109 research outputs found

    Efficient data reliability management of cloud storage systems for big data applications

    Get PDF
    Cloud service providers are consistently striving to provide efficient and reliable service, to their client's Big Data storage need. Replication is a simple and flexible method to ensure reliability and availability of data. However, it is not an efficient solution for Big Data since it always scales in terabytes and petabytes. Hence erasure coding is gaining traction despite its shortcomings. Deploying erasure coding in cloud storage confronts several challenges like encoding/decoding complexity, load balancing, exponential resource consumption due to data repair and read latency. This thesis has addressed many challenges among them. Even though data durability and availability should not be compromised for any reason, client's requirements on read performance (access latency) may vary with the nature of data and its access pattern behaviour. Access latency is one of the important metrics and latency acceptance range can be recorded in the client's SLA. Several proactive recovery methods, for erasure codes are proposed in this research, to reduce resource consumption due to recovery. Also, a novel cache based solution is proposed to mitigate the access latency issue of erasure coding

    Big data analytics for large-scale wireless networks: Challenges and opportunities

    Full text link
    © 2019 Association for Computing Machinery. The wide proliferation of various wireless communication systems and wireless devices has led to the arrival of big data era in large-scale wireless networks. Big data of large-scale wireless networks has the key features of wide variety, high volume, real-time velocity, and huge value leading to the unique research challenges that are different from existing computing systems. In this article, we present a survey of the state-of-art big data analytics (BDA) approaches for large-scale wireless networks. In particular, we categorize the life cycle of BDA into four consecutive stages: Data Acquisition, Data Preprocessing, Data Storage, and Data Analytics. We then present a detailed survey of the technical solutions to the challenges in BDA for large-scale wireless networks according to each stage in the life cycle of BDA. Moreover, we discuss the open research issues and outline the future directions in this promising area

    Improve the Performance and Scalability of RAID-6 Systems Using Erasure Codes

    Get PDF
    RAID-6 is widely used to tolerate concurrent failures of any two disks to provide a higher level of reliability with the support of erasure codes. Among many implementations, one class of codes called Maximum Distance Separable (MDS) codes aims to offer data protection against disk failures with optimal storage efficiency. Typical MDS codes contain horizontal and vertical codes. However, because of the limitation of horizontal parity or diagonal/anti-diagonal parities used in MDS codes, existing RAID-6 systems suffer several important problems on performance and scalability, such as low write performance, unbalanced I/O, and high migration cost in the scaling process. To address these problems, in this dissertation, we design techniques for high performance and scalable RAID-6 systems. It includes high performance and load balancing erasure codes (H-Code and HDP Code), and Stripe-based Data Migration (SDM) scheme. We also propose a flexible MDS Scaling Framework (MDS-Frame), which can integrate H-Code, HDP Code and SDM scheme together. Detailed evaluation results are also given in this dissertation

    A storage architecture for data-intensive computing

    Get PDF
    The assimilation of computing into our daily lives is enabling the generation of data at unprecedented rates. In 2008, IDC estimated that the "digital universe" contained 486 exabytes of data [9]. The computing industry is being challenged to develop methods for the cost-effective processing of data at these large scales. The MapReduce programming model has emerged as a scalable way to perform data-intensive computations on commodity cluster computers. Hadoop is a popular open-source implementation of MapReduce. To manage storage resources across the cluster, Hadoop uses a distributed user-level filesystem. This filesystem --- HDFS --- is written in Java and designed for portability across heterogeneous hardware and software platforms. The efficiency of a Hadoop cluster depends heavily on the performance of this underlying storage system. This thesis is the first to analyze the interactions between Hadoop and storage. It describes how the user-level Hadoop filesystem, instead of efficiently capturing the full performance potential of the underlying cluster hardware, actually degrades application performance significantly. Architectural bottlenecks in the Hadoop implementation result in inefficient HDFS usage due to delays in scheduling new MapReduce tasks. Further, HDFS implicitly makes assumptions about how the underlying native platform manages storage resources, even though native filesystems and I/O schedulers vary widely in design and behavior. Methods to eliminate these bottlenecks in HDFS are proposed and evaluated both in terms of their application performance improvement and impact on the portability of the Hadoop framework. In addition to improving the performance and efficiency of the Hadoop storage system, this thesis also focuses on improving its flexibility. The goal is to allow Hadoop to coexist in cluster computers shared with a variety of other applications through the use of virtualization technology. The introduction of virtualization breaks the traditional Hadoop storage architecture, where persistent HDFS data is stored on local disks installed directly in the computation nodes. To overcome this challenge, a new flexible network-based storage architecture is proposed, along with changes to the HDFS framework. Network-based storage enables Hadoop to operate efficiently in a dynamic virtualized environment and furthers the spread of the MapReduce parallel programming model to new applications

    Site responsibility : eco-art and environmental ethics in the anthropocene.

    Get PDF
    This dissertation proposes an interdisciplinary theory for examining the ethical dimensions of contemporary eco-art, based on the conceptual interplay between the art historical discourse of site specificity and philosophy of environmental ethics. It considers how eco-art redefines site specificity as eco-ethically-oriented site reform, and argues that eco-artists’ site-reformative actions are not only environmentally impactful and beneficial, but are also site-responsible because they realize humankinds’ moral obligations to respond to the human-caused ecological crises of the present by improving the degraded conditions of specific sites and amending site-destructive conduct. Site-reformative eco-artworks in turn yield variable propositional content that demonstrates site responsibility by giving moral clarity, import, and binding force to specific, actionable, human-behavioral changes conducive to the pursuit of ecological sustainability. I apply this theory of site responsibility to ten different eco-artworks representative of the genre’s three predominant modes of site reform: documentary, activism, and remediation. This framework for eco-art ethics is ideally suited for analyzing the morally relevant attributes of the broad spectrum of artistic practices that have developed within the field of eco-art since the late 1960s, and is designed to facilitate well-reasoned assessments of their eco-ethical value

    High-Dimensional Inference on Dense Graphs with Applications to Coding Theory and Machine Learning

    Get PDF
    We are living in the era of "Big Data", an era characterized by a voluminous amount of available data. Such amount is mainly due to the continuing advances in the computational capabilities for capturing, storing, transmitting and processing data. However, it is not always the volume of data that matters, but rather the "relevant" information that resides in it. Exactly 70 years ago, Claude Shannon, the father of information theory, was able to quantify the amount of information in a communication scenario based on a probabilistic model of the data. It turns out that Shannon's theory can be adapted to various probability-based information processing fields, ranging from coding theory to machine learning. The computation of some information theoretic quantities, such as the mutual information, can help in setting fundamental limits and devising more efficient algorithms for many inference problems. This thesis deals with two different, yet intimately related, inference problems in the fields of coding theory and machine learning. We use Bayesian probabilistic formulations for both problems, and we analyse them in the asymptotic high-dimensional regime. The goal of our analysis is to assess the algorithmic performance on the first hand and to predict the Bayes-optimal performance on the second hand, using an information theoretic approach. To this end, we employ powerful analytical tools from statistical physics. The first problem is a recent forward-error-correction code called sparse superposition code. We consider the extension of such code to a large class of noisy channels by exploiting the similarity with the compressed sensing paradigm. Moreover, we show the amenability of sparse superposition codes to perform joint distribution matching and channel coding. In the second problem, we study symmetric rank-one matrix factorization, a prominent model in machine learning and statistics with many applications ranging from community detection to sparse principal component analysis. We provide an explicit expression for the normalized mutual information and the minimum mean-square error of this model in the asymptotic limit. This allows us to prove the optimality of a certain iterative algorithm on a large set of parameters. A common feature of the two problems stems from the fact that both of them are represented on dense graphical models. Hence, similar message-passing algorithms and analysis tools can be adopted. Furthermore, spatial coupling, a new technique introduced in the context of low-density parity-check (LDPC) codes, can be applied to both problems. Spatial coupling is used in this thesis as a "construction technique" to boost the algorithmic performance and as a "proof technique" to compute some information theoretic quantities. Moreover, both of our problems retain close connections with spin glass models studied in statistical mechanics of disordered systems. This allows us to use sophisticated techniques developed in statistical physics. In this thesis, we use the potential function predicted by the replica method in order to prove the threshold saturation phenomenon associated with spatially coupled models. Moreover, one of the main contributions of this thesis is proving that the predictions given by the "heuristic" replica method are exact. Hence, our results could be of great interest for the statistical physics community as well, as they help to set a rigorous mathematical foundation of the replica predictions

    On a wildlife tracking and telemetry system : a wireless network approach

    Get PDF
    Includes abstract.Includes bibliographical references (p. 239-261).Motivated by the diversity of animals, a hybrid wildlife tracking system, EcoLocate, is proposed, with lightweight VHF-like tags and high performance GPS enabled tags, bound by a common wireless network design. Tags transfer information amongst one another in a multi-hop store-and-forward fashion, and can also monitor the presence of one another, enabling social behaviour studies to be conducted. Information can be gathered from any sensor variable of interest (such as temperature, water level, activity and so on) and forwarded through the network, thus leading to more effective game reserve monitoring. Six classes of tracking tags are presented, varying in weight and functionality, but derived from a common set of code, which facilitates modular tag design and deployment. The link between the tags means that tags can dynamically choose their class based on their remaining energy, prolonging lifetime in the network at the cost of a reduction in function. Lightweight, low functionality tags (that can be placed on small animals) use the capabilities of heavier, high functionality devices (placed on larger animals) to transfer their information. EcoLocate is a modular approach to animal tracking and sensing and it is shown how the same common technology can be used for diverse studies, from simple VHF-like activity research to full social and behavioural research using wireless networks to relay data to the end user. The network is not restricted to only tracking animals – environmental variables, people and vehicles can all be monitored, allowing for rich wildlife tracking studies
    • …
    corecore