST OF FIGURES

Chapter 1

Introduction

In sports analytics, data collection is one of the most important pieces of the

process, as there would be nothing to analyze without data. Historically, data

collection has been simple, usually only consisting of discrete measurements

(like how many points were scored by a player). In recent times, data

collection has gotten more advanced as coaches and teams have started to

appreciate the advantage that good numbers can grant them. However,

collecting more advanced and accurate statistics is increasingly labor intensive

and difficult. This is where computer vision comes into play.

With recent advances in computer vision algorithms and computational

power, using computers to collect statistics has become easier and more

effective than ever before. State-of-the-art, feature-complete systems exist, but

remain extremely expensive. Thus, these systems are only available to

professional teams and only the best college programs. This is where our

project comes into play. We aim to create a basketball data collection system

that is more accessible to smaller college teams and even high schools. We

1

2 CHAPTER 1. INTRODUCTION

want our system to be cheap, easy to setup and use, and effective. Along with

a data collection system, we also aim to create a narrower system to analyze

free throws. This would give insight into whether or not a player’s form has a

specific impact on the outcome of their shot.

1.1 Problem Outline

This project contains two problems: that of our data collection system and of

our shot analysis system. We first outline the data collection system problem.

This problem consists of the following objectives:

• Collect the positions of players over the course of the game.

• Collect the position of the ball over the course of the game.

• Compile this data into a usable format.

• Generate statistics reports from this data.

• In meeting these objectives, the created system must be relatively

inexpensive and easy to use.

The shot analysis problem is comparatively simpler, consisting of the

following objectives:

• Collect the detailed positioning of the shooters body over time.

• Compile the data from a shot into a usable format.

• Analyze multiple shots from the same player and determine if there is a

relationship between shot form and shot outcome.

CHAPTER 1. INTRODUCTION 3

• In meeting these objectives, the created system must be relatively

inexpensive and easy to use.

In order to build these systems, we must meet these objectives in some

capacity. These objectives are specifically left vague, as there are many ways to

accomplish them.

1.2 Goals

In this section we will explain our goals for the project and how these goals

would be sufficient to fulfill our objectives.

1.2.1 Data Collection System

The overall goal of our system is to help automate statistics collection and

collect temporal data that cannot be collected through other methods. The

primary purpose of collecting this data is the same as most other sports

analytics projects: aid coaches and players in strategic decision making. This

is a broad goal, and does not really capture the specifics of what we plan to do,

thus it is wise to break our goals down a bit.

Our data collection system will consist of a physical camera system along

with a software system that together will complete our objectives. The camera

system will collect the images needed to derive the positions of the ball and

players, where the software system will manage the cameras, derive and

compile the data, and generate the statistics.

4 CHAPTER 1. INTRODUCTION

Our goal is to build a camera system that meets the following

requirements:

• Within our budget of $1000. This budget is reasonable for even a modest

high school facility, so staying under this budget would make this

system extremely accessible.

• Easy to set up and use. The end users of this system will not be

computer scientists or engineers, so it must be usable by coaching staff.

• Capable of collecting the footage needed for 3D data on the ball position

and 2D data on the players’ positions. This is necessary to meet our

objectives. We are looking for 2D player positions as they are all that is

necessary for virtually all important statistics, and much easier to collect.

To meet these requirements we plan to use multiple cameras, set up in

strategic positions to cover the needed angles. These cameras will need to

meet the requirements of the system itself. We will discuss how we went

about building this system in a later chapter.

Our goal on the software side is to build a program meeting the following

requirements:

• Capable of recording an entire game with minimal user interaction.

• Capable of analyzing recorded games to generate the 2D player position

data and 3D ball position data. There will be an unavoidable amount of

user interaction necessary, but we aim to minimize it.

• Capable of generating statistics reports from the collected data.

CHAPTER 1. INTRODUCTION 5

• Easy to use. This is key for any interface that is created.

To meet these requirements we plan to build a three part software suite, with

separate interfaces for recording, analysis, and report generating. This

software will contain all of the needed computer vision elements, and will be

closely integrated with the camera system. We will discuss how we went

about building the software system in a later chapter.

1.2.2 Shot Analysis System

The shot analysis system is entirely made up of a software system. This

system will be capable of using any camera, with better camera yielding better

results. The system has the following requirements:

• Capable of capturing the body position of the shooter for the duration of

the shot and saving it.

• Capable of taking multiple saved shots and analyze them to determine

the relationship between form and shot outcome.

To meet these requirements we plan to build a system using existing software

to estimate body positions from images. We hope to be able to ascertain

whether or not shot form has a clear relationship with shot outcome using a

clustering algorithm or some other machine learning tool. If such a

relationship exists, we aim to use it to provide feedback to a shooter to help

improve their shot.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Background: Sports Analytics

A sport, at its heart, is numbers. Points, goals, time, yards: measurable values.

Some sports are more numeric than others: baseball generates an enormous

amount of information where soccer really only keeps track of time and goals.

In general, a sport is all about numbers, and where there are numbers, there

are people there to analyze them.

The sports piece of “Sports Analytics” is pretty obvious, but what exactly

does analytics mean? Analytics comes from the business world, and refers to a

powerful tool set that includes advanced statistics, data science, machine

learning, and other related methods. In business, these tools are used to gain a

competitive advantage over other businesses. This objective clearly translates

to the sports world as well [12].

Sports analytics and statistics have had a huge boom in popularity and

utility in the last few decades due to increases in computational power and

advances in data collection. Teams that embrace sports analytics, like the early

2000s Oakland A’s under Billy Beane, the late 2000s Tampa Bay Rays under

7

8 CHAPTER 2. BACKGROUND: SPORTS ANALYTICS

Stuart Sternberg, and the current Houston Rockets under Daryl Morey, have

been wildly successful, and have caused sports analytics to be important piece

of virtually every teams’ toolbox [12] [26]. In this section, we briefly describe

the history of sports analytics at large, sports analytics in basketball, along

with the future direction of the field.

2.1 Origins

Every modern day sport started in roughly the same place in terms of

recording data and analyzing it: discrete data was collected (sometimes very

little, in the case of soccer, or quite a lot, like in the case of baseball), but

analyzed and manipulated very little. This data consists of information that

someone watching the game could record, like points scored, errors in

baseball, yards in football, and other things of that nature. As these sports

developed, their statistics got more complicated. These advances usually

corresponded with improvements in computers [32] [34] [15]. We are going to

discuss a brief history of statistics in a few different sports with active statistics

and analytics communities: baseball, American football, and basketball.

Baseball is likely the sport that is most known for its statistics and analysis.

Due to the “box score”, invented by sportswriter Henry Chadwick, spectators

could get an idea of what happened in the game through statistics. This box

score contained all of the events of game and all of the statistics attributable to

each player. Based on counts from game box scores, summary statistics for

individuals in batting, fielding, and pitching were developed. By the the end

of the 1800s, most of the standard statistics we know today had been

CHAPTER 2. BACKGROUND: SPORTS ANALYTICS 9

developed [15].

However, despite the term statistics applied to these recorded values, there

are not really statistics at all, they are recorded numbers that involve little to

no manipulation. It was not until the 1950s that advanced statistics started

being applied to the game. These early forays into baseball statistics were

investigations into applying statistical models to optimal strategies and player

performance. These areas continue to be the hottest areas of research in

baseball analysis [15].

With the improvements of computers in the 1960s, baseball had an

explosion of new statistics and analysis. New statistics, new applications for

old statistics, and large readily available data sets brought an unprecedented

level of interest in baseball and baseball statistics. Up to the 1990s, these

statistics became more advanced, and the collected data more detailed [15].

This led to the biggest revolution in sports statistics and sports analytics:

Moneyball, which we discuss in the next section.

American Football generates has a lot of discrete data, and records of this

type of data goes back to the 1930s for professional leagues and even earlier at

the college level. This data remained unused for advanced analysis until the

1970s when the first paper detailing the usage of statistical reasoning for

football was published. However, football has largely remained outside of

academic research. The reason for this is left up to speculation, but it seems to

be a combination of the nature of the game and the large gambling market

around football. There is not good way to format play-by-play information

and thus there is no good way to analyze it. On top of that, football has such a

huge variety of possible situations due to the complexity of the game. This

10 CHAPTER 2. BACKGROUND: SPORTS ANALYTICS

means that analysis becomes significantly more complicated. The gambling

market does not prevent research from occurring, but rather causes much of

the research related to the gambling market to be proprietary, and thus

unavailable to the public [32].

Basketball is fairly new onto the scene with complicated statistics and

academic research. The NBA has stats from back around the time of its origins

in the 1940s [2]. However, due to the fact that basketball was less popular than

football and baseball for much of the 1900s, basketball was not researched

nearly as much. However, a resurgence in popularity in the past few decades

has led to a significant increase in research. Much of the research in the past

dealt with modeling shooting and the NCAA tournament [34]. Modern

research still investigates these areas but is also now looking at many more

facets of the game, as we will discuss in a later section.

There is an important thing to notice when looking at these three

examples. Baseball had much more complicated statistics, much earlier. The

reason for this is rooted in the the way these sports work and the technology

available. Basketball and football are examples of complex invasion team

sports. Essentially, these sports see the team attacking their opponents

territory to score, and defending their own territory. These sports do not yield

themselves well to the generation of linear discrete data like baseball does.

Because of this, powerful technology (which we will discuss later) is needed to

track players’ movements [20].

CHAPTER 2. BACKGROUND: SPORTS ANALYTICS 11

2.2 The Moneyball Revolution

The Moneyball story is the subject of a movie, book, and numerous articles; it

is a household name. Moneyball is the story of the Oakland Athletics in the

late 1990s and early 2000s, and how they, one of the poorest teams in the MLB,

performed as well as the richest teams. The Athletics made the most of their

small budget, but how? How did a team with one of the smallest budgets, in a

game where a large budget is an enormous advantage, perform so well? The

answer is simple: they re-evaluated the way a baseball team is managed and

how players are selected [28]. As mentioned above, an entire book was written

on this story, so we will only give a brief overview.

The primary subject of this story, aside from the Oakland A’s, is the A’s

general manager Billy Beane. Beane essentially proved that the collective

wisdom of the last century of baseball was wrong, and that it has not kept up

with the changes of the game. Up until this point in the history of baseball,

scouts were largely responsible for determining the value of a player, and

reporting to management who to attempt to draft, trade for, etc. Beane looked

into statistical alternatives to determine a players value. The Athletics

attempted to find statistical indicators of player performance, especially ones

that no one else used. This allowed them to draft players than other teams

overlooked, and get them for a reasonable price. This, in turn, allowed them to

stretch the small budget further, and compete with times with double the

amount of money [28].

Beane and the A’s discovered a few things through statistics and analytics

that flew in the face of traditional baseball wisdom: that college players with

12 CHAPTER 2. BACKGROUND: SPORTS ANALYTICS

more experience are better draft picks than highly talented prodigy high

school players, that instead of tradition measures of offensive capability (like

batting average) statistics like on-base and slugging percentages were much

more indicative of players’ offensive capability, along with other things.

Essentially, the A’s were redefining what numbers made a player valuable.

Initially, the baseball community dismissed the A’s, until they went to the

playoffs in 2002 and 2003. This was initially described as an aberration, a

fluke. However, the numbers backed the A’s up, and soon, other teams started

to adopt the A’s strategies [28].

Once other teams started copying the A’s strategies, the edge the A’s had

slowly eroded. Over time, baseball broadly adopted Beane’s methods and

integrated it with their current methodologies. Now both statistics and scouts

were used to evaluate players. Most front offices now have statisticians to look

at the stats, and scouts to look at things that statistics cannot capture like a

players maturity and personality [28].

The A’s used statistics to do the job of what was previously human

judgment. They discovered previously unknown relationships that proved

useful. This was far more complicated then anything that had been done in

relation to sports outside of academia. From this point forward, statistics

became a huge part of baseball. However, the effect of the A’s success was not

limited to baseball. Interest in more complicated statistics spread to other

sports, including basketball, where data collection and analysis was taken

even higher.

CHAPTER 2. BACKGROUND: SPORTS ANALYTICS 13

2.3 Basketball and SportVu

Sports analytics in basketball has seen a rise since Moneyball. Until recently,

scouts evaluated basketball players by watching games. They determined a

players value through instinct. Nowadays, statistics are starting to heavily

influence strategy and player evaluation. The most obvious result of this is the

shift toward three-point shots. The numbers show that if shooting from more

than a few feet away, the shot might as well be a three-pointer in order to

maximize points. Teams that embrace the three-point shot have consistently

outperformed those who have not. This is become even more abundantly

clear with the recent domination of the Golden State Warriors, who are

consistently one of the best three-point shooting teams in the league and have

been practically unbeatable for the past three years.

An even better example is the current Houston Rockets. They have been

one of the best teams in the league for the past few years, due many statistics

driven changes they have made. Like the Warriors, the Rockets have heavily

favored the three-pointer, so much so that they have attempt, on average,

more three-pointers than two-pointers. Despite this, they remain competitive

(in the top ten) in three-pointer field goal percentage, meaning this strategy is

paying dividends. Also contributing to their success are strategies at player

level: James Harden, a favorite for MVP this year, takes a higher proportion of

shots for his team than any other player in the NBA. Generally, it is expected

that the success rate of strategies decrease with frequency of use, but as of

right now he seems to defy this rule, so much so that he is practically always

guarded by two opposing players [2]. The strategies that the Rockets have

14 CHAPTER 2. BACKGROUND: SPORTS ANALYTICS

been employing rely heavily on their usage of available statistics and their

high-end analytics. All of these strategies employed by the Rockets are driven

by their Ivy League educated analytics-savvy general manager Daryl Morey.

Player evaluation has also changed with statistics. Statistics like +/-, player

impact, net rating, and effective field goal providing new insight into how a

player performs [2]. These statistics show the value of versatile players like

Draymond Green that previously would be underrated. These numbers also

validate the strength of well known superstars like LeBron James, while

simultaneously giving a more accurate pictures of high scoring players that

lack defensively who were previously overrated.

All of these changes are the result of better statistics and a recent

innovation in sports analytics. This innovation is likely the biggest change in

the history of sports analytics: optical tracking. Optical tracking allows a huge

amount of new, finely detailed data to be collected, causing an explosion of

data and new analytic possibilities. The STATS company is responsible for the

largest and most popular optical tracking statistics systems. Their basketball

system, SportVu, is the most well known and complete system of its type.

Every team in the NBA has the SportVu system implemented in their facilities

to collect information from every game [7].

The technical details of SportVu are sparse, seemingly to protect the

system from competition, however, some information is available. SportVu

uses six cameras (Figure 2.1), and is capable of tracking the (x, y) positions of

the players along with the (x, y, z) position of the ball 25 times every second.

This data is combined with data from the scorers table, including game events

like fouls and turnovers, the game and shot clock, the current score, and other

CHAPTER 2. BACKGROUND: SPORTS ANALYTICS 15

Figure 2.1: A depiction of how the SportVu cameras are laid out [7].

game elements. The exact method that this data is captured is not specified.

This raw data is used to calculate numerous statistics with the aim of

improving team performance and providing more information to coaches to

improve decision making [7].

According to the NBA, SportVu automatically collects a huge amount of

statistics. These stats include various pieces about shooting location and

efficacy, player ball time and possession, defensive stats like blocks and steals,

along with other more complicated stats like player impact [2]. These stats are

combined into other hybrid player effectiveness stats as well. This information

is provided to teams as reports and data visualizations [7].

SportVu was not originally in every NBA arena. Initially, it was used by a

few teams starting in 2010, who made great use of the system and payed for it

themselves. Over time, more teams adopted the system, until Adam Silver, the

NBA commissioner, eventually mandated that all teams implement the system

in 2013 to get better statistics throughout the league. Because of this, we now

16 CHAPTER 2. BACKGROUND: SPORTS ANALYTICS

Figure 2.2: Chart of the “smoothed empirical acceleration vectors” of LeBron
James during the Heat vs. Nets game [36].

get a complete picture of every game, allowing the league to generate accurate

and complete full season statistics [7].

Aside from STATS internal work on the SportVu system and the NBA

teams stats collection, little work has been done with SportVu data. There is a

sample SportVu data set available from a game on November 1st, 2013,

between the Miami Heat and the Brooklyn Nets. Essentially, this data set

contains raw SportVu data. Each row contains the time, the quarter, the shot

clock, the game clock, the (x, y, z) of the ball, the (x, y) of every player on both

teams, the number of the current possession, and an event ID for each player

that indicates if an event happened involving that player. Each row is

collected 25 times a second, resulting in almost a million rows from a single

game. Steven Wu and Luke Bornn explored this data in an article of theirs,

and showed what can be done with it. They specifically looked at modeling

the movement of players on offense, and were able to come up with a few

interesting statistics and visualizations (Figure 2.2) [36].

From this, it should be easy to see where our project fits in. We aim to

CHAPTER 2. BACKGROUND: SPORTS ANALYTICS 17

build a system that has some of the capabilities of SportVu, but without the

price tag. We want this technology to be available to colleges and high schools,

not just the NBA.

2.4 Moving to Other Sports

High end sports analytics is moving to other sports as well. Baseball, post

Moneyball, does not have much more that can be done. Due to the linear

nature of the game, we are able to generate a complete picture of the game.

Other faster pace games like basketball are starting to move toward systems

like SportVu. Soccer, hockey, American football, and a few other sports are

have systems from STATS akin to SportVu [6]. These other systems, will allow

the collection of much more detailed data. Other sports present an increased

challenge over baseball and basketball. American football, soccer, hockey, and

other fast sports have many things happening at the same time, and a lot of

important pieces of the game occur “away from the ball”. New and novel

statistics will have to be created to encapsulate everything that happens and

evaluate players at a similar efficiency as the statistics that have been found for

basketball and baseball. All of these sports are active areas of research, and

there is a lot of money involved with these sports, so it is likely we will see

advances soon, spurred on by the success of SportVu and the importance of

sports analytics in basketball and baseball.

18 CHAPTER 2. BACKGROUND: SPORTS ANALYTICS

Chapter 3

Background: Computer Science

In this section, we give background on the areas of computer science that this

project deals with. It is important to understand the previous research and

advances in these fields that make our goals possible.

3.1 Machine Learning

Machine learning is the subfield of artificial intelligence that deals with

constructing computer programs and algorithms that improve themselves.

These programs “learn” through experience. The exact process varies, as these

algorithms are diverse and rely on a large variety of concepts from math and

computer science [30]. In this section we give a brief overview of machine

learning, including some history and modern techniques.

19

20 CHAPTER 3. BACKGROUND: COMPUTER SCIENCE

3.1.1 History

In this section we go through some of the important milestones in machine

learning, and their importance. The history of machine learning is not well

documented, so creating a comprehensive history is difficult.

The first program that could be considered part of machine learning was

written by Arthur Samuel in 1952. This program played checkers, and

improved itself by studying the moves that previously resulted in

victories [29]. This program demonstrated that self-improving programs are

possible, and that they are effective.

In 1957, the first neural network was designed by Frank Rosenblatt. This

machine, known as a perceptron, simulated the thought process of the human

brain [29]. This machine specifically simulates the neuron, and is quite simple.

However, when multiple perceptrons are combined together, they form a

neural network, a much more complicated machine learning technique that is

still used today [30].

In 1967, the nearest neighbor algorithm was written [29]. This algorithm

amounted to basic pattern recognition, and is foundational in many computer

vision algorithms. This algorithm also played a part in the creation of

clustering and instance based learning algorithms [30].

In 1981, Gerald DeJong introduced Explanation Based Learning. This

learning mechanism involves the analysis of training data and the creation

rules to discard unimportant data [29]. The concept has been extended to

numerous algorithms and techniques [30].

The next major point in machine learning is not a single discovery, but

CHAPTER 3. BACKGROUND: COMPUTER SCIENCE 21

rather a sort of shift in paradigm of the field. Starting in the 1990s, scientists

started to focus on data driven approaches over knowledge based approaches.

Essentially, scientists started building programs to analyze large data sets in

hopes of learning from the data [29]. The machine learning field has continued

in this direction, and most modern approaches to machine learning are data

driven.

The late 1990s and 2000s saw more major improvements in machine

learning, and further milestones in performance. The 1990s saw IBM’s Deep

Blue beat a world champion at chess. In 2011, IBM’s Watson won a game of

Jeopardy. In the last decade, we have seen complicated machine learning

algorithms out of Google, Facebook, and Microsoft that have tackled

complicated problems. Google’s Brain learned to categorize objects in the same

way a cat does. Facebook’s DeepFace has been able to recognize individuals in

photos at roughly the same level that a human can. In 2016, one of Google’s

machine learning systems, AlphaGo, beat a professional at Go, one of the

worlds most complicated board games [29]. As we can see, machine learning

has accomplished a lot and worked towards solving numerous complicated

and difficult problems. In all likelihood, machine learning will continue

solving more difficult problems as computers and algorithms improve.

3.1.2 Modern Techniques

Modern machine learning systems use a wide variety of algorithms and

methods, and serve an even wider array of purposes. Instead of attempting to

cover all of the modern machine learning techniques, we will briefly describe

22 CHAPTER 3. BACKGROUND: COMPUTER SCIENCE

two popular ones along with some of their applications.

Neural networks are one of the most popular and most famous machine

learning techniques. Neural networks are based on a simplified model of an

organic brain. These networks are composed of individual “units” that take in

multiple real-valued inputs and output a single real-valued output. These

“units” are essentially perceptrons that evaluate a weighted linear

combination of its inputs with an activation function that yields some sort of

value, usually boolean. These units are arranged into layers that feed their

outputs to each other. Ultimately, a final output row that dictates the outcome

of feeding the data to the neural network, usually this is a classification. The

actual layout of the network, activation functions used, method to update the

weights, and connections between the layers vary. Variants of neural networks

exist that are better suited to images, recurrent data, and other data types.

Designing a neural network for a problem is usually the most difficult part of

using a neural network [30].

Neural networks have been applied in many ways as they are suitable for

all sorts of situations. Suitable problems for a neural network have the

following qualities:

• Individual data points are represented by many attributes.

• The target function output, that is the desired output from the network,

can be discrete, continuous, or vector of these.

• The training data is not error free.

• Long training times are acceptable. Training a neural network is

CHAPTER 3. BACKGROUND: COMPUTER SCIENCE 23

computationally expensive.

• Evaluation of the neural network on a new data point needs to be fast.

Despite the long training time, evaluation is very fast.

• Humans do not need to understand how the network works.

Interpreting the weights of a network is extremely difficult.

As mentioned earlier, many problems have these qualities [30]. Applications

include self-driving car systems, facial recognition systems, Google’s Brain

(and other classification and recognition systems), financial trading systems,

and other applications with demographics, bioinformatics, logistics, and may

other fields [30] [29] [14].

Another popular class of methods in machine learning is genetic

algorithms. Genetic algorithms provide a method to search a hypothesis space

in hopes of optimizing some fitness function. Genetic algorithms are

conceptually based on the evolution process from biology. Genetic algorithms

can vary in details, but nearly all share the same basic structure. The

algorithms basic operation involves updating a pool of possible hypotheses

called a population. With each new iteration, all population members are

evaluated with the fitness function. A new population is generated by

carrying forward a portion of the population based on probabilities generated

from the the population fitness. Some of these individuals are also combined

to generate new members. An element of mutation is also added to ensure

that the algorithms does not become stagnant. The exact details of these parts

vary [30]. Essentially, the algorithm keeps hypotheses that perform well, uses

24 CHAPTER 3. BACKGROUND: COMPUTER SCIENCE

them to generate new hypotheses, and introduces random mutations to spur

changes and preserve the diversity of population.

The attributes of a hypothesis are the “genes” in a genetic algorithm.

Hypotheses are made up of a set of rules (genes) that are encoded into a

sequence. These sequences are usually binary, as it ensures that combining

hypotheses and mutating them is easy. This concept can be extended to quite

large search spaces and complicated genetic sequences. For more information

on genetic algorithms see [30].

These algorithms can be applied to a large variety of problems. These

algorithms lend themselves well to problems that have well defined outcomes

that make good fitness functions. Goals like achieving a maximum distance or

score work really well. Thus strategies for various games can be found using

genetic algorithms. Another interesting application for genetic algorithms is

the tuning of other machine learning algorithms. The parameters of a machine

learning algorithm can be seen as a hypothesis, and the accuracy of the

algorithm the fitness function. This allows machine learning algorithms to

have their parameters optimized. Genetic algorithms also have application in

wind turbine placement, power grid balancing, and many other areas [27] [30].

3.2 Computer Vision

The field of computer vision has an apt title. Computer vision can be

considered the “construction of explicit, meaningful descriptions of physical

objects from images,” [13]. Conceptually, this seems simple, as it is something

humans can do intuitively. We perceive the world by extracting information

CHAPTER 3. BACKGROUND: COMPUTER SCIENCE 25

from what we see and combining it with our previous knowledge. The same

concepts can be applied to computers, but is much more difficult [13]. In this

section we lay out some basic history and some of the modern techniques in

computer vision.

3.2.1 History

Computer vision experiments were first conducted in the 1950s, with most of

the core concepts being solidified in the late 1970s. Many computer vision

techniques were based off of artificial intelligence and machine learning tools,

and thus were formed around the same time or slightly after [13].

Computer vision is closely related to the field of image processing, which

existed earlier. However, the difference is in goal: computer vision aims to

have the computer understand what is contained in an image, where image

processing aims to simply recover the 3D structure of the image. Thus, many

techniques used in computer vision come from image processing, and extend

them [33].

The 1970s saw many advances in the 3D modeling shapes from images,

including one of the favorite modern techniques: using generalized cylinders

to model parts of objects and arrange them hierarchically. In this period, a lot

of the foundations of computer vision were solidified [33].

In the 1980s, a lot of research was directed toward more sophisticated

mathematical methods to analyze images and scenes. Advances during this

time included methods like image pyramids for image blending and

coarse-to-fine correspondence search. Along with image pyramids, new

26 CHAPTER 3. BACKGROUND: COMPUTER SCIENCE

techniques to determine shape, like shape from shading, shape from texture,

and shape from focus were created. Other areas that saw improvement were

in edge and contour detection, and 3D models [33].

The 1990s saw improvements in many of the previously mentioned areas,

along with an explosion of interest in modeling motion, image segementation,

and computer graphics. This interest in computer graphics is most important

as it led to new techniques to manipulate real-world imagery directly to create

animations and models for graphics applications, along with the ability to

properly visualize many facets of computer vision. This included the

automatic creation of realistic 3D models from collections of images [33].

From the early 2000s to today, we have seen further mixing between

computer vision and computer graphics. This includes topics like image

stitching, new rendering techniques, and improvements in digital

photography. Currently, point based features dominate various algorithms,

contour and region based algorithms are starting to gain steam. The largest

trend in the last two decades that has dominated the field is the incorporation

of machine learning techniques. Because of the immense amount of labeled

data, we are seeing machine learning algorithms (often neural networks)

applied to image recognition problems [33]. The most recent and popular

application of computer vision that has become part of mainstream

knowledge is the autopilot feature in Tesla’s electric cars. These cars use a

combination of computer vision and other technologies to actively drive

themselves in highway situations.

CHAPTER 3. BACKGROUND: COMPUTER SCIENCE 27

3.2.2 Modern Techniques

Modern techniques in computer vision are varied and complicated. Instead of

outlining specific algorithms/techniques, as there are a huge number of them,

we discuss two classes of algorithms used widely in computer vision

applications.

One of the most commonly used parts of computer vision is feature

detection and matching. Algorithms in this area aim to find unique features in

images (whether they are points, edges, regions, or another feature type) and

match them with other features in other images. This is done in a huge variety

of ways, but typically, these algorithms follow the same pattern: first features

are generated for all of the images involved. These features are then searched

for in subsequent (or other) images. These algorithms also make use of

machine learning, which makes them much more powerful. Feature detection

and matching is useful in many scenarios including shape detection, photo

manipulation, and animations [33]. These algorithms are also the basis of

many more complicated algorithms in computer vision, including those

discussed in the next paragraph.

Recognition is the term used to describe algorithms and systems that aim

to describe what an image contains. These algorithms detect objects, faces,

people, and other details in an image. As well as detection, these algorithms

aim to recognize these objects, that is distinguish them as separate entities.

This could be as simple as identifying a car as a car, or as complicated as

determining the identity of a person by looking at their face. These algorithms

represent the cutting edge of computer vision, and the area that most work is

28 CHAPTER 3. BACKGROUND: COMPUTER SCIENCE

currently being invested. Once again, this is an area where machine learning is

heavily used. Neural networks, particularly convolutional neural networks,

are very popular [33].

Applications of recognition algorithms are practically endless. With the

massive amounts of training data be collected/generated in annotated and

labeled databases, systems can be trained to recognize objects ranging from

cars on highways to wanted criminals in security camera footage. These

algorithms have also been used to help intelligently edit photos. This includes

filling in missing pixels from an image using other images of the same (or

similar) scene [33]. The future of this area of computer vision is promising, as

computational power increases and available datasets get large, we should see

computers able to effectively recognize just about anything.

Chapter 4

Optical Statistics Collection:

Methodology

In this section the various methods used (or planned) to collect basketball

statistics optically will be detailed. Due to issues stemming from some of these

methodology choices, many parts of the planned system were never

implemented. We will discuss the original plan for those systems, along with

possible issues. The various parts of the methodology include:

• The camera system and its operation.

• The computer vision techniques used to manipulate the video feeds,

track the players and ball, and collect data.

• The software built to process the video feeds and collect data.

29

30 CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY

4.1 Camera System

There are two common options for collecting the type of spacial and temporal

data that we need from a complex scenario like a basketball game. The first

involves using physical trackers like RFID (Radio Frequency Identification

Devices) tags or Bluetooth beacons. These trackers have varying ranges,

accuracies, and pinging frequencies. We found in our research that an effective

system based on this technology would be prohibitively expensive. Systems

within our budget of $1000 lacked both range and pinging frequency. Another

notable issue is that these systems would require setup of receivers close to the

court, which could interfere with play. These systems would also require

physical devices attached to the players and ball, which would be problematic

in official games and could also interfere with play.

The second approach involves using cameras and computer vision

techniques to track the players and ball. Because the cameras are mounted so

far away from the court, they cannot interfere with the game, and would be

permissible in official games. Multiple cameras are required to create a clear

picture of the game, and camera systems are much cheaper than their RFID

counterparts. However, as we discovered in attempting to build a camera

system, cheaper consumer cameras are not sufficient for the task and the

programming requirements for such a system are much higher. This

ultimately proved to be the source of the majority of the issues we

encountered in implementing our system.

In this section, we will describe our original plans for the camera system,

the pros and cons of the selected cameras, and why they proved to be

CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY 31

insufficient.

4.1.1 Cameras

The cameras needed for our system had a few important requirements:

• Inexpensive: We wanted the cameras to be around $100 so that we could

purchase as many as we need, and still remain within our budget.

• Wireless: We needed cameras that could be accessed wirelessly, so that

they could be accessed remotely. The cameras were to be mounted on a

gym ceiling, so they needed to be able to be activated wirelessly.

• Reliable: Basketball games can last for two or more hours, so our

cameras needed to be able to record the entire time.

• Field of View: In order to get a clear picture of the entire basketball court,

the cameras needed to have a wide field of view.

• Frame rate: This requirement was a bit less important, but in order for

the optical trackers to work effectively and collect good data, the cameras

needed to record around or above 10 frames per second. This is a basic

minimum value, as higher frame rates will yield better results.

Initially, this list of requirements seemed daunting, as most commercially

available cameras that meet all of these requirements are quite expensive.

Ultimately, we found that security cameras provided the best feature set for

the price. The purpose of security cameras is to run around the clock, and

record areas that have the possibility of crime. This means that the cameras

32 CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY

must be reliable, and have a decently high field of view. These cameras are

also typically located high up, on the sides of buildings or on ceilings,

meaning they are typically wirelessly accessible. Most security camera

applications require multiple cameras, so they are also typically on the

cheaper side. The one requirement that security cameras typically do not fair

so well on is frame rate. Because the footage from these cameras need to

record so much footage and this footage is simply used for identifying people,

the frame rate does not need to be very high, or consistent. We deemed the

lower frame rate to be acceptable, and that we could solve the inconsistency

problem with synchronization. This turned out to be the first of many issues

that we could not quite overcome.

We settled on a $100 security camera sold on Amazon, the IP3M-943B,

manufactured by Amcrest (Figure 4.1). The camera has a resolution of 1080p,

with a “ultra wide” field of view, meaning it is about double that of a normal

camera. The IP3M-943B records at up to 20 frames per second, more than

enough for our application, and is completely wirelessly accessible. It can

record to a memory card, or stream to a PC over a network [1].

Despite these positives, there are a few issues with the selected cameras.

First and foremost, the camera is only accessible through Amcrest’s written

drivers. Originally, we did not anticipate this to be a problem, however, this is

the root cause of our issues with synchronization and frame rate variability.

The frame rate on the cameras fluctuates quite a bit, about ±1 frame per

second from the frame rate specified for the camera. This is not a problem for

CCTV cameras, so it is, from the perspective of the camera’s developer,

irrelevant. Also, the camera is rather difficult to set up for our purposes, as its

CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY 33

Figure 4.1: The Amcrest IP3M-943B security camera [1].

power cord is short and it is prone to occasional failure. Fixing these failures

requires a reboot, which, to our knowledge, can only be done with physical

access to the camera.

We ended up purchasing six of these cameras, to be configured as outlined

in the next section. These cameras fell within our budget, but the issues

outlined above proved to be the first of many problems that prevented this

system from becoming a reality. In a later section, we will discuss possible

changes and alternative approaches we could have made to alleviate the

issues caused by our camera selection.

4.1.2 Location Configuration

The cameras needed to be positioned in such a way that all parts of the court

are covered. Also, the cameras need to be able to pick up on all three

dimensions. This could be done in multiple ways. We came up with two

possibilities, that would, in theory, capture all dimensions. We were not able

34 CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY

to actually set up the cameras to test, for reasons outlined later, so we were

unable to prove the efficacy of these setups.

Figure 4.2: A mock-up of locations of the ceiling mounted cameras. The colors
roughly represent the fields of view of the different cameras, with clear overlap
over the center of court.

The first setup we looked at involved six cameras. Four cameras would be

used to collect the (x, y) positions of the players and ball, and the other two

would be dedicated to the z position of the ball. The first four cameras would

be set up on the ceiling looking straight down at the floor (Figure 4.2). Two

cameras would be placed on each side, as to have half of the court in their field

of view (Figure 4.3). The view from the cameras on each side would overlap

heavily over the key, and all four cameras would overlap slightly at half court.

This allows a clear view of the action, and just enough overlap to see when

player cross to the other half. The other two cameras would be placed on the

wall, about rim height, in opposing corners of the gym. The cameras would

CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY 35

face the basket on the opposite side of the gym so that the ball would be

visible to at least one camera the entire time. These cameras would simply

track the ball, gathering its z position. One of these cameras also would have

the scoreboard in its field of view, allowing OCR to be used to capture game

information to go along with the spatial information.

Figure 4.3: A mock-up of locations of the side mounted cameras. The colors
roughly represent the fields of view of the different cameras.

The largest issue with this setup is coordinating the trackers between the

cameras, as tracking happens on a single video feed at a time. Also, because

the cameras are all looking at different areas, the videos have to be perfectly

synchronized in order for collected data to be accurate. This is the approach

that we planned to move forward with. In further sections, we discuss how

we planned on making this setup work.

The second setup we looked at would have been similar to what the

SportVu system employs (Figure 2.1). This allows for all three dimensions to

36 CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY

be captured, and for a more complete 3D view of the court. We believe that

this is the reason that SportVu uses this setup, as it, with the right calculations

and enough computational power, would allow for what would essentially be

a 3D recreation the game. We deemed this approach to be beyond the time

constraints of this project, leading to our choice in the simpler setup.

As mentioned earlier, we were unable to set up our cameras in the gym to

test the setup for a few reasons. First and foremost, the gym was not set up to

accommodate a camera system of this nature. There are few power sources

available for the cameras to use and access to the areas we wish to set up the

cameras is limited. In order to actually plug the cameras in, some remodeling

would have to be done to run power to the correct places. The second issue

was a matter of inopportune timing. A planned remodel of the main gym

would end up removing any cameras we set up. In a later section, we will

discuss the issues we faced in setting up the cameras further.

4.1.3 Recording and Processing

Recording from the cameras has proven to be quite tricky. The goal here is to

record from all cameras at the same time. The desired end result is six video

files, each one containing a full games worth of footage from the camera. This

seems like a simple task, and if we were recording locally, it would be.

However, our cameras are to be installed high up, and thus all footage must be

recorded over the local network.

Initially, recording was attempted with Amcrest’s Surveillance Pro

software (Figure 4.4). This software is designed with the cameras’ original

CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY 37

CCTV purpose in mind: continuous recording and motion detection [1]. Thus,

some of the features needed for our purposes are not present. We were unable

to find a good way to initialize recording for all cameras simultaneously, and

sustain the recording for more than an hour without leaving the cameras on

perpetually. This software does a good job managing the cameras, but not

recording from them.

Figure 4.4: The Amcrest Surveillance Pro Software [1].

The second attempt to record was done with a Linux based software called

ZoneMinder. ZoneMinder, like the Amcrest software, is a CCTV management

system. However, it had a some extra features that made recording easier.

ZoneMinder, due to its open source nature, has a larger degree of freedom in

setup and customization. We used the cameras’ rtsp interface to access them

in ZoneMinder, and thus were able to access their streams in real time. Most

importantly, we were able to record from all cameras, over the network.

38 CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY

ZoneMinder records by taking screen shots multiple times every second.

Videos can then be exported as videos from inside ZoneMinder. We were also

able to initiate and stop recording on all of cameras at the same time [10].

Figure 4.5: The ZoneMinder CCTV software [10].

It may seem that ZoneMinder meets all of our requirements. However,

there were a handful of issues. First and foremost of which is that ZoneMinder

is complicated to install and use. This is important as this system must be

relatively easy to use, as per the goal of the project. Another issue, like with

the Amcrest software, is that ZoneMinder is not intended to be used outside of

CCTV purposes. The end result is that the recordings have inconsistent frame

rates and qualities. Ultimately, ZoneMinder is the backup choice for recording.

Our primary choice in recording is our third attempt at recording: a

custom C++ program (Appendices A.1, A.2, A.3). In writing our software, we

have a few important things that we need to take into account: network

latency, hard drive bandwidth, and video quality. We need to balance these

limitations in order to make our software meet expectations. To start with, we

use OpenCV to access the cameras, and to save the retrieved frames. This is

the bulk of what the program does, however, the issue is that this operation,

for multiple cameras, uses a large amount of hard drive bandwidth, and

CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY 39

potentially can have issues with network latency. The first step to addressing

these issues is to make each camera’s recording operation happen on its own

thread. This allows the usage of full system resources, and allows I/O to

happen on a per camera basis. This is important: without multi-threading the

whole program would have to wait every time a frame is being fetched or

written. Multi-threading is enough to solve the issues with network latency,

however, this is not sufficient to solve our issues with hard drive bandwidth.

The solution to the bandwidth issue turned out to be simple: encoding the

video. Instead of simply saving the frames or putting them into an

uncompressed video, the frames are compressed to reduce their size before

being added to a video. This reduces load on the hard drive enormously and

adds a modest amount of work for the CPU. Ultimately, this results in the

ability to save full video from all cameras at the desired frame rate.

In order to make the software easy to use, we built a simple interface using

Qt5. Qt5 is a multi-language, multi-platform GUI package. It allows the

creation of widgets ranging from basic GUI buttons to large custom widgets.

The goal of the interface was to make repeat operations a single button press,

and for adjustments to the recoding cameras to be simple. The interface

consists of entry fields to put camera IP addresses, buttons to increase or

decrease the number of cameras being used, a test button, and a record button.

The test button runs a quick test to see if the IP addresses entered are for valid

cameras, if a cameras is valid its entry field will turn green after the test, if it is

not valid it will turn red. The record button will record from all entered

cameras for two hours. The entered IPs are saved between sessions, so that

they remain in the entry fields when the program is run again. This makes

40 CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY

Figure 4.6: The Qt5 interface for our recorder program.

recording a simple task that anyone can do.

4.2 Computer Vision

In terms of computer vision, we are looking to describe the position of the

players and ball in a basketball game. However, we are not just looking to

determine their position in a single image, but rather in a video stream. This

increases the complexity of the problem, as we not only have to recognize the

position of the players, but also their change in position over time. In this

section, we will describe how we planned to tackle this problem along with

the issues we were faced with.

CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY 41

4.2.1 OpenCV

Before we explain the exact methods we planned to use to track the ball and

the players, we must first introduce the primary tool set we utilized: OpenCV.

OpenCV (Open Source Computer Vision Library) is exactly as it is named.

Because it is released under a BSD license, OpenCV is free to be used both

commercially and academically. It has interfaces for C++, Python, C, and Java,

and is usable on every major operating system [3]. OpenCV has extensive

documentation for all of its interfaces, making it easy to use. For these reasons,

OpenCV is the best choice for our purposes.

OpenCV was originally built to be a common framework for computer

vision applications. It has evolved to be much more than that, it is the go to

starting point for just about everything computer vision. Because of its BSD

license, it is extremely easy for businesses (or individuals) to use, and gives

them the freedom to easily modify the code. Many companies use OpenCV,

ranging from big names like Google, Microsoft and IBM to small Silicon Valley

start-ups. These companies use OpenCV for a huge variety of applications,

from stitching StreetView images together and detecting intruders in CCTV

footage, to detection of drowning incidents and interactive art [3].

OpenCV has over 2500 optimized computer vision and machine learning

algorithms, ranging from classic to state-of-the-art. It has a huge amount of

functionality in a variety of areas including:

• Image Processing,

• Image and Video I/O,

42 CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY

• Camera Calibration,

• Object Detection,

• Machine Learning,

• Image Stitching,

• Facial Recognition,

• Fuzzy Mathematics,

• Object Tracking,

• Text Detection and Recognition,

along with many others [3]. Our system applies many areas of OpenCV; as we

explain our planned methodology, we will introduce the OpenCV

functionality we use.

4.2.2 Video and Image I/O

The first step in any computer vision task is reading in images or video.

Typically, computer vision tasks are done frame by frame, so videos must be

decomposed into individual frames. In our case, our video feeds must be

synchronized, and read in frame by frame, from the start of the game to the

end. This will allow us to track the ball and the players from the beginning of

the game to the end. The first step is to synchronize the video feeds. This

seemingly simple task turned out to be one of a handful of major issues in this

project.

CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY 43

Figure 4.7: A graph of the frames from two cameras, perfectly synchronized. In
this situation, the only synchronization required is to find the first frame where
all cameras are recording.

On the surface, it may simply seem like the first point in time where all

video feeds are recording needs to be found. This would be true if the cameras

had perfectly consistent frame rates and the recorded frames lined up

perfectly in time (Figure 4.7).

Figure 4.8: A graph of the frames from two cameras, with consistent frame
rates, that started at slightly different times. The only synchronization that can
be done is the same as in Figure 4.7.

44 CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY

However, the cameras, even when set to record at the same time, do not

start at the exact same instant. This leads to the frames being a few

milliseconds off from each other (Figure 4.8). This is not a big issue when

looking at slow moving objects, but because of the speed that the basketball

can move, this would be enough to both throw off the trackers, and add

minute inaccuracies to the data. Further compounding the problem, the

cameras we selected do not have consistent frame rates (Figure 4.9).

Figure 4.9: A graph of the frames from two cameras, with inconsistent frame
rates. Synchronization must be done constantly in this situation to ensure that
the frames are always as close together as possible.

We have found that the frame rate actually fluctuates about ±1 frame per

second from the advertised frame rate. This means that, not only do we have

to compensate for the frames being slightly off from each other, but we actually

have to synchronize constantly to compensate for the frame rate differences.

Our approach to solve this problem was to synchronize as frequently as

possible and ignore the slight differences between frames. In order to

synchronize the video feeds, we needed some sort of timestamp for each

CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY 45

frame. Our initial thought was to grab a timestamp when the frame was

received by the recording program, however, due to the internal software of

the camera, this number would be inaccurate. Frames seem to have some sort

of processing or buffering in the camera itself before they can be retrieved.

This results in timestamps that would be an indeterminate amount of time

after the recording of the frame. Our next step was to look at the actual

timestamp in the video. Like nearly all other CCTV cameras, our cameras put

a time stamp with the date and time in the corner of the video. However, this

timestamp is not accessible by any means in file or from the camera, as it just

added to the captured frame itself. In order to read the timestamps, we would

need optical character recognition.

We will describe the exact methodology we used for OCR in a later section,

as we use it for gathering data from the scoreboard. Using OCR, we were able

to read the timestamps, and get the time of the frame to the nearest second with

a fairly high accuracy. Thus, at every new second, we are able to line up the

frames as best as possible. This, in theory, should be sufficient. However, due

to occasional errors in OCR, and the inconsistency in frame rate, we cannot

consider the video feeds reliably synchronized. This is one area that will need

further work to make this system possible. In a later chapter, we propose some

changes that could potentially solve this problem, or make it irrelevant.

From this point forward, we assume that the frames are synchronized. In

order to discuss further proposed methodology, we must assume this problem

solved. Once we can be reasonably certain the frames will be synchronized,

we can pull an individual frame from each camera to process and collect data

from. This leads us to image manipulation.

46 CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY

4.2.3 Image Manipulation

Now that we have a frame from every camera, we must combine the relevant

images together to create an overview of the court, and manipulate images

into a usable form. The ideal outcome of this step is a 2D top-down view of

the entire basketball court. The two side angles would not be stitched or

combined in any way as it would be unnecessary.

There are two ways we looked at to approach this problem: image

stitching and simple overlaps. The first method, image stitching, would be the

theoretical best bet. Image stitching is a computer vision technique used to

take multiple overlapping images and generate a seamless image from them

(Figure 4.10). These techniques are some of the oldest and most frequently

used computer vision methods, and are commonly used in digital camera and

cell phones to generate panoramic images [33].

Originally, image stitching was done through simple maximization of

pixel-to-pixel similarity. This proved inefficient, and thus modern algorithms

moved to extracting features and matching them between the images. This

approach is much more robust and faster when implemented properly. This

process can feature numerous feature generation algorithms, and alignment

methods, pixel mappings, and image manipulation algorithms [33]. To read

further on the different elements of image stitching see [33].

By stitching the images, we would have a seamless overlap. This would

make the transitions between cameras as smooth as possible for the trackers.

OpenCV has a powerful image stitching pipeline, with a variety of algorithms

that can be used [3]. For our purposes, we would need to adjust and fine tune

CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY 47

Figure 4.10: Two similar images of guitars, before being stitched by the default
OpenCV stitcher and after.

48 CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY

the pipeline. One important thing we would need to do would be to cache the

homography matrix that maps the pixels between the images. This should not

change as our cameras do not move, so we want to cache it to improve

performance and maintain a consistent alignment.

Stitching is not necessarily problem free. There could be a slight problems

with angle differences between cameras, as they would not necessarily be

right next to each other as they typically are in image stitching scenarios.

However, we do not know to what extent this will affect our ability to stitch

the images as we have not been able to set the cameras up as desired.

The alternative is to do some sort of blending or overlap. This is simpler to

implement, does not require any complicated manipulation of the frames, and

would be the only option if image stitching proved unsuccessful. The

overlapping portions of the frames could be simply blended, so that the

transition would be seamless. However, this would not reduce issues caused

by the angle between the cameras. It remains to be seen if the tracking

algorithms can handle these blended transitions. Instead of blending, the

camera feeds could simply be lined up to cover the entire court without

overlapping. The trackers would likely be unable to move from one feed to

another, but creative usage of re-initialization and motion vectors of the

trackers could solve this problem.

The exact details of image manipulation largely depend on the camera

setup, and because the cameras were never set up in our desired locations, we

do not know the exact details of how image manipulation would be done. In a

later section, we will discuss alternative approaches we could take and

possible solutions. Again, to further discuss our theoretical system, we need to

CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY 49

assume this problem solved. From this point forward, we assume that we

have a full top-down view of the court, that the trackers can move across this

view without issue.

4.2.4 Tracking

OpenCV offers a variety of trackers ranging from machine learning varieties to

trackers that utilize linear algebra techniques. Before we explain how we used

the trackers, we are going to give an overview of some of the various trackers,

how they work, and why we did, or did not, decide to use them.

Boosting Tracker

The first tracker that we investigated in OpenCV’s library was the Boosting

Tracker. This tracker performs real-time object tracking using a version of

machine learning algorithm AdaBoost [3].

This tracker was proposed in 2006 by Helmut Grabner, Michael Grabner,

and Horst Bischof. Conceptually, this algorithm treats tracking as a

classification problem, with the item being tracked a positive example, while

the rest of the image is composed of negative examples. This algorithm is

online, meaning no prior training data is needed: it is generated as the tracker

operates [21].

Before we dive deeper into how the tracker actually works, it is beneficial

to quickly discuss the AdaBoost algorithm that the tracker is based on. The

AdaBoost algorithm is a boosting classification algorithm, meaning it is

comprised of numerous weak learners. These learners are essentially classifiers

50 CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY

that use a weaker machine learning algorithm. In each iteration these learners

create a hypothesis for the training data which is measured for accuracy. The

training examples are weighted based on the learners performance so that the

learners will more heavily focus on misclassified examples. Once the weak

learners generate their hypotheses, they are weighted based on their accuracy.

The final hypothesis for the iteration is generated by a linear combination

(which can be thought of as a weighted majority vote) of all of the weak

learners. Once this hypothesis is generated, the next iteration will begin using

the accuracy of the previous hypothesis for error correction [18].

In order for this algorithm to be online, it needs an addition feature called

a selector. Selectors are randomly seeded with their own pool of weak

learners. These selectors pick the weak learner in their pool with the lowest

error on the samples seen so far, so it can be used for the final hypothesis [21].

This concept is the basis of making AdaBoost effective, both in general, and in

this tracker application.

In order to use AdaBoost to classify parts of images, we need features. The

Boosting Tracker uses Haar-like features, orientation histograms and a

variation of local binary patterns, simultaneously. In order for this to be

possible, all features are computed efficiently, and can be computed in real

time. Once features are obtained, hypotheses must be generated. To get a final

hypothesis, the probability distribution of positive and negative samples is

modeled using a Kalman filtering technique. The different features also

require different learning algorithms for the weak learners. For the Haar-like

features, a threshold and a Bayesion decision criterion are used. For the other

two feature types, nearest neighbor learning is used [21].

CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY 51

Grabner, Grabner, and Bischof demonstrated promising results in their

original proposal for their tracker. They were able to show that the tracker was

adaptive, due to its ability to rely on multiple different feature types. They also

demonstrated its robustness by showing that it is able to handle a variety of

situations including occlusion, scale, lighting changes, etc. This is strongly

related to the trackers reliance on multiple feature types, and constant

learning. The generality of the tracker was also demonstrated. Due to the

tracker’s online nature, it can be initialized with a bounding box and track

from there. This means that the tracker can be applied to just about any

situation. At the time of the proposal of the tracker, there was no standard way

to evaluate its performance, so there was no way to determine its abilities

compared to other trackers [21]. However, it has been shown to be very

effective in a variety of situations, and is often used as a measure of

comparison for newer proposed trackers.

We have attempted to apply this tracker to our problem and found that it

was very effective for tracking, being able to handle rapid movements, scale

changes, and even partial occlusion. However, it had a single, very important

shortcoming. This tracker cannot report its failure. Because it is constantly

learning, it can learn incorrectly and lose its target object without reporting

failure. This is huge problem for our application because we need to be able to

reliably know when a tracker needs adjusted or re-initialized so that the user

can do so. For further reading on the Boosting tracker see [21] and [3].

52 CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY

MIL Tracker

The next OpenCV implemented tracker we investigated was the MIL tracker.

The original article that proposed this tracker is no longer available, so what

we know of this tracker comes from OpenCV and our own testing. The tracker

was originally proposed by Babenko, Yang, and Belongie, in 2009. MIL uses

Multiple Instance Learning (thus the name) to avoid tracker drift, which

makes it a robust tracker. Like the Boosting tracker, the MIL tracker is online

and uses a classifier to separate the tracked object from the background [3].

In our tests, we found that the MIL tracker was robust, and handled

changes in scale and orientation better than other tested trackers. However,

this tracker has the same large flaw that the Boosting tracker has: it cannot

report failure. Thus, like the Boosting tracker, it cannot be used alone for our

application. However, it could be used in conjunction with another tracker, as

outlined later in this chapter.

MedianFlow Tracker

The MedianFlow tracker is a tracker designed for smooth and predictable

movements [3]. This tracker uses a novel error detection method to remove

outlier points in the tracking. Technically, this error detection method can be

applied to any tracking algorithm, but in OpenCV and the original research it

was applied to a Lucas-Kanade optical flow tracker [24].

Conceptually, the MedianFlow tracker’s error detection is based the

forward-backward consistency assumption: correct tracking should be

independent of time-flow. In simpler terms, the tracker assumes that it could

CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY 53

track an object in footage both forward and backward in time. This idea is

leveraged directly in the tracker’s algorithm to find error of individual feature

point trajectories, and thus detect when the tracker as a whole has lost its target

object. To determine the error of an individual point trajectory on a sequence

of images, the tracker first tracks the point forward throughout the images

creating its trajectory. Then the tracker is applied to the frames backwards in

time. This creates a trajectory from the final point back (hopefully) to the

starting point. The error of the trajectory is then defined as the distance

between the forward and backward trajectories. A perfectly tracked point will

yield a backwards trajectory back to its origin, while a poorly tracked point

will yield a trajectory that moves in the wrong direction. The main advantage

of this approach is it is applicable to just about any tracking algorithm [24].

While tracking individual independent points is useful, most tracking

problems involve tracking collections of dependent points that make up

objects. To track objects, the MedianFlow tracker only needs a bounding box.

Once the bounding box is initialized, it is populated with points. Then the

points are then updated via the Lucas-Kanade tracker, and their errors are

calculated. The points are then filtered by error, so the best 50% of points

remain. These points are then used to estimate the movement of the bounding

box [24].

The researchers responsible for the MedianFlow tracker found it to

perform better on certain tracking sequences than state of the art trackers at

the time. These sequences involved consistent and predictable motion, which

seems to be this tracker’s strong suit [24]. However, there are a few issues in

using this tracker for our problem. First, like the previous two trackers we

54 CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY

have examined, it cannot properly report its failure. Also, we found that this

tracker had problems keeping track of some of the faster movements of the

basketball players that the MIL and Boosting trackers were able to catch. For

further reading on the MedianFLow tracker, see [24] and [3].

GOTURN Tracker

The GOTURN (Generic Object Tracking Using Regression Network) tracker

approaches the tracking task in a similar manner to the MIL and Boosting

trackers. However, this tracker has one very important difference, it is offline.

This means that it is pre-trained, as opposed to training on the object it is

trying to track. The tracker was trained to track generic objects using a wide

range of videos and images. The offline nature of the tracker increases its

computational performance immensely and allows it to track well on a variety

of objects immediately at initialization [22].

The GOTURN tracker is a neural network. It is trained entirely offline on

videos with each frame labeled with the location of the object. The objects

vary, ranging from human figures and faces to motorcycles and sharks. The

network is also trained on single images with objects labeled, so that the

network could pick up on a large variety of different objects [22].

This offline training mitigates most of the work that other neural network

trackers do at runtime. Also increasing the performance is the fact that the

architecture of the network was designed in such a way that only a single

feed-forward pass through the network is required to update the tracker. This

is because of the regression-based approach the tracker takes to locating the

CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY 55

object. The end result is a extremely high performance tracker that can run in

excess of 100 frames per second [22].

This tracker can also be specialized specifically for a target object type to

improve its accuracy significantly. This is done by replacing the generic

training data that the authors used with application specific data. The authors

found, at the time of their writing, that this tracker is in the upper echelons of

performance, having fairly good robustness, and accuracy rivaling the best,

cutting edge algorithms. However, despite the performance and accuracy

positives, this tracker has one major flaw: it cannot handle occlusion at all in

its current state. This is important, as our targets, the players and ball, will

frequently be occluded by both each other and other objects, like the backboard

and basket. This issue will likely be ironed out by the authors of this tracker at

a future time, but as of this writing, it does not suit our purposes [22]. For

further information about the GOTURN tracker see [22] and [3].

TLD Tracker

So far, all of the trackers we have examined have looked at tracking in roughly

the same way: take an initial bounding box that represents an objects position

and update the position of the bounding box in the next frame. The next

tracker we examined approached object tracking in a different way. The TLD

(Tracking-Learning-Detection) tracker decomposes the tracking problem into

three parts: tracking, learning, and detection, as the title suggests. The tracker

simply follows the object frame-by-frame. The detector finds all appearances

of the object that have appeared so far and corrects the tracker. The learning

56 CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY

portion estimates the detectors errors and updates the detector to avoid future

errors [3].

The TLD tracker starts with a model of the object. This is a data structure

that consists of positive and negative image patches. Where the positive

patches represent the image and the negative patches represent the

background. The positive patches are ordered according to when they are

added to the model. The model also defines some similarity measures which

are used for a nearest neighbor classifier to determine if a patch represents the

object. This classifier is used for the detector and to determine when to add

new patches to the model [25].

The TLD tracker was proposed by the same researchers that proposed the

MedianFlow tracker, and thus they use the MedianFlow tracker for the

tracking portion. However, they extend the MedianFlow tracker to detect

failure, in order to make it usable in situations where the object leaves the

frames and returns. Failure detection is done by a threshold on the median of

the residual of the individual point displacements [25].

The detector and learning portion of this tracker is really what sets it apart

from others. The detector scans through all of the patches in the image and

determines if they represent the object. The detector looks for a large set of

different scales and distortions of the object. Because there are such a large

number of possibilities that need checked, three separate stages are checked

for the sake of efficiency, and if the patch fails at any level, it does not

represent the object. These stages represent a cascaded classifier. The first

stage is patch variance: all patches that have a variance smaller than 50% of

the variance of the target patch are selected for tracking. This stage typically

CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY 57

rejects more than 50% of the non-object patches. The second stage of the

cascaded classifier is an ensemble classifier that consists of numerous base

classifiers that do pixel comparisons between patches. The final stage of the

classifier is the nearest neighbor classifier. At this stage, there are only a

handful of possible bounding boxes remaining. Anything positively classified

by the nearest neighbor classifier becomes a response from the detector [25].

The detector and tracker work together to generate a bounding box. If

neither system returns a bounding box, the object is considered not visible.

Otherwise, the maximally confident bounding box is output, measured using

a similarity value [25]. This is an important thing to note, as it helps explain

the trackers sometimes erratic behavior.

The job of the learning portion of TLD is to initialize the detector in the

first frame, and then update it with every frame, based on growing and

pruning principles. To initialize the detector, the learner takes the initial

bounding box and synthesizes 200 positive patches from it. The negative

patches are collected from the surroundings of the initial bounding box. These

training patches are then used to update the object model and the ensemble

classifier. From here, the detector is updated by “P-expert” and a “N-expert”.

These “experts” represent the pruning and growth pieces of the learners. The

P-expert uses the trajectory of the tracker to add new positive examples to the

object model. This expert determines if the current location in the trajectory is

reliable, and if it is, adds 100 new positive examples from that location. The

N-expert generates negative samples from the background. The idea is that if

the object location is known, it can only be in that place, so the area around the

object (at a certain distance from the object) is added as negative examples [25].

58 CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY

The researchers that proposed the TLD tracker found that it outperformed

the other trackers of the time. They ran a large set of experiments against other

competitor trackers, including the Boosting and MIL trackers discussed

earlier. They found that TLD fared better than all of the other trackers in

nearly every experiment, in every measure of error [25].

In terms of our usage, this tracker seems like a good candidate. It can

detect its own failure, and is, according to the authors, significantly better than

the previous trackers we have examined. However, in our tests, we have

found that this tracker behaves erratically in tracker players. The scale

changes rapidly and moves all around the players’ bodies. This may be an

issue with how long the tracker has had to train, but it ultimately makes

extracting data from the trackers difficult. We desire smooth movements from

trackers, and the TLD tracker doesn’t seem to provide. For further reading on

the TLD tracker, see [25] and [3].

KCF Tracker

The authors of the paper that proposed the KCF (Kernalized Correlation

Filter) tracker noticed that most existing trackers focused heavily on

characterizing the object being tracked, and did little to leverage the wealth of

negative samples that the image background is composed of. The reason why,

until this point, the background has been underutilized, is that there is an

unlimited amount of negative samples that can be taken from the background.

Utilizing these examples yields an infinite sink of computational power. Most

modern trackers try to strike a balance between positive and negative

CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY 59

examples, where the KCF tracker, through the use of some linear algebra tricks

that we will outline further in this section, is capable of incorporating vastly

more negative samples without a severe impact on performance [23].

The authors first discuss some of the needed “building blocks” necessary

for their tracker. The first piece is linear regression. The tracker, at its core,

uses a form of linear regression called ridge regression. Ridge regression is

used because it has a closed form solution. However, this solution requires a

large system of linear equations to be solved, which would be computationally

expensive. To negate this issue, the authors use properties of cyclic shifts and

circulant matrices [23].

A cyclic shift is a vector operation, where all elements are shifted a

position over, and the element shifted off the end of the vector wraps to the

other side. Consider the vector:

[
x1 x2 x3 x4 x5

]

Applying a cyclic shift to the right yields:

[
x5 x1 x2 x3 x4

]

We can apply a cyclic shift to vectors n − 1 times, as n cyclic shifts yield the

original vector.

A further application of the cyclic shift is the circulant matrix. A circulant

matrix is a nxn matrix where each row is the cyclic shift of the row above it. A

circulant matrix generated from the previous example vector would be:

60 CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY



x1 x2 x3 x4 x5

x5 x1 x2 x3 x4

x4 x5 x1 x2 x3

x3 x4 x5 x1 x2

x2 x3 x4 x5 x1


Because a patch from the image is represented as a vector of pixels, a cyclic

shift can be used to generate simple translation in one direction. This allows

the generation of n − 1 virtual negative examples from a nx1 vector of pixels.

n − 1 examples are created because n cyclic shifts would yield the original

vector. Using this set of negative examples, along with the original example

vector, we can create a nxn matrix by concatenating the row vectors together.

This matrix is, by definition, circulant [23].

This matrix is used to compute a regression on these examples. Because

this matrix is circulant, we can use the Discrete Fourier Transform to make the

matrix diagonal. The Discrete Fourier Transform is commonly used to

perform Fourier analysis in many practical applications, solve partial

differential equations, and prep matrices to help in solving linear systems of

equations. Diagonal matrices have many desirable properties, most prominent

of which is that it makes calculations involving the matrix much simpler. This

is key to the performance of the KCF tracker and why circulant matrices are

widely used in numerical analysis. When applied back to the linear

regression, the end result is the formula for a regularized correlation filter. It is

also worth pointing out that the use of circulant matrices reduces the

computational complexity down to O(nlog(n)) from O(n3) [23].

CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY 61

From this point, the authors go into a discussion on previous work they

did to take this linear concept and extend it to non-linear regressions. This gets

very complicated, so it is best left in the words of the authors themselves. The

end result of this work is a kernelized version of ridge regression, which in

turn is used in their Kernalized Correlation Filter tracker. For further reading

on the mathematics behind KCF see [23].

In terms of performance, the authors found that the KCF tracker

performed competitively with most other modern trackers. They also found

that it outperformed all other trackers that use a similar methodology,

suggesting that the inclusion of extra negative examples provides a

performance boost. The authors compared their tracker to many of the others

implemented in OpenCV, showing that it performed better in general [23].

For our purposes, the KCF tracker seems like the best single tracker

available. It has great performance, handles occlusion and rapid movements

fairly well, and is capable of detecting failure. It does, however, have some

downsides. The most notable of which goes along with its failure detection: it

fails frequently. The authors make no mention of this in their paper, so it likely

has something to do with our application. The OpenCV implementation also

seems to be unable to detect scale changes and adjust the bounding box

accordingly. Once again, the authors make no mention of this in their paper.

Ultimately, if we had to choose a single tracker, this would be our choice.

However, for our application, a hybrid tracker or a tracker trained specifically

for our application, would likely perform better.

62 CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY

Tracker Usage

The trackers we have discussed above are the center piece of our theoretical

statistics collection system. These trackers are the source of the information we

wish to collect. The trackers follow all of the players, along with the ball on

our top-down view of the court. The trackers are also used in the side views to

tracker the ball. Thus, the trackers will yield the x and y positions of the

players, and the x, y, and z position of the ball. This is the simple part, the

complicated issue is ensure the trackers do their job for an extended period of

time. This is why the selection of tracker is key: our trackers must be reliable,

able to report failure and handle the rapid movement of the players and ball.

We tested the various trackers out on sample footage of a player taking

basic shot and collecting rebounds. We found that the KCF tracker

individually was the best middle ground between reliable tracking and

reliable failure detection. However, we found that it failed frequently, and was

unable to handle many scale and orientation changes. Other trackers,

especially the MIL, tracker handled these changes better, but could not report

failure. Clearly, a single tracking algorithm from the OpenCV library will not

be sufficient.

At this point we had three options: creating our own tracker, using a

newer algorithm outside of OpenCV, or creating a hybrid tracker. Due to time

constraints, creating our own tracker is outside of the scope of this project.

That leaves us with using existing trackers. We did not find any trackers

outside of OpenCV that provided large improvements in performance, so we

are left with looking at simple modifications or combinations of existing

CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY 63

OpenCV trackers. Our theoretical solution is to combine two of the above

trackers into a hybrid tracker that has the benefits of both of its components.

Our hybrid tracker is a combination of the KCF tracker and the MIL

tracker. We want the failure detection and performance of the KCF tracker,

along with the scale and orientation change handling of the MIL tracker. Our

combination is implemented in a rather simple way: both trackers are initiated

in the same place. The returned value for the center of the tracker is the

average between the centers of the two trackers. In order to combat the

premature failure of the KCF tracker, we allow a certain (adjustable) amount of

failures before the tracker reports failure. In the event of a failure (before the

allowed amount has been met) the KCF tracker is reinitialized with the MIL

tracker’s bounding box. This will update scale changes, and allow the tracker

to continue on in what (should) be the right place.

There are, however, some possible downsides to this theoretical tracker

that ultimately make it unlikely to be the solution we need. First and foremost,

ignoring any amount of failures reported by the KCF tracker could lead to

incorrect data. In our tests, we found that as long as the maximum number of

failures is kept low, the tracker will not drift very far. However, instances that

cause problems with the MIL tracker could persist. For example, it is possible

for the MIL tracker to learn a stationary object that occluded the player (like

the rim and backboard) and then reinitialize the KCF tracker there after a

failure. This would lead to an unreported failure. This tracker would also

have lower computational performance because each update would actually

involve updating two trackers. Ultimately, a better way to combine these

desired traits would be to create a new tracker entirely, combining the various

64 CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY

positive features of trackers we have looked at.

Our current tracking solutions do not seem to be sufficient for long term

tracking. Data could be collected with these trackers, however, it would

require frequent human correction. This area, like many others in this project,

will require more work before a working system could be built. In a later

section, we describe further approaches we could take in tracking to get more

reliable trackers and higher performance.

4.2.5 Optical Character Recognition

In order to gather data about the basketball game to augment the spacial and

temporal data, we decided to use Optical Character Recognition to read the

scoreboard in our video feed. This allows us to get the current score, the

current game clock, and the current shot clock. This data allows our system to

keep track of the current state of the game, and make the calculation of various

statistics easier.

Before we dive into our usage of OCR, we first give a brief explanation of

what it is and different ways it can be done. OCR can be defined as the process

of classifying symbols in a digital image. These symbols can be alphanumeric

or any other script. Work on OCR goes back to the early 1900s, with the first

systems appearing in the 1940s alongside digital computers. These were

simple systems designed to read simple fonts, usually typeset [17].

These early systems utilized simple statistical classifiers. Through the next

20 years, these systems were improved and the first commercial systems

emerged in the 1950s. Through the next 40 years, tech giants like IBM and

CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY 65

Toshiba built increasingly powerful and robust machines, capable of handling

a variety of fonts and handwritten characters. In the 1990s, machine

intelligence techniques were added to the existing algorithms, creating

increasing complex and powerful OCR algorithm. This new class of

algorithms made use of neural networks, hidden Markov models, fuzzy logic,

and other techniques [17].

OCR systems rely on a complicated pipeline of preprocessing, image

segmentation, feature extraction, training, and recognition. These various

pieces can be done in numerous ways, with many different algorithms and

techniques. Typically, a system is trained on a large set of labeled characters so

that it “learns” a character set. Then, when using the system, a set of text to be

recognized is preprocessed, segmented, and then run through the feature

generation system. These features are then run through the recognition

system, which is the previously trained element. This could be a classifier,

neural network, hidden Markov models, etc. This general pipeline is common

to nearly all OCR systems. To read more on OCR systems in general, along

with modern techniques, see [17].

To do OCR, we use the Google Tesseract Engine. Google’s Tesseract is an

open source OCR engine. Tesseract was originally developed by

Hewlett-Packard in the 80s and 90s, and in 2005 it was open sourced, and has

since been developed by Google. Tesseract does not follow the outline we

discussed earlier exactly, and turns out to be quite complicated. To read

further into the inner works of Tesseract, see [8]. At the most basic level,

Tesseract takes in an image and outputs all of the detected text contained

within the image. There is more functionality, and multiple character sets and

66 CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY

languages that make Tesseract an extremely powerful tool [8].

Our usage of Tesseract occurred in two places, reading of the timestamp

on our video feeds (described in a pervious section), and to get information

from the scoreboard. To get information from the scoreboard (or the

timestamp), the first step is to isolate the scoreboard (or timestamp) in the

feed. This is as simple as taking the portion of the video feed where the

desired information is located. Because the cameras do not move, this can be

done reliably at every frame.

Figure 4.11: A sample basketball scoreboard [9].

Figure 4.12: The sample scoreboard cropped to a single relevant field [9].

Once the text is isolated, a little bit of preprocessing is done to make the

CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY 67

text clearer and easier to read. This ensures that Tesseract gets the most

accurate result. The preprocessing typically consists of blurring and applying

thresholds to get a binary image, only containing the text.

Figure 4.13: The relevant field processed for maximum contrast so that it is
optimal for the OCR.

Once the scoreboard is isolated (Figure 4.11), the image is divided up into

the individual fields so that each field can be fed to the OCR engine separately

(Figure 4.12). At this point, each field is preprocessed (Figure 4.13) and then

fed to the OCR, and the result is recorded. Any invalid values are thrown out,

however, these are rare as the OCR is very accurate.

One point worth noting: our example here uses seven-segment digital

numbers. Every scoreboard does not necessarily use this format: there are also

scoreboards that use a series of dots, as well as scoreboards that use a digital

screen. This methodology should work in these scenarios as well because of

the preprocessing we do. If our current form of preprocessing is not enough it

is possible to blur the image further, or train Tesseract using the font of the

scoreboard. No matter the format of the scoreboard, we should be able to read

it eventually, we may just need to make a few changes.

4.2.6 Bringing the Data Together

Collecting data from the system is not a complicated process. For every set of

frames the following data points are collected:

68 CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY

• The (x, y) coordinates of each player on the team along with their name.

These values come from the center of the players’ tracker bounding box.

• The (x, y, z) coordinates of the ball. The x and y values come from the

center of the top-down view tracker bounding box and the z value comes

from the center of the side view tracker.

• The current game clock.

• The current shot clock.

• The current score for each team.

In order to collect these values, we have to define the coordinate spaces that

they reside on and some special values needed.

We define the 2D coordinates such that (0.5, 0.5) is center court, and the

corners are (0, 0), (1, 0), (0, 1), and (1, 1) (Figure 4.14). The z coordinates would

need some calculation as there is some perspective issue with the camera

location. We cannot make this calculation without knowing exactly how the

cameras would be positioned. However, post calculation, we would like a z

coordinate of 0 to be the floor and 1 to be around 30 feet in the air. This would

allow most shot trajectories to remain in view of cameras.

The special values we would need would indicate when a player or ball is

out of frame or if the OCR failed. In these case we would insert (−1,−1) for the

players and (−1,−1,−1) for the ball. For the game clock, shot clock, and scores,

if the OCR fails, the last known value would be inserted.

All of these collected values would form a csv file with each value being a

column and the rows being the timestamps for each collected frame. In this

CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY 69

Figure 4.14: The bounds of our court coordinates.

format, data could be saved for later analysis or analyzed immediately.

4.3 Interface and Management Program

Now that we have the technical pieces together, we need to manage them. Part

of the original project goal was to create a user friendly software system to

manage the camera system and the data collection. The software would allow

the user to record a game, run a recorded game through the data collection

system, and analyze games to generate statistics reports. These three pieces

would be tied together with a larger menu that allows the user to select files

and other important pieces of information. Of these pieces, only the recording

piece exists in a fully working state (covered earlier). In this section we will

cover data collection piece and the analysis piece: the original plan for them

and how they would work.

70 CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY

4.3.1 Data Collection Manager

This piece of the software was the hardest to envision, as it requires user

interaction to initially identify players, and to ensure the trackers work

correctly. Ideally, the user interaction would be kept at a minimum, so it is best

to first define what the user needs to do specifically. The user must:

• Enter teams and their full roster (or load them from a database),

• initialize trackers for all players on the court,

• initialize the trackers required for the ball,

• re-initialize any trackers that fail,

• and at any change of players on the court, disable trackers for exiting

players, and enable trackers for entering players.

We propose a simple interface to handle these tasks, based on earlier prototype

built with TKinter, OpenCV, and Python (Figure 4.15). The iteration we

propose would likely be built in C++ with OpenCV and Qt5 for performance

reasons.

The interface would be one large window, with a tool bar for the teams

and players on the right side, utility buttons on the bottom, and the rest of the

window would consist of the three views of the court: the 2D top-down view

and the two side views. This would ensure the user had full view of the game

while running the data collection and easy access to all needed utilities.

The bottom utility bar would consist of a pause button, a “ball” button, a

“forward”, and a button a “back” button. The back button would allow the

CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY 71

Figure 4.15: Python prototype for the Data Collection Manager.

user to move back a frame at time to correct mistakes. In a similar vein, the

forward button would allow the user to skip forward frames to find the next

important portion of the game. Pausing would allow player identification and

tracker changes to happen at the users pace. These navigation buttons would

allow the user to move throughout the game at their pace, ensuring accuracy.

The “ball” button selects the ball, which allows the user to initialize the ball

tracker by clicking where they would like it initialized on the video feeds.

The right “teams and players” tool bar would be used to select and

initialize player trackers and adjust them. Initially, the user would enter or

load the two teams, and then add individual players until the entire rosters are

72 CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY

in the tool bar. At that point, the tool bar would contain two lists of players,

one for each team, with two buttons next to each name. One to select the

player, another to disable that players tracker. Selecting the player will allow

the user to click on the video where they want to initialize that players tracker.

Now that we have the interactive objects described, we will discuss the

overall flow of the program. When the user starts up the program with a game

selected, they will first be required to enter or load the teams and a minimum

amount of players. Then, they move through the video until they find tip-off.

From there, all trackers would need to be initialized. At this point, the user

only needs to ensure that the trackers are working as intended, and that if they

fail they are re-initialized where they belong. Anytime players enter or leave

the game, the user would need to adjust the trackers.

It is not entirely clear if this is the best method to manage the data

collection, however, we believe this would be effective. The amount of user

interaction entirely depends on how reliably the trackers work: trackers that

need adjusted every few seconds would make for a lot of work.

4.3.2 Game Analysis and Statistics Reports

This portion of the interface would be much simpler. The main goal of this

portion of the software is to allow the user to generate statistics and

visualizations to suit their needs. Thus what this interface contains entirely

depends on which statistics are calculated from the data. We envision a suite

plots, heat maps, and tables that the user can select and generate from the

data. Aside from this, we cannot further describe the interface without

CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY 73

knowing exactly what statistics we would use. Due to reasons outlined

elsewhere in this chapter, we were never able to generate real data, and thus

we were unable to generate real statistics.

One thing worth mentioning is that instead of creating this interface in

C++, we believe it would be much better to build it in Python, using Qt5 and

matplotlib, a plotting and graph package. The matplotlib package is one of the

best plotting packages out there, and, combined with Python’s simplicity,

would make intricate and adjustable plots easy to create.

4.4 Statistics Calculations and Reports

As mentioned above, we were unable to generate actual data, and thus were

unable to generate actual statistics. Thus, all we are able to discuss is some of

the statistics we planned to generate from collected data. The NBA and

SportVu set a good example of what could be calculated, and we based a lot of

our planned statistics off of their example.

Many of the useful basketball statistics do not really rely on spacial or

temporal data, and can be calculated effectively without our theoretical

system, however, it would be able to calculate some of them automatically,

saving time and money. These basic statistics would include various shot

percentages, minutes, steals, points, etc. However, this system would still miss

out on some statistics that can be hard to attribute to specific players like

blocks. Thus this system would augment current statistic collection, but not

replace it, similar to the way the NBA currently operates.

The data we planned to collect really shines when used to generate

74 CHAPTER 4. OPTICAL STATISTICS COLLECTION: METHODOLOGY

statistics based on location and time. Using this data, shot percentage could be

calculated for much more specific locations on the court, allowing coaches and

players to see exactly where they make the highest percentage of shots. This is

something SportVu does, and provides interesting insights into players’ play

styles. The spacial data could also be used to determine how well defended a

player is when shooting. This allows coaches and players to differentiate

between open and contested shots, which, have a huge difference in success

rates. This would manifest as some sort of “coverage” measure that would

take into account how far the defenders are from the shooter and how many

defenders are nearby. Using the temporal data, we can calculate information

based on how long players have possession of the ball. For example, we can

see how many points a player makes based on how long they have possession

in the game. These stats would help normalize statistics between players that

have varying play time and possession time.

Part of the goal of this project is to generate data that coaches and players

can use to help make strategic decisions. Statistics that would help with those

decisions largely depend on what the coaches and players want. New

statistics are an active area of research in sports analytics and thus this area of

the project is extremely open, and a source of just about endless future work.

Chapter 5

Optical Statistics Collection: Results

The original goal for our Optical Statistics Collection system was to build a

system and implement software to help automate statistics collection and

collect novel spatial and temporal information. The point of this data

collection is to aid coaches and players in strategic decisions. Because our

system never became a reality, this goal was not accomplished. Thus, the

“results” are not concrete, but rather theoretical.

Our primary result is that we believe that the system we originally

envisioned is possible, just outside of the scope of an undergraduate thesis.

We simply did not have the time or the money to make this system a reality.

Each of the components of the project that we came up with would

theoretically be sufficient, but the cut corners and simpler approaches taken

would add up to make a lower performance and less accurate system. In order

to make a high performance system that is capable of full statistics collection,

we would need a team of software developers, significantly more time and

money, and entirely custom software and cameras.

75

76 CHAPTER 5. OPTICAL STATISTICS COLLECTION: RESULTS

In the following section we will outline the challenges we faced in

progressing through the project. Many of these issues were hinted at in the

methodology, however, we will give a full overview of the causes and effects

of these problems.

5.1 Challenges

At every point in this project, we were dealing with some sort of problem.

Whether it was shortcomings of the cameras, problems with OpenCV, or

logistic issues, we always had something preventing further work on our

system. The best way to show why this system wasn’t possible is to outline

the big problems, explain where they came from, and why we could not solve

them. Possible future work to solve these problems is discussed in a later

chapter.

5.1.1 Cameras

Our choice in camera was one of the root causes of many of our problems. We

chose a CCTV camera primarily in hopes of balancing costs and benefits.

Having used these cameras at length, we can safely say that we needed better

cameras. The primary issue we had with our cameras was frame rates and

consistency.

In order to properly use multiple video feeds to cover the game, we need

synchronized video. With our cameras, this turned out to be incredibly

difficult. Our cameras had a variable and inconsistent frame rate, making

CHAPTER 5. OPTICAL STATISTICS COLLECTION: RESULTS 77

synchronization only possible with outside information. We attempted to use

the timestamp to synchronize but this proved to be inefficient and worked

inconsistently. The cause of our frame rate problem is the way our cameras

had to be accessed. The camera sensors themselves were likely sufficient for

our purposes, but the cameras had to be accessed through Amcrest’s

firmware. Thus we could not synchronize as we recorded, which is ultimately

the best case in terms of recording. Our only option was to record frames from

the cameras as they are retrieved from the camera after they have been

processed by the firmware. The end result is the inconsistency in frame rate

that makes synchronization so difficult. We are unsure what about the

camera’s firmware caused the inconsistency, but it is likely due to the fact the

cameras were not intended for applications like ours.

Attempting to use poorly synchronized video would result in inaccurate

data. Beyond this, applying computer vision algorithms would become more

difficult, and they would be significantly less effective. This wouldn’t prevent

the system from working per se, but it would severely limit the performance

and accuracy.

5.1.2 Computer Vision

Aside from issues with our cameras, we also had issues with some of our

computer vision techniques. Our primary issue here dealt with our trackers

and how to best leverage them. We investigated all of the useful trackers

available in the OpenCV library, and found a few of them useful (KCF and

MIL primarily). However, we discovered in early testing, that when applied to

78 CHAPTER 5. OPTICAL STATISTICS COLLECTION: RESULTS

our application, especially in tracking the ball, had some insurmountable

performance issues. We found that none of the tested trackers could reliably

track players for more than a few minutes, and none could track the ball

reliably for more than a few seconds. This could be an issue with how the

testing cameras were set up, or with the OpenCV trackers. Ultimately, we

determined that we needed better trackers. Our hybrid tracker, while

theoretically better than the individuals we tested, had problems of its own.

We believe that we would need better general trackers, or trackers more suited

to our application. This could take the form of a new algorithm or a

modification of existing trackers.

The end result if we moved forward with these poorly performing trackers

would be inaccurate data, and the data collection process would become quite

laborious. The user of our data collection system would have to reset and

update trackers constantly. This is unacceptable, and goes against our original

project goal. Again, these issues would not stop our system from working, but

the performance hit and extra work would reduce the efficiency of our system.

We would be unable to process games in a reasonable amount of time, and

would likely generate sub-par data.

5.1.3 Logistics

Our logistic issues, as mentioned earlier, prevented us from properly setting

up our cameras to test. Due to the age and design of the gym, finding power

and mounting points for the cameras was difficult. We would need long

power cables, which could be dangerous. Also, getting permanent mountings

CHAPTER 5. OPTICAL STATISTICS COLLECTION: RESULTS 79

for the cameras would require renovation of the gym. Ultimately, it made no

sense to try and mount the cameras, even temporarily, because our gym could

not accommodate them. Even if we did set the cameras up, due to a planned

renovation, they would have been removed shortly in the coming Spring. The

end result of being unable to set up our cameras is that we could not test

anything. Without a proper camera setup, we could not test our trackers on

realistic data, we could not test our image manipulation, and we could not

even test the validity of our theoretical camera setups. This also meant no fine

tuning to any computer vision technique we could test.

This issue proved to be the single largest hurdle in building a working

system. Unlike the other problems we had, we cannot build a system that we

cannot set up. We looked for alternatives and temporary setups, but found

nothing that suited our needs. Building a system as we planned essentially

requires that the camera system be in place first, as all of the software needs to

be built around it.

80 CHAPTER 5. OPTICAL STATISTICS COLLECTION: RESULTS

Chapter 6

Shot Analysis with Pose Estimation:

Methodology

Along with using computer vision techniques to collect statistics and analyze

entire basketball games, we wanted to do something narrower within the

realm of sports analytics. This is where the second part of our project comes

in. In this section, we will describe the methodology used to analyze an

individual’s basketball shot in terms of body pose. We will explain how the

shooters body pose is collected, and how we cluster the results to determine

whether or not a shooter’s body motions are indicative of whether or not they

make a shot.

6.1 Recording Poses

In order to analyze a players shot form, we need a way to gather the position

of their body as time progresses. This is something that people can intuitively

81

82
CHAPTER 6. SHOT ANALYSIS WITH POSE ESTIMATION:

METHODOLOGY

do with their eyes, but for a computer this is quite challenging. The problem is

known as pose estimation, which is an active area of computer vision research.

Creating software to do pose estimation is very complicated, so we decided

to apply existing software to this problem. In searching for pose estimation

software, we came stumbled upon a perfect tool for our needs: OpenPose.

6.1.1 OpenPose

OpenPose is the “first real-time multi-person system to jointly detect human

body, hand, and facial key points (in total 130 key points) on single

images,” [4]. Essentially, OpenPose is capable of taking in an image and

detecting key points (eyes, nose, various joints, etc.) on all human figures in

the image. This allows the full description of a human pose in an image.

Figure 6.1: An example of body key point detection in OpenPose [4].

OpenPose is capable of detecting poses that include key points of just the

body (Figure 6.1), along with poses that include intricate details on the face

(Figure 6.2) and hands (Figure 6.3) [4]. For our application the body angles are

CHAPTER 6. SHOT ANALYSIS WITH POSE ESTIMATION:
METHODOLOGY 83

the most useful. Before we move into how we used OpenPose, we first discuss

generally how it works.

Figure 6.2: An example of face key point detection in OpenPose [4].

OpenPose is an incredibly complicated system, and is the result of the

work from six authors (Gines Hidalgo, Zhe Cao, Tomas Simon, Shih-En Wei,

Hanbyul Joo, and Yaser Sheikh) and three research papers [4]. It is outside of

the scope of this paper to go into great detail on how OpenPose works, so we

will just give a brief overview.

We start with the basis of the work, Convolutional Pose Machines. This

work itself, is based on a previous work that proposed a pose machine

architecture, which the authors describe as “the implicit learning of long-range

dependencies between image, multi-scale and multi-part cues, tight

integration between learning and inference, a modular sequential

design,” [35]. The authors (many of those who created OpenPose) extended

this pose machine architecture to include convolutional neural networks.

These convolutional pose machines are composed of a set of prediction neural

84
CHAPTER 6. SHOT ANALYSIS WITH POSE ESTIMATION:

METHODOLOGY

Figure 6.3: An example of hand key point detection in OpenPose [4].

networks that predict confidences for the locations of each body part. This set

of networks forms a sequence that is traversed to improve the prediction at

each network in the sequence. The other piece the authors contributed is a

method to compose the networks in such a way that they have a large

receptive field. This is important as it improves accuracy in learning long

range spacial relationships. The authors found that the these convolutional

pose machines outperform all other pose estimation methods on nearly every

training set tested [35].

To use these convolutional pose machines, they are first trained on data

sets that contain labeled human poses. Then, feeding an image through the

machine will yield estimations for the pose of the subject in the picture. The

one notable downside of these machines is that they can only estimate for a

single pose in an image: they cannot handle multiple people without

CHAPTER 6. SHOT ANALYSIS WITH POSE ESTIMATION:
METHODOLOGY 85

errors [35].

The hand and face models were added in other research papers. We do not

use these features, so we will not explain them. To read further on these topics

see [31] and [4].

The last key piece to get to OpenPose was to extend the functionality to

multiple people in a single image. Again, we do not use this feature, so we

will not explain it. To read further on the methodology to extend the pose

machines to multiple people, see [16] and [4].

OpenPose is pre-trained, and has many available models, ranging from 18

key point body models to the full 130 key point model for body, hands, and

face [4].

6.1.2 Using OpenPose

Now that we have an idea about how OpenPose works, we can dive into our

usage. We wanted to take a 90 second clip of a player taking a shot, and

convert that into numerical data about the positioning of their body. We

wanted this to be done in a rather automatic fashion, so a the player can

operate the software while taking the shots. In making this software, we

decided to focus specifically on basketball free throws, as they are a

predictable and repetitive motion. This will afford us the best chance to

analyze the players shot form because, in theory, the player’s free throws

should have consistent form, and slight deviations in form should be

detectable. To do this we created a C++ program (Appendix B.1) that we

outline in the next few paragraphs.

86
CHAPTER 6. SHOT ANALYSIS WITH POSE ESTIMATION:

METHODOLOGY

The overall flow of our program is as follows:

1. At startup, the program is running in real time, grabbing the newest

frame and processing it for a pose.

2. The user must generate a reference “starting pose” to look for as the start

of free throw. To do this, the user presses a key, and gets into their free

throw starting position. After a 10 second delay, the program saves the

pose it detects as the reference pose.

3. Now that a reference pose is available, the program checks every frame

against the reference pose to see if the user is about to shoot a free throw.

4. If the frame is a match, the program switches to recording and

processing every frame. The program records the next 3 seconds (90

frames) of video and estimates the pose for each frame, adding it to a file.

5. The program prompts the user to tell if the recorded action was a shot. If

it isn’t a shot, the data is thrown out and the acceptable margin of error

in checking the reference is decreased. If it is a shot, the user is asked if it

was made. The data, along with whether the shot was made is then

saved.

6. Return to step 3.

To start, we need to feed images to OpenPose and retrieve information

from the estimated poses. We start by reading in images from a webcam using

OpenCV. For this application, the greater the frame rate, the better the results.

We settled on a laptop integrated webcam. This webcam is capable of

CHAPTER 6. SHOT ANALYSIS WITH POSE ESTIMATION:
METHODOLOGY 87

recording at 30 frames per second, and was immediately available. Due to the

high computational requirements of OpenPose, we found it best to put

processing and capture into separate threads.

The capture thread has two states: real time, and full frame rate. In the real

time state, the thread grabs the newest frame from the camera, removes all

current frames from the its thread-safe queue, and puts this new frame at the

top of the queue. This ensures that when the processing thread gets a new

frame from the queue, it is the most recently recorded frame. In the full frame

rate state, the capture thread puts every recorded frame into the queue. This

state occurs when a free throw is detected. Once the required 90 frames have

been recorded, the thread idles until the queue is empty. Once the queue is

empty, the capture thread returns to the real time state.

The processing thread is where things get interesting. The first thing this

thread does is grab the frame from the top of the capture thread’s queue.

Then, the frame is resized, scaled, and converted so that it can be entered into

OpenPose. The frame is then run through OpenPose, and the (x, y) positions of

the key points of the first estimated pose are extracted. We are only interested

in the free throw shooter, thus why we only extract the first pose. This also

means that other figures in the background could potentially interfere with

data collection. Once the positions of the key points are extracted, they are

paired together in order to generate line segments (defined by their key point

endpoints) that represent the shooter’s various body parts. The angles

between these body parts are then calculated. The end results are calculated

angles for the following joints:

88
CHAPTER 6. SHOT ANALYSIS WITH POSE ESTIMATION:

METHODOLOGY

Figure 6.4: A pose estimate from the middle of a free throw.

• the right and left shoulders (angle between shoulder line and neck),

• the right and left arms (angle between shoulder line and the upper arms),

• the right and left elbows,

• the right and left “body” (angle between the neck and the line between

the base of the neck and the hip),

• the right and left hips (angle between the line between the base of the

neck and hip and the upper leg),

• and the right and left knees.

CHAPTER 6. SHOT ANALYSIS WITH POSE ESTIMATION:
METHODOLOGY 89

Using these angles we can describe a shooter’s body pose regardless of their

size and positioning (as long as the camera remains in the same place). These

angles are the values we want to record.

This thread handles the user input needed to control the program. If the

user presses the ’s’ key, the program will give the user the next 30 frames to get

into their starting pose. Once the countdown completes, the pose (angles

between the joints as described above) is recorded after checking its validity

with the user. Once this is done, these recorded angles are checked against at

every new frame to see if the user has started a free throw. The check is done

by verifying that each angle is within a certain threshold of the reference pose.

If a shot is detected, 90 frames are recorded. These angles pulled from the

detected poses are saved into a csv file. At the end of the processing, the

program checks with the user to see if the shot was actually a shot. If it was

not, the collected data is thrown out, and the detection threshold is multiplied

by 0.9 to reduce it slightly. If the shot was valid, the user is prompted to enter

whether or not it was made. This value is added to the saved file.

The end result is a csv for every valid recorded shot, labeled with whether

or not the shot was made. Using these data points, we can analyze whether or

not the user’s free throw form has an effect on whether or not they make the

shot. In the next section, we discuss the process used to investigate this.

6.2 Data Processing and Clustering

Using the data from a single player shooting multiple free throws, we hope to

determine whether or not the player’s form is indicative of the outcome of the

90
CHAPTER 6. SHOT ANALYSIS WITH POSE ESTIMATION:

METHODOLOGY

shot. To examine the relationship between shot form and shot outcome, we

decided to cluster the data. Before the data can be fed to a clustering

algorithm, it must be first cleaned up and normalized so that each sequence of

angles represents the same part of the free throw. Our cleaning and clustering

are done in a single Python script that simply requires a directory full of shot

data. It is likely that it will need tuned for different recording angles and

shooters. Our code is located in Appendix C.1.

6.2.1 Cleaning the Data

Our cleaning of the data was two fold: smoothing and what we refer to as

normalization. For us, normalization is the process of getting the data from

each shot to begin at the same point in the shooting motion. The data in its

original condition is quite rough. Because the estimation of the key points is

done from scratch at each frame, similar frames can yield varying results.

Essentially, this means that we see slight changes in position even if the

shooter’s overall pose remains relatively constant. In order to combat this

effect, we decided to smooth our data. We do this using the Lowess method.

This method yields a smoother curve that has a much clearer shape

(Figure 6.5).

The Lowess (not to be confused with the related Loess) method for

smoothing is a method for fitting a smooth curve to points in such a way as to

be resistant to outliers. This is done by fitting a low-degree polynomial at each

data point using weighted least squares. The weights in this situation are

allocated so that the further away a point is from the point we are fitting at, the

CHAPTER 6. SHOT ANALYSIS WITH POSE ESTIMATION:
METHODOLOGY 91

Figure 6.5: An example of data before and after being smoothed using Lowess
smoothing.

lower its weight. The end result is a curve that is highly resistant to outliers.

This method, as expected, is considered computationally complex [11].

However, for our purposes this is does not matter.

Lowess is an acronym meaning “locally weighted smoothing scatterplots”.

The highly related Loess method uses a similar methodology, but skips on the

weighting process. Essentially, this means that the Loess method does not do

anything to limit the effect of outliers [11]. For our usage, this resistance to

outliers is important, because our data is prone to being noisy, so we naturally

use the Lowess method.

Normalizing the data, which ensures that the start of the sequence

represents the start of the shot, is a matter of a simply filtering the data. We

looked for a threshold on one of the angles that can be used to determine when

a shot has been started. Similarly, we looked at thresholds on the right knee,

92
CHAPTER 6. SHOT ANALYSIS WITH POSE ESTIMATION:

METHODOLOGY

Figure 6.6: An example of right knee angle data before being normalized. Blue
and red lines indicate makes and misses respectively.

right elbow, and the right arm. We found that applying a threshold to the right

arm angle at 120 degrees yielded decent results (Figure 6.6 and 6.7).

Essentially, the first point in the data where the right arm angle exceeds 120

degrees is marked as the start of the shot. The following 40 data points are

kept as the “shot”. This makes our data consistently represent the same part of

the motion in the free throw. It is possible that a better method to determine

the start of a shot exists, but our threshold method yields consistent results

that worked for our test data.

Also worth mentioning, we throw out any shots that have any NaN values

in the angles we are interested in. We do this because NaN values indicate that

the pose estimation failed. We could theoretically fill in the data using

surrounding values, however we believe that this could yield inaccurate data.

To see how we filtered our data see Appendix C.1.

CHAPTER 6. SHOT ANALYSIS WITH POSE ESTIMATION:
METHODOLOGY 93

Figure 6.7: The right knee angle data from Figure 6.6 after being normalized.
Blue and red lines indicate makes and misses respectively.

6.2.2 Clustering

Having the data in workable format, all that is left to do is look at which shots

are most closely related. We hope to find that the misses and makes form

distinct groupings, indicating that shot form has a clear effect on shot

outcome. The best way to go about finding these groupings is through the use

of clustering.

Clustering, also called segmentation analysis or unsupervised

classification, is a method of grouping objects in such a way that objects in the

same group are similar to each other, but differ from objects in other groups.

The groups, unlike in classification, are not defined. The goal is to discover

these groups to gain useful insights into the data [19].

The clustering process requires a few important concepts. The first

94
CHAPTER 6. SHOT ANALYSIS WITH POSE ESTIMATION:

METHODOLOGY

important concept is a data point. This data point is composed of a set of

scalar attributes that describe it [19]. In our application, a data point is a single

free throw, and the attributes are the sequential angles.

The next concept we need is that of similarities/distances. These are the

measures we use to describe how “close” our data points are to each other.

Similarity is a measure of how alike to data points are, with higher values

indicating higher alikeness. Distance can be see as a sort of reciprocal to

similarity, with higher distances indicating more dissimilar data points [19].

Later in this section we will describe the distance measures we settled on.

Another important piece of clustering is the cluster itself. Generally

speaking our clusters are sets of objects that are closely related, have small

mutual distances or high mutual similarity, and are clearly distinct from the

compliment of the cluster [19]. Based on these requirements, we can have a

large variety of clusters, with a wide array of shapes and sizes.

Now that we have the key pieces of clustering defined, we can take a look

at the general clustering process. The process typically consists of four steps:

data representation, modeling, optimization, and validation. The data

representation phase determines what sort of clusters are looked for, for

example they could be compact (circular/spherical) or extended (allowing for

larger and more varied clusters). This can be determined by the type of data,

or be arbitrarily chosen based on the desired results. The modeling phase

determines the criteria that separates the clusters, usually a similarity or

distance measure. The optimization phase calculates this measure and finds

the closest clusters. The validation phase evaluates the results of the

clustering [19].

CHAPTER 6. SHOT ANALYSIS WITH POSE ESTIMATION:
METHODOLOGY 95

Conventional clustering algorithms can be divided into two categories:

hierarchical and partitional. Hierarchical clustering algorithms generate

clusters through merging smaller clusters or splitting larger clusters.

Algorithms that start with a single large cluster and divide it are known as

divisive clusters, and algorithms that start with many single item clusters and

merge them are known as agglomerative algorithms. Partitional algorithms

operate differently: they generate a single level, non-overlapping partition of

the data [19]. We will not dig any further into how these algorithms work, as

many algorithms exist, there are many ways to implement them. For further

reading on clustering algorithms, and clustering in general, see [19].

Our data is temporal, which means we have fewer (useful) methods at our

disposal. It is worth noting that we could derive attributes from the data to

cluster with instead of using our time series of angles, but we found no logical

attributes to generate, and thus we decided to move forward with clustering

on the temporal data. We decided to use hierarchical clustering, due its ease of

use, open ended nature (can generate a varying number of clusters based on

the data), and the fact that visualizing the clusters can be done using

dendograms (Figure 6.8).

We decided to use the SciPy implementation of hierarchical clustering. We

used the agglomerative variant, with the the “nearest point algorithm” [5]. For

our purposes, it was much harder to determine what distance/similarity

measure we should use.

Ideally, our distance measurement would take more than simple distance

between points in the sequence into account: we want a measurement that

looks at the overall shape of the sequences. We ended up, after looking into the

96
CHAPTER 6. SHOT ANALYSIS WITH POSE ESTIMATION:

METHODOLOGY

Figure 6.8: An example dendogram of shot data, using the dynamic time warp-
ing distance measure. This dendogram contains only missed shots. The differ-
ent colors represent different clusters generated.

myriad of available distance measures, applying two: cosine distance and

squared Euclidean distance combined with dynamic time warping.

Cosine distance is a similarity measure between two vectors. Cosine

distance, because it looks at the entirety of the vector rather than individual

points, is better suited to pick up on more general trends. Cosine distance,

between two vectors u and v is defined as:

Cos(u, v) = <u,v>
||u||∗||v||

where < u, v > is the inner product of u and v and ||u|| is the normal of vector

u [19].

The other method we looked at used dynamic time warping as

CHAPTER 6. SHOT ANALYSIS WITH POSE ESTIMATION:
METHODOLOGY 97

preprocessing, and then squared Euclidean distance. Dynamic time warping

allows for acceleration and deceleration on the time dimension. This helps

handle data that may not move at the exact same rate, and sequences that are

not the same length. The general idea is to extend sequences by repeating

elements, and then calculating the distances between these extended

sequences. To read further on this concept see [19].

Squared Euclidean distance is the square of the Euclidean distance

between two vectors. Euclidean distance is the most common spatial distance,

used, and one of the most intuitive. The Euclidean distance between vectors u

and v is defined as:

dEuclidean(x, y) = ((x − y)(x − y)T)
1
2

and thus the squared Euclidean distance is defined as:

dEuclidean2(x, y) = (x − y)(x − y)T

[19]. In the end, we found the cosine distance generated more distinct

clusters, however, in the next chapter we will present the clusters generated by

both distance measures.

Our collected data includes a lot of information that can be used to cluster

with. Clustering with all of the data would yield horrible results, so we need

to select which pieces we will cluster with. Of the collected pieces, the first

part we decided to throw out was all the data points from the left side. We

decided to record from the right side of the player, as the data from the left

side of the player is inaccurate and highly variable due to occlusion from the

players body. We can cluster on individual body parts along with

98
CHAPTER 6. SHOT ANALYSIS WITH POSE ESTIMATION:

METHODOLOGY

concatenated sequences of multiple body parts. To see the code we used for

our clustering see Appendix C.1.

Chapter 7

Shot Analysis with Pose Estimation:

Results

In order to determine the effect of a player’s form on shot quality, we need to

collect data. In order for our data to be useful, it must be collected in a single

session, with the camera remaining in the same place. We collected data for

around half an hour with an amateur (due to convenience). We collected 40

shots, 18 makes and 22 misses. More than 40 shots were taken in that time,

however, due to some errors in the data collection, not every shot was

recorded. Also, because of null values recorded we ended up with 29 usable

shots.

With our data sample collected, the next step is to clean the data. The data

is smoothed and then normalized so that each sequence represents the same

portion of the free throw. At this point, our data is ready to be clustered. In

order to get an idea of the differences of the outcomes of shots, we averaged

the makes and misses (Figures 7.4, 7.5, and 7.6).

99

100 CHAPTER 7. SHOT ANALYSIS WITH POSE ESTIMATION: RESULTS

Figure 7.1: The unedited sequence of angles of the right elbow from our data.

Figure 7.2: The smoothed sequence of angles of the right elbow from our data.

We can see that the average make and the average miss are clearly

different, but only slightly. This expected as whether the shot is a make or a

miss, the form should be roughly the same. We aim to pick up on the subtle

CHAPTER 7. SHOT ANALYSIS WITH POSE ESTIMATION: RESULTS 101

Figure 7.3: The smoothed and normalized sequence of angles of the right elbow
from our data.

Figure 7.4: The average sequence of right arm angles of the makes/misses from
our data.

differences. At this point, we can begin to cluster the data. We clustered the

data on the variety of different angle measures, and a handful of

102 CHAPTER 7. SHOT ANALYSIS WITH POSE ESTIMATION: RESULTS

Figure 7.5: The average sequence of right knee angles of the makes/misses from
our data.

Figure 7.6: The average sequence of right elbow angles of the makes/misses
from our data.

CHAPTER 7. SHOT ANALYSIS WITH POSE ESTIMATION: RESULTS 103

concatenations.

Figure 7.7: The angle data from the right knee, arm, elbow, and body concate-
nated together for clustering.

We found that concatenating the knee, arm, elbow, and body angles made

the most sense (Figure 7.7). This gives the clustering algorithm the maximum

amount of information to cluster with, and should theoretically yield the best

(or at least most accurate) results.

With this data we run the clustering algorithm three times for both cosine

distance and dynamic time warping distance: using all the data, just the

makes, and just the misses (Figures 7.8, 7.9, 7.10, 7.11, 7.12, 7.13).

In the dendograms that show both makes and misses together, we can see

that the generated clusters are not homogeneous, that is clusters are composed

of both makes and misses. This could be due to shot form having little effect

on the outcome. This would result in similar shots yielding different

outcomes. However, what is more likely, is that this is due to deficiencies in

our data, whether it be that we are not picking up on enough detail, we do not

104 CHAPTER 7. SHOT ANALYSIS WITH POSE ESTIMATION: RESULTS

Figure 7.8: Clustering makes and misses together, using cosine distance.

simply have enough data, or we are just looking at the wrong thing. We will

detail some of the different things we could have done to improve our data in

the next chapter.

Individually, we see that makes are simply not that similar, and that

misses, while still not very similar, cluster slightly better. This is

counterintuitive, as we expect makes to be the result of good, reproducible

form, and misses to be deviations from this form. This could indicate two

things: problems with our data, or that there are only a few ways to miss a

shot. In this case, the former is much more likely than the latter.

Figures 7.14 and 7.15 show averaged representatives from the generated

clusters. We can see that these clusters represent different shot forms, as they

are different in every body part used for clustering. However, the utility of

CHAPTER 7. SHOT ANALYSIS WITH POSE ESTIMATION: RESULTS 105

Figure 7.9: Clustering the made shots together, using cosine distance.

these representatives is limited due to cluster size and quality. With more data,

especially from a seasoned player, these representatives could be seen as the

general forms a missed or made shot can take for the shooter, and can help

indicate what to change to avoid missing.

Generally speaking, we cannot make any conclusions using our data, as

our results do not indicate strong similarity between made or missed shots.

7.1 Challenges

In this area of our research, we did not face too many issues. The biggest

problem we had, as mentioned previously, was our data. There are two issues

with the data collected: sample size and our player. We simply did not collect

106 CHAPTER 7. SHOT ANALYSIS WITH POSE ESTIMATION: RESULTS

Figure 7.10: Clustering the missed shots together, using cosine distance.

enough data. A larger amount of data would have helped make larger, better

clusters. Our player turned out to be a bigger issue than sample size. He is an

amateur, so his free throw form is inconsistent. This is problematic because

ultimately, we are looking for the intricacies of the player’s form that lead to

desirable shot trajectories and velocities. Our player’s form varied to much

between each shot, so these intricacies were impossible to pick up on. A

professional, or at least a college of high school player, would likely yield

more consistent results. This many not have revealed a clean relationship

between form and outcome, but would have allowed us to come to a stronger

conclusion.

A more general issue we have with our data is quality. We are collecting

angles from a 2D image, this does not yield the best possible data. Depth data

CHAPTER 7. SHOT ANALYSIS WITH POSE ESTIMATION: RESULTS 107

Figure 7.11: Clustering makes and misses together, using dynamic time warping
and squared euclidean distance.

would help describe a pose more completely. This would also allow us to

reliably use data from the far side of the shooters body. Possible solutions to

the problems we described in this section are discussed in the next chapter.

108 CHAPTER 7. SHOT ANALYSIS WITH POSE ESTIMATION: RESULTS

Figure 7.12: Clustering the made shots together, using dynamic time warping
and squared euclidean distance.

CHAPTER 7. SHOT ANALYSIS WITH POSE ESTIMATION: RESULTS 109

Figure 7.13: Clustering the missed shots together, using dynamic time warping
and squared Euclidean distance.

110 CHAPTER 7. SHOT ANALYSIS WITH POSE ESTIMATION: RESULTS

Figure 7.14: The averaged representatives from each cluster generated using
just made shots and Cosine distance. The representatives are generated from
the cluster of the same color in 7.9.

CHAPTER 7. SHOT ANALYSIS WITH POSE ESTIMATION: RESULTS 111

Figure 7.15: The averaged representatives from each cluster generated using
just missed shots and cosine distance. The representatives are generated from
the cluster of the same color in 7.10.

112 CHAPTER 7. SHOT ANALYSIS WITH POSE ESTIMATION: RESULTS

Chapter 8

Conclusions

In this section, we will offer some concluding remarks on both parts of our

project along with suggestions for future work that could be done to remedy

some of the issues we encountered, make them irrelevant, improve the

performance of our theoretical system, or apply our work to other areas.

8.1 Optical Statistics Collection

As we discussed in the results chapter for our optical statistics collection

system, we did not meet our original goals due to numerous issues in building

our system. Many of our problems stemmed from budgetary and time issues,

and this makes perfect sense: the system we planned to build was incredibly

complicated. Similar systems took a few years and millions of dollars to build,

so attempting to build one, even as simple and scaled down as ours was, in a

less than a year with a budget of $1000 was an extremely ambitious task.

We believe that we can conclude that these types of systems are outside of

113

114 CHAPTER 8. CONCLUSIONS

the grasp of small colleges and high schools for the time being, just due to the

resources required. However, we do believe that the building of an open

sourced system with a small budget is certainly possible, but it would require

a large time investment along with an in-place camera system to build the

software from.

8.1.1 Future Work

As mentioned previously, a lot of the problems we faced were due to time and

money constraints. Assuming that these two resources were to become

irrelevant, there are many changes that we could have made and alternate

avenues we could have taken to improve our system. We will discuss these

changes here along with possible further areas we could apply or system to.

One of our largest problems turned out to be our choice in camera. As we

discussed in a previous chapter, the cameras firmware turned out to cause

issues in frame rate and synchronization. A simple solution would be to use

different cameras. More expensive cameras, especially non-CCTV cameras

would likely have performed better. If money was no object, custom cameras

would be the best option. A custom camera, built to our specification, could

have a higher frame rate, resolution, and field of view. We could essentially

have it built exactly to suit our needs. Another positive of building a custom

camera would be that we could implement our own firmware. This would

allow use to set the cameras up to synchronize while recording or at least

record extremely accurate time stamps that would be accessible outside of the

video feed. There are a few downsides to building a custom camera however.

CHAPTER 8. CONCLUSIONS 115

Custom cameras would add quite a bit more work to the project. Writing the

firmware alone is much more complicated than writing our simple recording

program. Also, custom cameras would likely require more complicated

mounting solutions than the CCTV cameras. Despite the extra work, a custom

camera setup would have likely improved the outcome of this project

considerably.

Another issue we faced was in our computer vision techniques. Our

trackers, at least in all of our testing, were underperforming. To analyze an

entire game with them would require many hours of user work. This is simply

unacceptable and goes against our goal of making the software easy to use.

Unlike our issues with the cameras, this problem does not have as clear-cut of

a solution. There are a two different avenues that we believe would make the

most sense to improve our trackers: writing a custom tracker and using a

tracker trained specifically for our application. Writing a custom tracker is no

simple task. However, if we wanted a higher performance tracker, it is just

about the only option. A tracker that combines techniques from existing

trackers would be a good place to start. An easier approach to take would be

to use an offline trained tracker, like GOTURN, and train it specifically to track

basketball players and basketballs. This would be a good way to improve our

application specific performance, and could provide enough of an edge to

reduce the user workload.

The last fixable issue we had was our inability to set up our cameras. The

solution here is simple: find a place to set up the cameras. We do not believe

that there is an alternative path here, the camera system needs to be in place

for the rest of the software to be created properly. Ultimately, we should have

116 CHAPTER 8. CONCLUSIONS

looked outside of our college for locations to set up the cameras, even if

temporary. Finding alternate locations is difficult, as we need a large gym,

with a high ceiling. It is possible that we could have worked with the local

high school, or another college. If we had a single piece of advice to give to

others looking to implement a system like ours, it would be to set up a camera

system first, and work from there.

In terms of other areas to apply our system, there are other sports that

would be easy to apply such a system to. Volleyball would be the easiest, as

the system would already be in place where the volleyball team plays. Slight

modifications would be needed to track the ball, but otherwise, everything

else would carry over. Another sport it could be applied to, with modification,

would be hockey. Hockey has a similar flow to basketball, and most of the

system would carry over. There would need to be some changes to track the

puck (which could be quite difficult) and to handle the rapid movements of

the players. Soccer is another place this system would be applied, however, as

it currently works, it would really only work well for indoor soccer.

Fundamental changes for camera placement would need to be made to make

it work for outdoor arenas. STATS is actively attempting to build such a

system for soccer [6], and likely other sports as well.

8.2 Shot Analysis with Pose Estimation

As mentioned in the results section for our shot estimation system, we could

not make any conclusions regarding the relationship between shot form and

shot outcome. This is due to the quality of our data and the fact that our

CHAPTER 8. CONCLUSIONS 117

results did not indicate the existence or nonexistence of such a relationship.

The only conclusion we can really come to is that we need better data. Better

data could mean a higher quantity and quality of the type of data we looked

at, or a different sort of data altogether (like ball trajectory).

8.2.1 Future Work

The primary problem we had turned out to be our data. We determined that

the quality of the data was poor due to the player we selected, and that we did

not have enough data. To come to a better conclusion, we should have

collected a lot more data, and used a professional player. A player with more

consistent form would generate much better data, and their consistent form

would make it easier to pick up on the subtle differences between makes and

misses. Another area in which we could have improved our data would have

been to collect pose information from the hands. A lot of the nuance of

basketball shot form happens in the wrists and hands. By collecting this

information, we would gain insight into the movements of the shooters wrists

and fingers.

We could also improve our data by giving more detailed classifications of

shot outcome. Instead of a binary make/miss, we could detail where the shot

contacted the rim/backboard. This would improve the clustering, as shots that

impact in certain areas (the side of the rim for example) can yield different

outcomes based on slight differences in trajectory. By classifying this way, we

may find that we generate more homogeneous clusters.

Our method for clustering is another area that could likely use

118 CHAPTER 8. CONCLUSIONS

improvement. Due to time constraints, we could not fully investigate the

plethora of available methods and distance measures. A better method, and a

more suitable distance could have yielded better clusters. Additional research

into temporal clustering should be done, along with distance measures that

are more tailored to time series. For example, creating our own

implementation of dynamic time warping would also allow the usage of a

larger variety of distance measures.

Another area of future work would be to investigate the other piece of the

basketball shot: the ball’s trajectory. This information could be derived from

video footage by tracking the ball. The ball’s initial velocity, launch angle, and

starting height could, in theory, be used to reliably determine if a shot was

made. This information would also be easy to detect immediately after a shot,

so instant feedback could be given.

Appendix A

Recording Software Code

A.1 recorder.h

1 / / Colby J e f f r i e s

2 / / recorder . h

3

4 / / This c l a s s i s a widget t h a t conta ins the needed IP e n t r i e s and buttons to

5 / / s t a r t recording .

6

7 / / I n c l u s i o n p r o t e c t i o n .

8 #pragma once

9

10 / / Modules

11 / / Header

12 # include ” recorder . h”

13 / / Qt

14 # include <QWidget> / / Widget parent c l a s s f o r the recorder c l a s s .

15 # include <QLabel>

16 # include <QLineEdit> / / E d i t a b l e t e x t box .

17 # include <QGridLayout> / / Grid Layout manager .

18 # include <QPushButton>

19 # include <QApplication>

119

120 APPENDIX A. RECORDING SOFTWARE CODE

20 # include <QSignalMapper>

21 / / STD

22 # include <s t r i n g >

23 # include <iostream>

24 # include <fstream>

25 # include <sstream>

26 # include <chrono>

27 # include <vector>

28 # include <thread>

29 / / OpenCV

30 # include ”opencv2 / opencv . hpp” / / For recording from IP cameras .

31

32 / / Global Constants

33 # def ine FPS 30

34

35 / / Class t h a t conta ins a window with a l l of the necessary p i e c e s to s t a r t a

36 / / recording from the cameras . This c l a s s i s an extens ion of the Widget Qt

37 / / c l a s s . This c l a s s generates the window f o r the recorder , inc luding they

38 / / entry f i e l d s f o r each IP , the t e s t button , and the record button .

39 c l a s s Recorder : publ ic QWidget {

40

41 Q OBJECT / / Allows usage of Qt s i g n a l s and s l o t s f o r t h i s c l a s s .

42

43 p r i v a t e :

44 QVector <QLabel∗> IPLabels ;

45 QVector <QLineEdit∗> IPBoxes ;

46 std : : s t r i n g I P F i l e = ” las tUsedIPs . t x t ” ;

47 i n t cameras ;

48

49 publ ic :

50 / / Constructor . I n i t i a l i z e s a l l elements of the UI .

51 Recorder (QWidget ∗ parent = 0 , i n t numCameras = 6) ;

52

53 / / Function f o r each camera . This funct ion i s run f o r each camera on

54 / / separa te threads . The funct ion grabs a frame from the camera , encodes i t ,

55 / / and then saves i t .

56 s t a t i c void cameraFunc (std : : s t r i n g ip , s td : : s t r i n g outputVid) ;

APPENDIX A. RECORDING SOFTWARE CODE 121

57 / / Reads the f i l e conta in ing the l a s t used IP addresses i f i t e x i s t s .

58 / / Otherwise , empty s t r i n g s are s e t .

59 void r e a d I P F i l e () ;

60 / / Clears v e c t o r s of widget s t u f f .

61 void d e l e t e S t u f f () ;

62 / / S e t s up the widget . Does most of the c o n s t r u c t o r work . Helper .

63 void setUpWidget () ;

64

65 publ ic s l o t s :

66 / / S t a r t s recording process f o r each camera . I n i t i a l i z e s the cameras whose

67 / / IP f i e l d s are val id , and then s t a r t s t h e i r threads .

68 void record () ;

69 / / Tes ts the IP f o r each camera . S e t s the entry f i e l d s c o l o r based on then

70 / / r e s u l t of the t e s t s .

71 void t e s t () ;

72 / / Saves the contents of the IPBoxes , i n t o a f i l e to be loaded next time .

73 void s a v e I P F i l e () ;

74 / / Adds or removes a camera entry .

75 void modifyCamera (i n t add) ;

76

77 } ;

A.2 recorder.cpp

1 / / Colby J e f f r i e s

2 / / recorder . cpp

3

4 / / Implementation of the recorder window c l a s s .

5

6 / / Header .

7 # include ” recorder . h”

8

9 / / Constructor .

10 Recorder : : Recorder (QWidget ∗ parent , i n t numCameras) : QWidget (parent) {

11

122 APPENDIX A. RECORDING SOFTWARE CODE

12 cameras = numCameras ;

13 setUpWidget () ;

14 }

15

16 / / Clears the widget v e c t o r s .

17 void Recorder : : d e l e t e S t u f f () {

18

19 qDeleteAl l (t h i s −>f indChildren<QWidget∗>(”” , Qt : : FindDirectChildrenOnly)) ;

20 d e l e t e t h i s −>layout () ;

21

22 IPBoxes . c l e a r () ;

23 IPLabels . c l e a r () ;

24 }

25

26 / / S e t s up the camera e n t r i e s , buttons , and connect ions .

27 void Recorder : : setUpWidget () {

28 / / Generate a new grid layout .

29 QGridLayout ∗ grid = new QGridLayout (t h i s) ;

30 grid−>s e t V e r t i c a l S p a c i n g (1 5) ;

31 grid−>se tHor izonta lSpac ing (5) ;

32

33 / / IP Labels , Entr ies , and Test ing Buttons .

34 f o r (i n t i =0; i<cameras ; i ++) {

35 IPBoxes . append (new QLineEdit (t h i s)) ;

36 IPBoxes [i]−> s e t S t y l e S h e e t (” QLineEdit { background : rgb (2 5 0 , 250 , 150) ; s e l e c t i o n −

background−c o l o r : rgb (2 5 0 , 250 , 250) ; } ”) ;

37 grid−>addWidget (IPBoxes [i] , i , 0 , 1 , 1) ;

38

39 QString i p l = ” IP Address %1” ;

40 IPLabels . append (new QLabel (i p l . arg (i +1) , t h i s)) ;

41 grid−>addWidget (IPLabels [i] , i , 1 , 1 , 1) ;

42 IPLabels [i]−>setAlignment (Qt : : AlignRight | Qt : : AlignVCenter) ;

43 }

44

45 / / Set IPs frome f i l e .

46 r e a d I P F i l e () ;

47

APPENDIX A. RECORDING SOFTWARE CODE 123

48 / / Test Button

49 QPushButton ∗ t e s t B u t t o n = new QPushButton (” Test IPs ” , t h i s) ;

50 grid−>addWidget (tes tBut ton , cameras , 0 , 1 , 1) ;

51 connect (tes tBut ton , SIGNAL(c l i c k e d ()) , SLOT(t e s t ())) ;

52

53 / / Record Buttons

54 QPushButton ∗ recordButton = new QPushButton (”Record” , t h i s) ;

55 grid−>addWidget (recordButton , cameras , 1 , 1 , 1) ;

56 connect (recordButton , SIGNAL(c l i c k e d ()) , SLOT(record ())) ;

57

58 / / Add / Remove Camera buttons

59 QPushButton ∗ plusButton = new QPushButton (”+” , t h i s) ;

60 grid−>addWidget (plusButton , cameras + 1 , 0 , 1 , 1) ;

61 QPushButton ∗minusButton = new QPushButton (”−” , t h i s) ;

62 grid−>addWidget (minusButton , cameras + 1 , 1 , 1 , 1) ;

63 QSignalMapper ∗ signalMapper = new QSignalMapper (t h i s) ;

64 i f (cameras > 1) {

65 connect (minusButton , SIGNAL(c l i c k e d ()) , signalMapper , SLOT(map ())) ;

66 signalMapper−>setMapping (minusButton , 0) ;

67 }

68 i f (cameras < 6) {

69 connect (plusButton , SIGNAL(c l i c k e d ()) , signalMapper , SLOT(map ())) ;

70 signalMapper−>setMapping (plusButton , 1) ;

71 }

72

73 connect (signalMapper , SIGNAL(mapped(i n t)) , t h i s , SLOT(modifyCamera (i n t))) ;

74

75 / / R e g i s t e r save funct ion when recording i s s t a r t e d .

76 connect (tes tBut ton , SIGNAL(c l i c k e d ()) , SLOT(s a v e I P F i l e ())) ;

77 connect (recordButton , SIGNAL(c l i c k e d ()) , SLOT(s a v e I P F i l e ())) ;

78 connect (qApp , SIGNAL(aboutToQuit ()) , t h i s , SLOT(s a v e I P F i l e ())) ;

79

80 / / Set a l a r g e r width .

81 t h i s −>setFixedWidth (3 0 0) ;

82 t h i s −>setFixedHeight ((cameras + 2) ∗ 40) ;

83

84 / / Set the layout .

124 APPENDIX A. RECORDING SOFTWARE CODE

85 setLayout (gr id) ;

86 }

87

88 / / Adds or removes a camera entry .

89 void Recorder : : modifyCamera (i n t add) {

90 i f (add) cameras++;

91 e l s e cameras−−;

92 d e l e t e S t u f f () ;

93 setUpWidget () ;

94 }

95

96 / / Tes ts a l l of the entered IPs to see i f they work .

97 void Recorder : : t e s t () {

98 f o r (i n t i =0; i<cameras ; i ++) {

99 QString ip = IPBoxes [i]−> t e x t () ;

100 cv : : VideoCapture capture = cv : : VideoCapture (ip . t o S t d S t r i n g ()) ;

101 i f (capture . isOpened ()) {

102 / / S e t s the background to green .

103 IPBoxes [i]−> s e t S t y l e S h e e t (” QLineEdit { background : rgb (1 5 0 , 250 , 150) ; s e l e c t i o n

−background−c o l o r : rgb (2 5 0 , 250 , 250) ; } ”) ;

104 }

105 e l s e {

106 / / S e t s the background to red .

107 IPBoxes [i]−> s e t S t y l e S h e e t (” QLineEdit { background : rgb (2 5 0 , 150 , 150) ; s e l e c t i o n

−background−c o l o r : rgb (2 5 0 , 250 , 250) ; } ”) ;

108 }

109

110 capture . r e l e a s e () ;

111 }

112 }

113

114 / / S t a r t s the recording process .

115 void Recorder : : record () {

116 std : : vector<std : : thread> threads ;

117 f o r (i n t i =0; i<cameras ; i ++) {

118 / / I f the IP i s not empty .

119 i f (IPBoxes [i]−> t e x t () . t o S t d S t r i n g () != ””) {

APPENDIX A. RECORDING SOFTWARE CODE 125

120 std : : s t r i n g ip = ” r t s p : / / admin : BlackYellow1@” + IPBoxes [i]−> t e x t () . t o S t d S t r i n g ()

+ ” : 5 5 4 / cam / rea lmonitor ? channel=1&subtype=0” ;

121 std : : s t r i n g outputVid = ”Camera” + IPBoxes [i]−> t e x t () . r i g h t (3) . t o S t d S t r i n g () + ”

. avi ” ;

122 threads . push back (std : : thread (cameraFunc , ip , outputVid)) ;

123 threads [i] . j o i n () ;

124 }

125 }

126 }

127

128 / / Thread funct ion f o r each camera .

129 void Recorder : : cameraFunc (std : : s t r i n g ip , s td : : s t r i n g outputVid) {

130 / / I n i t i a l i z e the capture and w ri t e r .

131 cv : : VideoCapture capture = cv : : VideoCapture (ip) ;

132 / / cv : : VideoCapture capture = cv : : VideoCapture (0) ; / / DEBUG

133 i f (capture . isOpened ()) {

134 cv : : VideoWriter video ;

135 video . open (outputVid , cv : : VideoWriter : : fourcc (’X ’ , ’ 2 ’ , ’ 6 ’ , ’ 4 ’) , capture . get (

CV CAP PROP FPS) , cv : : S ize (capture . get (CV CAP PROP FRAME WIDTH) , capture . get (

CV CAP PROP FRAME HEIGHT)) , t rue) ;

136

137 / / I n i t i a l i z e v a r i a b l e s t h a t are needed throughout recording .

138 auto s t a r t = std : : chrono : : h i g h r e s o l u t i o n c l o c k : : now () ;

139 auto t i m i n g s t a r t = std : : chrono : : h i g h r e s o l u t i o n c l o c k : : now () ;

140 i n t frameCount = 0 ;

141 i n t tota lFrames = 0 ;

142 i n t skipFrameCount = 0 ;

143 i n t framesToSkip = 0 ; / / How many frames to skip .

144 cv : : Mat frame ;

145

146 / / Record f o r two hours .

147 while (tota lFrames < (120 ∗ 60 ∗ FPS)) {

148 / / Record a frame .

149 i f (skipFrameCount < 1) {

150 frameCount++;

151 tota lFrames ++;

152 skipFrameCount++;

126 APPENDIX A. RECORDING SOFTWARE CODE

153 capture >> frame ;

154 video . wri te (frame) ;

155 }

156

157 / / Skip frame (s) .

158 e l s e {

159 i f (skipFrameCount < (1 + framesToSkip)) {

160 capture >> frame ;

161 skipFrameCount++;

162 }

163 e l s e {

164 skipFrameCount = 0 ;

165 }

166 }

167

168 / / C al c u la t e framerate , and p r i n t i t every 10 seconds .

169 auto currTime = std : : chrono : : duration<double , s td : : m i l l i >(s td : : chrono : :

h i g h r e s o l u t i o n c l o c k : : now () − s t a r t) . count () ;

170 i f (currTime > 10000) {

171 std : : cout << ” Framerate : ” << frameCount / 1 0 . 0 << std : : endl ;

172 frameCount = 0 ;

173 s t a r t = std : : chrono : : h i g h r e s o l u t i o n c l o c k : : now () ;

174 }

175 }

176 }

177

178 capture . r e l e a s e () ;

179 }

180

181 / / Reads the IP f i l e l i s t and s e t s the contents of the IP boxes .

182 void Recorder : : r e a d I P F i l e () {

183 f o r (i n t i =0; i<cameras ; i ++) {

184 IPBoxes [i]−> s e t T e x t (””) ;

185 }

186 std : : i f s t r e a m in (I P F i l e) ;

187 i f (in . i s open ()) {

188 std : : s t r i n g l i n e ;

APPENDIX A. RECORDING SOFTWARE CODE 127

189 i n t i = 0 ;

190 while ((s td : : g e t l i n e (in , l i n e)) && (i<cameras)) {

191 IPBoxes [i]−> s e t T e x t (QString : : f romStdStr ing (l i n e)) ;

192 i ++;

193 }

194 }

195 }

196

197 / / Saves the contents of the IP boxes to a f i l e .

198 void Recorder : : s a v e I P F i l e () {

199 std : : ofstream out (I P F i l e) ;

200 f o r (i n t i =0; i<cameras ; i ++) {

201 out << IPBoxes [i]−> t e x t () . t o S t d S t r i n g () << std : : endl ;

202 }

203 out . c l o s e () ;

204 }

A.3 main.cpp

1 / / Colby J e f f r i e s

2 / / main . cpp

3

4 / / This i s the main dr iver f o r the ScotViewer recorder .

5

6 / / Modules

7 # include <QApplication> / / Qt Appl icat ion framework /

8 # include ” recorder . h” / / Recorder window header f i l e .

9

10 / / Main Driver

11 i n t main (i n t argc , char ∗ argv []) {

12

13 / / I n i t i a l i z e the a p p l i c a t i o n .

14 QApplication app (argc , argv) ;

15

16 / / Generate a ’ recorder ’ window . This window conta ins the IP address e n t r i e s

128 APPENDIX A. RECORDING SOFTWARE CODE

17 / / along with the buttons needed to s t a r t the recording .

18 Recorder window ;

19

20 / / T i t l e and show the window .

21 window . setWindowTitle (” Scotviewer Recorder v1 . 0 ”) ;

22 window . show () ;

23

24 / / S t a r t the execut ion loop f o r the Qt a p p l i c a t i o n .

25 return app . exec () ;

26 }

Appendix B

Free Throw Analyzer Code

B.1 FreeThrowAnalyzer.cpp

1 / / Colby J e f f r i e s

2 / / FreeThrowAnalyzer . cpp

3

4 / / This program i s used to c o l l e c t pose data from a b a s k e t b a l l player shooting

5 / / f r e e throws . This program can be modified f o r other a c t i o n s of s i m i l a r

6 / / nature .

7

8 / / Inc ludes

9 # include <g f l a g s / g f l a g s . h>

10 # include <math . h>

11 # include <s t d i o . h>

12 # include <fstream>

13 # include <iostream>

14 # include <thread>

15 # include <sys / s t a t . h>

16 # include <ctime>

17 / / OpenCV

18 # include <opencv2 / opencv . hpp>

19 / / OpenPose dependencies

129

130 APPENDIX B. FREE THROW ANALYZER CODE

20 # include <openpose / core / headers . hpp>

21 # include <openpose / f i l e s t r e a m / headers . hpp>

22 # include <openpose / gui / headers . hpp>

23 # include <openpose / pose / headers . hpp>

24 # include <openpose / u t i l i t i e s / headers . hpp>

25 # include <openpose / pose / poseParameters . hpp>

26 / / Thread−s a f e Queue

27 # include ”threadQueue . hpp”

28

29 / / GLOG/GFLAGS D e f i n i t i o n s f o r OpenPose .

30 DEFINE int32 (l o g g i n g l e v e l , 3 , ”The logging l e v e l . Don ’ t touch . ”) ;

31 DEFINE string (model pose , ”COCO” , ”Using COCO f o r 18 keypoints on body . ”) ;

32 DEFINE string (model folder , ”models / ” , ” Folder path f o r models . ”) ;

33 DEFINE string (n e t r e s o l u t i o n , ”−1x368 ” , ”Speed v Accuracy . May need f i n e tuning . ”) ;

34 DEFINE string (output reso lu t ion , ”−1x−1” , ”Uses input image s i z e . ”) ;

35 DEFINE int32 (num gpu start , 0 , ”May need f i n e tuning . ”) ;

36 DEFINE int32 (scale number , 1 , ”May need f i n e tuning . ”) ;

37 DEFINE double (scale gap , 0 . 3 , ” S c a l e gap between s c a l e s . May need f i n e tuning . ”) ;

38

39 DEFINE int32 (camera , 0 , ”Camera to use . ”) ;

40 DEFINE int32 (frameCount , 90 , ”How many frames to record per shot . ”) ;

41

42 / / Global v a r i a b l e s to be accessed by the threads .

43 std : : mutex rf m ;

44 std : : mutex rf2p m ;

45 i n t recordingFrames = 0 ;

46 i n t recordingFramesToProcess = 0 ;

47 Queue<cv : : Mat> frame queue ;

48

49 / / This funct ion checks one pose a g a i n s t another , with a c e r t a i n i n t e r v a l

50 / / e r r o r .

51 bool checkAgains tS tar t (s td : : map<std : : s t r i n g , f l o a t > s t a r t ,

52 std : : map<std : : s t r i n g , f l o a t > current ,

53 f l o a t i n t e r v a l) {

54 i f (s t a r t . empty ()) {

55 return f a l s e ;

56 }

APPENDIX B. FREE THROW ANALYZER CODE 131

57

58 i n t counter = 0 ;

59

60 f o r (auto i t s = s t a r t . cbegin () , end s = s t a r t . cend () , i t c = current . cbegin () ,

61 end c = current . cend () ; i t s != end s | | i t c != end c ;) {

62 i f ((! s td : : isnan (i t s −>second) && (! std : : isnan (i t c −>second)))) {

63 i f ((i t s −>second > i t c −>second + i n t e r v a l) | |

64 (i t s −>second < i t c −>second − i n t e r v a l)) {

65 counter ++;

66 }

67 }

68 e l s e {

69 counter ++;

70 }

71

72 i f (counter > 2) {

73 return f a l s e ;

74 }

75 std : : cout << counter << std : : endl ;

76

77 i t s ++; i t c ++;

78 }

79

80 return true ;

81 }

82

83 / / Finds the inner angle between two l i n e s .

84 f l o a t findAngle (std : : tuple<std : : tuple< f l o a t , f l o a t > , s td : : tuple< f l o a t , f l o a t >> l1 ,

85 std : : tuple<std : : tuple< f l o a t , f l o a t > , s td : : tuple< f l o a t , f l o a t >> l 2) {

86 f l o a t a = std : : get <0>(s td : : get <0>(l 1)) − std : : get <0>(s td : : get <1>(l 1)) ;

87 f l o a t b = std : : get <1>(s td : : get <0>(l 1)) − std : : get <1>(s td : : get <1>(l 1)) ;

88 f l o a t c = std : : get <0>(s td : : get <0>(l 2)) − std : : get <0>(s td : : get <1>(l 2)) ;

89 f l o a t d = std : : get <1>(s td : : get <0>(l 2)) − std : : get <1>(s td : : get <1>(l 2)) ;

90 re turn acos (((a ∗ c) + (b ∗ d)) / (pow(pow(a , 2) + pow(b , 2) , 0 . 5) ∗ pow(pow(c , 2) +

pow(d , 2) , 0 . 5))) ∗ (1 8 0 / M PI) ;

91 }

92

132 APPENDIX B. FREE THROW ANALYZER CODE

93 / / This i s our thread funct ion t h a t grabs frames from the camera . I t has two

94 / / s t a t e s . In the f i r s t the next a v a i l a b l e frame i s automat i ca l ly put a t the

95 / / f r o n t of the queue . In the second i t grabs every frame and puts them on the

96 / / queue .

97 void grabFrames () {

98 cv : : Mat inputImage ;

99 i n t frameSwitch = 0 ;

100 cv : : VideoCapture cap = cv : : VideoCapture (FLAGS camera) ;

101 std : : cout << ”FPS : ” << cap . get (CV CAP PROP FPS) << std : : endl ;

102 std : : cout << ”Width : ” << cap . get (CV CAP PROP FRAME WIDTH) << std : : endl ;

103 std : : cout << ” Height : ” << cap . get (CV CAP PROP FRAME HEIGHT) << std : : endl ;

104 while (1) {

105 cap >> inputImage ;

106 / / Records every frame in a shot .

107 i f (recordingFrames > 0) {

108 std : : cout << ” Recording frame ” << (FLAGS frameCount − recordingFrames) << std : :

endl ;

109 frame queue . push (inputImage . c lone ()) ;

110 rf m . lock () ;

111 recordingFrames −−;

112 rf m . unlock () ;

113 }

114 / / Puts the newest frame at the top of the queue .

115 e l s e i f ((recordingFramesToProcess == 0)) {

116 while (frame queue . g e t s i z e () >= 1) {

117 frame queue . pop () ;

118 }

119 frame queue . push (inputImage . c lone ()) ;

120 }

121 }

122 }

123

124 / / This i s our process ing thread funct ion . I t e s t i m a t e s poses f o r frames ,

125 / / c o n t r o l s key inputs , and a l s o saves pose data f o r recorded shots .

126 void processFrames () {

127 op : : log (”Web Cam Test ” , op : : P r i o r i t y : : High) ;

APPENDIX B. FREE THROW ANALYZER CODE 133

128 op : : check (0 <= FLAGS logging level && FLAGS logging level <= 255 , ”Wrong

l o g g i n g l e v e l value . ” , LINE , FUNCTION , F I L E) ;

129 op : : ConfigureLog : : s e t P r i o r i t y T h r e s h o l d ((op : : P r i o r i t y) FLAGS logging level) ;

130 op : : log (”” , op : : P r i o r i t y : : Low, LINE , FUNCTION , F I L E) ;

131 const auto outputSize = op : : f l agsToPoint (FLAGS output resolution , ”−1x−1”) ;

132 const auto net InputS ize = op : : f l agsToPoint (FLAGS net resolution , ”−1x368 ”) ;

133 const auto poseModel = op : : flagsToPoseModel (FLAGS model pose) ;

134 i f (FLAGS scale gap <= 0 . && FLAGS scale number > 1)

135 op : : e r r o r (” Incompatible f l a g c o n f i g u r a t i o n : sca le gap must be g r e a t e r than 0 or

scale number = 1 . ” , LINE , FUNCTION , F I L E) ;

136

137 op : : log (”” , op : : P r i o r i t y : : Low, LINE , FUNCTION , F I L E) ;

138 op : : Sca leAndSizeExtractor sca leAndSizeExtrac tor (net InputSize , outputSize ,

FLAGS scale number , FLAGS scale gap) ;

139 op : : CvMatToOpInput cvMatToOpInput ;

140 op : : CvMatToOpOutput cvMatToOpOutput ;

141 op : : PoseExtrac torCaf fe poseExtrac torCaf fe {poseModel , FLAGS model folder ,

FLAGS num gpu start } ;

142 op : : OpOutputToCvMat opOutputToCvMat ;

143 poseExtrac torCaf fe . i n i t i a l i z a t i o n O n T h r e a d () ;

144

145 const auto& poseBodyPartMappingCoco = op : : getPoseBodyPartMapping (op : : PoseModel : :

COCO 18) ;

146 const auto& poseBodyPartPairsCoco = op : : g e t P o s e P a r t P a i r s (op : : PoseModel : : BODY 18) ;

147

148 std : : ofstream s h o t F i l e ;

149 cv : : Mat inputImage ;

150 cv : : Mat outputImage ;

151 char key ;

152 bool poseEstimation = t rue ;

153 f l o a t i n t e r v a l = 7 . 5 ;

154 i n t poseCountdown = −1;

155 std : : s t r i n g fileName ;

156 std : : s t r i n g videoFileName ;

157

158 std : : map<std : : s t r i n g , s td : : tuple< f l o a t , f l o a t >> keyPointPos i t ions ;

134 APPENDIX B. FREE THROW ANALYZER CODE

159 std : : map<std : : s t r i n g , s td : : tuple<std : : tuple< f l o a t , f l o a t > , s td : : tuple< f l o a t , f l o a t

>>> bodySegments ;

160 std : : map<std : : s t r i n g , f l o a t > j o i n t A ng l e s ;

161 std : : map<std : : s t r i n g , f l o a t > s t a r t P o s e ;

162

163 cv : : namedWindow(” Monitoring Window”) ;

164 while (key != ’ q ’) {

165 inputImage = frame queue . pop () ;

166 cv : : r e s i z e (inputImage , inputImage , cv : : S ize () , 1 . 0 , 1 . 0) ;

167 const op : : Point<in t > imageSize { inputImage . co ls , inputImage . rows } ;

168 std : : vector<double> scaleInputToNetInputs ;

169 std : : vector<op : : Point<in t >> net InputS izes ;

170 double scaleInputToOutput ;

171 i n t numberPeopleDetected = 0 ;

172 op : : Point<in t > outputResolut ion ;

173 std : : t i e (scaleInputToNetInputs , net InputS izes , scaleInputToOutput ,

outputResolut ion) = sca leAndSizeExtrac tor . e x t r a c t (imageSize) ;

174 const auto netInputArray = cvMatToOpInput . createArray (inputImage ,

scaleInputToNetInputs , ne t InputS izes) ;

175 auto outputArray = cvMatToOpOutput . createArray (inputImage , scaleInputToOutput ,

outputResolut ion) ;

176 i f (poseEstimation) {

177 poseExtrac torCaf fe . forwardPass (netInputArray , imageSize , scaleInputToNetInputs) ;

178 const auto poseKeypoints = poseExtrac torCaf fe . getPoseKeypoints () ;

179 outputImage = opOutputToCvMat . formatToCvMat (outputArray) ;

180 numberPeopleDetected = poseKeypoints . g e t S i z e (0) ;

181 const auto numberBodyParts = poseKeypoints . g e t S i z e (1) ;

182 i f (numberPeopleDetected > 0) {

183 f o r (i n t i =0; i < numberBodyParts ; i ++) {

184 const auto baseIndex = poseKeypoints . g e t S i z e (2) ∗ (0 ∗ numberBodyParts + i) ;

185 const auto x1 = poseKeypoints [baseIndex] ;

186 const auto y1 = poseKeypoints [baseIndex + 1] ;

187 std : : tuple< f l o a t , f l o a t > temp (x1 , y1) ;

188 keyPointPos i t ions [poseBodyPartMappingCoco . a t (i)] = temp ;

189 i f ((x1 > 0) && (y1 > 0)) {

190 cv : : c i r c l e (outputImage , cv : : Point (x1 , y1) , 5 , cv : : S c a l a r (1 0 0 , 100 , 200) ,

8) ;

APPENDIX B. FREE THROW ANALYZER CODE 135

191 }

192 }

193

194 f o r (i n t i =0; i < poseBodyPartPairsCoco . s i z e () ; i = i + 2) {

195 std : : tuple<std : : tuple< f l o a t , f l o a t > , s td : : tuple< f l o a t , f l o a t >> temp (

keyPointPos i t ions [poseBodyPartMappingCoco . a t (poseBodyPartPairsCoco [i])] ,

keyPointPos i t ions [poseBodyPartMappingCoco . a t (poseBodyPartPairsCoco [i + 1])]) ;

196 bodySegments [poseBodyPartMappingCoco . a t (poseBodyPartPairsCoco [i]) + ” − ” +

poseBodyPartMappingCoco . a t (poseBodyPartPairsCoco [i + 1])] = temp ;

197 }

198

199 j o i n t An g l e s [” LShoulder ”] = findAngle (bodySegments [”Neck − LShoulder”] ,

bodySegments [”Neck − Nose”]) ;

200 j o i n t An g l e s [”RShoulder”] = findAngle (bodySegments [”Neck − RShoulder”] ,

bodySegments [”Neck − Nose”]) ;

201 j o i n t An g l e s [”LArm”] = findAngle (bodySegments [”Neck − LShoulder”] , bodySegments

[”LShoulder − LElbow”]) ;

202 j o i n t An g l e s [”RArm”] = findAngle (bodySegments [”Neck − RShoulder”] , bodySegments

[”RShoulder − RElbow”]) ;

203 j o i n t An g l e s [”LElbow”] = findAngle (bodySegments [” LShoulder − LElbow”] ,

bodySegments [”LElbow − LWrist ”]) ;

204 j o i n t An g l e s [”RElbow”] = findAngle (bodySegments [”RShoulder − RElbow”] ,

bodySegments [”RElbow − RWrist”]) ;

205 j o i n t An g l e s [”RBody”] = findAngle (bodySegments [”Neck − Nose”] , bodySegments [”

Neck − RHip”]) ;

206 j o i n t An g l e s [”LBody”] = findAngle (bodySegments [”Neck − Nose”] , bodySegments [”

Neck − LHip”]) ;

207 j o i n t An g l e s [”RHip”] = findAngle (bodySegments [”Neck − RHip”] , bodySegments [”

RHip − RKnee”]) ;

208 j o i n t An g l e s [”LHip”] = findAngle (bodySegments [”Neck − LHip”] , bodySegments [”

LHip − LKnee”]) ;

209 j o i n t An g l e s [”RKnee”] = findAngle (bodySegments [”RHip − RKnee”] , bodySegments [”

RKnee − RAnkle”]) ;

210 j o i n t An g l e s [”LKnee”] = findAngle (bodySegments [”LHip − LKnee”] , bodySegments [”

LKnee − LAnkle”]) ;

211

212 f o r (auto const& item : bodySegments) {

136 APPENDIX B. FREE THROW ANALYZER CODE

213 f l o a t x1 = std : : get <0>(s td : : get <0>(item . second)) ;

214 f l o a t y1 = std : : get <1>(s td : : get <0>(item . second)) ;

215 f l o a t x2 = std : : get <0>(s td : : get <1>(item . second)) ;

216 f l o a t y2 = std : : get <1>(s td : : get <1>(item . second)) ;

217 i f ((x1 > 0) && (y1 > 0) && (x2 > 0) && (y2 > 0)) {

218 cv : : l i n e (outputImage , cv : : Point (x1 , y1) , cv : : Point (x2 , y2) , cv : : S c a l a r

(1 0 0 , 200 , 100) , 3) ;

219 }

220 }

221

222 / / Processes frame from a recorded shot and saves the data .

223 i f (recordingFramesToProcess > 0) {

224 std : : cout << ” Process ing frame ” + std : : t o s t r i n g (FLAGS frameCount −

recordingFramesToProcess) << std : : endl ;

225 f o r (auto const& item : j o i n t A n gl e s) {

226 s h o t F i l e << item . second << ” ” ;

227 }

228 s h o t F i l e << std : : endl ;

229 rf2p m . lock () ;

230 recordingFramesToProcess −−;

231 rf2p m . unlock () ;

232 / / At the end of the shot check i f i t i s va l id and i f i t was made .

233 i f (recordingFramesToProcess == 0) {

234 std : : cout << ”Was t h a t a shot ? [y / n] : ” ;

235 char shot ;

236 std : : c in >> shot ;

237 while ((shot != ’ y ’) && (shot != ’n ’)) {

238 std : : cout << ”Was t h a t a shot ? [y / n] : ” ;

239 std : : c in >> shot ;

240 }

241 / / Get r id of i n v a l i d shot data , reduces the margin of e r r o r on the

242 / / pose check .

243 i f (shot == ’n ’) {

244 s h o t F i l e . c l o s e () ;

245 remove (fileName . c s t r ()) ;

246 std : : cout << ”Reducing accuracy i n t e r v a l on checking shot pose . ” << std

: : endl ;

APPENDIX B. FREE THROW ANALYZER CODE 137

247 std : : cout << ” I f shots continue to be i n c o r r e c t l y detected , r e s e t shot

pose . ” << std : : endl ;

248 i n t e r v a l = i n t e r v a l ∗ 0 . 9 ;

249 }

250 e l s e {

251 std : : cout << ”Make? [y / n] : ” ;

252 char made ;

253 std : : c in >> made ;

254 while ((made != ’ y ’) && (made != ’n ’)) {

255 std : : cout << ”Make? [y / n] : ” ;

256 std : : c in >> made ;

257 }

258 s h o t F i l e << made << std : : endl ;

259 s h o t F i l e . c l o s e () ;

260 / / shotVideo . r e l e a s e () ;

261 }

262 }

263 }

264 e l s e {

265 std : : cout << std : : endl ;

266 f o r (auto const& item : j o i n t A n gl e s) {

267 std : : cout << item . f i r s t << ” : ” << item . second << std : : endl ;

268 }

269 }

270 }

271 }

272 e l s e {

273 outputImage = opOutputToCvMat . formatToCvMat (outputArray) ;

274 }

275

276 / / I f the pose i s c l o s e to the s t a r t pose , record a shot .

277 i f ((poseCountdown == −1) && (recordingFramesToProcess == 0) && (checkAgains tS tar t

(s ta r tPose , jo intAngles , i n t e r v a l))) {

278 rf2p m . lock () ;

279 recordingFramesToProcess = FLAGS frameCount ;

280 rf2p m . unlock () ;

281 rf m . lock () ;

138 APPENDIX B. FREE THROW ANALYZER CODE

282 recordingFrames = FLAGS frameCount ;

283 rf m . unlock () ;

284 auto t = std : : time (n u l l p t r) ;

285 auto tm = ∗ std : : l o c a l t i m e (& t) ;

286 std : : os t r ings t ream oss ;

287 oss << std : : put t ime (&tm , ”%d−%m−%y−−%H−%M−%S”) ;

288 fileName = ” SavedShots / ” + oss . s t r () + ” . t x t ” ;

289 videoFileName = ” SavedShotsVideos / ” + oss . s t r () + ” . avi ” ;

290 s h o t F i l e . open (fileName) ;

291 f o r (auto const& item : j o i n t A n gl e s) {

292 s h o t F i l e << item . f i r s t << ” ” ;

293 }

294 s h o t F i l e << std : : endl ;

295 }

296

297 cv : : r e s i z e (outputImage , outputImage , cv : : S ize () , 1 . 5 , 1 . 5) ;

298 cv : : imshow (” Monitoring Window” , outputImage) ;

299 key = cv : : waitKey (1) ;

300 / / S t a r t pose countdown .

301 i f ((key == ’ s ’)) {

302 poseCountdown = 3 0 ;

303 }

304 / / Toggles pose es t imat ion .

305 e l s e i f ((key == ’ e ’)) {

306 i f (poseEstimation) {

307 poseEstimation = f a l s e ;

308 }

309 e l s e {

310 poseEstimation = t rue ;

311 }

312 }

313

314 / / At the end of a s t a r t pose timer , check i f the pose i s c o r r e c t .

315 i f (poseCountdown == 0) {

316 std : : cout << ” Correct ? [y / n] : ” ;

317 char check ;

318 std : : c in >> check ;

APPENDIX B. FREE THROW ANALYZER CODE 139

319 while ((check != ’ y ’) && (check != ’n ’)) {

320 std : : cout << ” Correct ? [y / n] : ” ;

321 std : : c in >> check ;

322 }

323 i f (check == ’ y ’) {

324 s t a r t P o s e = j o i n t A ng l e s ;

325 }

326 poseCountdown−−;

327 }

328 e l s e i f (poseCountdown > 0) {

329 poseCountdown−−;

330 }

331 }

332 }

333

334 / / Main driver , i n i t i a l i z e s both the frame grabbing thread and the process ing

335 / / thread .

336 i n t main (i n t argc , char ∗ argv []) {

337 g f l a g s : : ParseCommandLineFlags(&argc , &argv , t rue) ;

338

339 std : : thread prod (grabFrames) ;

340 std : : thread cons (processFrames) ;

341

342 prod . j o i n () ;

343 cons . j o i n () ;

344 }

140 APPENDIX B. FREE THROW ANALYZER CODE

Appendix C

Clustering Code

C.1 FreeThrowClustering.py

1 # FreeThrowClustering . py

2 # Colby J e f f r i e s

3

4 # Modules

5 import pandas as pd

6 import os

7 import numpy as np

8 import m a t p l o t l i b . pyplot as p l t

9 from statsmodels . nonparametric . smoothers lowess import lowess

10 from scipy . c l u s t e r . h ierarchy import l inkage , dendrogram , f c l u s t e r

11 from scipy . s p a t i a l . d i s t a n c e import pdist , squareform

12 import mlpy

13

14 # Generate a matrix of d i s t a n c e s between shots using dynamic time warping

15 # with squared Euclidean d i s t a n c e .

16 def dtw matrix (m) :

17 return m = []

18 f o r i in range (len (m)) :

19 temp = []

141

142 APPENDIX C. CLUSTERING CODE

20 f o r j in range (len (m)) :

21 temp . append (mlpy . dtw std (m[i] , m[j] , squared=True))

22

23 return m . append (temp)

24

25 return return m

26

27 shotDirec tory = ’ 02−21 FreeThrows ’

28 columns = [’LArm ’ , ’RArm ’ , ’LBody ’ , ’RBody ’ , ’ LElbow ’ , ’RElbow ’ ,

29 ’LHip ’ , ’RHip ’ , ’ LKnee ’ , ’RKnee ’ , ’ LShoulder ’ , ’ RShoulder ’]

30 c o l o r l i s t = [’ g ’ , ’ r ’ , ’ c ’ , ’m’ , ’ y ’ , ’ k ’]

31

32 complete data = []

33 combined data = []

34 make data = []

35 miss data = []

36

37 # I t e r a t e through a l l of the shots in the d i r e c t o r y .

38 f o r f i l e in os . l i s t d i r (shotDirec tory) :

39 df = pd . read csv (shotDirec tory + ’ / ’ + f i l e , sep= ’ ’)

40 columns = l i s t (df) [: −1]

41 # Ensure t h a t the data i s of the proper length .

42 i f (len (df . index) == 91) :

43 s t a r t P o i n t = 0

44 # Whether or not the shot was made .

45 make = df [’LArm ’] [9 0]

46 # Grab a l l of the r e l e v a n t data .

47 RKnee = df [’RKnee ’] . values . t o l i s t () [: −1]

48 RArm = df [’RArm ’] . values . t o l i s t () [: −1]

49 RElbow = df [’RElbow ’] . values . t o l i s t () [: −1]

50 RBody = df [’RBody ’] . values . t o l i s t () [: −1]

51 # Find the f i r s t point in the shot where the RArm angle

52 # i s g r e a t e r than 1 2 0 . This w i l l be the s t a r t point

53 # of the shot .

54 f o r i in range (len (RArm)) :

55 i f (RArm[i] > 120) :

56 s t a r t P o i n t = i

APPENDIX C. CLUSTERING CODE 143

57 break

58

59 # Ensure t h a t there are no n u l l values .

60 check = Fa lse

61 f o r i in range (len (RKnee)) :

62 i f pd . i s n u l l (RKnee [i]) :

63 check = True

64

65 i f pd . i s n u l l (RArm[i]) :

66 check = True

67

68 i f pd . i s n u l l (RElbow [i]) :

69 check = True

70

71 i f pd . i s n u l l (RBody [i]) :

72 check = True

73

74

75 i f not check :

76 # Normalize the data so i t i s from the s t a r t of

77 # the shot through the next 40 frames .

78 RKnee = RKnee [s t a r t P o i n t : s t a r t P o i n t +40]

79 RArm = RArm[s t a r t P o i n t : s t a r t P o i n t +40]

80 RElbow = RElbow [s t a r t P o i n t : s t a r t P o i n t +40]

81 RBody = RBody [s t a r t P o i n t : s t a r t P o i n t +40]

82 # Smooth the data using Lowess smoothing .

83 x = np . arange (len (RKnee))

84 smoothed = lowess (RKnee , x , i s s o r t e d=True , f r a c =0 .1 , i t =0)

85 RKnee = l i s t (smoothed [: , 1])

86 smoothed = lowess (RArm, x , i s s o r t e d=True , f r a c =0 .1 , i t =0)

87 RArm = l i s t (smoothed [: , 1])

88 smoothed = lowess (RElbow , x , i s s o r t e d=True , f r a c =0 .1 , i t =0)

89 RElbow = l i s t (smoothed [: , 1])

90 smoothed = lowess (RBody , x , i s s o r t e d=True , f r a c =0 .1 , i t =0)

91 RBody = l i s t (smoothed [: , 1])

92 # Concatenate a l l of the data i n t o a s i n g l e

93 # long time s e r i e s .

144 APPENDIX C. CLUSTERING CODE

94 f u l l d a t a = []

95 f u l l d a t a . extend (RKnee)

96 f u l l d a t a . extend (RArm)

97 f u l l d a t a . extend (RElbow)

98 f u l l d a t a . extend (RBody)

99 i f make == ’ y ’ :

100 make data . append (f u l l d a t a)

101 e l s e :

102 miss data . append (f u l l d a t a)

103

104 combined data . append (f u l l d a t a)

105 complete data . append ((f u l l d a t a , make))

106

107 # Generate f i g u r e of f u l l concatenated data .

108 p l t . f i g u r e (’ Concatenated RKnee , RArm, RElbow , and RBody Angles ’)

109 p l t . s u p t i t l e (’ Concatenated RKnee , RArm, RElbow , and RBody Angles ’)

110 p l t . x l a b e l (’ Sequence P o s i t i o n ’)

111 p l t . y l a b e l (’ Angle ’)

112 f o r i in complete data :

113 x = np . arange (len (i [0]))

114 i f i [1] == ’ y ’ :

115 p l t . p l o t (x , i [0] , ’ b ’)

116 e l s e :

117 p l t . p l o t (x , i [0] , ’ r ’)

118

119 # Ca l cu l a te cos ine d i s t a n c e s between shots .

120 d a t a d i s t = pdis t (combined data , ’ cos ine ’)

121 # Generate c l u s t e r i n g data .

122 l ink mat = l inkage (d a t a d i s t)

123

124 # Generate f igure , p l o t the dendogram and show i t .

125 p l t . f i g u r e (’Make and Miss Cosine Distance Dendogram ’)

126 p l t . s u p t i t l e (’Make and Miss Cosine Distance Dendogram ’)

127 dendrogram (link mat , l a b e l s =[x [1] f o r x in complete data])

128 p l t . x l a b e l (’ Shot Outcome (Made?) ’)

129 p l t . y l a b e l (’ Cosine Distance ’)

130 p l t . show (block=Fa lse)

APPENDIX C. CLUSTERING CODE 145

131

132 d a t a d i s t = pdis t (make data , ’ cos ine ’)

133 l ink mat = l inkage (d a t a d i s t)

134 # The d i s t a n c e threshold i s t h a t used by the dendogram .

135 c l u s t e r s = f c l u s t e r (l ink mat , 0 . 7 ∗np . max(l ink mat [: , 2]) , ’ d i s t a n c e ’)

136 c l u s t e r d a t a = []

137 f o r i in range (max(c l u s t e r s)) :

138 c l u s t e r d a t a . append ([])

139

140 f o r i in range (len (c l u s t e r s)) :

141 c l u s t e r d a t a [c l u s t e r s [i] − 1] . append (make data [i])

142

143 p l t . f i g u r e (’Make Cosine Clus ter Representa t ives ’)

144 p l t . s u p t i t l e (’Make Cosine Clus ter Representa t ives ’)

145 p l t . x l a b e l (’ Time ’)

146 p l t . y l a b e l (’ Angle ’)

147 f o r i in range (len (c l u s t e r d a t a)) :

148 i f len (c l u s t e r d a t a [i]) > 1 :

149 temp = [sum(x) f o r x in zip (∗ c l u s t e r d a t a [i])]

150 temp = [x / len (c l u s t e r d a t a [i]) f o r x in temp]

151 p l t . p l o t (np . arange (len (temp)) , temp , c o l o r l i s t [i % len (c o l o r l i s t)])

152

153 p l t . show (block=Fa lse)

154

155 p l t . f i g u r e (’Make Cosine Distance Dendogram ’)

156 p l t . s u p t i t l e (’Make Cosine Distance Dendogram ’)

157 dendrogram (link mat , l a b e l s =[’ y ’ f o r x in range (len (make data))])

158 p l t . x l a b e l (’ Shot Outcome (Made?) ’)

159 p l t . y l a b e l (’ Cosine Distance ’)

160 p l t . show (block=Fa lse)

161

162 d a t a d i s t = pdis t (miss data , ’ cos ine ’)

163 l ink mat = l inkage (d a t a d i s t)

164 c l u s t e r s = f c l u s t e r (l ink mat , 0 . 7 ∗np . max(l ink mat [: , 2]) , ’ d i s t a n c e ’)

165 c l u s t e r d a t a = []

166 f o r i in range (max(c l u s t e r s)) :

167 c l u s t e r d a t a . append ([])

146 APPENDIX C. CLUSTERING CODE

168

169 f o r i in range (len (c l u s t e r s)) :

170 c l u s t e r d a t a [c l u s t e r s [i] − 1] . append (miss data [i])

171

172 p l t . f i g u r e (’ Miss Cosine Clus ter Representa t ives ’)

173 p l t . s u p t i t l e (’ Miss Cosine Clus ter Representa t ives ’)

174 p l t . x l a b e l (’ Time ’)

175 p l t . y l a b e l (’ Angle ’)

176 f o r i in range (len (c l u s t e r d a t a)) :

177 i f len (c l u s t e r d a t a [i]) > 1 :

178 temp = [sum(x) f o r x in zip (∗ c l u s t e r d a t a [i])]

179 temp = [x / len (c l u s t e r d a t a [i]) f o r x in temp]

180 p l t . p l o t (np . arange (len (temp)) , temp , c o l o r l i s t [i % len (c o l o r l i s t)])

181

182 p l t . show (block=Fa lse)

183

184 p l t . f i g u r e (’ Miss Cosine Distance Dendogram ’)

185 p l t . s u p t i t l e (’ Miss Cosine Distance Dendogram ’)

186 dendrogram (link mat , l a b e l s =[’n ’ f o r x in range (len (miss data))])

187 p l t . x l a b e l (’ Shot Outcome (Made?) ’)

188 p l t . y l a b e l (’ Cosine Distance ’)

189 p l t . show (block=Fa lse)

190

191 # Ca l cu l a te d i s t a n c e s between shots using dynamic time warping

192 # and squared Euclidean d i s t a n c e .

193 d a t a d i s t = squareform (dtw matrix (combined data))

194 l ink mat = l inkage (d a t a d i s t)

195

196 p l t . f i g u r e (’Make and Miss DTW Dendogram ’)

197 p l t . s u p t i t l e (’Make and Miss DTW Dendogram ’)

198 dendrogram (link mat , l a b e l s =[x [1] f o r x in complete data])

199 p l t . x l a b e l (’ Shot Outcome (Made?) ’)

200 p l t . y l a b e l (’ Squared Euclidean Distance ’)

201 p l t . show (block=Fa lse)

202

203 d a t a d i s t = squareform (dtw matrix (make data))

204 l ink mat = l inkage (d a t a d i s t)

APPENDIX C. CLUSTERING CODE 147

205

206 p l t . f i g u r e (’Make DTW Dendogram ’)

207 p l t . s u p t i t l e (’Make DTW Dendogram ’)

208 dendrogram (link mat , l a b e l s =[’ y ’ f o r x in range (len (make data))])

209 p l t . x l a b e l (’ Shot Outcome (Made?) ’)

210 p l t . y l a b e l (’ Squared Euclidean Distance ’)

211 p l t . show (block=Fa lse)

212

213 d a t a d i s t = squareform (dtw matrix (miss data))

214 l ink mat = l inkage (d a t a d i s t)

215

216 p l t . f i g u r e (’ Miss DTW Dendogram ’)

217 p l t . s u p t i t l e (’ Miss DTW Dendogram ’)

218 dendrogram (link mat , l a b e l s =[’n ’ f o r x in range (len (miss data))])

219 p l t . x l a b e l (’ Shot Outcome (Made?) ’)

220 p l t . y l a b e l (’ Squared Euclidean Distance ’)

221 p l t . show ()

148 APPENDIX C. CLUSTERING CODE

Bibliography

[1] Amcrest technologies. https://amcrest.ca/.

[2] Nba stats. http://stats.nba.com.

[3] Opencv 3.1.0 documentation. https://docs.opencv.org/3.1.0/.

[4] Openpose.

https://github.com/CMU-Perceptual-Computing-Lab/openpose.

[5] Scipy documentation.

https://docs.scipy.org/doc/scipy/reference/index.html.

[6] Stats llc. https://www.stats.com/.

[7] Stats sportvu basketball player tracking.

https://www.stats.com/sportvu-basketball/.

[8] Tesseract documentation.

https://github.com/tesseract-ocr/tesseract.

149

150 BIBLIOGRAPHY

[9] Wikimedia commons.

https://commons.wikimedia.org/wiki/Main_Page.

[10] Zoneminder. https://www.zoneminder.com/.

[11] Lowess. In David Nelson, editor, The Penguin Dictonary of Mathematics.

Penguin, London, Uk, 4th edition, 2008.

[12] Benjamin C. Alamar. Sports Analytics: A Guide for Coaches, Managers, and

Other Decision Makers. Columbia University Press, New York, USA, 2013.

[13] Dana H. Ballard and Christopher M. Brown. Computer Vision.

Prentice-Hall, Englewood Cliffs, USA, 1982.

[14] Simone Bassis, Anna Esposito, and Francesco Carlo Morabito. Recent

Advances of Neural Network Models and Applications Proceedings of the 23rd

Workshop of the Italian Neural Networks Society (SIREN), May 23-25, Vietri

sul Mare, Salerno, Italy. Springer International Publishing, Cham,

Switzerland, 2014.

[15] Jay M. Bennett. Baseball. In Jay M. Bennett, editor, Sports in Statistics,

chapter 2, pages 25–64. Arnold Applications of Statistics, London, UK,

1998.

[16] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime

multi-person 2d pose estimation using part affinity fields. In CVPR, 2017.

[17] Arindam Chaudhuri, Krupa Mandaviya, Pratixa Badelia, and Soumya K

Ghosh. Optical character recognition systems for different languages with soft

computing. Springer, Cham, Switzerland, 2017.

BIBLIOGRAPHY 151

[18] Yoav Freund and Robert E. Schapire. A short introduction to boosting.

Journal of Japanese Society for Artificial Intelligence, 14:771, 1999.

[19] Guojun Gan, Chaoqun Ma, and Jianhong Wu. Data Clustering: Theory,

Algorithms, and Applications. ASA SIAM, Philadelphia and Alexandria,

USA, 2007.

[20] Bill Gerrard. Is the moneyball approach transferable to complex invasion

team sports? Internation Journal of Sport Finance, 2:214–230, 2007.

[21] Helmut Grabner, Michael Grabner, and Horst Bischof. Real-time tracking

via on-line boosting. BMVC, 1:47–56, 2006.

[22] David Held, Sebastian Thrun, and Silvio Savarese. Learning to track at

100 fps with deep regression networks. European Conference on Computer

Vision, 2016.

[23] Jo£o F. Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista.

High-speed tracking with kernelized correlation filters. IEEE

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE

INTELLIGENCE, 2015.

[24] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas. Forward-backward

error: Automatic detection of tracking failures. Internation Conference on

Pattern Recognition, 2010.

[25] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas.

Tracking-learning-detection. Internation Conference on Pattern Recognition,

6(1), 2011.

152 BIBLIOGRAPHY

[26] Jonah Keri. The Extra 2Baseball Team from Worst to First. ESPN Books, New

York, USA, 2011.

[27] Oliver Kramer. Genetic Algorithm Essentials. Springer International

Publishing, Cham, Switzerland, 2017.

[28] Michael Lewis. Moneyball: The Art of Winning an Unfair Game. W. W.

Norton and Company, New York, USA, 2003.

[29] Bernard Marr. A short history of machine learning – every manager

should read. February 2016.

[30] Tom M. Mitchell. Machine Learning. McGraw-Hill Science, New York,

USA, 1997.

[31] Tomas Simon, Hanbyul Joo, Iain Matthews, and Yaser Sheikh. Hand

keypoint detection in single images using multiview bootstrapping. In

CVPR, 2017.

[32] Hal S. Stern. American football. In Jay M. Bennett, editor, Sports in

Statistics, chapter 1, pages 3–24. Arnold Applications of Statistics,

London, UK, 1998.

[33] Richard Szeliski. Computer Vision Algorithms and Applications. Springer,

London, UK, 2011.

[34] Robert L. Wardrop. Basketball. In Jay M. Bennett, editor, Sports in

Statistics, chapter 3, pages 65–82. Arnold Applications of Statistics,

London, UK, 1998.

BIBLIOGRAPHY 153

[35] Shih-En Wei, Varun Ramakrishna, Takeo Kanade, and Yaser Sheikh.

Convolutional pose machines. In CVPR, 2016.

[36] Steven Wu and Luke Bornn. Modeling offensive player movement in

professional basketball. Peerj Preprints, 2017.

	The College of Wooster Libraries
	Open Works
	2018

	Sports Analytics With Computer Vision
	Colby T. Jeffries
	Recommended Citation

	tmp.1521948622.pdf.WNwUJ

