
Aberystwyth University

Generation of Controlled Synthetic Samples and Impact of Hyper-Tuning
Parameters to Effectively Classify the Complex Structure of Overlapping Region
Mahmood, Zafar; Butt, Naveed Anwer; Rehman, Ghani Ur; Zubair, Muhammad; Aslam, Muhammad; Badshah,
Afzal; Jilani, Syeda Fizzah

Published in:
Applied Sciences

DOI:
10.3390/app12168371

Publication date:
2022

Citation for published version (APA):
Mahmood, Z., Butt, N. A., Rehman, G. U., Zubair, M., Aslam, M., Badshah, A., & Jilani, S. F. (2022). Generation
of Controlled Synthetic Samples and Impact of Hyper-Tuning Parameters to Effectively Classify the Complex
Structure of Overlapping Region. Applied Sciences, 12(16), [e8371]. https://doi.org/10.3390/app12168371

Document License
CC BY

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 12. Oct. 2022

https://doi.org/10.3390/app12168371
https://pure.aber.ac.uk/portal/en/persons/syeda-fizzah-jilani(986f756d-5ab9-4f08-ad37-e83d8c537bc7).html
https://pure.aber.ac.uk/portal/en/publications/generation-of-controlled-synthetic-samples-and-impact-of-hypertuning-parameters-to-effectively-classify-the-complex-structure-of-overlapping-region(5e66ac43-2a1d-42eb-8d52-fef9ee7d9e72).html
https://pure.aber.ac.uk/portal/en/publications/generation-of-controlled-synthetic-samples-and-impact-of-hypertuning-parameters-to-effectively-classify-the-complex-structure-of-overlapping-region(5e66ac43-2a1d-42eb-8d52-fef9ee7d9e72).html
https://pure.aber.ac.uk/portal/en/publications/generation-of-controlled-synthetic-samples-and-impact-of-hypertuning-parameters-to-effectively-classify-the-complex-structure-of-overlapping-region(5e66ac43-2a1d-42eb-8d52-fef9ee7d9e72).html
https://doi.org/10.3390/app12168371

Citation: Mahmood, Z.; Butt, N.A.;

Rehman, G.U.; Zubair, M.; Aslam, M.;

Badshah, A.; Jilani, S.F. Generation of

Controlled Synthetic Samples and

Impact of Hyper-Tuning Parameters

to Effectively Classify the Complex

Structure of Overlapping Region.

Appl. Sci. 2022, 12, 8371. https://

doi.org/10.3390/app12168371

Academic Editor: Rubén

Usamentiaga

Received: 3 July 2022

Accepted: 18 August 2022

Published: 22 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Generation of Controlled Synthetic Samples and Impact of
Hyper-Tuning Parameters to Effectively Classify the Complex
Structure of Overlapping Region
Zafar Mahmood 1,†, Naveed Anwer Butt 1,† , Ghani Ur Rehman 2,*,†, Muhammad Zubair 2,†,
Muhammad Aslam 3,† , Afzal Badshah 4,† and Syeda Fizzah Jilani 5,*,†

1 Department of Computer Science, University of Gujrat, Punjab 50700, Pakistan
2 Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak 27000, Pakistan
3 School of Computing Engineering & Physical Sciences, University of West Scotland, Glasgow G72 0LH, UK
4 Department of Computer Science & Software Engineering, International Islamic University Islamabad,

Islamabad 44000, Pakistan; afzal.phdcs120@iiu.edu.pk
5 Department of Physics, Aberystwyth University, Aberystwyth SY23 3BZ, UK
* Correspondence: ghani.rehman@kkkuk.edu.pk (G.U.R.); sfj7@aber.ac.uk (S.F.J.)
† These authors contributed equally to this work.

Abstract: The classification of imbalanced and overlapping data has provided customary insight
over the last decade, as most real-world applications comprise multiple classes with an imbalanced
distribution of samples. Samples from different classes overlap near class boundaries, creating a
complex structure for the underlying classifier. Due to the imbalanced distribution of samples, the
underlying classifier favors samples from the majority class and ignores samples representing the
least minority class. The imbalanced nature of the data—resulting in overlapping regions—greatly
affects the learning of various machine learning classifiers, as most machine learning classifiers are
designed to handle balanced datasets and perform poorly when applied to imbalanced data. To
improve learning on multi-class problems, more expertise is required in both traditional classifiers and
problem domain datasets. Some experimentation and knowledge of hyper-tuning the parameters and
parameters of the classifier under consideration are required. Several techniques for learning from
multi-class problems have been reported in the literature, such as sampling techniques, algorithm
adaptation methods, transformation methods, hybrid methods, and ensemble techniques. In the
current research work, we first analyzed the learning behavior of state-of-the-art ensemble and
non-ensemble classifiers on imbalanced and overlapping multi-class data. After analysis, we used
grid search techniques to optimize key parameters (by hyper-tuning) of ensemble and non-ensemble
classifiers to determine the optimal set of parameters to enhance the learning from a multi-class
imbalanced classification problem, performed on 15 public datasets. After hyper-tuning, 20% of the
dataset samples are synthetically generated to add to the majority class of each respective dataset
to make it more overlapped (complex structure). After the synthetic sample’s addition, the hyper-
tuned ensemble and non-ensemble classifiers are tested over that complex structure. This paper also
includes a brief description of tuned parameters and their effects on imbalanced data, followed by a
detailed comparison of ensemble and non-ensemble classifiers with the default and tuned parameters
for both original and synthetically overlapped datasets. We believe that the underlying paper is
the first kind of effort in this domain, which will furnish various research aspects to with a greater
focus on the parameters of the classifier in the field of learning from imbalanced data problems using
machine-learning algorithms.

Keywords: machine learning algorithm; majority class; minority class; imbalance problem; parameter
hyper-tuning; synthetic sample

Appl. Sci. 2022, 12, 8371. https://doi.org/10.3390/app12168371 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12168371
https://doi.org/10.3390/app12168371
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2709-9894
https://orcid.org/0000-0002-9697-6766
https://orcid.org/0000-0002-3444-4609
https://orcid.org/0000-0002-4751-8574
https://doi.org/10.3390/app12168371
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12168371?type=check_update&version=1

Appl. Sci. 2022, 12, 8371 2 of 29

1. Introduction

Learning from imbalanced data [1] has proven its significance through the efforts
devoted by the research community over the last couple of years. Most real-world applica-
tions such as medical diagnosis, protein classification, activity recognition, target detection,
target detection, microarray research, video streaming, and mining are imbalanced [1].
In an imbalanced distribution, the samples of one class outperform the other class or classes
of samples with numbers, obviously a hurdle for the traditional classifiers to learn from
multi-class problems. Most traditional classifiers [2], such as k-nearest neighbor (kNN),
naive Bayes (NB), artificial neural network (ANN), decision tree (TD), support vector ma-
chine (SVM), and logistic regression (LR) designed for the balanced and linear distribution
of the instances in the training dataset between the classes. In the scenarios, multi-class
imbalance learning requires more expertise and skills, since as with the number of classes
in the problem domain increases, so do the challenges of representing the whole problem
space accurately. Several problems reported in learning from multi-class imbalance data
are the majority and minority class and classes problems [1], issues of overlapping class
boundaries [3], a small sample size in the minority class [4], and small disjuncts issues [5],
which must be taken into account before applying any multi-class imbalance classifier. Dif-
ferent papers discussed these four-fold reasons as a challenge when conventional classifiers
are subject to learning from the imbalanced nature of data.

• Traditional classifiers are well designed and indeed have better performance and accu-
racy over the balanced training set, resulting in sub-optimal classification performance
when applied to imbalanced problems [6].

• With the skewed distribution, the predicted accuracy persuades a bias to the class
having a greater number of samples, by ignoring the rare class instances, even with
the best overall precision produced by the prediction model [7].

• Both the noise and minority class samples are least represented, and the learning
models are sometimes confused with each other, whilst noise may be incorrectly
recognized as minority instances [8].

• Learning from imbalanced distribution is somehow comfortable if the classes are
linearly separable from each other. However, in multi-class imbalanced problems,
minority instances are overlapped with each other’s boundaries where the earlier
likelihood of both the majority and minority classes are nearly equal [9].

Several approaches were reported in the literature to cope with this imbalanced
data problem based on the data level methods [10], algorithm adaptation methods [11],
and ensemble-based methods [12]. However, the majority of these approaches focused
on handling the binary class imbalance problem apparently cannot be directly applied
to multi-class imbalance problems, since the decision boundary involves distinguishing
between more classes. At the data-level method, the original data are amended to relive
the overlapping impact, either by introducing complementary features or data cleansing
methods to separate the overlapping classes or merging overlapping classes to form meta
classes [13]. However, using the data-level approaches exclusively to address the imbalance
and overlapping issues may result in the model overfitting [14] or may lose some useful
information [15]. The fundamental changed algorithm cannot be applied as a general
method to effectively tackle the overlapping issues in algorithm-based techniques, which
modify the current algorithm to deal with the uneven nature of the information and
improve the learning of the underlying classifier [16,17]. The choice of base classifiers,
the decision-making process, the number of classifiers used for the construction of an
ensemble, the accuracy of individual models, the diversity among the individual models
in an ensemble, and the number of classifiers used are some main factors to be carefully
studied in an ensemble-based method [18].

Parameter hyper-tuning [19] in the selected model is the process of ascertaining
some particular parameters to optimize the performance of learning algorithms on a
specific set. Parameter tuning has proven its vital role in improving the accuracy and
overall model performance both for ensemble and non-ensemble classifiers [20,21]. Every

Appl. Sci. 2022, 12, 8371 3 of 29

classifier has its own set of parameters and needs to tune following the different tuning
steps by performing an exhaustive grid search. There are two types of model parameters
in every machine-learning algorithm, conventional parameters and hyper-parameters.
Conventional parameters are optimized during the training phase of the underlying model,
whereas the users, depending upon the problem dataset before the training phase of the
model, set hyper-parameter values. In the more complex structure, i.e., with the increasing
overlapping samples, the needs for the optimal set of parameters become more in order to
maximize the visibility of the minority class samples [22].

The key contribution of the underlying paper is to focus on analyzing the learning
performance of ensemble and non-ensemble classifiers over multi-class imbalanced and
overlapped data. A detailed investigation of ensemble and non-ensemble approaches
was presented to provide deep insight into the nature of multi-class learning strategies.
An exhaustive experiment on the hyper-tuning of six state-of-the-art ensemble and non-
ensemble classifiers, to efficiently address the multi-class imbalance datasets issue and
comprehensively compare and improve their performance, was performed using four
different evaluation metrics for accuracy, namely the overall accuracy (ACC), geometric
mean (G-mean) [23], F-measure [12], and the area under curve (AUC) metrics [24]. As a
third contribution, an algorithm was designed to synthetically generate overlapping sam-
ples in the existing dataset by 20% of the existing samples to make it more complex and
overlap to highlight the impact of parameter tuning. The comparison of ensemble and
non-ensemble classifiers was carried out on 15 publicly available multi-class imbalanced
and overlapped datasets.

The underlying research article is comprised of the following sections. The literature
survey is covered in Section 2. The background of ensemble and non-ensemble-based
methods are covered in Sections 3 and 4. In Section 5, we discussed the hyper-tuning of
the parameters of the used classifiers in Section 6, and Section 7 discusses the algorithm to
synthetically generate the overlapping samples. Section 8 highlights the experimental setup,
dataset, and evaluation methods, Section 9 covers the results and discussion. We compare
the ensemble and non-ensemble approaches in Section 10 and the article is concluded in
Section 11.

2. Related Works

The authors in [25] argued for the significance of ensemble approaches as compared to
the sampling methods and individual classifiers when applied to a multi-class imbalanced
dataset. The authors compared the ensemble-based approach with the non-ensemble to
prove the robustness of ensemble methods. Yao and Wang in [26] combined AdaBoost.NC
and AdaBoost with sampling techniques either augmented with or without the decom-
position techniques to address the multi-class imbalance problem and highlight that the
ensemble approach is more effective than the oversampling and decomposition techniques.
Without class decomposition, AdaBoost.NC shows better performance as compared to
AdaBoost, but with the increasing number of classes, their performance also decreased
gradually. The authors in [26] showed that the shortcomings of sampling methods cannot
be avoided by using standard ensemble approaches if the dataset has multiple classes.
Despite the increasing number of samples in the positive class by adding some samples
through oversampling, the distribution of classes in the data space is still imbalanced, which
is dominated by the majority class. Chawla et al. [27] proposed SMOTEBoost, an ensemble-
based sampling technique to enhance the conventional SMOTE [28] by mingling it with
AdaBoost.M2. The authors applied SMOTE before the base classifier evaluation, and
thus, the new instance’s weight is relative to the numbers of samples in the new dataset.
After producing the new instances, the original instance’s weight is standardized to gen-
erate the new distribution. In every iteration, the instance weight of the minority class
increases. The authors in [29] highlighted the outclass performance of bagging as compared
to boosting in a multi-class and noisy environment. Furthermore, bagging techniques
have to be quickly developed and become more powerful if properly ensemble. Similarly,

Appl. Sci. 2022, 12, 8371 4 of 29

OverBagging [30] combines the data preprocessing and bagging techniques to manage
the class imbalance issue by increasing the positive class cardinality by the duplication
of original examples; at the same time, the instance in the majority of negative class is
considered in every bag to increase multiplicity.

In [31], SMOTEBagging was proposed to counter multi-class imbalance learning is-
sues by creating every individual bag to be expressively diverse. In every iteration during
bag creation, the SMOTE resampling rate is defined and this ratio specifies the positive
class instances randomly resampled from the original dataset, and the remaining positive
class instances are generated by SMOTE. Barandela et al. proposed UnderBagging for the
first time in [31], wherein the negative class instances are arbitrarily condensed at every
bootstrap sample to make it equal to the cardinality of the positive class. The basic, simple
version of undersampling when merged with bagging-based techniques proves that it
is more significant than the more composite solution, such as BalanceCascade [32] and
EasyEnsemble [33]. In [34], the authors highlighted an important problem with the ensem-
ble size and ensemble cardinality (number of component classifiers in the final ensemble),
as it affects the predictive performance, time, and memory for the classification algorithm
when applied to imbalance data and diversity among the component classifier. The boost-
ing ensemble method presented in [35] is one of the prominent methods explicitly based
on the complementarity among the component classifier. Through the boosting process,
a strong learner built from the collection of different weak learners (weak in the sense
of accuracy while being applied on the classification task). In [35], the authors proposed
a new ensemble method, twin bounded weighted relaxed support vector machines (TB-
WRSVM), which is an extension of the weighted relaxed support vector machine (WRSVM)
classifier used for class imbalance problems and outliers. The resulting classifier utilizes
twin bounded support vector machines (TBSVM), which provides a quick classification
method. The authors in [36] have suggested a novel ensemble approach, “Dynamic Ensem-
ble Selection for Multi-class Imbalanced the dataset (DES-MI)” to handle the multi-class
problem’s challenge. To improve learning from multi-class problems, the DES-MI model
first creates a balanced training set before choosing an appropriate classifier. To compare
the accuracy and computational cost of the well-known boosting-based ensemble classifier
Xgboost (ensemble-based method), the authors in [37] looked at its general performance,
efficiency, competence, and effectiveness while taking into account its sensitivity to the
sample size and feature space. The performance of statistical analysis, according to the
authors, is greatly improved when parameterizing Xgboost using a Bayesian approach as
opposed to utilizing “random forests” and “support vector machines” that are operated on
larger sample size.

The authors in [38] described the suitability of data preprocessing techniques to
address the data imbalance issues. The authors of this study are of the opinion that a
balanced training dataset is more robust for improving the overall performance of the
classifier for several base classifiers. Zhang and Mani in [39] proposed a new technique
by achieving undersampling through the kNN classifier. Based on the data features of
the data distribution, four undersampling methods based on kNN are proposed, namely
NearMiss1, NearMiss2, NearMiss3 and the “most distant” method, in which a small subset
of training data is selected to minimize the skewness in the reaming data. The authors
in [40] highlighted that sampling techniques are very clever in dealing with the binary
classification problems with two target variables, facing some difficulties when directly
applied to solve multi-class classification problems. The authors used the “Mahalanobis
Distance-based Over-sampling (MDO)” [41] technique to handle the imbalanced class data
with a mixed attribute, introduce generalized singular value decomposition (GSVD) for
complex and mixed-type data, augmenting with a resampling scheme applied on the mixed
type of attributes to optimize the synthesis of samples. In [42], the authors presented a com-
bination of k-means clustering and “(SMOTE)”, which results in an effective “oversampling
method” and effectively overcomes the imbalance ratio between and within classes and
avoids noise generation. K-means clustering is a three-step method: clustering, filtering,

Appl. Sci. 2022, 12, 8371 5 of 29

and sampling to enhance learning from multi-class classification problems. To address
the imbalance classification problems, the authors combine “random oversampling” and
“random under sampling techniques” in [43] to propose a hybrid sampling SVM approach.
By using the undersampling technique, the samples with the least significance were deleted,
followed by the oversampling technique to generate some samples in the minority class.
In [44], the authors first proposed an optimization classification model (OCM) to deal
with the classification problems using evolutionary computation (EC) techniques. In the
second step, the authors proposed a novel algorithm, the self-adaptive fireworks algorithm
(SaFWA) based on swarm intelligence, to address the optimization problems. To increase
the diversity/range of solutions, four candidate solution generation strategies (CSGSs)
were merged with SaFWA. In [45], the authors highlighted the multi-class problem solution
strategies (decomposition strategies), i.e., transforming imbalance multi-class problems
into several classes and designing a separate classifier for each class (binary decompo-
sition is considered to be the most prominent approach for multi-class decomposition).
The proposed model has the flexibility to discard the non-competent classifier to improve
the robustness of the combination phase. The competency of the classifier is measured by
considering the neighborhood of each sample augmenting with selection criteria (with a
threshold option) for a classifier corresponding to the minority class in this neighborhood.
The authors in [46], proposed the Bayesian learning probabilistic model to improve the per-
formance of Bayesian classification using the combination of a Kalman filter and K-means.
The method is applied to a small dataset just for establishing the fact that the proposed
algorithm can reduce the time for computing the clusters from the data. The authors in [47]
proposed a deep image analysis–based model for glaucoma diagnosis that uses several
features to detect the formation of glaucoma in the retinal fundus. The proposed model
is combined with SVM, KNN, and NB to investigate the various aspects related to the
prediction of glaucoma in retinal fundus images that help the ophthalmologist make better
decisions for the human eye. Some of the prominent existing techniques reported in the
literature are listed in Table 1.

Table 1. Weaknesses and Strengths of Existing techniques in the literature.

Solutions Strength Weakness

Decomposition strategies [45]
Transform imbalance multi-class
problems into several classes and design
a separate classifier for each class.

In the case of multiple classes, handling
individual classifiers for each class is time
consuming.

Optimization classification model (OCM)
using evolutionary computation (EC)
techniques, Self-adaptive Fireworks
Algori3m (SaFWA) based on swarm
intelligence [44]

OCM deals with classification problems,
and SaFWA deals with optimization
problems. To increase the
diversity/range of the solutions, four
candidate solution generation strategies
(CSGSs) merged with SaFWA.

The solution is based on the optimization
and diversity solution, but lacks in
addressing the increasing impact of
overlapping samples.

k-means clustering and (SMOTE) [42]

Results in an effective oversampling
method for overcoming the imbalance
ratio between and within classes and
avoid the noise generation by combining
the undersampling and
oversampling methods.

Both in the oversampling and
undersampling, the samples in the
classes were discarded or increased,
while our focus was on increasing the
samples in the underlying dataset to
minimize visibility.

Mahalanobis distance-based
oversampling (MDO) with generalized
singular value decomposition
(GSVD) [41]

To handle the imbalanced class data with
a mixed attribute introduces generalized
singular value decomposition (GSVD) for
complex and mixed-type data,
augmenting with a resampling scheme
applied on a mixed type of attributes to
optimize the synthesis of samples.

Without the decomposition technique,
the proposed solution is unable to
address overlapping issues.

Appl. Sci. 2022, 12, 8371 6 of 29

Table 1. Cont.

Solutions Strength Weakness

Data preprocessing techniques with
sampling strategies and a KNN classifier
augmenting with different NearMiss and
the “most distant” method [38,39]

A balanced training dataset is more
robust to improve the overall
performance of the classifier for several
base classifiers, where a small subset of
training data is selected to minimize the
skewness in the reaming data.

Focused on preprocessing techniques
rather than on hypertonic and synthetic
overlapping.

Twin bounded weighted relaxed support
vector machines (TBWRSVM) [35]

Handles the imbalance and outlier in the
problem domain.

Well designed for classifying imbalanced
datasets and identifying outlier samples,
but lacking in synthetic overlapping
samples.

SMOTEBagging [31]

The proposed method significantly
counters the multi-class imbalance
learning issues by creating every
individual bag to be expressively diverse.

Only targets the minority class samples to
bring back equality to the majority class.

BalanceCascade [32]

The negative class instances are
arbitrarily condensed at every bootstrap
sample to make it equal to the cardinality
of the positive class.

Only focuses on sampling techniques to
balance the datasets.

Boosting ensemble method [35]

A strong learner is built from the
collection of different weak learners
(weak in the sense of accuracy while
applying the classification task).

Selection of a base learner is a critical job.

3. Ensemble-Based Methods

Ensemble learning, also known as multiple classifier systems, has become an influ-
ential solution overshadowing not only multi-class imbalance learning but also two-class
imbalance problems and standard classification, as discussed in [48] with regard to the
boosting algorithms primarily designed for binary classification. In the literature, different
researchers agreed on the versatility and effectiveness of ensemble-based learning tech-
niques, where several component classifier predictions were combined to make a final
prediction report, improving the performance of individual weak learners with a small
training dataset to build an improved classification-learning model. Ensemble approaches
were initially introduced in [49,50] in the early 1990s, who presented their view in [51] by
arguing that combining multiple classifiers (via an ensemble process) could yield better
performance as compared to individual classifiers. Mathematically [52], the performance
of each individual classifier over dataset D with M classes is given in Equation (1) as:

wi,j =
2p(Ci)

j

|Dj|+ p(Ci)
j + q(Ci)

j

(1)

where Ci represents the performance of an individual classifier with i = 1, 2, 3, N
being evaluated on D and a N ∗M matrix W which is defined as:

W =

W1,1 W1,2 W1,M
W2,1 W2,2 W2,M
WN,1 WN,2 WN,M

 (2)

Each element of w(i,j) is defined in Equation (3), where Dj is the set of instances of

the dataset belonging to the class j, and p(Ci)
j is the number of accurate predications of the

classifiers Ci on Dj, and q(Ci)
j are the false or incorrect predications of Ci that an instance

Appl. Sci. 2022, 12, 8371 7 of 29

belongs to class j. Subsequently, the target class ŷ of each unknown instance x in the test
set is computed by Equation (3):

ŷ = argjmax
N

∑
i=1

wi, jχA(Ci(x) = j (3)

where function argmax returns the value of the corresponding index to the largest value
from the array, A = [1, 2, 3, M] is the set of unique class labels and χA is the character-
istic function which takes into account the prediction j ∈ A of a classifier Ci on an instance x
and creates a vector in which the j coordinate takes a value of 1 and the rest takes the value
of 0. After several alternatives and improved versions for ensemble classifiers, ensemble
methods are nevertheless categorized into three main types, namely boosting, bagging,
and stacking. Through the boosting process, a strong learner is built from the collection of
different weak learners (weak in the sense of accuracy when applied to the classification
task). In boosting-based methods [44], an individual classifier iteratively learns to become
specialized on a specific set of the training dataset. The weighted samples from a subset
of the training dataset were used to train a component classifier in such a way which
emphasizes previously misclassified samples. In boosting methods, experiments piloted
on the training set using different learning models to prompt classifiers to produce output.
The weight assigning concept is used in the boosting process to assign higher weights
or higher costs for each classifier that misclassified the underlying example. Using the
approach of the weighted average, the output of each classifier is updated to generate the
final output [53]. The basic idea of a boosting-based method is to combine the weak learner
to build a strong learner to improve the overall accuracy and performance. Among the
boosting family, AdaBoost [54] and Gradient tree boosting [55] are well-known methods of
boosting ensemble methods. In a boosting-based method, the resulting ensemble model is
defined as the weighted sum of weak learners, as shown in the Equation (4).

SL(.) =
L

∑
l=1

Cl ∗Wl(.) (4)

where cl′s are coefficients and wl′s are weak learners. Using Equation (4) and finding the
best ensemble model is somehow a difficult optimization problem. Instead of using this
model approach, we can use an iterative optimization process to find all the coefficients and
weak learners that give the best overall additive model by adding the weak learners one by
one, looking at each iteration for the best possible pair (coefficient, weak learner) to add to
the current ensemble model. We recurrently define the (sl)

′s as shown in Equation (5):

Sl(.) = Sl−1(.) + Cl ∗Wl(.) (5)

where Cl and Wl are chosen such that Sl is the model that best fits the training data
and therefore is the best possible improvement over S(l−1). We can then denote this in
Equation (6):

(Cl ∗Wl(.)) = argc,w(.)minE(Sl−1(.)) + (Cl ∗Wl(.)) = argc,w(.)min
N

∑
n=1

e(yn, Sl−1(xn)) + c ∗ w(x) (6)

where E(.) is the fitting error of the given model and e(., .) is the loss/error function. Thus,
instead of “globally” optimizing over all the L models in the sum, we approximate the
optimum by optimizing “locally” building and adding the weak learners to the strong
model one by one.

Bagging methods based on bootstrap aggregation minimize the prediction variance
by producing additional examples from the original data for the training set. The training
of several base classifiers was carried out on the bootstrap instances of a refined subset
of the training dataset, and by using the simple aggregation (majority voting), combines
the output of these base classifiers into the final output, thus resulting in a more diverse

Appl. Sci. 2022, 12, 8371 8 of 29

ensemble, a key factor for an ensemble to work efficiently and effectively. A separate
classifier is introduced for each example in the training set, thus having k numbers of a
classifier for each iteration of the training set. From the bagging family, the most prominent
methods reported in the literature are random forest, which is a flexible and easy-to-use
ensemble-based machine-learning algorithm. Most of the time random forest gives very
good results, even without hyper-tuned parameters. Because of its simplicity, it can be
widely used for both regression and classification tasks. A variation of the bagging scheme,
UnderBagging [2], under samples the underlying subset of the instance before the bagging
iteration for multi-class imbalance problems by keeping all the minority class samples
in each iteration. Another variation of bagging schemes is random forest [5], where the
base classifier trained via the bootstrap samples of the underlying training dataset has
been randomly reduced to a small subset of dataset samples. In voting-based ensemble
methods, predictions from various individual models are combined. In the voting method
using an ensemble approach, two or more component models were created separately with
a dataset, following an ensemble model to wrap the previously created models and the
prediction of those models then aggregated. The resulting model was used to predict new
data. Assuming that we have L, bootstrap samples (approximations of L independent
datasets) of size B are denoted in Equation (7):

{z1
1, z1

2, z1
B}, {z2

1, z2
2, z2

B}, {zL
1 , zL

2 , zL
B} (7)

where zl
b ≡ bth observation of the lth bootstrap sample. We can fit L almost independent

weak learners (one on each dataset) as given in Equation (8):

w1(.), w2(.), , wL(.) (8)

All the weak learners of Equation (8) are then combined into some kind of averaging
process to obtain an ensemble model with a lower variance. For example, we can define
our strong model given in Equation (9):

SL(.) = argl=1
k max[card(l | wl(.) = k)] (9)

Apart from accuracy improvements and being accuracy oriented, most of the standard
techniques for creating ensembles face difficulties in identifying the subset of the dataset
with the minority class. To cope with such difficulties, special attention has to pay to
designing ensemble algorithms to handle the class imbalance problem. The effective
combination of imbalanced learning, ensemble learning techniques with a base learner,
and sampling strategies to confront the imbalance class issue put forward many possible
proposals for prominent results in the literature by putting aside the conventional categories
such as cost-based and kernel-based methods in the imbalanced domain [56]. Regardless of
the popularity, versatility, and effectiveness of ensemble methods (by using an independent
baseline classifier) as compared to cost-sensitive and improved algorithm-based methods,
in an ensemble process, however, transforming dissimilar classifiers by ensuring their
stability and regularity using the underlying training dataset is still a crucial factor for
ensured accuracy while dealing with the multi-class classification problems. All the symbols
used in this article are described in Table 2.

Appl. Sci. 2022, 12, 8371 9 of 29

Table 2. Symbol and their description.

Symbol Description

Dj Sample of class j

p(Ci)
j Number of accurate predications of the classifiers i

χA Characteristic function which takes into account the prediction j ∈ A

cl′s Coefficients

wl′s Weak learners

zl
b b-th observation of the l-th bootstrap sample

L Bootstrap samples

C Regularization parameter

λ Kernel width parameter

nestimator Number of trees

lea fsize lea fsize parameters

K Neighbor at k distance

maxdepth Last leaf node of the tree

yi and ŷi Actual value and predicted value of observation i

Ci Class ith sample

Cj Class jth sample

r f i Discriminative ratio

d(−→a ,
−→
b) Distance of two vector (two samples of the classes)

di Average distance

k1 Nearest neighbors

Nei Sample in the target class

MCCount Samples in the majority class

Col Column in the dataset

Loc Location of the sample

S S Set of synthetic samples

T T Subset of D (multiclass dataset)

ynew New minority

fi Feature listed in dataset

Learningrate and number− o f − tree The boosting parameters directly related to the underlying boosting algorithm

N Total number of observations

E(.) Fitting error

e(., .) Loss/error function

Sl Model that best fits the training data

pcj pck Represent the respective samples in classes cj and ck

µ fi Mean of the fi values across all classes

4. Non-Ensemble-Based Methods

Different research papers have empirically and experimentally reported that the classi-
fication of a balanced dataset is somewhat elementary and comfortable to perform, but it
becomes difficult when the data are not balanced [57]. The standard machine learning

Appl. Sci. 2022, 12, 8371 10 of 29

algorithm assumes a balanced distribution of classes in a subset of the dataset used for
classification; however, the distribution of instances in classes is not uniform in many
real-life situations [58]. Traditional classifiers, initially designed for the classification of
balanced datasets, show a significant performance for the underlying problem of having
a balanced dataset. On the other hand, real-world data are messy with an unequal distri-
bution of samples, where the traditional classifiers fail to properly identify the relevant
target class. Figure 1 shows the imbalanced distribution of samples. This imbalance dis-
tribution of instances causes biases toward the majority group, thus creating difficulty for
the standard learning algorithm to correctly predict an unseen sample. The ignorance of
the minority class will lead to building a poor model, as sometimes, this leased-focused
class carries important information, thus providing an impractical classifier for our pro-
posed use case. Many standard classification algorithms, namely the SVM, ANN, DT, NB
classifier, and KNN, which are designed based on balanced training datasets, become less
effective due to skewed distribution in imbalance classes [59]. Although some of them
can use for a small dataset as imbalanced data, if we apply the traditional algorithms to
multi-class and multi-label problems with an imbalanced dataset, a good performance in
terms of accuracy [60] is not necessarily achieved, as standard algorithms are built with
the assumption that the distribution is balanced. Therefore, when presented with large
imbalanced datasets, these algorithms fail to properly represent the distributive character-
istics of data [1]. Classification problems in many real-world applications and scenarios
involve multiple classes both in a balanced and in an imbalanced dataset. The learning
environment becomes more complex and challenging when the number of classes increases
in the domain and multiple classes overlap with each other’s, making it difficult to establish
a clear decision boundary between any two classes or among the classes.

Figure 1. An example of imbalanced class distribution.

4.1. Support Vector Machine Classifier

Using SVM, in the experiment section, we used both the linear and kernel SVM on
the stated datasets to classify multi-class imbalanced data. The RBF kernel is used for a
decision function in nonlinear SVM [61], as the data are not linearly separable. A set of
parameters [62] that need to be hyper-tuned to improve the performance of kernel SVM on
multi-class imbalance data are C (a regularisation parameter used to manage or balance the
low testing and training error to make a more general algorithm on unseen data), to adjust
the decision boundary curvature and hyperplane shape for the class dividing, the gamma
γ (also known as kernel width parameter), and the decision function (decision function
shape) and assigning any weight to a class or classes. Thes small values of C may cause
the model to estimate constantly and make it difficult to understand the data; on the other
hand, big values of C may cause the model to overfit the training data. Similar to this, the
class splitting hyper-shape planes will change for very large values of γ. If the data in the
dataset are not balanced, class-weight balance is employed. The decision function shape
decides the decomposition strategy, whether to apply one-versus-one or one-versus-rest.
The parameter search range and optimal parameters are shown in Tables 3 and 4.

Appl. Sci. 2022, 12, 8371 11 of 29

4.2. Random Forest Classifier

To improve the overall model performance via the RF classification model, a set of
four parameters needs to be hyper-tuned [63]: the number of nestimator (number of trees),
maximum depth, maximum features, and minimum sample split. With regard to the
number of tree different opinions there are, some researchers have suggested using the
default number of trees to obtain more stable results, whereas some authors argue that a
large number of trees should be used. The maximum depth specifies how long the node
is expended; if it is not specified, then all nodes will be expended until the leaf node.
To achieve the best split, the optimal number of features should be hyper-tuned in the value
for ‘max-features’. ‘Minimum-sample-split’ specifies the splitting criteria of an internal
node. The parameter search range and optimal parameters are shown in Tables 3 and 4.

Table 3. Parameters Tuning of the Selected Classifiers for the 9 Datasets.

Algorithm Tuned Parameter Search Range Best P Dataset

Gradient boosting Number of estimators [100; 150; 200; 250; 300; 400; 500;
600; 800; 1000; 1200] 100

IRIS, Car, Counterceptive
Used Method, Page_Block,
User_Knowledge, Vehicle,
Wine, Volcanoes,
Wall_Following, Nursey

Learning rate [0.01; 0.02; 0.5; 0.1; 0.2; 0.25; 0.3;
0.4; 0.5] 0.5

Min_samples_split [2; 3; 4; 5; 6; 8; 10; 15] 2

Max_tree_depth [3; 4; 5; 6; 7; 8; 9; 10; 12; 15] 4

Random forest Number_of_estimators [50, 120; 150; 200; 220; 250; 300;
350; 600; 700] 200

Max_features [‘log2’; ‘sqrt’; ‘all’] all

Min_samples_leaf [1; 2; 3; 4; 5; 6; 7; 8; 9; 10] 2

Decision Tree ‘max_features’: [‘auto’, ‘sqrt’, ‘log2’, Non] None

Criterion ‘gini’, ‘entropy’ gini

max_depth 1, 20, 2

Splitter best’, ’random best

‘min_samples_split’: [2, 5, 10], 5

‘min_samples_leaf’: [1, 2, 4, 10], 1

KNN n_neighbors’: np.arange (1, 15), 5

weights’: [‘uniform’, ‘distance’], Uniform

leaf_size’ [1, 3, 5] 3

RBF support vector
machine Gamma

2 × 10−15, 2 × 10−13,
2 × 10−11, 2 × 10−9, 2 × 10−7,
2 × 10−5, 2 × 10−3, 2 × 10−1,
2 × 101, 2 × 1031, 0.1, 0.01,
0.001, 1, 10, 50, 100, 200, 500

100

C 2 × 10−1, 2 × 101, 2 × 103,
2 × 105, 0.1, 0.01, 1, 10, 100

0.1

Decision _function_shape [O-vs-O, O-vs-R] O-vs-R

Class_weight Uniform, balanced uniform

Logistic regression Penalty [2, 6, 8, 12, 15, 16] 12

Solver [‘newton-cg’, ‘lbfgs’, ‘liblinear’,
‘sag’, ‘saga’] ‘newton-cg’ For large datasets, ‘sag’

and ‘saga’ will be used

Appl. Sci. 2022, 12, 8371 12 of 29

Table 4. Parameters Tuning of the Selected Classifiers for the 11 Datasets.

Algorithm Tuned Parameter Search Range Best P Dataset

Gradient boosting Number of estimators [100; 150; 200; 250; 300; 400; 500;
600; 800; 1000; 1200] 200

Soybean, Satimage,
Opt_Digits, Glass,
LED_Domain, Ecoli,
Dermatology, Bridges,
Breast_Tissue, Hu-
man_Activity_Recognition

Learning rate [0.01; 0.02; 0.5; 0.1; 0.2; 0.25; 0.3;
0.4; 0.5] 0.1

Min_samples_split [2; 3; 4; 5; 6; 8; 10; 15] 3

Max_tree_depth [3; 4; 5; 6; 7; 8; 9; 10; 12; 15] 8

Random forest Number of estimators [50, 120; 150; 200; 220; 250; 300;
350; 600; 700] 200

Max_number of features [‘log2’; ‘sqrt’; ‘all’] all

Min_samples_leaf [1; 2; 3; 4; 5; 6; 7; 8; 9; 10] 2

Decision tree ‘max_features’: [‘auto’, ‘sqrt’, ‘log2’, None] None

criterion ’gini’, ’entropy’ gini

max_depth 1, 20, 2

splitter ’best’, ’random’ best

‘min_samples_split’: [2, 5, 10], 5

‘min_samples_leaf’: [1, 2, 4, 10], 1

K-NN n_neighbors’: np.arrange (1, 15), 5

weights’: [‘uniform’, ‘distance’], Uniform

leaf_size’ [1, 3, 5] 5

RBF support vector
machine gamma

2 × 10−15, 2 × 10−13,
2 × 10−11, 2 × 10−9, 2 × 10−7,
2 × 10−5, 2 × 103, 2 × 10−1,
2 × 101, 2 × 1031, 0.1, 0.01,
0.001, 1, 10, 50, 100, 200, 500

200

C 2 × 10−1, 2 × 101, 2 × 103,
2 × 105, 0.1, 0.01, 1, 10, 100

0.01

Decision _function_shape [O-vs-O, O-vs-R] O-vs-R

Class_weight Uniform, balanced uniform

Logistic regression penalty [2, 6, 8, 12, 15, 16] 12

solver [‘newton-cg’, ‘lbfgs’, ‘liblinear’,
‘sag’, ‘saga’] ‘newton-cg’ ‘saga’ and ‘sag’ will be

used for a larger dataset

4.3. K-Nearest Neighbor

The basic working procedure of kNN is to find a cluster (subset) of k instances which
is the nearest to the predicted sample in the underlying training space, thus showing the
independence from the structure of the data. The set of parameters [64] that needs to
be tuned to improve the performance of kNN is k, ‘weights’, and ‘lea fsize’. The distance
between two points is calculated using the Euclidean distance function. The class having
majority k-nearest neighbors is the predicted class for the new predicted sample. K is the
key parameter to be tuned (after exhaustive grid search) to obtain a satisfactory result.
Other important parameters are ‘weights’ and ‘lea fsize’, which are weights of two types,
namely uniform and distance; for a better prediction accuracy, the uniform weight is

Appl. Sci. 2022, 12, 8371 13 of 29

considered for the multi-class classification problem, and the ‘lea fsize’ parameter is a key
indicator for the speedy construction, query and memory requirement to store the tree.

4.4. Gradient Boosting Algorithm

The parameters of the boosting-based model [65] are sub-categorized into three types,
namely parameters specific to a tree structure, boosting specific parameters, and miscella-
neous parameters. Since a decision tree is used as a default base learner, parameters specific
to the tree structure are allied with each base learner, for example, the sample (minimum
number) is requisite to split an interior node or the ‘maxdepth’ for each tree. ‘Learningrate’
and ‘number-o f -tree’ are the boosting parameters, directly related to the underlying boost-
ing algorithm.

4.5. Decision Tree Algorithm

Decision trees can apply to both balanced and imbalanced (multi-class) classification
and regression problems; however, it best employs a nonlinear decision, with a pre-defined
class variable or target label. The decision tree enables a predictive classification model with
refined accuracy and precision, and provides better stability to the model with the ease of
classification. During our experiment, we hyper-tuned these six parameters [66] to make a
significant change to the overall performance of the model, and ‘criterion’, ‘maximumdepth’,
‘splitter’, ‘maximumdepth’, ‘minimumsample-split’, ‘minimumsample-lea f ’ and ‘maximum f eatures’.
The criterion function will decide the quality of the split; to decide the split at each node,
the splitter function is used, and how long the tree should grow will be decided by the
maximum depth function, the required sample for an internal node to split will be based on
minimumsamplesplit, the minimumnumbero f sample required at the leaf node will be decided by
the minimum− samplelea f , and maximum f eature f unction determines the number of features
to be considered when looking for the best split.

4.6. Logistic Regression

Logistic regression can be used for both binary and multi-class imbalance prob-
lems [41], although it was initially designed for binary classification, using the one-versus-
rest decomposition strategy or modifying the loss function to cross-entropy loss, and
logistic regression can be used for multi-class classification. To set the logistic regression
for multi-class classification, a parameter called “multi-class” value will be enabled to be
multi-class. For multi-class classification, the training model requires the “one-versus-
rest” decomposition strategy in case the “multi-class” option is set to “OVR’, and if the
“multi-class” option has a “multinomial” value, then “cross-entropy-loss” will be used [67].
The default value of “multi-class” is ‘ovr’, and currently, the ‘multinomial’ can have one
of the four possible values as a solver, namely newton-cg, sag, and lbfgs. During the
multi-class classification using exhaustive grid search, the two following parameters have
proven to be effective for multi-class classification, penalty, and solver with the values,
‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’, and ‘saga’. ‘liblinear’ is a better option for a dataset
that has a lesser number of classes, and if the dataset have a large number of classes ‘saga’
and ‘sag’ are the best choice to use. For multiclass problems, only ‘newton-cg’, ‘sag’, ‘saga’,
and ‘lbfgs’ can handle multinomial loss; ‘liblinear’ is limited to one-versus-rest schemes.

5. Parameter Tuning

Parameter tuning is the process of ascertaining some particular parameters to optimize
the performance of learning algorithms on a specific set [68] to improve the accuracy and
the overall model’s performance both for ensemble and non-ensemble classifiers. Every
classifier has its own set of parameters, and needs to tune following the different tuning
steps by performing an exhaustive grid search. Most of the time, we assess and compare the
underlying models’ performance for the best hyper-parameter settings using the grid search
technique and response surface methodology (RSM). However, some researchers [69] have

Appl. Sci. 2022, 12, 8371 14 of 29

preferred the mean absolute error (MAE) to compare the performance, which is given in
Equation (10):

MAE =
N

∑
i=1

| yi − ŷ |
N

(10)

where yi and ŷi and denote the actual value and predicted value of observation i, respec-
tively, ei denotes the prediction error of observation i, and N denotes the total number of
observations in the data. The lower the MAE, the better the model performance.

In this article for the individual classifier, we tested a series of values using ten-fold
cross-validation [70] and a grid search mechanism for parameter tuning until an optimal
parameter set showing the overall highest classification accuracy and precision for each
classifier was obtained. In the result section, each classifier was compared with and without
tuned parameters on 20 publicly available datasets. The comparison of eight state-of-the-
art classifiers (ensemble and non-ensemble) is highlighted in Tables 5–10. Tables 5 and 6
show the comparison with conventional parameters by showing their overall accuracy,
precision, recall, and f 1score. After carefully observing the different values of the evaluation
matrix, six classifiers, GB, RF, DT, KNN, R-SVM, and LR were selected for hyper-tuning,
based on their overall significant performance for the same datasets. Tables 7 and 8 shows
the comparison of the six selected classifiers after the hyper-tuning of their parameters,
while Tables 9 and 10 show the performance comparison after the synthetically controlled
overlapping and hyper-tuning.

Before the parameter tuning process, a grid of parameters is specified to evaluate
each algorithm and every subset of the parameter; 10-fold cross-validation is performed to
evaluate the model. Within the 10-fold cross-validation, 9-fold cross-validation is used to
train the model and 1-fold cross-validation is used to validate the model. The process of
validation using a grid search is repeated 10 times so that every fold has a fair chance to use
as a validation set and the scores from each run are averaged. To save time and space for
the hyper-tuning process, we divided the twenty datasets into two groups, namely group 1
wherein datasets contain five classes or less, as shown in Table 3; and group 2, wherein
datasets consist of more than 5 classes, as shown in Table 4.

Table 5. Accuracy and precision before hyper-tuning.

Accuracy before Hyper-Tuning Precision before Hyper-Tuning

Datasets GB RF DT KNN R-SVM LR GB RF DT KNN R-SVM LR

IRIS 94.74 97.37 94.74 92.11 92.11 92.11 93.39 96.02 93.39 90.76 90.76 90.76
Glass 94.59 95.32 91.35 94.11 94.11 94.11 93.24 93.97 90 92.76 92.76 92.76
HAR 88.45 87.3 86.2 86.32 86.32 86.32 87.1 85.95 84.85 84.97 84.97 84.97
B_Tissue 95.71 96.57 92.86 88.92 88.92 88.92 94.36 95.22 91.51 87.57 87.57 87.57
Car 86.5 82.89 80.97 81.6 81.6 81.6 85.15 81.54 79.62 80.25 80.25 80.25
CMC 87.21 84.92 81.67 83 83 83 85.86 83.57 80.32 81.65 81.65 81.65
Ecoli 91.98 88.89 88.38 86.86 86.86 86.86 90.63 87.54 87.03 85.51 85.51 85.51
Nursery 82.94 83.67 81.99 88.57 88.57 88.57 81.59 82.32 80.64 87.22 87.22 87.22
Opt_Digits 85.47 86.01 83.19 76.04 76.04 76.04 84.12 84.66 81.84 74.69 74.69 74.69
Page_Block 85.85 83.37 84.41 79.27 79.27 79.27 84.5 82.02 83.06 77.92 77.92 77.92
Satimage 85.53 84.4 85.53 79.66 79.66 79.66 84.18 83.05 84.18 78.31 78.31 78.31
Soyaben 92.35 91.04 89.92 80.65 80.65 80.65 91 89.69 88.57 79.3 79.3 79.3
Vehicle 82.5 83.5 75.36 81.68 81.68 81.68 81.15 82.15 74.01 80.33 80.33 80.33
Volcanoesa 80.81 79 81.9 86.49 86.49 86.49 79.46 77.65 80.55 85.14 85.14 85.14
Wine 96.61 96.61 94.92 78.82 78.82 78.82 95.26 95.26 93.57 77.47 77.47 77.47

Appl. Sci. 2022, 12, 8371 15 of 29

Table 6. Recall and F1-score before hyper-tuning.

Accuracy before Hyper-Tuning Precision before Hyper-Tuning
Datasets GB RF DT KNN R-SVM LR GB RF DT KNN R-SVM LR
IRIS 90.5 93.13 90.5 87.87 87.87 87.87 87.03 89.66 87.03 84.4 84.4 84.4
Glass 90.35 91.08 87.11 89.87 89.87 89.87 86.88 87.61 83.64 86.4 86.4 86.4
HAR 84.21 83.06 81.96 82.08 82.08 82.08 80.74 79.59 78.49 78.61 78.61 78.61
B_Tissue 91.47 92.33 88.62 84.68 84.68 84.68 88 88.86 85.15 81.21 81.21 81.21
Car 82.26 78.65 76.73 77.36 77.36 77.36 78.79 75.18 73.26 73.89 73.89 73.89
CMC 82.97 80.68 77.43 78.76 78.76 78.76 79.5 77.21 73.96 75.29 75.29 75.29
Ecoli 87.74 84.65 84.14 82.62 82.62 82.62 84.27 81.18 80.67 79.15 79.15 79.15
Nursery 78.7 79.43 77.75 84.33 84.33 84.33 75.23 75.96 74.28 80.86 80.86 80.86
Opt_Digits 81.23 81.77 78.95 71.8 71.8 71.8 77.76 78.3 75.48 68.33 68.33 68.33
Page_Block 81.61 79.13 80.17 75.03 75.03 75.03 78.14 75.66 76.7 71.56 71.56 71.56
Satimage 81.29 80.16 81.29 75.42 75.42 75.42 77.82 76.69 77.82 71.95 71.95 71.95
Soyaben 88.11 86.8 85.68 76.41 76.41 76.41 84.64 83.33 82.21 72.94 72.94 72.94
Vehicle 78.26 79.26 71.12 77.44 77.44 77.44 74.79 75.79 67.65 73.97 73.97 73.97
Volcanoesa 76.57 74.76 77.66 82.25 82.25 82.25 73.1 71.29 74.19 78.78 78.78 78.78
Wine 92.37 92.37 90.68 74.58 74.58 74.58 88.9 88.9 87.21 71.11 71.11 71.11

Table 7. Accuracy and Precision after Parameters Hyper-Tuning.

Accuracy before Hyper-Tuning Precision before Hyper-Tuning
Datasets GB RF DT KNN R-SVM LR GB RF DT KNN R-SVM LR
IRIS 95.71 98.34 95.71 93.08 95.08 87.81 94.36 96.99 94.36 91.73 93.73 86.46
Glass 95.56 96.29 92.32 87.29 89.89 85.34 94.21 94.94 90.97 85.94 88.54 83.99
HAR 89.42 88.27 87.17 82.57 83.97 81.31 88.07 86.92 85.82 81.22 82.62 79.96
B_Tissue 96.68 97.54 93.83 87.83 89.54 81.54 95.33 96.19 92.48 86.48 88.19 80.19
Car 87.47 83.86 81.94 77.01 80.24 71.03 86.12 82.51 80.59 75.66 78.89 69.68
CMC 88.18 85.89 82.64 80.63 81.62 75.87 86.83 84.54 81.29 79.28 80.27 74.52
Ecoli 92.95 89.86 89.35 82.65 87.46 81.04 91.6 88.51 88 81.3 86.11 79.69
Nursery 83.91 84.64 82.96 79.79 81.91 71.68 82.56 83.29 81.61 78.44 80.56 70.33
Opt_Digits 86.44 86.98 84.16 81.57 82.57 76.41 85.09 85.63 82.81 80.22 81.22 75.06
Page_Block 86.82 84.34 85.38 73.82 83.12 74.21 85.47 82.99 84.03 72.47 81.77 72.86
Satimage 86.5 85.37 86.5 76.36 83.79 73.53 85.15 84.02 85.15 75.01 82.44 72.18
Soyaben 93.32 92.01 90.89 86.81 89.48 82.56 91.97 90.66 89.54 85.46 88.13 81.21
Vehicle 83.47 84.47 76.33 67.76 78.13 71.47 82.12 83.12 74.98 66.41 76.78 70.12
Volcanoesa 81.78 79.97 82.87 72.85 75.1 69.94 80.43 78.62 81.52 71.5 73.75 68.59
Wine 97.58 97.58 95.89 83.85 89.2 81.89 96.23 96.23 94.54 82.5 87.85 80.54

Table 8. Recall and F1-Score after Parameters Hyper-Tuning.

Accuracy before Hyper-Tuning Precision before Hyper-Tuning
Datasets GB RF DT KNN R-SVM LR GB RF DT KNN R-SVM LR
IRIS 90.87 93.5 90.87 88.24 90.24 82.97 87.8 90.43 87.8 85.17 87.17 79.9
Glass 90.72 91.45 87.48 82.45 85.05 80.5 87.65 88.38 84.41 79.38 81.98 77.43
HAR 84.58 83.43 82.33 77.73 79.13 76.47 81.51 80.36 79.26 74.66 76.06 73.4
B_Tissue 91.84 92.7 88.99 82.99 84.7 76.7 88.77 89.63 85.92 79.92 81.63 73.63
Car 82.63 79.02 77.1 72.17 75.4 66.19 79.56 75.95 74.03 69.1 72.33 63.12
CMC 83.34 81.05 77.8 75.79 76.78 71.03 80.27 77.98 74.73 72.72 73.71 67.96
Ecoli 88.11 85.02 84.51 77.81 82.62 76.2 85.04 81.95 81.44 74.74 79.55 73.13
Nursery 79.07 79.8 78.12 74.95 77.07 66.84 76 76.73 75.05 71.88 74 63.77
Opt_Digits 81.6 82.14 79.32 76.73 77.73 71.57 78.53 79.07 76.25 73.66 74.66 68.5
Page_Block 81.98 79.5 80.54 68.98 78.28 69.37 78.91 76.43 77.47 65.91 75.21 66.3
Satimage 81.66 80.53 81.66 71.52 78.95 68.69 78.59 77.46 78.59 68.45 75.88 65.62
Soyaben 88.48 87.17 86.05 81.97 84.64 77.72 85.41 84.1 82.98 78.9 81.57 74.65
Vehicle 78.63 79.63 71.49 62.92 73.29 66.63 75.56 76.56 68.42 59.85 70.22 63.56
Volcanoesa 76.94 75.13 78.03 68.01 70.26 65.1 73.87 72.06 74.96 64.94 67.19 62.03
Wine 92.74 92.74 91.05 79.01 84.36 77.05 89.67 89.67 87.98 75.94 81.29 73.98

Appl. Sci. 2022, 12, 8371 16 of 29

Table 9. Accuracy and Precision after Parameters Hyper-Tuning and Synthetic Overlapping.

Accuracy before Hyper-Tuning Precision before Hyper-Tuning

Datasets GB RF DT KNN R-SVM LR GB RF DT KNN R-SVM LR

IRIS 95.12 97.75 95.12 92.37 94.37 87.1 93.75 96.38 93.75 91.01 93.01 85.74
Glass 94.97 95.7 91.73 86.58 89.18 84.63 93.6 94.33 90.36 85.22 87.82 83.27
HAR 88.83 87.68 86.58 81.86 83.26 80.6 87.46 86.31 85.21 80.5 81.9 79.24
B_Tissue 96.09 96.95 93.24 87.12 88.83 80.83 94.72 95.58 91.87 85.76 87.47 79.47
Car 86.88 83.27 81.35 76.3 79.53 70.32 85.51 81.9 79.98 74.94 78.17 68.96
CMC 87.59 85.3 82.05 79.92 80.91 75.16 86.22 83.93 80.68 78.56 79.55 73.8
Ecoli 92.36 89.27 88.76 81.94 86.75 80.33 90.99 87.9 87.39 80.58 85.39 78.97
Nursery 83.32 84.05 82.37 79.08 81.2 70.97 81.95 82.68 81 77.72 79.84 69.61
Opt_Digits 85.85 86.39 83.57 80.86 81.86 75.7 84.48 85.02 82.2 79.5 80.5 74.34
Page_Block 86.23 83.75 84.79 73.11 82.41 73.5 84.86 82.38 83.42 71.75 81.05 72.14
Satimage 85.91 84.78 85.91 75.65 83.08 72.82 84.54 83.41 84.54 74.29 81.72 71.46
Soyaben 92.73 91.42 90.3 86.1 88.77 81.85 91.36 90.05 88.93 84.74 87.41 80.49
Vehicle 82.88 83.88 75.74 67.05 77.42 70.76 81.51 82.51 74.37 65.69 76.06 69.4
Volcanoesa 81.19 79.38 82.28 72.14 74.39 69.23 79.82 78.01 80.91 70.78 73.03 67.87
Wine 96.99 96.99 95.3 83.14 88.49 81.18 95.62 95.62 93.93 81.78 87.13 79.82

Table 10. Recall and F1-Score after Parameters Hyper-Tuning and Synthetic Overlapping.

Accuracy before Hyper-Tuning Precision before Hyper-Tuning

Datasets GB RF DT KNN R-SVM LR GB RF DT KNN R-SVM LR

IRIS 90.22 92.85 90.22 87.47 89.47 82.2 87.11 89.74 87.11 84.36 86.36 79.09
Glass 90.07 90.8 86.83 81.68 84.28 79.73 86.96 87.69 83.72 78.57 81.17 76.62
HAR 83.93 82.78 81.68 76.96 78.36 75.7 80.82 79.67 78.57 73.85 75.25 72.59
B_Tissue 91.19 92.05 88.34 82.22 83.93 75.93 88.08 88.94 85.23 79.11 80.82 72.82
Car 81.98 78.37 76.45 71.4 74.63 65.42 78.87 75.26 73.34 68.29 71.52 62.31
CMC 82.69 80.4 77.15 75.02 76.01 70.26 79.58 77.29 74.04 71.91 72.9 67.15
Ecoli 87.46 84.37 83.86 77.04 81.85 75.43 84.35 81.26 80.75 73.93 78.74 72.32
Nursery 78.42 79.15 77.47 74.18 76.3 66.07 75.31 76.04 74.36 71.07 73.19 62.96
Opt_Digits 80.95 81.49 78.67 75.96 76.96 70.8 77.84 78.38 75.56 72.85 73.85 67.69
Page_Block 81.33 78.85 79.89 68.21 77.51 68.6 78.22 75.74 76.78 65.1 74.4 65.49
Satimage 81.01 79.88 81.01 70.75 78.18 67.92 77.9 76.77 77.9 67.64 75.07 64.81
Soyaben 87.83 86.52 85.4 81.2 83.87 76.95 84.72 83.41 82.29 78.09 80.76 73.84
Vehicle 77.98 78.98 70.84 62.15 72.52 65.86 74.87 75.87 67.73 59.04 69.41 62.75
Volcanoesa 76.29 74.48 77.38 67.24 69.49 64.33 73.18 71.37 74.27 64.13 66.38 61.22
Wine 92.09 92.09 90.4 78.24 83.59 76.28 88.98 88.98 87.29 75.13 80.48 73.17

6. Quantification of Class Overlapping

Most real-world imbalanced problems exhibit overlapping issues, while the joint effect
of imbalanced and overlapping samples severely affects the classification performance [71].
Overlapping issues and the classification of the imbalance nature of data have significantly
gained in popularity for their focus on real-world problems, however, a well-defined
mathematical explanation of overlapping is still lacking [72], despite different studies in
the literature [72,73] having suggested estimating the class overlapping level. However,
a major drawback of these methods is the prior assumption of the normal distribution
of data, which is not possible in the majority of real-world datasets. We modified the
formula used in [74] in Equation (11) to approximate the overlapping region based on the
imbalanced distribution of data, originally designed for binary classification problems with
2D features space.

Overlapping Degree(%) =
Overlapping Region
Minority Class Area

∗ 100 (11)

Appl. Sci. 2022, 12, 8371 17 of 29

The overlapping level for the majority class negative instances in the overlapping
region affects the classification performance and is calculated via Equation (12).

Overlapping Degree(%) =
Overlapping Region
Majority Class Area

∗ 100 (12)

The overlapping region is the shared feature space of the majority and minority class
samples with similar attributes, and the majority class area is calculated using the Euclidean
distance and nearest neighbor rule. A class overlap region for two-class Ci and Cj can be
described using Equations (13) and (14).

Overlapping = i f (P(x | Ci)) ≥ 0 then (13)

(P(x | Cj)) ≥ 0, must be, where xε overlapping region sample (14)

If the probability density of class Ci is greater than or equal to zero, the same must be
true for class Cj, where i 6= j, i.e., the sample of the class Ci has similar characteristics to the
sample of class Cj.

To measure the overlap among the features of a different class in a multiclass dataset,
it is necessary to evaluate the discriminative power of the features. If there are any fea-
tures with discriminative characteristics, the problem is thus considered a simple problem.
To measure the overlap among the different classes, we used Fisher’s maximum discrimi-
native ratio [75], denoted by F1 and given by Equation (15):

F1 =
1

1 + maxm
i=1r fi

(15)

where r fi is the discriminative ratio for the feature fi listed in the dataset. Originally, the
largest discriminative ratio value was stored in F1. r fi can also be calculated as presented
by Orrial in their research article [76], and as given by Equation (16):

r fi =
∑nc

j=1 ∑nc
k=1,k 6=j .PcjPck(µ

f i
cj − µ

f i
ck)

2

∑nc
j=1 pcj(σ

f i
cj)

(16)

pcj pck represent the respective samples in classes cj and ck, respectively, where µ
f i
cj

and µ
f i
ck denote the means of the features of class samples cj and ck, and σ

f i
cj shows the

standard deviation of those samples. Both Equations (5) and (6) are employed for the
binary classification, where the underlying dataset should be decomposed into a binary
classification problem using the one-versus-one approach. An alternative computation of
the discriminative ratio for both multiclass and binary classification problems is presented
by Molliendia [77] and is given by Equation (17):

r fi =
∑nc

j=1 ncj(µ
f i
cj − µ

f i
ck)

2

∑nc
j=1 ∑

ncj
l=1(X j

li − µ
f i
cj)

2
(17)

where ncj represents the respective samples in class cj and µ
f i
cj denote the mean of the

sample fi across the samples of class cj. µ fi is the mean of the fi values across all classes,

and X j
li represents the individual value of the feature fi from a sample of class cj.

7. Algorithm for Synthetic Control Overlapping in the Majority Class

To check the impact of parameter hyper-tuning on the existing and synthetic over-
lapped dataset in this section, we proposed an algorithm to generate and add 20% synthetic
samples in the majority class of each dataset:

Appl. Sci. 2022, 12, 8371 18 of 29

1. Take a multi-class dataset with an imbalanced distribution of data and overlap-
ping samples.

2. Apply preprocessing techniques to the dataset to make it convenient for the under-
lying classifier. For example, all the categorical values of class labels are converted
into numeric values by applying the Label Encoding scheme. Similarly, to scale the
underlying data, normalization techniques are applied to scale the features to a range
that is centered around zero.

Newvalue[..] = Labelencoder. f it− trans f ormation(existingvalue)

The transformation method converts the existing feature value into the desired nu-
meric value.

3. Compute the average distance di between each sample ei belonging to the target class
C to its k1 nearest neighbors Nei which are not of the target class (es) for each minority
class sample from the majority class samples and vice versa.

d(−→a ,
−→
b) =

√
(a1 − b1)2 where −→a ,

−→
b ∈ Rn

where a, b are two vectors (sample attributes), and d is the distance between the two
points. The distance for nth rows point is given below:

d(−→a ,
−→
b) =

√
(a1 − b1)2 + (a2 − b2)2 + + (an − bn)2 where−→a ,

−→
b ∈ Rn

4. Select the majority class (MC) from the list of the class’s loc set, for which synthetic
samples S will be created.

MCCount = np.unique(MDS[col], returncount = True)

where MCCount is used to hold the samples of the majority class, MDS is the multi-
class dataset, and col is the feature to be counted.

5. Choose the first nearest neighbor by selecting the value of k1 = 1. Distance di between
the sample and its neighbor was calculated using Euclidian distance,

Nei = set of k1-nearest neighbors of ei εD of Class 6= MCCount

where ei is the individual sample of target class C, di is the average distance to kn
sample of the other class, mi is the target class, and Nei is the closest sample of “the
other” than target class (es).

6. Compute 20% of the synthetic samples to be overlapped in the majority class of
the dataset,

S = (#T∗x)
100

where S is the set of synthetic samples and T is the subset of D (multiclass dataset)
containing all the samples of the target class C (MC(Count)).

7. Compute the synthetic samples using interpolating schemes.

ynew = y + rand(0, 1) ∗ (ŷ− y)

for each minority class sample y, one obtains its k-nearest neighbors from other
minority class samples. Secondly, one chooses one minority class sample ŷ among
the k neighbors. Finally, one generates the synthetic sample ynew by interpolating
between ŷ and y.

8. Experimental Setup

A proper comparison of different classifiers for the classification model is a multipart
and still uncluttered challenge. To avoid a biased evaluation of the model, the comparison
task not only serves to evaluate the committed error but also depends on the structure and
nature of the data. In this section, we compare the ensemble and non-ensemble classifiers
over 15 multi-class real datasets to measure the accuracy, precision, recall, and f 1score using
the confusion matrix.

Appl. Sci. 2022, 12, 8371 19 of 29

Datasets

We use 20 multi-class real datasets for the purpose of the experiment which we
downloaded from UCI [78] and KEEL [79]. To obtain the best result and provide a fair
chance for every sample for evaluation, we used a 10-fold cross-validation scheme. Every
dataset consists of a different number of samples, features, and classes, i.e., instances vary
in the range of 150–12,960, while the number of features ranges from 4 to 65 and the number
of classes varies between 3 and 20. To effectively demonstrate the impact of increasing
overlapping samples in the underlying datasets, we selected different datasets for the
number of samples and number of attributes. Moreover, we synthetically overlapped
the different datasets, as we already had overlapping regions to highlight the decreasing
performance of the underlying classifier with an increasing overlapping ratio. Table 11
highlights some important attributes of the dataset, such as the name of the dataset,
downloaded source, numbers of features, total number of instances, the total number of
classes, and the ratio of each class in the dataset.

Table 11. Dataset with Description.

Dataset Attributes Samples Classes The Ratio of Each Class

IRIS 4 150 3 0.333, 0.333, 0.333
Glass 9 214 6 0.3271, 0.0794, 0.0421, 0.3551, 0.1355, 0.0607
HAR 561 10,299 6 (22.94, 77.06)
Breast_Tissue 9 106 6 0.2075, 0.1981, 0.1320, 0.1415, 0.1509, 0.1698
Bridges 13 107 6 0.1415, 0.1037, 0.0849, 0.4245, 0.1037, 0.1509
Car 7 1728 4 0.2228, 0.405, 0.7002, 0.0381
CMC 10 1473 3 0.4270, 0.2260, 0.3469
Dermatology 35 366 6 0.306 0.1967, 0.1666, 0.142, 0.1338, 0.0546
Ecoli 9 336 8 0.4255, 0.2291, 0.0059, 0.009, 0.1041, 0.0595, 0.0148, 0.1547

LED_Domain 8 500 10 0.1233, 0.1355, 0.452, 0.4311, 0.1677, 0.013, 0.2033, 0.1576, 0.432,
0.01233

Nersery 9 12,960 5 0.3333, 0.3291, 0.0001, 0.3120, 0.0253
Page_Block 11 5473 5 0.8978, 0.0601, 0.0051, 0.0159, 0.0210
Satimage 37 6430 6 0.2382, 0.1092, 0.2110, 0.0973, 0.1099, 0.2343

Soyaben 36 683 19
0.0234, 0.1332, 0.0644, 0.0292, 0.0292, 0.1346, 0.0644, 0.0292,
0.0204, 0.0219, 0.0292, 0.0292, 0.1332, 0.0117, 0.0292, 0.1288,
0.0292, 0.0292 , 0.0292

U_Knowledge 6 403 5 0.2506, 0.3200, 0.3027, 0.2382, 0.0645
Vehicle 19 846 4 0.2576, 0.2505, 0.2565, 0.2352
Volcanoesa 4 3253 5 0.9077, 0.0209, 0.0178, 0.0264, 0.0271
Wine 14 178 3 0.3988, 0.3314, 0.2696
Wl_Following 25 5456 4 0.4041; 0.3843, 0.1513, 0.0601
Opt_Digits 65 5620 19 0.1017, 0.1016, 0.101, 0.1007, 0.1, 0.0992, 0.0992, 0.0991, 0.0985

9. Results and Discussion

This article highlights three different aspects of ensemble and statistical classifiers de-
picted in Tables 5–10 supplemented by the relevant graphical presentation in Figures 2–13,
respectively. This section carried out a detailed comparison to highlight the imbalance
and overlapping nature of multi-class classification by applying traditional and ensemble
approaches followed by some statistical analysis. Here, we applied different ensemble
classifiers (GB, RF, and DT) and non-ensemble approaches (KNN, linear, kernel SVM,
and NB) on 15 multi-class datasets. Each dataset consists of a different number of samples,
features, and classes, i.e., the instances vary in the range of 150–12,960, while the number of
features ranges from 4 to 65 and the number of classes varies between 3 and 20. Our results
consist of three parts; first, we explore the six different classifiers on 15 multi-class datasets
with default parameters and without synthetic overlapping, using confusion matrix values
to gain insight into the different performance measures such as accuracy, precision, recall,
and f 1score as depicted in Tables 5 and 6. In the second step, the six algorithms, namely

Appl. Sci. 2022, 12, 8371 20 of 29

GB, RF, DT, KNN, R-SVM, and LR are hyper-tuned (hyper-tuning the set of parameters) to
improve the overall performance of the classification model, using 10-fold cross-validation
in an exhaustive grid search technique experiment shown in Tables 7 and 8.

Figure 2. Accuracy: Ensemble versus Non-Ensemble before Hyper-tuning.

Figure 3. Precision: Ensemble versus Non-Ensemble before Hyper-Tuning.

Figure 4. Recall: ensemble versus non-ensemble before hyper-tuning.

Figure 5. F1-Score: ensemble versus non-ensemble before hyper-tuning.

Appl. Sci. 2022, 12, 8371 21 of 29

Figure 6. Accuracy: ensemble versus non-ensemble after hyper-tuning.

Figure 7. Precision: ensemble versus non-ensemble after hyper-tuning.

Figure 8. Recall: ensemble versus non-ensemble after hyper-tuning.

Figure 9. F1-Score: ensemble versus non-ensemble after hyper-tuning.

Appl. Sci. 2022, 12, 8371 22 of 29

Figure 10. Accuracy: ensemble versus non-ensemble after hyper-tuning and synthetic overlapping.

Figure 11. Precision: Ensemble versus non-ensemble after hyper-tuning and synthetic overlapping.

Figure 12. Recall: ensemble versus non-ensemble after hyper-tuning and synthetic overlapping.

Figure 13. F1-Score: ensemble versus non-ensemble after hyper-tuning and synthetic overlapping.

In the third part, the existing datasets (the majority class of each dataset) are syntheti-
cally overlapped by 20% of the original samples to glorify the impact of hyper-tuning the
parameters, as shown in Tables 9 and 10. After examining the results, we come up with
these observations: gradient boosting an ensemble approach based on boosting shows
remarkable performance in all categories (with and without hyper-tuning parameters for
existing and synthetically overlapped datasets) for most of the multi-class imbalanced
datasets. GB is an ensemble method, which combines many weak learners to produce

Appl. Sci. 2022, 12, 8371 23 of 29

a strong learner to deliver improved accuracy. A lower weight and a higher weight are
assigned to the predicted outcome if it is correctly classified and misclassified, respectively.
Each new tree is a fit on the reproduced subset of the original dataset during the boosting
process. We tuned the tree-specific parameters during the hyper-tuning, boosting specific
parameters and miscellaneous parameters. For some datasets in the experiment, all the
classifiers ensemble and non− ensemble show power performance in terms of both accuracy
and precision.

The reason for the power performance is the high variance and poor feature en-
gineering makes it impossible for some algorithms to show a remarkable performance.
Although boosting-based ensembles are prominent to control both bias and variance, some-
times with high variance and poor features, engineering them also fails to show a better
performance. Along with the gradient boosting algorithm, random forest and decision
tree also show some significance as compared to the other used classifier on most of the
classifiers, particularly in the dataset with a greater number of features. The main reason for
its significance is automatically reducing the number of features through its probabilistic
entropy calculation approach. All three ensemble methods, GB, RF, and DT outperform
the non-ensemble classifiers with both conventional hyper-tuned parameters for almost all
the multi-class datasets. The error or misclassification rate can be dramatically reduced by
averaging the component classifiers’ prediction report to produce an optimal final classifi-
cation report both in a random forest and in the decision tree classifier. In the RFC, multiple
trees are used in the ensemble to construct a sample drawn with a replacement from the
training set. Moreover, a tree-based RFC ensemble selects a subset of features rather than
using all the features of the data in the training set, resulting in the randomization of the
tree. A decision tree break downs the classification process into multiple choices about
each entry in our feature vector, starting with the root node and going downwards to the
leaf where actual classification (prediction) is made. Unlike the traditional algorithm (black
box learning algorithm), a decision tree is quite natural, as it visualizes and interprets
the choices regarding how the tree is formed, and then follows a suitable path to the leaf
node where actual predication or classification is performed. On the other hand, random
forest, a collection of decision trees that vaccinate randomness at a certain level, makes it
different from the decision tree classifier. The better performance of RF as compared to DT
is because injecting randomness at two levels, in bootstrapping and during node splitting,
causes a reduction in overfitting and resulting in an accurate model compared to the DT
model. RF trains each distant DT on a bootstrapped sample drawn from the initial training
dataset. Logistic regression is a linear classifier which can be applied to both linear and
nonlinear problems, but as compared to ensemble approaches and SVM with an rbf kernel,
the performance of LR is not good, as in other approaches. SVM in both versions (linear
and kernel) is one of the most powerful models of machine learning with appropriate
skills in separating the hyperplane on both the linear and nonlinear datasets. Sitting a
hyperplane for a linear dataset is quite simple, by doing through the linear or rbf kernel,
but for nonlinear data, the kernel tricks are used for sitting the hyperplane by projecting the
data point in a higher dimension (in this N-dimension, the data points can easily be linearly
separable). During the hyper-tuning process, when we set the decision function value to
“one-versus-rest”, it decomposes the multi-class problem into several binary class problems,
making it convenient for the SVM to find an optimal hyperplane, thus improving its overall
model performance. To obtain the most successful results, proper feature engineering and
feature scaling must be applied to the training dataset, as the LR model is greatly affected
by different value ranges across dependent variables. On the majority of datasets, the poor
performance of NB is because of the assumption that instances’ features are conditionally
independent, but as we know in the case of the multi-class problem, features depend
on each other, thus making this hypothesis wrong, which causes the degradation of the
overall performance of the NB model. The basic working mechanism of the KNN model is
based on the optimal value selected for k; whenever a new sample is subject to prediction,
it simply examines the k-nearest neighbors from the training set, and the majority class

Appl. Sci. 2022, 12, 8371 24 of 29

among the k nearest neighbors are taken to be class for the test sample. Since the boundary
regions of different classes in multi-class classification problems overlap with each other, it
becomes difficult to examine the k-nearest neighbors from the training set.

As a final comment about the comparison, if we divide the classifiers between the
ensemble and non-ensemble classifiers, the ensemble classifiers outperform the non-
ensemble classifier on almost all the datasets with conventional and hyper-tuned pa-
rameters. Among the ensemble classifier, there is no constant winner for all the datasets,
but overall gradient boosting beats all the classifiers for both categories. In non-ensemble
methods, R-SVM shows a remarkable performance with the rbf kernel for both the con-
ventional and tuned parameters, as SVM selects a small subset of training data from the
original training data to construct the model. During the hyper-tuning process, when we
set the decision function value to “one-versus-rest”, it decomposes the multi-class problem
into several binary class problems, making it convenient for the SVM to find an optimal
hyperplane, thus improving its overall model performance.

As we stated earlier in Section 9 about the synthetic generation of controlled overlap-
ping samples in the existing dataset, if we look at the results of Tables 5, 7 and 9, which show
the accuracy and precision of the stated classifiers, respectively, the results of Table 5 are
based on the scenarios in which we tested the ensemble and non-ensemble classifiers over
the existing multi-class and overlapped dataset to highlight their performance. The result
of Table 7 is based on the scenarios wherein we hyper-tuned the selected parameters of the
classifiers using a 10-fold cross-validation and grid search technique, and then applied the
selected classifiers to highlight the impact of parameters hyper-tuning over the multi-class
and overlapped datasets. After comparing both tables, it is clear that, after hyper-tuning
the parameter set, the underlying classifier improved its performance, as discussed in
Section 9. For the third scenario, we synthetically generated overlapping samples and 20%
of these samples are inserted into the majority class of each dataset to increase the over-
lapping region of each dataset generation of synthetic samples is discussed in Section 10.
After inserting the synthetic samples, the samples of majority and minority classes are more
overlapped near the boundary region, resulting in a decrease in the visibility of the minority
class. After compromising on the visibility of the minority class samples, the underlying
classifier cannot predict the relevant target class effectively, hence decreasing the overall
classifier performance. If we look at the results of Table 9, we se the accuracy and precision
after the synthetic generation of samples and tuning of the parameters. If we compare
the results in Table 9 with those in Tables 5 and 7, there is a slight change in the classifier
performance, even after the insertion of the synthetic samples in the majority of classes.
The same justification is for recall and f 1score as depicted in Tables 6, 8 and 10.

10. Resultant Summary for Ensemble and Non-Ensemble Classifiers

As a final comment about the comparison, if we divide the classifiers into ensemble and
non-ensemble (traditional) classifiers, the ensemble classifiers outperform the non-ensemble
classifiers on almost all the datasets with conventional and hyper-tuned parameters.

Among the ensemble classifier, there is no constant winner for all the datasets, but over-
all, gradient boosting beats all the classifiers for both categories. In non-ensemble methods,
R-SVM shows a remarkable performance with the rbf kernel for both the conventional and
tuned parameters, as SVM selects a small subset of training data from the original training
data to construct the model. The increasing size and dimensions of the problem space
make it difficult for traditional or non-ensemble classifiers to correctly predict the unseen
samples for multi-class classification data. The main reason behind the poor performance
of traditional classifiers is the inability to tackle the high bias and variance. Despite so
many machine-learning algorithms, the data to be processed need to be carefully examined,
as every time, the data are biased, have high variance, or are sometimes noisy. When these
unprocessed data (data with bias, variance, and noise) are subject to classification using the
traditional algorithms, most of the time, we obtain a specialized model based on the train-
ing set, which yields low accuracy and loses of results. Due to the high bias, the underlying

Appl. Sci. 2022, 12, 8371 25 of 29

machine learning algorithm is unable to make a meaningful relation between the target
variables (class labels) and the features, causing underfitting, which will reduce the overall
performance of the classifiers on the testing set. On the other hand, high variance results
in the random noise as a part of the training dataset, rather than the intended outputs, be-
cause the high variance in the underlying model tends to overfit on training data, resulting
in a non-generalized model for the prediction. Compared to traditional classifiers, ensemble
approaches try to reduce the variance and bias in the training data, resulting in a more
robust and generalized model for the multi-class classification problem. The variance–bias
tradeoff is a significant problem in almost all machine learning classifiers, particularly in the
case of multi-class classification, where the boundaries of different classes are overlaps with
each other’s, making it difficult to draw a clear hyperplane to separate the samples of multi
classes. To correctly classify the unseen data during the validation process, ideally one can
desire to choose such a machine-learning model, which apprehends the consistencies in
its training dataset (effectively addressing the high variance and bias), also avoiding the
under-fitting and over-fitting issues. Unfortunately, for most traditional classifiers, it is
not an easy task to simultaneously reduce the high variance and bias. On the other hand,
the ensemble approaches follow the ‘component-classifiers’ approach, wherein at each
iteration, the misclassified sample (caused by high variance and bias) is again subject to the
training subset. Ensemble classifiers are working in a parallel mode by assigning individual
base learners to a ‘different-different machine’. In short, ensemble approaches are just like
a ‘meta-algorithm’ by combining different learning models into a more robust single model
to improve the overall performance of the underlying model. The high bias in the training
data was reduced via the boosting approach and the high variance was reduced via the
bagging approach. All the acronyms used in this article are defined in Table 12.

Table 12. Acronyms and their definitions.

Acronym Description

KNN k-Nearest Neighbor
NB Naive Bayes
ANN Artificial Neural Network
DT Decision Tree
SVM Support Vector Machine
LR Logistic Regression (LR)
G-mean Geometric Mean
F1-Score F-Measure
AUC Area under Curve
TBWRSVM Twin Bounded Weighted Relaxed Support Vector Machines
WRSVM Weighted Relaxed Support Vector Machine

DES-MI Dynamic Ensemble Selection for Multi-Class Imbalanced
the Dataset

GSVD Generalized Singular Value Decomposition
MDO Mahalanobis Distance-based Oversampling
EC Evolutionary Computation
SaFWA Self-Adaptive Fireworks Algorithm
CSGSs Candidate Solution Generation Strategies
k-SMOTE k-Means Clustering
split Minimum-Sample-Split
OVO One-versus-One Decomposition Strategies
OVR One-versus-Rest Decomposition Strategies
solver, newton-cg, sag, and lbfgs Multinomial values
RSM Response Surface Methodology
MAE Mean Absolute Error
labelencoder.fit Label Encoding Scheme
MDS Multiclass Dataset

Appl. Sci. 2022, 12, 8371 26 of 29

11. Conclusions

In this paper, we applied six different algorithms (ensemble and non-ensemble) on
15 multi-class datasets with default parameters, and then compared the results with hyper-
tuned parameters. The results highlight the significant improvement in the categories of
the algorithm after both hyper-tuning a set of parameters and performing an exhaustive
grid search technique. However, ensemble approaches outperform the non-ensemble ap-
proaches for the majority of multi-class classification datasets. Before applying classification
algorithms to the stated imbalanced dataset, we did not apply any data-level approach
to balance the dataset. Similarly, after synthetically overlapping the existing datasets,
ensemble classifiers show the same results compared to statistical approaches. The results
can be further improved if we augment the data level approaches with the ensemble and
non-ensemble approaches.

As a future direction, if we perform proper feature engineering on the multi-class
imbalanced dataset, the results will surely improve. A combination of ensemble classifiers
with a cost-sensitive approach (assigning misclassification cost) can significantly improve
the overall performance of the different classifiers. One-class learners, within-class imbal-
ance, small disjuncts, feature selection, stacked ensembles, sophisticated over-sampling
techniques, and within-class imbalance are among the research gaps that need to be spe-
cially addressed in a future study.

Author Contributions: All of the authors collaborated together to complete this project. Z.M. worked
on Methodology. G.U.R. and N.A.B. did the Formal Analysis. The manuscript is validated by A.B. In
conversation with Z.M. and G.U.R., all the relevant data is collected by M.A. All the writing, review
and editing work is done by M.Z. The original draft of the manuscript was written by S.F.J. All
authors have read and agreed to the published version of the manuscript.

Funding: The APC was funded by TRL Technology Ltd.

Data Availability Statement: This article has no associated data.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. He, H.; Garcia, E.A. Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284.
2. Hoens, T.R.; Chawla, N.V. Imbalanced datasets: From sampling to classifiers. In Imbalanced Learning: Foundations, Algorithms, and

Applications; Wiley Online Library: Hoboken, NJ, USA, 2013; pp. 43–59.
3. Sáez, J.A.; Quintián, H.; Krawczyk, B.; Woźniak, M.; Corchado, E. Multi-class Imbalanced Data Oversampling for Vertebral

Column Pathologies Classification. In Proceedings of the International Conference on Hybrid Artificial Intelligence Systems,
Oviedo, Spain, 20–22 June 2018 ; Springer: Berlin/Heidelberg, Germany, 2018; pp. 131–142.

4. Rout, N.; Mishra, D.; Mallick, M.K. Handling imbalanced data: A survey. In International Proceedings on Advances in Soft Computing,
Intelligent Systems and Applications; Springer: Berlin/Heidelberg, Germany, 2018; pp. 431–443.

5. Kaur, P.; Gosain, A. Issues and challenges of class imbalance problem in classification. Int. J. Inf. Technol. 2018, 14, 539–545.
[CrossRef]

6. López, V.; Fernández, A.; García, S.; Palade, V.; Herrera, F. An insight into classification with imbalanced data: Empirical results
and current trends on using data intrinsic characteristics. Inf. Sci. 2013, 250, 113–141. [CrossRef]

7. Loyola-González, O.; Martínez-Trinidad, J.F.; Carrasco-Ochoa, J.A.; García-Borroto, M. Correlation of resampling methods for
contrast pattern based classifiers. In Mexican Conference on Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2015;
pp. 93–102.

8. Beyan, C.; Fisher, R. Classifying imbalanced data sets using similarity based hierarchical decomposition. Pattern Recognit. 2015,
48, 1653–1672. [CrossRef]

9. Denil, M.; Trappenberg, T. Overlap versus imbalance. In Canadian Conference on Artificial Intelligence; Springer: Berlin/Heidelberg,
Germany, 2010; pp. 220–231.

10. Abdi, L.; Hashemi, S. To combat multi-class imbalanced problems by means of over-sampling techniques. IEEE Trans. Knowl.
Data Eng. 2015, 28, 238–251. [CrossRef]

11. Fernández, A.; García, S.; Galar, M.; Prati, R.C.; Krawczyk, B.; Herrera, F. Algorithm-level approaches. In Learning from Imbalanced
Data Sets; Springer: Berlin/Heidelberg, Germany, 2018; pp. 123–146.

http://doi.org/10.1007/s41870-018-0251-8
http://dx.doi.org/10.1016/j.ins.2013.07.007
http://dx.doi.org/10.1016/j.patcog.2014.10.032
http://dx.doi.org/10.1109/TKDE.2015.2458858

Appl. Sci. 2022, 12, 8371 27 of 29

12. Bi, J.; Zhang, C. An empirical comparison on state-of-the-art multi-class imbalance learning algorithms and a new diversified
ensemble learning scheme. Knowl.-Based Syst. 2018, 158, 81–93. [CrossRef]

13. Rahm, E.; Do, H.H. Data cleaning: Problems and current approaches. IEEE Data Eng. Bull. 2000, 23, 3–13.
14. Rao, K.N.; Reddy, C. A novel under sampling strategy for efficient software defect analysis of skewed distributed data. Evol. Syst.

2020, 11, 119–131. [CrossRef]
15. Perveen, S.; Shahbaz, M.; Keshavjee, K.; Guergachi, A. Metabolic syndrome and development of diabetes mellitus: Predictive

modeling based on machine learning techniques. IEEE Access 2018, 7, 1365–1375. [CrossRef]
16. Fu, M.; Tian, Y.; Wu, F. Step-wise support vector machines for classification of overlapping samples. Neurocomputing 2015,

155, 159–166.
17. Qu, Y.; Su, H.; Guo, L.; Chu, J. A novel SVM modeling approach for highly imbalanced and overlapping classification. Intell.

Data Anal. 2011, 15, 319–341. [CrossRef]
18. Sun, Z.; Song, Q.; Zhu, X.; Sun, H.; Xu, B.; Zhou, Y. A novel ensemble method for classifying imbalanced data. Pattern Recognit.

2015, 48, 1623–1637. [CrossRef]
19. Shaukat, S.U. Optimum Parameter Machine Learning Classification and Prediction of Internet of Things (IoT) Malwares Using

Static Malware Analysis Techniques. Ph.D. Thesis, University of Salford, Manchester, UK, 2019.
20. Anuragi, A.; Sisodia, D.S.; Pachori, R.B. Epileptic-seizure classification using phase-space representation of FBSE-EWT based

EEG sub-band signals and ensemble learners. Biomed. Signal Process. Control 2022, 71, 103138. [CrossRef]
21. Han, Y.; Liu, Y.; Wang, B.; Chen, Q.; Song, L.; Tong, L.; Lai, C.; Konagaya, A. A novel transfer learning for recognition of

overlapping nano object. Neural Comput. Appl. 2022, 34, 5729–5741. [CrossRef]
22. Gurunathan, A.; Krishnan, B. A Hybrid CNN-GLCM Classifier for Detection and Grade Classification Of Brain Tumor. Brain

Imaging Behav. 2022, 16, 1410–1427. [CrossRef]
23. Vong, C.M.; Du, J.; Wong, C.M.; Cao, J.W. Postboosting using extended G-mean for online sequential multiclass imbalance

learning. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 6163–6177. [CrossRef]
24. Tharwat, A. Classification assessment methods. Appl. Comput. Inform. 2020, 17, 168–192. [CrossRef]
25. Fernandes, E.R.; de Carvalho, A.C.; Yao, X. Ensemble of classifiers based on multiobjective genetic sampling for imbalanced data.

IEEE Trans. Knowl. Data Eng. 2019, 32, 1104–1115. [CrossRef]
26. Wang, S.; Chen, H.; Yao, X. Negative correlation learning for classification ensembles. In Proceedings of the 2010 international

joint conference on neural networks (IJCNN), Barcelona, Spain, 18–23 July 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–8.
27. Chawla, N.V.; Lazarevic, A.; Hall, L.O.; Bowyer, K.W. SMOTEBoost: Improving prediction of the minority class in boosting. In

European Conference on Principles of Data Mining and Knowledge Discovery; Springer: Berlin/Heidelberg, Germany, 2003; pp. 107–119.
28. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.

Res. 2002, 16, 321–357. [CrossRef]
29. Kotsiantis, S.B. Bagging and boosting variants for handling classifications problems: A survey. Knowl. Eng. Rev. 2014, 29, 78–100.

[CrossRef]
30. Alam, T.; Ahmed, C.F.; Zahin, S.A.; Khan, M.A.H.; Islam, M.T. An effective ensemble method for multi-class classification and

regression for imbalanced data. In Industrial Conference on Data Mining; Springer: Berlin/Heidelberg, Germany, 2018; pp. 59–74.
31. Feng, W.; Huang, W.; Ren, J. Class imbalance ensemble learning based on the margin theory. Appl. Sci. 2018, 8, 815. [CrossRef]
32. Sun, B.; Chen, H.; Wang, J.; Xie, H. Evolutionary under-sampling based bagging ensemble method for imbalanced data

classification. Front. Comput. Sci. 2018, 12, 331–350. [CrossRef]
33. Van Hulse, J.; Khoshgoftaar, T.M.; Napolitano, A. An empirical comparison of repetitive undersampling techniques. In

Proceedings of the 2009 IEEE International Conference on Information Reuse & Integration, Las Vegas, NV, USA, 10–12 August
2009; IEEE: Piscataway, NJ, USA, 2009; pp. 29–34.

34. Bonab, H.; Can, F. Less is more: A comprehensive framework for the number of components of ensemble classifiers. IEEE Trans.
Neural Netw. Learn. Syst. 2019, 30, 2735–2745. [CrossRef]

35. Datta, A.; Chatterjee, R. Comparative study of different ensemble compositions in eeg signal classification problem. In Emerging
Technologies in Data Mining and Information Security; Springer: Berlin/Heidelberg, Germany, 2019; pp. 145–154.

36. García, S.; Zhang, Z.L.; Altalhi, A.; Alshomrani, S.; Herrera, F. Dynamic ensemble selection for multi-class imbalanced datasets.
Inf. Sci. 2018, 445, 22–37. [CrossRef]

37. Georganos, S.; Grippa, T.; Vanhuysse, S.; Lennert, M.; Shimoni, M.; Wolff, E. Very high resolution object-based land use–land
cover urban classification using extreme gradient boosting. IEEE Geosci. Remote Sens. Lett. 2018, 15, 607–611. [CrossRef]

38. Kumar, M.; Sheshadri, H. On the classification of imbalanced datasets. Int. J. Comput. Appl. 2012, 44, 145–148.
39. Mani, I.; Zhang, I. kNN approach to unbalanced data distributions: A case study involving information extraction. In Proceedings

of Workshop on Learning from Imbalanced Datasets; ICML: Baltimore, MD, USA, 2003; Volume 126; pp. 1–7.
40. Yang, X.; Kuang, Q.; Zhang, W.; Zhang, G. AMDO: An over-sampling technique for multi-class imbalanced problems. IEEE Trans.

Knowl. Data Eng. 2017, 30, 1672–1685. [CrossRef]
41. De Caigny, A.; Coussement, K.; De Bock, K.W. A new hybrid classification algorithm for customer churn prediction based on

logistic regression and decision trees. Eur. J. Oper. Res. 2018, 269, 760–772. [CrossRef]
42. Douzas, G.; Bacao, F.; Last, F. Improving imbalanced learning through a heuristic oversampling method based on k-means and

SMOTE. Inf. Sci. 2018, 465, 1–20. [CrossRef]

http://dx.doi.org/10.1016/j.knosys.2018.05.037
http://dx.doi.org/10.1007/s12530-018-9261-9
http://dx.doi.org/10.1109/ACCESS.2018.2884249
http://dx.doi.org/10.3233/IDA-2010-0470
http://dx.doi.org/10.1016/j.patcog.2014.11.014
http://dx.doi.org/10.1016/j.bspc.2021.103138
http://dx.doi.org/10.1007/s00521-021-06731-y
http://dx.doi.org/10.1007/s11682-021-00598-2
http://dx.doi.org/10.1109/TNNLS.2018.2826553
http://dx.doi.org/10.1016/j.aci.2018.08.003
http://dx.doi.org/10.1109/TKDE.2019.2898861
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1017/S0269888913000313
http://dx.doi.org/10.3390/app8050815
http://dx.doi.org/10.1007/s11704-016-5306-z
http://dx.doi.org/10.1109/TNNLS.2018.2886341
http://dx.doi.org/10.1016/j.ins.2018.03.002
http://dx.doi.org/10.1109/LGRS.2018.2803259
http://dx.doi.org/10.1109/TKDE.2017.2761347
http://dx.doi.org/10.1016/j.ejor.2018.02.009
http://dx.doi.org/10.1016/j.ins.2018.06.056

Appl. Sci. 2022, 12, 8371 28 of 29

43. Wang, Q. A hybrid sampling SVM approach to imbalanced data classification. In Abstract and Applied Analysis; Hindawi: London,
UK, 2014; Volume 2014.

44. Xue, Y.; Zhao, B.; Ma, T.; Pang, W. A self-adaptive fireworks algorithm for classification problems. IEEE Access 2018, 6, 44406–44416.
[CrossRef]

45. Krawczyk, B.; Galar, M.; Woźniak, M.; Bustince, H.; Herrera, F. Dynamic ensemble selection for multi-class classification with
one-class classifiers. Pattern Recognit. 2018, 83, 34–51. [CrossRef]

46. Karthik, S.; Bhadoria, R.S.; Lee, J.G.; Sivaraman, A.K.; Samanta, S.; Balasundaram, A.; Chaurasia, B.K.; Ashokkumar, S. Prognostic
Kalman Filter Based Bayesian Learning Model for Data Accuracy Prediction. Comput. Mater. Contin. 2022, 72, 243–259. [CrossRef]

47. Singh, L.K.; Garg, H.; Khanna, M.; Bhadoria, R.S. An enhanced deep image model for glaucoma diagnosis using feature-based
detection in retinal fundus. Med. Biol. Eng. Comput. 2021, 59, 333–353. [CrossRef]

48. Nourzad, S.H.H.; Pradhan, A. Ensemble methods for binary classifications of airborne LiDAR data. J. Comput. Civ. Eng. 2014,
28, 04014021. [CrossRef]

49. Hartman, E.J.; Keeler, J.D.; Kowalski, J.M. Layered neural networks with Gaussian hidden units as universal approximations.
Neural Comput. 1990, 2, 210–215. [CrossRef]

50. Kramer, M.A.; Leonard, J. Diagnosis using backpropagation neural networks—Analysis and criticism. Comput. Chem. Eng. 1990,
14, 1323–1338. [CrossRef]

51. Chawla, N.; Eschrich, S.; Hall, L.O. Creating ensembles of classifiers. In Proceedings of the 2001 IEEE International Conference
on Data Mining, San Jose, CA, USA, 29 November–2 December 2001; IEEE: Piscataway, NJ, USA, 2001; pp. 580–581.

52. Livieris, I.E.; Kanavos, A.; Tampakas, V.; Pintelas, P. A weighted voting ensemble self-labeled algorithm for the detection of lung
abnormalities from X-rays. Algorithms 2019, 12, 64. [CrossRef]

53. Machová, K.; Puszta, M.; Barčák, F.; Bednár, P. A comparison of the bagging and the boosting methods using the decision trees
classifiers. Comput. Sci. Inf. Syst. 2006, 3, 57–72. [CrossRef]

54. Friedman, J.; Hastie, T.; Tibshirani, R. Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder
by the authors). Ann. Stat. 2000, 28, 337–407. [CrossRef]

55. Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [CrossRef]
56. Zhu, T.; Pimentel, M.A.; Clifford, G.D.; Clifton, D.A. Unsupervised Bayesian inference to fuse biosignal sensory estimates for

personalizing care. IEEE J. Biomed. Health Inform. 2018, 23, 47–58. [CrossRef] [PubMed]
57. Farquad, M.A.H.; Bose, I. Preprocessing unbalanced data using support vector machine. Decis. Support Syst. 2012, 53, 226–233.

[CrossRef]
58. Krawczyk, B. Learning from imbalanced data: Open challenges and future directions. Prog. Artif. Intell. 2016, 5, 221–232.

[CrossRef]
59. Fernández, A.; García, S.; Galar, M.; Prati, R.C.; Krawczyk, B.; Herrera, F. Learning from imbalanced data streams. In Learning

from Imbalanced Data Sets; Springer: Berlin/Heidelberg, Germany, 2018; pp. 279–303.
60. Fernández, A.; García, S.; Galar, M.; Prati, R.C.; Krawczyk, B.; Herrera, F. Imbalanced classification with multiple classes. In

Learning from Imbalanced Data Sets; Springer: Berlin/Heidelberg, Germany, 2018; pp. 197–226.
61. Rajevenceltha, J.; Kumar, C.S.; Kumar, A.A. Improving the performance of multi-parameter patient monitors using feature

mapping and decision fusion. In Proceedings of the 2016 IEEE Region 10 Conference (TENCON), Singapore, 22–25 November
2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1515–1518.

62. Friedrichs, F.; Igel, C. Evolutionary tuning of multiple SVM parameters. Neurocomputing 2005, 64, 107–117. [CrossRef]
63. Reif, M.; Shafait, F.; Dengel, A. Meta-learning for evolutionary parameter optimization of classifiers. Mach. Learn. 2012,

87, 357–380. [CrossRef]
64. Batista, G.; Silva, D.F. How k-nearest neighbor parameters affect its performance. In Argentine Symposium on Artificial Intelligence;

Citeseer: Princeton, NJ, USA, 2009; pp. 1–12.
65. Anghel, A.; Papandreou, N.; Parnell, T.; De Palma, A.; Pozidis, H. Benchmarking and optimization of gradient boosting decision

tree algorithms. arXiv 2018, arXiv:1809.04559.
66. Mantovani, R.G.; Horváth, T.; Cerri, R.; Vanschoren, J.; de Carvalho, A.C. Hyper-parameter tuning of a decision tree induction

algorithm. In Proceedings of the 2016 5th Brazilian Conference on Intelligent Systems (BRACIS), Pernambuco, Brazil, 9–12
October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 37–42.

67. Couronné, R.; Probst, P.; Boulesteix, A.L. Random forest versus logistic regression: A large-scale benchmark experiment. BMC
Bioinform. 2018, 19, 1–14. [CrossRef]

68. Dioşan, L.; Rogozan, A.; Pecuchet, J.P. Improving classification performance of support vector machine by genetically optimising
kernel shape and hyper-parameters. Appl. Intell. 2012, 36, 280–294. [CrossRef]

69. Pannakkong, W.; Thiwa-Anont, K.; Singthong, K.; Parthanadee, P.; Buddhakulsomsiri, J. Hyperparameter Tuning of Machine
Learning Algorithms Using Response Surface Methodology: A Case Study of ANN, SVM, and DBN. Math. Probl. Eng. 2022, 2022,
8513719. [CrossRef]

70. Wong, T.T.; Yang, N.Y. Dependency analysis of accuracy estimates in k-fold cross validation. IEEE Trans. Knowl. Data Eng. 2017,
29, 2417–2427. [CrossRef]

71. García, V.; Mollineda, R.A.; Sánchez, J.S. On the k-NN performance in a challenging scenario of imbalance and overlapping.
Pattern Anal. Appl. 2008, 11, 269–280. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2018.2858441
http://dx.doi.org/10.1016/j.patcog.2018.05.015
http://dx.doi.org/10.32604/cmc.2022.023864
http://dx.doi.org/10.1007/s11517-020-02307-5
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000276
http://dx.doi.org/10.1162/neco.1990.2.2.210
http://dx.doi.org/10.1016/0098-1354(90)80015-4
http://dx.doi.org/10.3390/a12030064
http://dx.doi.org/10.2298/CSIS0602057M
http://dx.doi.org/10.1214/aos/1016218223
http://dx.doi.org/10.1016/S0167-9473(01)00065-2
http://dx.doi.org/10.1109/JBHI.2018.2820054
http://www.ncbi.nlm.nih.gov/pubmed/29994340
http://dx.doi.org/10.1016/j.dss.2012.01.016
http://dx.doi.org/10.1007/s13748-016-0094-0
http://dx.doi.org/10.1016/j.neucom.2004.11.022
http://dx.doi.org/10.1007/s10994-012-5286-7
http://dx.doi.org/10.1186/s12859-018-2264-5
http://dx.doi.org/10.1007/s10489-010-0260-1
http://dx.doi.org/10.1155/2022/8513719
http://dx.doi.org/10.1109/TKDE.2017.2740926
http://dx.doi.org/10.1007/s10044-007-0087-5

Appl. Sci. 2022, 12, 8371 29 of 29

72. Sun, H.; Wang, S. Measuring the component overlapping in the Gaussian mixture model. Data Min. Knowl. Discov. 2011,
23, 479–502. [CrossRef]

73. Lee, H.K.; Kim, S.B. An overlap-sensitive margin classifier for imbalanced and overlapping data. Expert Syst. Appl. 2018,
98, 72–83. [CrossRef]

74. Vuttipittayamongkol, P.; Elyan, E. Neighbourhood-based undersampling approach for handling imbalanced and overlapped
data. Inf. Sci. 2020, 509, 47–70. [CrossRef]

75. Jain, S.; Shukla, S.; Wadhvani, R. Dynamic selection of normalization techniques using data complexity measures. Expert Syst.
Appl. 2018, 106, 252–262. [CrossRef]

76. Nettleton, D.F.; Orriols-Puig, A.; Fornells, A. A study of the effect of different types of noise on the precision of supervised
learning techniques. Artif. Intell. Rev. 2010, 33, 275–306. [CrossRef]

77. Mollineda, R.A.; Sánchez, J.S.; Sotoca, J.M. Data characterization for effective prototype selection. In Iberian Conference on Pattern
Recognition and Image Analysis; Springer: Berlin/Heidelberg, Germany, 2005; pp. 27–34.

78. Lichman, M.; Bache, K. UCI Machine Learning Repository; University of California: Los Angeles, CA, USA, 2013.
79. Ali, Z.; Ahmad, R.; Akhtar, M.N.; Chuhan, Z.H.; Kiran, H.M.; Shahzad, W. Empirical Study of Associative Classifiers on

Imbalanced Datasets in KEEL. In Proceedings of the 2018 9th International Conference on Information, Intelligence, Systems and
Applications (IISA), Zakynthos, Greece, 23–25 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–7.

http://dx.doi.org/10.1007/s10618-011-0212-3
http://dx.doi.org/10.1016/j.eswa.2018.01.008
http://dx.doi.org/10.1016/j.ins.2019.08.062
http://dx.doi.org/10.1016/j.eswa.2018.04.008
http://dx.doi.org/10.1007/s10462-010-9156-z

	Introduction
	Related Works
	Ensemble-Based Methods
	Non-Ensemble-Based Methods
	Support Vector Machine Classifier
	Random Forest Classifier
	K-Nearest Neighbor
	Gradient Boosting Algorithm
	Decision Tree Algorithm
	Logistic Regression

	Parameter Tuning
	Quantification of Class Overlapping
	Algorithm for Synthetic Control Overlapping in the Majority Class
	Experimental Setup
	Results and Discussion
	Resultant Summary for Ensemble and Non-Ensemble Classifiers
	Conclusions
	References

