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number of I/O operation in column j of a partial stripe write to

w continuous data elements with beginning element Ci,j

Sj
avg.(w)

average number of I/O operations in column j of a partial stripe

write to w continuous data elements

Oj(Ci,j)
number of I/O operations to column j, which is caused by a

request to data element(s) with beginning element Ci,j
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Symbols Description

O(j) total number of I/O operations of requests to column j in a stripe

Omax, Omin maximum/minimum number of I/O operations among all columns

L metric of load balancing in various codes

Rt average time to recover a data/parity element

Navg. average number of elements can be recovered in a time interval Rt

P,Q parity blocks (before scaling)

P ′, Q′ parity blocks (after scaling)

x, x1, x2 three random integers

ns number of stripes in each stripe set

ne total number of data elements in each stripe before scaling

nec total number of data elements in each column per stripe set

Rd data migration ratio

Rp parity modification ratio

nio total number of I/O operations

Tb access time of a read/write request to a block

Tm migration time

ws word size
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A man provided with paper, pencil, and rubber, and subject to strict discipline, is in effect

a universal Turing Machine.

Alan Mathison Turing

xix



Preface

This dissertation is mainly based on the following papers which will be referred to in the

text by their Roman numerals.

I Chentao Wu, Xubin He, Jizhong Han, Huailiang Tan, and Changsheng Xie. SDM:

A Stripe-based Data Migration Scheme to Improve the Scalability of RAID-6. In:

Proceedings of the International Conference on Cluster Computing 2012 (Cluster

2012), September 24–28, 2012, Beijing, China.

II Chentao Wu and Xubin He. GSR: A Global Stripe-based Redistribution Approach to

Accelerate RAID-5 Scaling. In: Proceedings of the 41st International Conference on

Parallel Processing (ICPP 2012), September 10–13, 2012, Pittsburgh, USA.

III Chentao Wu, Shenggang Wan, Xubin He, Guanying Wu, Shenggang Wan, Xiaohua

Liu, Qiang Cao, and Changsheng Xie. HDP Code: A Horizontal-Diagonal Parity

Code to Optimize I/O Load Balancing in RAID-6. In: Proceedings of the 41st

Annual IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN 2011), June 27–30, 2011, Hong Kong, China.

IV Chentao Wu, Shenggang Wan, Xubin He, Qiang Cao, and Changsheng Xie. H-

Code: A Hybrid MDS Array Code to Optimize Partial Stripe Writes in RAID-6.

xx



In: Proceedings of the 25th IEEE International Parallel & Distributed Processing

Symposium (IPDPS 2011), May 13–16, 2011, Anchorage, USA.

V Chentao Wu and Xubin He. A Flexible Framework to Enhance RAID-6 Scalability

via Exploiting the Similarities among MDS Codes. Under review.

xxi



Abstract
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RAID-6 is widely used to tolerate concurrent failures of any two disks to provide a

higher level of reliability with the support of erasure codes. Among many implementations,

one class of codes called Maximum Distance Separable (MDS) codes aims to offer data

protection against disk failures with optimal storage efficiency. Typical MDS codes contain

horizontal and vertical codes.

xxii



However, because of the limitation of horizontal parity or diagonal/anti-diagonal

parities used in MDS codes, existing RAID-6 systems suffer several important problems

on performance and scalability, such as low write performance, unbalanced I/O, and high

migration cost in the scaling process.

To address these problems, in this dissertation, we design techniques for high perfor-

mance and scalable RAID-6 systems. It includes high performance and load balancing

erasure codes (H-Code and HDP Code), and Stripe-based Data Migration (SDM) scheme.

We also propose a flexible MDS Scaling Framework (MDS-Frame), which can integrate

H-Code, HDP Code and SDM scheme together. Detailed evaluation results are also given

in this dissertation.

Key Words: RAID-6; MDS Codes; Horizontal Parity; Diagonal/Anti-diagonal Parity;

Performance Evaluation; Load Balancing; Scalability
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Chapter 1

Introduction

1.1 Motivations

Redundant Arrays of Inexpensive (or Independent) Disks (RAID) [57, 16] is an efficient

approach to supply high reliability and high performance storage services with acceptable

spatial and monetary cost. In recent years, RAID-6 [73] has received much attention

because it can tolerate concurrent failures of any two disks. It has been shown to be of

increasing importance due to technology trends [18, 63] and the fact that the possibility of

concurrent disk failures increases [72, 58] as the system scale grows.

Many implementations of RAID-6 based on various erasure coding technologies, which

aim to offer data protection against disk failures with given amount of redundancy. They

play a significant role in disk arrays, many companies and major technology corporations

are performing active research in this area, such as Allmydata [1], Cleversafe [17, 68],

Data Domain [91], Network Appliance [3], Panasas [4, 79], Hewlett Packard [83, 31], IBM

[34, 35, 33, 48, 9], Microsoft [41, 42, 38, 39, 54, 49, 40], etc. Several academic projects
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also focus on this aspect, such as LoCI [7], Oceanstore [50, 69], Pergamum [74], RAIF

[47], RAIN [12], and so on.

Maximum Distance Separable (MDS) codes [67, 11, 8, 18, 10, 61, 85, 86, 45, 24, 15]

are optimal erasure codes, which are the most popular erasure codes and offer optimal

storage efficiency. Typical MDS codes can be further categorized into horizontal codes

[67, 11, 8, 18, 10, 61] and vertical codes [85, 86, 45, 15].

However, with the increasing requirements by users, RAID-6 faces several significant

problems on performance and scalability. These problems includes,

1. Poor write performance. Compared to RAID-0 or RAID-5, RAID-6 has much lower

write performance, especially for single write and partial stripe write [19, 51, 46, 13,

30].

2. Unbalanced I/O distribution. All existing horizontal codes [67, 11, 8, 18, 10, 61] and

some vertical codes [45] have dedicated parity or data disks, and suffer unbalanced

I/Os in these disks. Unbalanced I/Os can significantly decrease the performance of a

RAID system [26, 71, 44, 5, 36, 6].

3. Difficult to scale efficiently. Fast scaling is a significant aspect in cloud computing

[2]. Existing scaling approaches [29, 55, 88, 28, 89, 37, 90] are designed for RAID-

0 or RAID-5, which cannot adapt various MDS coding methods in RAID-6. They

cause high migration and computation cost, thus the scaling process is very slow.

4. Poor flexibility [59]. Existing MDS codes [67, 11, 8, 18, 10, 61, 15, 86, 45] have no

relationship between each other. It is difficult to combine these codes into a general

purpose framework.
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In summary, existing approaches and solutions are insufficient to support both high

performance and high scalability for RAID-6 systems, which motivates us to design some

new techniques to improve the performance and scalability.

1.2 Problem Statement

In this dissertation, we state our research purpose as: Improve the performance and

scalability of RAID-6 systems by investigating erasure codes. Our design provides high

write performance and I/O load balancing. Our design also achieves high scalability by

stripe-based data migration schemes. Finally we integrate our techniques into a flexible

framework to support various RAID-6 codes.

1.3 Background and Related Work

To improve the efficiency, performance, reliability and scalability of the RAID-6 storage

systems, different MDS coding approaches are proposed. In this section we discuss the

existing MDS codes and the related works on performance and scalability issues in RAID

systems.

1.3.1 Definitions

Prior to the introduction on the background and related works, the following definitions are

given for RAID-6 systems according to previous literatures [34, 77],
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• Element: The element is the fundamental unit for constructing codes. An element

can be a data bit up to several data blocks. There are two types of elements, data

elements and parity elements.

• Stripe: A stripe is a complete (connected) set of data and parity elements that are

dependently related by parity computation relations [34]. Typically, a stripe is an

element matrix in RAID-6.

• Stripe Size: Total number of data and parity elements in a stripe.

• Parity Chain: A parity chain includes a parity element and all data elements used

to encode it.

• Parity Chain Length: Total number of data and parity elements in a parity chain.

• Horizontal Parity Chain (or Row Parity Chain): A parity chain with all elements

shares a same row. The corresponding parity element is called “horizontal parity

element”.

• Vertical Parity Chain: A parity chain with all elements distributes in multiple rows.

The corresponding parity element is “vertical parity element”.

• Diagonal/Anti-diagonal Parity Chain (two special types of vertical parity chains):

A parity chain with all data elements follows diagonal/anti-diagonal distribution. The

corresponding parity element is “diagonal/anti-diagonal parity element”.

• Horizontal Code: An MDS code includes horizontal parity chains, and all parity

elements are in dedicated parity columns.

• Vertical Code: An MDS code which is not a horizontal code.
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1.3.2 Existing Erasure Codes

Many RAID-6 implementations are presented based on various erasure coding technolo-

gies, which are divided into two categories: MDS codes and non-MDS codes.

Maximum Distance Separable (MDS) codes in RAID-6 can be further divided into two

subclasses: horizontal codes and vertical codes. Horizontal codes include Reed-Solomon

codes [67], Cauchy Reed-Solomon codes [11], EVENODD code [8], RDP code [18],

Blaum-Roth code [10], Liberation code [61] and Liber8tion code [60]. Vertical codes

contain B-Code [85], X-Code [86], P-Code [45] and Cyclic code [15]. Typically, non-

MDS codes involve LDPC codes [25, 53, 64], WEAVER code [33], HoVer codes [34],

MEL code [83], Pyramid code [38], Flat XOR-Code [31], Code-M [77] and Partial-MDS

Codes [9]. Besides these codes in RAID-6, other erasure codes such as RSL-Code [21],

RL-Code [22], STAR code [41, 42, 54], HoVer codes [34] and GRID Codes [52], which

can tolerate concurrent failures of three or more disks. Recently, research on erasure codes

turns to the applications in cloud computing [49, 40].

Here we briefly overview several popular MDS and non-MDS codes.

Reed-Solomon codes [67, 32] are based on addition and multiply operations over

Galois Field arithmetic (GF(2ws)), where ws is the word size and 2ws − 1 is the

maximum number of disks in a disk array. And an addition operation is equivalent to

an XOR operation, while the multiplication is implemented with high complexity and high

overhead.

Cauchy Reed-Solomon codes [11] are described by Binary Distribution Matrix (BDM)

originally [61], which are variants of Reed-Solomon codes by using Cauchy matrix. They

change multiply operations of Reed-Solomon codes to additional XOR operations, which
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reduce partial cost of encoding and decoding but also have large amount of XOR operations

[65].

EVENODD code [8] is shown in Figure 1.1, which is a typical horizontal code

and consists of horizontal and diagonal parity chains. It performs lower cost on

encoding/decoding than all variants of Reed-Solomon codes.

(a) Horizontal parity coding. (b) Diagonal parity coding.

Figure 1.1: EVENODD code for p+ 2 disks when p = 5 and n = 7.
S = C0,4 ⊕ C1,3 ⊕ C2,2 ⊕ C3,1 and participates in the encoding of all diagonal parities.

Blaum-Roth, Liberation and Liber8tion codes (shown in Figures 1.2 and 1.3) [10,

61, 60, 62] are three separate “minimum density codes” [62], which provides near-optimal

encoding/decoding performance and low overhead on updating single data element.

(a) Horizontal parity coding. (b) Vertical parity coding.

Figure 1.2: Blaum-Roth code for p+ 1 disks (p = 5, n = 6).
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(a) Horizontal parity coding. (b) Vertical parity coding.

Figure 1.3: Liberation code for p+ 2 disks (p = 5, n = 7).

RDP code [18] is shown in Figure 1.4, which retains the horizontal parity chains as

EVENODD while changes the diagonal layout. The special diagonal chain of RDP is

that most horizontal parities take part in the construction of diagonal parities, which can

decrease the reconstruction overhead.

(a) Horizontal parity coding. (b) Diagonal parity coding.

Figure 1.4: RDP code for p+ 1 disks (p = 5, n = 6).

X-Code [86, 75] (shown in Figure 1.5) is a classic vertical code and the layout of X-

Code is made up by diagonal and anti-diagonal parity chains. It has optimal computational

complexity and optimal update complexity.
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(a) Diagonal parity coding. (b) Anti-diagonal parity coding.

Figure 1.5: X-Code for p disks (p = 5, n = 5).

P-Code [45] (shown in Figure 1.6) is another type of vertical code as Cyclic [15]. The

stripe size of P-Code is p−1
2
∗ n, where n is the total number of disks in a disk array. P-

Code has many properties, such as optimal encoding/decoding computation complexity

and optimal update complexity.

(a) Vertical parity coding for p − 1 disks (p = 7,
n = 6).

(b) Vertical parity coding for p disks (p = 7, n = 7).

Figure 1.6: P-Code.

HoVer codes [34] (shown in Figure 1.7) is a family of XOR-based erasure codes,

which can tolerate concurrent failures of two or more disks and provide flexible on

implementation by adjusting parameters.
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(a) Horizontal parity coding. (b) Diagonal parity coding.

Figure 1.7: HoVer code for 6 disks (n = 6).

Code-M [77] is also a minimal density code, which gives another way to construct a

parity chain by crossing multiple stripes. It can sharply reduce the recovery time compared

to RDP.

1.3.3 Research on Performance in RAID Systems

Stripe Write Performance

From 1990s, several methods [19, 51, 46, 13, 30] are proposed to improve the stripe

write performance of disk arrays. In 1994, David et al. [19] find a way to reduce the

penalty of a partial stripe write. Later, some methods [51, 46] are appeared to improve

the write performance of RAID-5 systems. Recently, high partial stripe write performance

are desired [13, 30] in higher-level software solution for RAID systems. Typically, these

methods are based on RAID-5, which may not have positive effects on the complex layout

of RAID-6.
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Load Balancing Approaches

Research on dynamic load balancing starts at early 1990s. In 1993, Ganger et al. [26]

discuss two load balancing approaches, disk striping and conventional data placement.

Later, several dynamic load balancing approaches are proposed [71, 44, 5, 36, 6]. They

can adjust the unbalanced I/O in data disks according to various access patterns of different

applications or workloads. Typically, these approaches in disk array cost some resources to

monitor the status of various storage devices and find the disks with high or low workload,

then do some dynamic adjustment according to the monitoring results. While in RAID-6

storage system, it is hard to transfer the high workload in parity disks to any other disks,

which breaks the construction of erasure code thus damages the reliability of the whole

storage system. On the other hand, typical load balancing approaches bring additional

overhead to the disk array.

Industrial products based on RAID-6 like EMC CLARiiON [20], which uses static

parity placement to provide load balancing in each eight stripes, but it also has additional

overhead to handle the data placement and still suffers unbalanced I/O in each stripe.

Disk Failure Recovery Performance

In recent years, research on disk failure recovery becomes a hot topic. Tian et al. [76]

propose a novel dynamic data reconstruction optimization algorithm, which is based on the

access locality and the frequently accessed areas have the higher priority to be recovered.

It can accelerate the recovery process in terms of user response time and reconstruction

time. Workout [82] significantly boost RAID reconstruction performance via outsourcing

popular read/write requests originally targeted at the degraded RAID set to a surrogate

RAID set during reconstruction. In 2010, Xiang et al. [84] give a hybrid recovery approach
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called RDOR, which sharply decreases the recovery I/O cost by using both horizontal and

diagonal parities to recover single disk failure. Zhu et al. [92, 93] inherit the work of

RDOR and propose a heterogeneous recovery scheme for various RAID-6 codes. VDF

[78] improve the recovery efficiency by an asymmetric cache policy. Here RDOR approach

is briefly introduced and will be discussed in Chapter 3.

RDOR [84] is a hybrid recovery approach by using both horizontal and diagonal parities

to recover single disk failure in RDP. It can minimize I/O cost and has well balanced I/O

in other disks (except the failed disk). For example, as shown in Figure 1.8, data elements

A, B and C are recovered by their diagonal parity while D, E and F are recovered by their

horizontal parity. By this method, some elements (e.g., C3,0) can be shared to recover

another parity, which can reduce the number of read operations. Actually, up to 22.60%

disk access time and 12.60% recovery time are decreased in the simulation [84].

Figure 1.8: Reduce I/O cost when column 2 fails in RDP code (p = 7, n = 8).

However, this approach has less effect on vertical codes like X-Code. As shown in

Figure 1.9, data elements A, B, C and F are recovered by their anti-diagonal parity while

D, E and G are recovered by their diagonal parity. Though X-Code recovers more elements
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compared to RDP in these examples, but X-Code share fewer elements than RDP thus has

less effects to reduce the I/O cost when single disk fails.

Figure 1.9: Reduce I/O cost when column 2 fails in X-Code (p = 7, n = 7).

RDOR is an efficient way to recover single disk failure, but it cannot reduce I/O cost

when parity disk fails. For example, as shown in Figure 1.8, when column 7 fails, nearly

all data should be read and the total I/O cost cannot be reduced.

1.3.4 Research on Scalability in RAID Systems

Desired Scaling Features in RAID-6

To extend a disk array, some data need to be migrated to the new disk(s) to achieve a

balanced data distribution. During data migration, we prefer to keep an evenly distributed

workload and minimize the data/parity movement. Combined with existing scaling

approaches [90] and the real cases in RAID-6, the following four features are typically

desired,
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• Feature 1 (Uniform Data Distribution): Each disk has the same amount of data blocks

to maintain an even workload.

• Feature 2 (Minimal Data & Parity Migration): By scaling m disks to a RAID-6

system with k data disks storing B data blocks, the expected total number of data

movements is m ∗B/(m+ k) (scale-up, extending disks) or |m| ∗B/n (scale-down,

removing disks).

• Feature 3 (Fast Data Addressing): The locations of blocks in the array can be

efficiently computed.

• Feature 4 (Minimal Parity Computation & Modification): A movement on data block

could bring modification cost on its corresponding original parities and computation

cost on new parities, so movements on data blocks should be limited in the original

parity chain and thus parity blocks can be retained without any change.

Existing Fast Scaling Approaches

Existing approaches to improve the scalability of RAID systems include Round-Robin

(RR) [29, 55, 88], Semi-RR [28], ALV [89], MDM [37], FastScale [90], etc. To clearly

illustrate various strategies in RAID-6, we use P /Q (e.g., P1 and Q1) to delegate various

parity blocks before scaling and P ′/Q′ (e.g., P ′1 and Q′1) for the parity blocks after scaling.

If the parity block is still presented by P /Q after scaling, it means that parity is unchanged.

Traditional RR and Semi-RR approaches can be used in RAID-6 under two restrictions.

First, all data blocks are migrated based on round-robin order in the scaling process.

Second, all parity blocks are retained without any movement.
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For a traditional RR scaling approach (as shown in Figure 1.10), obviously, all data

blocks are migrated and all parities need to be modified after data migration. Although RR

is a simple approach to implement on RAID-6, it brings high overhead.

Based on RR approach, Brown [55] designed a reshape toolkit in the Linux kernel (MD-

Reshape), which writes mapping metadata with a fixed-size window. Due to the limitation

of RR approach, metadata are frequently updated by calling MD-Reshape function, which

is inefficient.

Figure 1.10: RAID-6 scaling in RDP from 6 to 8 disks using RR approach.

Semi-RR [28] is proposed to decrease high migration cost in RR scaling, shown in

Figure 1.11. Unfortunately, by extending multiple disks, the data distribution is not uniform

after scaling [28].

ALV [89] and MDM [37] are RAID-5 scaling approaches, which are shown in Figures

1.12 and 1.13, respectively. They cannot be applied in RAID-6. Different from RR-

based approaches, ALV changes the movement order of migrated data and aggregate these

small I/Os, which can improve the migration efficiency and updates of metadata. MDM

eliminates the parity modification/computation cost and decreases the migration cost.

As shown in Figure 1.14, FastScale [90] takes advantages of both RR and Semi-RR

approaches, which maintains a uniform data distribution, minimal data migration and
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Disk1 Disk2 Disk3 Disk4 Disk5 Disk6Disk0 Disk1 Disk2 Disk3 Disk4 Disk5 Disk6Disk0

Figure 1.11: RAID-6 scaling in P-Code from 6 to 7 disks using Semi-RR approach.

Disk0 Disk1 Disk2 Disk3 Disk4 Disk0 Disk1 Disk2 Disk3 Disk4

Figure 1.12: RAID-5 scaling from 4 to 5 disks using ALV approach (all data blocks are
need to be migrated).

Disk0 Disk1 Disk2 Disk3 Disk4 Disk0 Disk1 Disk2 Disk3 Disk4

Figure 1.13: RAID-5 scaling from 4 to 5 disks using MDM approach.
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fast data addressing. However, it only focuses on RAID-0 and doesn’t support parity

movement.

Figure 1.14: RAID-0 scaling from 3 to 5 disks using FastScale approach.

Except for the above scaling approaches, there are also some RAID-based systems

which focus on the scalability issue. In 1990s, HP AutoRAID [81] permits an online

expansion of disk array. Later, several RAID-based architectures [43, 70] are proposed

for large scale storage systems, and scalability is one of the most significant impacts in

these systems. Brinkmann et al. [14] gives mathematical analysis on a storage system by

adding several disks. Franklin et al. [23] introduces a good way to support extension of

RAID systems, but it need an additional disk as spare space. Recently, by the support of

different file systems, RAID-Z [13] and HDFS RAID [80] achieves acceptable scalability

in distributed storage systems.

1.4 Research Approaches

In this dissertation, we design the following techniques for high performance and scalable

RAID-6 systems:
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To improve the partial stripe write performance, we propose a new XOR-based MDS

array code, named Hybrid Code (H-Code), which optimizes partial stripe writes for

RAID-6 by taking advantages of both horizontal and vertical codes. H-Code is a solution

for an array of (p+1) disks, where p is a prime number. Unlike other codes, the horizontal

parity of H-Code ensures a partial stripe write to continuous data elements in a row share

the same row parity chain, which can achieve optimal partial stripe write performance.

Not only within a row but also within a stripe, H-Code offers optimal partial stripe write

complexity to two continuous data elements and optimal partial stripe write performance

among all MDS codes to the best of our knowledge.

To balance the I/O distribution in RAID-6 systems, we propose a new parity called

Horizontal-Diagonal Parity (HDP), which takes advantages of both horizontal and

diagonal/anti-diagonal parities. The corresponding MDS code, called HDP code, dis-

tributes parity elements uniformly in each disk to balance the I/O workloads. HDP also

achieves high reliability via speeding up the recovery under single or double disk failure.

To improve the scalability of RAID-6, we design a novel Stripe-based Data Migration

(SDM) scheme for large scale storage systems based on RAID-6. SDM is a stripe-level

scheme, and the basic idea of SDM is optimizing data movements according to the future

parity layout, which minimizes the overhead of data migration and parity modification.

SDM scheme also provides uniform data distribution, fast data addressing and migration.

To integrate these approaches into a RAID-6 system, we propose a novel MDS Code

Scaling Framework (MDS-Frame), which is a unified management scheme on various

MDS codes to achieve high scalability. MDS-Frame bridges various MDS codes to achieve

flexible scaling via several intermediate codes.
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The rest of the dissertation is organized as follows. We discuss H-Code and HDP Code

in Chapters 2 and 3. Chapter 4 describes how to accelerate RAID-6 scaling by using SDM

scheme. We explain MDS-Frame in Chapter 5. Finally we conclude this dissertation in

Chapter 6.
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Chapter 2

H-Code

2.1 Introduction

As introduced in Chapter 1, there are many implementations of RAID-6 based on various

of erasure coding technologies, one class of codes called Maximum Distance Separable

(MDS) codes [67, 11, 8, 18, 10, 61, 15, 86, 45, 24]. They offer optimal full stripe write (a

new write or an update) complexity, but the complexity of partial stripe write and single

write (also called “short write”, a partial stripe write to single element) is not satisfied by

storage system designers [19, 51, 46, 13, 30].

A typical RAID-6 storage system (based on horizontal codes) is composed of k + 2

disk drives. The first k disk drives are used to store original data, and the last two, named

P and Q, are used as parity disk drives. Due to the P parity, in the case of partial

stripe write in a row, horizontal codes might get less I/O operations in most time, but

suffer from unbalanced I/O distribution. Let’s take an example of RDP codes [18] whose

diagonal parity layout is shown in Figure 2.1(a). If there is a partial stripe write to 4

continuous elements (“continuous” means logically continuous among the disk arrays in
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encoding/decoding) in a row as shown in Figure 2.1(b), it results in 4 reads and 4 writes to

the Q parity disk (disk 7), but one read and one write to other disks (disk 0, 1, 2, 3 and 6). As

the system scale grows, this problem cannot be resolved by shifting the stripes’ parity strips

among all the disks just as RAID-5. In addition, horizontal codes also have limitation on

high single write complexity. Blaum et al. have proved that with a i-row-j-column matrix

of data elements, at least (i ∗ j + j − 1) data elements participate in the generation of Q

parities [10]. Thus the cost of a single block write in horizontal codes requires more than

two additional writes on average, which is the lower bound of a theoretically ideal RAID-6

codes.

(a) Diagonal parity layout of RDP Code with
p + 1 disks (p = 7): a diagonal element can
be calculated by XOR operations among the
corresponding elements, e.g., C0,7 = C0,0 ⊕
C5,2 ⊕ C4,3 ⊕ C3,4 ⊕ C2,5 ⊕ C1,6.

(b) A partial stripe write to 4 continuous data
elements: A, B, C and D. The I/O operations in
disks 0, 1, 2, 3 and 6 are all 1 read and 1 write,
while in disk 7 are 4 reads and 4 writes. It shows
that the workload in Disk 7 is very high, which
may lead to a sharp decrease of reliability and
performance of the system).

Figure 2.1: Partial stripe write problem in RDP code for an 8-disk array (p = 7).

Vertical codes, such as X-Code [86], Cyclic code [15], and P-Code [45], typically offer

good single write complexity and encoding/decoding computational complexity as well as

high storage efficiency. With special data/parity layout, they do not adopt row parity. In

vertical codes, partial stripe write to multiple data elements in a row involves the generation

of different parity elements. Let’s take an example of X-Code whose anti-diagonal parity
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layout is shown in Figure 2.2(a). Consider the following scenario as described in Figure

2.2(b). There is a partial stripe write to two data elements in the first row of an X-Code

based 7-disk RAID-6 matrix. We notice that the two elements are in four different parity

chains. Therefore, this partial stripe write results in (2 + 4) reads and (2 + 4) writes, for

a total of 12 I/O operations. If the codes adopt row parity, the two elements might be

only in three different parity chains. It can result in (2 + 3) reads and (2 + 3) writes, or

10 I/O operations in total. In other words, it reduces two I/O operations by adopting row

parity. We evaluate the partial stripe write complexity in general and only focus on the

short partial stripe writes, which affect no more than (n− 3) data elements for an array of

n disks. Consider the following case, a partial stripe write to w continuous data elements in

v parity chains. Typically, it results in one read and one write to each data element, and one

read and one write to each parity element. Therefore, the number of disk I/O operations

(denoted by Sw) is,

(a) Anti-diagonal parity layout of X-Code with
p disks (p = 7): an anti-diagonal element
can be calculated by XOR operations among
the corresponding data elements, e.g., C5,0 =
C0,2 ⊕ C1,3 ⊕ C2,4 ⊕ C3,5 ⊕ C4,6.

(b) A partial stripe write to two continuous data
elements: A and B. The I/O operations are (2+4)
reads and (2 + 4) writes.

Figure 2.2: Partial stripe write problem in X-Code for a 7-disk array.
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Sw = 2 ∗ (w + v) (2.1)

When the number of data elements affected by a partial stripe write in a row increases,

the disk I/O reduced by adopting a row parity will increase. Similar problem also exists

in Cyclic Code [15] and P-code [45]. However, almost all the horizontal codes adopt

row parity, which might cause less partial stripe write cost. Jin et al. [45] mentioned a

tweaked RDP code, which is a semi-vertical code composed of row parity and diagonal

parity. However, for its individual diagonal parity disk, it still suffers from the unbalanced

I/O distribution caused by partial stripe write to multiple data elements in a row as same as

the horizontal codes.

To address these problems, we propose a novel XOR-based RAID-6 code, named

Hybrid Code (H-Code), which takes advantages of both horizontal and vertical codes.

The parities in H-Code are classical row parity and anti-diagonal parity. H-code does

not have a dedicated anti-diagonal parity strip, while it distributes the anti-diagonal parity

elements among disks in the array. Its horizontal parity makes sure a partial stripe write to

continuous data elements in a row share the same row parity chain, which achieves optimal

partial stripe write performance. Depending on the number of disks in an MDS array, we

design H-Code, which is a solution for n disks (n = p+ 1), where p is a prime number.

The rest of the chapter is organized as follows. The design of H-Code is described in

detail in Section 2.2. Property analysis and evaluation are given in Section 2.3 and Section

2.4. And the summary of this chapter is presented 2.5.
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2.2 H-Code

To overcome the shortcomings of vertical and horizontal MDS codes, we present a hybrid

MDS code scheme, named H-Code, to take advantage of both vertical and horizontal codes

and is a solution for n disks (n = p+ 1), where p is a prime number.

2.2.1 Data/Parity Layout and Encoding of H-Code

H-Code is represented by a (p−1)-row-(p+1)-column matrix with a total of (p−1)∗(p+1)

elements. There are three types of elements in the matrix: data elements, horizontal parity

elements, and anti-diagonal parity elements. Assume Ci,j (0 ≤ i ≤ p− 2, 0 ≤ j ≤ p)

represents the element at the ith row and the jth column. The last column (column p) is

used for horizontal parity. Excluding the first (column 0) and the last (column p) columns,

the remaining matrix is a (p − 1)-row-(p − 1)-column square matrix. H-Code uses the

anti-diagonal part of this square matrix to represent anti-diagonal parity.

Horizontal parity and anti-diagonal parity elements of H-Code are constructed based

on the following encoding equations.

Horizontal parity:

Ci,p =

p−1∑
j=0

Ci,j (j 6= i+ 1) (2.2)

Anti-diagonal parity:

Ci,i+1 =

p−1∑
j=0

C〈p−2−i+j〉p,j (j 6= i+ 1) (2.3)
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Figure 2.3 shows an example of H-Code for an 8-disk array (p = 7). It is a 6-row-

8-column matrix. Column 7 is used for horizontal parity and the anti-diagonal elements

(C0,1, C1,2, C2,3, etc.) are used for anti-diagonal parity.

(a) Horizontal parity coding of H-Code: a horizontal element can
be calculated by XOR operations among the corresponding data
elements in the same row. For example, C0,7 = C0,0 ⊕ C0,2 ⊕
C0,3 ⊕ C0,4 ⊕ C0,5 ⊕ C0,6.

(b) Anti-diagonal parity coding of H-Code: an anti-diagonal
element can be calculated by XOR operations among the
corresponding data elements in all columns (except its column and
column p). For example, C1,2 = C4,0⊕C5,1⊕C0,3⊕C1,4⊕C2,5⊕
C3,6.

Figure 2.3: H-Code (p = 7).
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The horizontal parity encoding of H-Code is shown in Figure 2.3(a). We use different

shapes to indicate different sets of horizontal elements and the corresponding data elements.

Based on Equation 2.2, we calculate all horizontal elements. For example, the horizontal

element C0,7 can be calculated by C0,0 ⊕ C0,2 ⊕ C0,3 ⊕ C0,4 ⊕ C0,5 ⊕ C0,6. The element

C0,1 is not involved in this example because of j = i+ 1.

The anti-diagonal parity encoding of H-Code is given in Figure 2.3(b). The anti-

diagonal elements and their corresponding data elements are also distinguished by various

shapes. According to Equation 2.3, the anti-diagonal elements can be calculated through

modular arithmetic and XOR operations. For example, to calculate the anti-diagonal

element C1,2 (i = 1), first we should get the proper data elements (C〈p−2−i+j〉p,j). If j = 0,

by using Equation 2.3, p−2−i+j = 4 and then 〈4〉p = 4, we get the first data element C4,0.

The following data elements which take part in XOR operations can be calculated similarly

(the following data elements are C5,1, C0,3, C1,4, C2,5 and C3,6). Second, the corresponding

anti-diagonal element (C1,2) is constructed by performing an XOR operation on these data

elements, i.e., C1,2 = C4,0 ⊕ C5,1 ⊕ C0,3 ⊕ C1,4 ⊕ C2,5 ⊕ C3,6.

2.2.2 Construction Process

Based on the above data/parity layout and encoding scheme, the construction process of

H-Code is straightforward.

• Label all data elements.

• Calculate both horizontal and anti-diagonal parity elements according to Equations

2.2 and 2.3.
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2.2.3 Proof of Correctness

To prove that H-Code is correct, we consider one stripe. The reconstruction of multiple

stripes is just a matter of scale and similar to the reconstruction of one stripe. In a stripe,

we have the following lemma and theorem,

Lemma 2.1. We can find a sequence of a two-integer tuple (Tk, T
′
k) where

Tk =

〈
p− 1 +

k+1+
1+(−1)k

2

2
(f2 − f1)

〉
p

,

T ′k =
1+(−1)k

2
f1 +

1+(−1)k+1

2
f2 (k = 0, 1, · · · , 2p− 1)

with a prime number of p and 0 < f2−f1 < p, the endpoints are (p−1, f1) and (p−1, f2),

and all two-integer tuples (0, f1), (0, f2), · · · , (p − 1, f1), (p − 1, f2) occur exactly once

in the sequence. Similar proof of this lemma can be found in many literatures in RAID-6

codes such as [8, 18, 86, 45].

Theorem 2.1. A (p − 1)-row-(p + 1)-column stripe constructed according to the formal

description of H-Code can be reconstructed under concurrent failures from any two

columns.

Proof. There are two cases of double failures, depending on whether column 0 fails or not.

Case I: column 0 doesn’t fail.

There are further two subcases, depending on whether the horizontal parity column fails

or not.

Case I-I: Double failures, one is from the horizontal parity column, and the other is

from the anti-diagonal parity.
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From the construction of H-Code, any two of the lost data elements and parity element

are not in a same parity chain. Therefore, each of them can be recovered through the anti-

diagonal parity chains. When all lost data elements are recovered, the horizontal parity

elements can be reconstructed using the above Equation 2.2.

Case I-II: Double failures of any two columns other than the horizontal parity of the

stripe.

Each column j, in the anti-diagonal parity part of the stripe, intersects all horizontal

parity chains except the horizontal parity chain in the j − 1th row. Therefore, each column

misses a different horizontal parity chain.

First, we make an assumption that there is a pseudo row under the last row of H-Code

matrix as shown in Figure 2.4(a). Each element of the additional row is all-zero-bit element

and takes part into the generation of parity of its anti-diagonal, where it does not change

the original value of anti-diagonal parity elements. This additional all-zero-bit element just

participates in the generation of the parity element in its column. We assume that the two

failed columns are f1 and f2, where 0 < f1 < f2 < p.

From the construction of H-Code, each horizontal parity chain in the ith row intersects

all columns in anti-diagonal part of the stripe except the (i + 1)th column. Any two anti-

diagonal parity elements cannot be placed in the same row. For any two concurrent failed

columns f1 and f2, the two horizontal parity chains that are not intersected by both columns

are in the (f1 − 1)th row and the (f2 − 1)th row. Since each of these horizontal parity

chains only misses one data element, the missing element can be reconstructed along that

horizontal parity chain with its horizontal parity. Since the horizontal parity column does

not fail which means all horizontal parity elements are available, we can start reconstruction
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process from the data element on each of the two missing columns using the horizontal

parity.

For the failed columns f1 and f2, if a data element Ci,f2 on column f2 can be

reconstructed from the horizontal parity in horizontal parity chain in the ith row, we can

reconstruct the missing data element C〈i+f1−f2〉p,f1 on the same anti-diagonal parity chain

if we have its anti-diagonal parity element. Similarly, a data element Ci,f1 in column f1 can

be reconstructed from the horizontal parity in horizontal parity chain in the ith row, we can

reconstruct the missing data element C〈i+f2−f1〉p,f2 on the same anti-diagonal parity chain

if we have its anti-diagonal parity element parity element.

From the above discussion, the two missing anti-diagonal parity elements are just the

two endpoints we mentioned in Lemma 3.1. If there are no missing parity elements,

we start the reconstruction process from data element Cf1−1,f2 on the f2th column to

the corresponding endpoint (element Cp−1,f1 on the f1th column). In this reconstruction

process, all data elements can be reconstructed and the reconstruction sequence is based

on the sequence of the two-integer tuple in Lemma 3.1. Similarly, with no missing parity

elements, we start the reconstruction process from data element Cf2−1,f1 on the f1th column

to the corresponding endpoint (element Cp−1,f2 on the f2th column).

However, the two missing anti-diagonal parity elements are not reconstructed in this

case. After we start the reconstruction from the two data elements Cf1−1,f2 and Cf2−1,f1 ,

the missing anti-diagonal parity elements Cp−1,f1 and Cp−1,f2 cannot be recovered, because

their corresponding horizontal parity and anti-diagonal parity are both missing. Actually,

we do not need to reconstruct these two elements for they are not really in our code matrix.

In summary, all missing data elements are recoverable. After all data elements are

recovered, we can reconstruct the two missing anti-diagonal parity elements.
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Case II: column 0 fails.

This case is similar to Case I. The difference is that in subcase II-II, there is only one

reconstruction sequence in reconstruction process. This process starts at Cf2−1,0 and all

lost data elements can be recovered.

2.2.4 Reconstruction

We first consider how to recover a missing data element since any missing parity element

can be recovered based on Equations 2.2 and 2.3. If we save the horizontal parity element

and the related p − 2 data elements, we can recover the missing data element (assume it’s

Ci,f1 in column f1 and 0 ≤ f1 ≤ p− 1) using the following equation,

Ci,f1 =

p∑
j=0

Ci,j (j 6= i+ 1 and j 6= f1) (2.4)

If there exists an anti-diagonal parity element and its p−2 data elements, to recover the

data element (Ci,f1), first we should find the corresponding anti-diagonal parity element.

Assume it is in row r and this anti-diagonal parity element can be represented by Cr,r+1

based on Equation 2.3, we have,

r = 〈p− 2− i+ f1〉p (2.5)

And then according to Equation 2.3, the lost data element can be recovered,

Ci,f1 = Cr,r+1 ⊕
p−1∑
j=0

C〈i−f1+j〉p,j

(j 6= f1 and j 6= 〈p− 1− i+ f1〉p)
(2.6)
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(a) Reconstruction by two recovery chains (there
are double failures in columns 3 and 4): First we
identify the two starting points of recovery chain:
data elements A and F. Second we reconstruct
data elements according to the corresponding
recovery chains until they reach the endpoints
(data elements E and J). The next anti-diagonal
elements after E and J do not exist (Cp−1,f1

and Cp−1,f2 in the proof of Theorem 2.1, we
use two “Xs” here), so the recovery chains
end. The orders to recover data elements
are: one is A→B→C→D→E, the other is
F→G→H→I→J. Finally we reconstruct anti-
diagonal parity elements K and L according to
Equation 2.3.

(b) Reconstruction by one recovery chain (there
are double failures in columns 0 and 1): First we
identify the starting point of recovery chain: data
element A. Second we reconstruct data elements
according to the corresponding recovery chain
until it reaches endpoint (data element K). The
next anti-diagonal element after K does not exist
(we use an “X” here), so the recovery chain
ends. The order to recover data elements is:
A→B→C→D→E→F→G→H→I→J→K. Finally
we reconstruct the anti-diagonal parity element L
according to Equation 2.3.

Figure 2.4: Reconstruction Process of H-Code.

Based on Equations 2.2 to 2.6, we can easily recover the elements with single disk

failure. If two disks fail (for example, column f1 and column f2, 0 ≤ f1 < f2 ≤ p), based

on Theorem 2.1, we have our reconstruction algorithm of H-Code, shown in Algorithm 2.1.

As the proof of Theorem 2.1, there are two cases in our reconstruction algorithm of H-

Code: failure in column 0 or not. Each has two subcases, subcases I-I and II-I focus on the

scenario where at least one failure involves a horizontal parity column while in subcases

I-II and II-II, failures don’t involve the horizontal parity. The reconstruction examples of

subcases I-II and II-II are shown in Figure 2.4(a) and Figure 2.4(b), which are situations

with different numbers of recovery chains.
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Algorithm 2.1: Reconstruction Algorithm of H-Code
Step 1: Identify the double failure columns: f1 and f2 (f1 < f2).
Step 2: Start reconstruction process and recover the lost data and parity elements.
switch 0 ≤ f1 < f2 ≤ p do

case I: f1 6= 0 (column 0 is saved)
case I-I: f2 = p (horizontal parity column is lost)

Step 2-I-IA: Recover the lost data elements in column f1.
repeat

Compute the lost data elements (Ci,f1 , i 6= f1 − 1) based on Equations 2.5 and 2.6.
until all lost data elements are recovered.
Step 2-I-IB: Recover the lost anti-diagonal parity element (Cf1−1,f1 ) based on Equation 2.3.
Step 2-I-IC: Recover the lost horizontal parity elements in column f2.
repeat

Compute the lost horizontal parity elements (Ci,f2 ) based on Equation 2.2.
until all lost horizontal parity elements are recovered.

case I-II: f2 6= p (horizontal parity column is saved)
Step 2-I-IIA: Compute two starting points (Cf2−1,f1 and Cf1−1,f2 ) of the recovery chains based on
Equation 2.4.
Step 2-I-IIB: Recover the lost data elements in the two recovery chains.
Two cases start synchronously:
case starting point is Cf2−1,f1 repeat

(1) Compute the next lost data element (in column f2) in the recovery chain based on Equations 2.5 and
2.6;
(2) Then compute the next lost data element (in column f1) in the recovery chain based on Equation 2.4.

until at the endpoint of the recovery chain.
case starting point is Cf1−1,f2 repeat

(1) Compute the next lost data element (in column f1) in the recovery chain based on Equations 2.5 and
2.6;
(2) Then compute the next lost data element (in column f2) in the recovery chain based on Equation 2.4.

until at the endpoint of the recovery chain.
Step 2-I-IIC: Recover the lost anti-diagonal parity element in column f1 and f2.
repeat

Compute the lost anti-diagonal parity elements (Cf1−1,f1 and Cf2−1,f2 ) based on Equation 2.3.
until all lost anti-diagonal parity elements are recovered.

case II: f1 = 0 (column 0 is lost)
case II-I: f2 = p (horizontal parity column is lost)

Step 2-II-IA: Recover the lost data elements in column 0.
repeat

Compute the lost data elements (Ci,0) based on Equations 2.5 and 2.6.
until all lost data elements are recovered.
Step 2-II-IB: Recover the lost horizontal parity elements in column f2.
repeat

Compute the lost horizontal parity elements (Ci,f2 ) based on Equation 2.2.
until all lost horizontal parity elements are recovered.

case II-II: f2 6= p (horizontal parity column is saved)
Step 2-II-IIA: Compute the starting point of the recovery chain (Cf2−1,0) based on Equation 4.
Step 2-II-IIB: Recover the lost data elements in the recovery chain.
repeat

(1) Compute the next lost data element in column f2 based on Equations 2.5 and 2.6;
(2) Then compute the next lost data element in column 0 based on Equation 2.4.

until at the endpoint of the recovery chain.
Step 2-II-IIC: Recover the lost diagonal parity element in column f2.
Compute the lost anti-diagonal parity element (Cf2−1,f2 ) based on Equation 2.3.
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2.3 Property Analysis

In this section, we first prove that H-Code shares some optimal properties as other vertical

codes, including: optimal storage efficiency, optimal encoding/decoding computational

complexity, optimal single write cost. Then, we prove that H-Code has optimal complexity

of partial stripe write to two data elements in the same row. Furthermore, H-Code has

optimal complexity of partial stripe write to two data elements in a stripe. Finally, we

evaluate partial stripe write cost of different codes in two aspects: in the same row and

across two rows.

2.3.1 Optimal Property of H-Code

Vertical codes have the optimal storage efficiency, optimal encoding/decoding computa-

tional complexity, optimal single write complexity [86, 15, 45]. We will prove that H-Code

shares the optimal property as other vertical codes.

Optimal Storage Efficiency

From the proof of H-Code’s correctness, H-Code is a MDS code. Since all MDS codes

have optimal storage efficiency [86, 15, 45], H-Code is storage efficient. Because H-

Code doesn’t use a dedicated anti-diagonal strip, it will not suffer from the unbalanced

I/O distribution as evidenced by our results shown in Figure 2.10, which will be discussed

in more detail later. By shifting the stripes’ horizontal parity strips among all the disks just

as RAID-5, H-Code does not suffer from the intensive I/O operations on dedicated parity

disk caused by random writes among stripes, either.
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Optimal Encoding/Decoding Computational Complexity

From the construction of H-Code, to generate all the 2∗ (p−1) parity elements in a (p−1)-

row-(p + 1)-column constructed H-Code, each of the remaining (p − 1) ∗ (p − 1) data

elements needs to take part into two XOR operations. Thus, the encoding computational

complexity of H-Code is [2 ∗ (p − 1) ∗ (p − 1) − 2 ∗ (p − 1)]/[(p − 1) ∗ (p − 1)] XOR

operations per data element on average. To reconstruct 2∗(p−1) failed elements in the case

of double disk failures, it need use 2 ∗ (p− 1) parity chains. Every parity chain in H-Code

has the same length of (p − 1). Thus, the decoding computational complexity of H-Code

is (p − 3) XOR operations per lost element on average. P-Code [45] has already proved

that an i-row-j-column constructed code with x data elements, has an optimal encoding

computational complexity of (3x− i ∗ j)/x XOR operations per data element on average,

and decoding computational complexity of (3x− i∗ j)/(i∗ j−x) XOR operations per lost

element on average. Therefore, H-Code’s encoding/decoding computational complexity is

optimal.

Optimal Single Write Property

From the construction of H-Code, each of the data elements takes part into the generation

of two and only two parity elements. Therefore, a single write on one data element in H-

Code only causes one additional write on each of the two parity elements, which has been

proved to be optimal in previous research [86, 15, 45].
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2.3.2 Partial Stripe Writes to Two Continuous Data Elements in H-

Code

Now, we prove that the cost of any partial stripe write to two continuous data elements of

H-Code is optimal among all vertical lowest density MDS codes.

Theorem 2.2. Any two data elements in a stripe of a lowest density vertical MDS code are

in at least three parity chains.

Proof. From previous literatures [86, 15, 45], it has been proved that, in a stripe of a lowest

density MDS code, any one data element takes part into the generation of two and only

two parity elements. Assume there are two data elements in two or less parity chains.

Consider the following case: both data elements are lost when double disk failures occur.

Now, these two lost data elements are unrecoverable, because all parity chains in the code

include either messages of both of these two data elements or none of them. Thus, the

assumption is invalid. Therefore, in a stripe of a lowest density MDS code, any two data

elements should be in at least three parity chains.

From the construction, any two continuous data elements in the same row of H-Code

share a same horizontal parity and must not share the same anti-diagonal parity. In other

words, any two continuous data elements in the same row are in three different parity

chains including a horizontal parity chain and two different anti-diagonal parity chains.

From Equation 2.1, any partial stripe writes to two continuous data elements in a row of

H-Code causes 2 ∗ (2 + 3) = 10 I/O operations.

Furthermore, as shown in Figure 2.5, from the construction of H-Code, any two

continuous data elements across two different rows share the same anti-diagonal parity

34



and must not share a same horizontal parity. From Equation 2.1, in this condition H-Code

also causes 10 I/O operations per partial stripe write.

Figure 2.5: Partial stripe writes to two continuous data elements in H-Code for an 8-disk
array.

In this figure, a partial stripe write to data elements A and B in two different rows, and
the other partial stripe write to data elements C and D in the same row. In these two
cases, there are only 3 parity elements modified for each partial stripe write, which shows
that our H-Code reduces partial stripe write cost and improves the performance of storage
system.

In summary, any partial stripe write to two continuous data elements of H-Code are in

three different parity chains. This is the lowest bound we proved in Theorem 2.2. From

Equation 2.1 and Theorem 2.2, the cost of any partial stripe write to two continuous data

elements locally of H-Code is 10 I/O operations, which is optimal.

2.3.3 Different Cases of Partial Stripe Writes to w Continuous Data

Elements

There are two cases for a partial stripe write to w continuous data elements: one is the w

written continuous data elements in the same row, the other is these data elements across

rows.
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The case of partial stripe writes to w continuous data elements (2 ≤ w ≤ n− 3) in the

same row is very simple, we only need to calculate the number of parity chains based on

Equation 2.1. For example, when a partial stripe write to w continuous data elements in

H-code, these data elements to be written share one horizontal parity chain, but are in w

different anti-diagonal parity chains. According to Equation 2.1, the total I/O operations

are (4w + 2).

However, for a partial stripe write to w continuous data elements (2 ≤ w ≤ n− 3),

there are many scenarios where partial stripe writes are crossing different rows (will be

discussed in Section 2.4), which are not as simple as partial stripe writes to two continuous

data elements. For example, as shown in Figure 2.1, if w = 3, the cost of a partial

stripe write to three elements C0,4C0,5C1,0 in RDP is different from a partial stripe write

to C1,4C1,5C2,0.

2.4 Performance Evaluation

In this section, we give our evaluations to demonstrate the effectiveness of our H-Code for

partial stripe writes to w continuous data elements (2 ≤ w ≤ n− 3).

2.4.1 Evaluation Methodology

We compare H-Code with following popular codes in typical scenarios when p = 5 and

p = 7 (P-Code has two variations, which are denoted by P-Code-1 and P-Code-2):

(1) Codes for p− 1 disks: P-Code-1 [45] and Cyclic code [15];

(2) Codes for p disks: X-Code [86] and P-Code-2 [45];
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(3) Codes for p+ 1 disks: H-Code and RDP code [18];

(4) Codes for p+ 2 disks: EVENODD code [8].

To reflect the status of partial stripe writes among different codes, we envision an ideal

sequence to partial stripe writes as follows,

For each data element, it is treated as the beginning written element at least once in a

partial stripe write to w continuous data elements (2 ≤ w ≤ n− 3, including partial stripe

writes in the same row and across two rows). If there is no data element at the end of a

stripe, the data element at the beginning of the stripe will be written.

In our evaluation, a partial stripe write across different stripes is a little different from

the one in our ideal sequence, which need more I/O operations but has little effect on the

evaluation results. When p = 5 and p = 7 in different codes, the number of data elements

in a stripe is less than 7 ∗ 7 = 49.

Based on the description of ideal sequence, for H-Code shown in Figure 2.3 (which

has (p − 1)2 total data elements in a stripe), the ideal sequence to w partial stripe writes

is: C0,0C0,2 · · · , C0,2C0,3 · · · , C0,3C0,4 · · · , and so on, · · · · · · , the last partial stripe write in

this sequence is Cp−2,p−2C0,0 · · · .

We use two types of access patterns based on this ideal sequence,

(1) Uniform access. Each partial stripe write occurs only once, so each data element is

written w times.

(2) Random access. Since the number of total data elements in a stripe is less than 49

when p = 5 and p = 7, we use 50 random numbers (ranging from 1 to 1000) generated by

a random integer generator [66] as the frequencies of partial stripe writes in the sequence

one after another. These 50 random numbers are shown in Table 3.2. For example, the first
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Table 2.1: 50 Random Integer Numbers

221 811 706 753 34 862 353 428 99 502
969 800 32 346 889 335 361 209 609 11
18 76 136 303 175 71 427 143 870 855
706 297 50 824 324 212 404 199 11 56
822 301 430 558 954 100 884 410 604 253

number in the table,“221” is used as the frequency of the first stripe writes C0,0C0,2 · · · (for

H-Code).

F (Ci,j) and P (Ci,j) are used to denote the access frequency and the access probability

of a partial stripe write to w continuous data elements starting from Ci,j , respectively. If

Ns is the total access frequency of all stripe writes in the ideal sequence, then,

P (Ci,j) =
F (Ci,j)

Ns

,
∑

P (Ci,j) = 1 (2.7)

For example, in uniform access, the access frequency and access probability of any

stripe write are,

F (Ci,j) = 1, P (Ci,j) =
1

Ns

(2.8)

We evaluate H-Code and other codes in terms of the following metrics. The first

metric is denoted by Sw(Ci,j), which is the number of I/O operations a partial stripe

write to w continuous data elements starting from Ci,j . We define “average number of

I/O operations of a partial stripe write to w continuous data elements (Savg.(w))” to

evaluate different codes. The smaller value of Savg.(w) is, the lower cost of partial stripe

writes and the higher performance of storage system is. Savg.(w) can be calculated by,
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Savg.(w) =
∑

Sw(Ci,j) · P (Ci,j) (2.9)

For uniform access in H-Code, Ns = (p− 1)2. According to Equation 2.8, the average

number of I/O operations of the ideal sequence of partial stripe writes is calculated using

the following equation,

Savg.(w) =

p−2∑
i=0

[
p−1∑
j=0

Sw(Ci,j)

]
(p− 1)2

(j 6= i+ 1) (2.10)

As described in Section 2.3.2 and Figure 2.5, it takes 10 I/O operations for any partial

stripe write to two continuous data elements. According to Equation 2.12, we have the

Savg.(w) value of H-Code,

Savg.(w = 2) =
10(p− 1)2

(p− 1)2
= 10

According to Equation 2.1, for a random partial stripe write, the numbers of read and

write I/O are the same, so we use average number of I/O operations to evaluate different

codes.

Our next metric is the “maximum number of I/O operations of a partial stripe write

to w continuous data elements (Smax.(w))”. It is the maximum number of I/O operations

of all partial stripe writes in the sequence and calculated by,

Smax.(w) = max [Sw(Ci,j)] (2.11)

To show the I/O distribution among different disks, we use another metric, Sj
w(Ci,j), to

denote the number of I/O operations in column j of a partial stripe write to w continuous
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data elements starting from Ci,j . We define “average number of I/O operations in

column j of a partial stripe write to w continuous data elements (Sj
avg.(w))” as follows,

Sj
avg.(w) =

∑
Sj
w(Ci,j) · P (Ci,j) (2.12)

For H-Code, we have the following equation,

Sj
avg.(w) =

p−2∑
i=0

[
p−1∑
j=0

Sj
w(Ci,j)

]
(p− 1)2

(j 6= i+ 1) (2.13)

2.4.2 Numerical Results

In this subsection, we give the numerical results of H-Code compared to other typical

codes using above metrics. In the following figures and tables, due to the constraint of

2 ≤ w ≤ n− 3, the average/maximum number of I/O operations in some codes are not

available.

Average I/O Operations

First we calculate the average I/O operation counts (Savg.(w) values) for different codes

with various w and p shown in Figure 2.6 and Figure 2.7. The results show that H-Code

can reduce the cost of partial stripe writes, and thus improve the performance of storage

system.

We also summarize the costs in terms of I/O operations of our H-Code compared to

other codes, which are shown in Table 2.2 and 2.3. It is obvious that H-Code has the lowest

I/O cost of partial stripe writes. For uniform access, there is a decrease of I/O operations up

to 14.68% and 20.45% compared to RDP and EVENODD codes, respectively. For random
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Figure 2.6: Average number of I/O operations of a partial stripe write to w continuous
data elements of different codes with different value of w when p = 5.

In this figure, 5 disks are used for X-Code, 6 disks are used for H-Code and RDP code, and
7 disks are used for EVENODD code.

Table 2.2: Improvement of H-Code over Other Codes in terms of Average Partial Stripe
Write Cost (Uniform Access)

w & p EVENODD code X-Code RDP code Cyclic code P-Code-1 P-Code-2
w = 2, p = 5 16.67% 14.75% 14.02% − − −
w = 3, p = 5 12.50% 18.60% 11.84% − − −
w = 2, p = 7 20.45% 15.04% 14.68% 9.09% 3.19% 3.85%

w = 3, p = 7 18.32% 20.18% 12.83% 5.60% 2.30% 1.89%

w = 4, p = 7 14.85% 22.21% 11.72% − − −
w = 5, p = 7 10.46% 22.83% 10.20% − − −

access, compared to RDP and EVENODD codes, H-Code reduces the cost by up to 15.54%

and 22.17%, respectively.

Maximum I/O Operations

Next we evaluate the maximum I/O operations shown in Figure 2.8 and 2.9. It clearly

shows that H-Code has the lowest maximum number of I/O operations compared to other

coding methods in all cases.
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Figure 2.7: Average number of I/O operations of a partial stripe write to w continuous
data elements of different codes with different value of w when p = 7.

In this figure, 6 disks are used for P-Code-1 and Cyclic code, 7 disks are used for X-
Code and P-Code-2, 8 disks are used for H-Code and RDP code, and 9 disks are used for
EVENODD code.

The above evaluations demonstrate that H-Code outperforms other codes in terms of

average and maximum I/O operations. The reasons that H-Code has the lowest partial

stripe write cost are: First, H-Code has a special anti-diagonal parity (the last data element

in a row and the first data element in the next row share the same anti-diagonal parity) ,

which can decease the partial stripe write cost when continuous data elements are crossing

rows like vertical codes. Second, we keep the horizontal parity similar to EVENODD

and RDP codes, which is efficient for partial stripe writes to continuous data elements in
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Table 2.3: Improvement of H-Code over Other Codes in terms of Average Partial Stripe
Write Cost (Random Access)

w & p EVENODD code X-Code RDP code Cyclic code P-Code-1 P-Code-2
w = 2, p = 5 13.19% 15.75% 15.25% − − −
w = 3, p = 5 12.12% 19.22% 14.00% − − −
w = 2, p = 7 22.17% 15.82% 15.54% 8.76% 13.79% 5.75%

w = 3, p = 7 20.04% 20.90% 13.58% 4.89% 2.23% 4.31%

w = 4, p = 7 15.65% 22.84% 12.15% − − −
w = 5, p = 7 10.53% 23.29% 11.15% − − −
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Figure 2.8: Maximum number of I/O operations of a partial stripe write to w continuous
data elements of different codes with different value of w when p = 5.

In this figure, 5 disks are used for X-Code, 6 disks are used for H-Code and RDP code, and
7 disks are used for EVENODD code.

the same row. Therefore, our H-Code takes advantages of both horizontal codes (such as

EVENODD and RDP) and vertical codes (such as X-Code, Cyclic and P-Code).

Partial Stripe Write in the Same Row

Third, we evaluate the cost for a partial stripe write to w continuous data elements in

the same row of H-Code and some other typical codes shown in Table 2.4. Compared

to EVENODD and X-Code, H-Code reduces I/O cost by up to 19.66% and 16.67%,

respectively.

43



10
14

18
22

20
22

24
26

12

18

24

30

16
20

24
26

12
16

12
16

12
16

0

6

12

18

24

30

w=2 w=3 w=4 w=5

Maximum number of I/O operations

H-Code EVENODD X-Code RDP Cyclic P-Code-1 P-Code-2

Figure 2.9: Maximum number of I/O operations of a partial stripe write to w continuous
data elements of different codes with different value of w when p = 7.

In this figure, 6 disks are used for P-Code-1 and Cyclic code, 7 disks are used for X-
Code and P-Code-2, 8 disks are used for H-Code and RDP code, and 9 disks are used for
EVENODD code.

Table 2.4: Cost Of A Partial Stripe Write to w Continuous Data Elements in the Same
Row (p = 7, Uniform Access)

H-Code EVENODD X-Code
w = 2 10 12.44 12
w = 3 14 16.8 16
w = 4 18 20.5 20

From Table 2.4, we find that, for a partial stripe write within a row, H-code offers better

partial stripe write performance compared to other typical codes. Due to the horizontal

parity, H-code performs better than X-Code (e.g., 10 vs. 12 I/O operations when w = 2)

in partial stripe write performance in the same row. H-Code has much lower cost than

EVENODD because of different anti-diagonal construction schemes.

I/O Workload Balance

As we mentioned before, H-Code doesn’t suffer from unbalanced I/O distribution which

is an issue in RDP code. To verify this, we calculate the Sj
avg.(w) values for H-Code and

RDP code as shown in Figure 2.10. It shows that for RDP code, the workload is not balance

(in disk 6 and disk 7 it is very high, especially in disk 7). However, our H-Code balances
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the workload very well among all disks because of the dispersed anti-diagonal parity in

different columns.

1
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Figure 2.10: Average number of I/O operations in column j of a partial stripe write to
three continuous data elements of different codes in an 8-disk array (p = 7, w = 3).

2.5 Summary

In this chapter, we propose a Hybrid Code (H-Code), to optimize partial stripe writes for

RAID-6 in addition to take advantages of both horizontal and vertical MDS codes. H-Code

is a solution for an array of (p+1) disks, where p is a prime number. The parities in H-Code

include horizontal row parity and anti-diagonal parity, where anti-diagonal parity elements

are distributed among disks in the array. Its horizontal parity ensures a partial stripe write

to continuous data elements in a row share the same row parity chain to achieve optimal

partial stripe write performance. Our theoretical analysis shows that H-Code is optimal in

terms of storage efficiency, encoding/decoding computational complexity and single write

complexity. Furthermore, we find H-Code offers optimal partial stripe write complexity

to two continuous data elements and optimal partial stripe write performance among all
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MDS codes to the best of our knowledge. Our H-code reduces partial stripe write cost by

up to 15.54% and 22.17% compared to RDP and EVENODD codes. In addition, H-Code

achieves better I/O workload balance compared to RDP code.
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Chapter 3

HDP Code

3.1 Introduction

As mentioned in previous chapters, a typical RAID-6 storage system based on horizontal

codes is composed of k + 2 disk drives. The first k disk drives are used to store original

data, and the last two are used as parity disk drives. Horizontal codes have a common

disadvantage that k elements must be read to recover any one other element. Vertical codes

have been proposed that disperse the parity across all disk drives, including X-Code [86],

Cyclic code [15], and P-Code [45]. All MDS codes have a common disadvantage that

k elements must be read to recover any one other element. This limitation reduces the

reconstruction performance during single disk or double disk failures.

However, most MDS codes based RAID-6 systems suffer from unbalanced I/O,

especially for write-intensive applications. Typical horizontal codes have dedicated

parities, which need to be updated for any write operations, and thus cause higher workload

on parity disks. For example, Figure 3.1 shows the load balancing problem in RDP [18] and

the horizontal parity layout shown in Figure 3.1(a). Assuming Ci,j delegates the element in
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ith row and jth column, in a period there are six reads and six writes to a stripe as shown in

Figure 3.1(c). For a single read on a data element, there is just one I/O operation. However,

for a single write on a data element, there are at least six I/O operations, one read and

one write on data elements, two read and two write on the corresponding parity elements.

Then we can calculate the corresponding I/O distribution and find that it is an extremely

unbalanced I/O as shown in Figure 3.1(d). The number of I/O operations in column 6 and 7

are five and nine times higher than column 0, respectively. It may lead to a sharp decrease

of reliability and performance of a storage system.

Unbalanced I/O also occurs on some vertical codes like P-Code [45] consisting of a

prime number of disks due to unevenly distributed parities in a stripe. For example, Figure

3.2 shows the load balancing problem in P-Code [45]. From the layout of P-Code as shown

in Figure 3.2(a), column 6 goes without any parity element compared to the other columns,

which leads to unbalanced I/O as shown in Figure 3.2(b) though uniform access happens.

We can see that column 6 has very low workload while column 0’s workload is very high

(six times of column 6). This can decrease the performance and reliability of the storage

system.

Even if many dynamic load balancing approaches [26, 71, 44, 5, 36, 6] are given for

disk arrays, it is still difficult to adjust the high workload in parity disks and handle the

override on data disks. Although some vertical codes such as X-Code [86] can balance the

I/O but they have high cost to recover single disk failure.

The unbalanced I/O hurts the overall storage system performance and the original

single/double disk recovery method has some limitation to improve the reliability. To

address this issue, we propose a new parity called Horizontal-Diagonal Parity (HDP)

, which takes advantage of both horizontal parity and diagonal/anti-diagonal parity
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(a) Horizontal parity layout of RDP code with
prime+1 disks (p = 7).

(b) Diagonal parity layout of RDP code with
prime+1 disks (p = 7).

(c) Six reads and six writes to various data
elements in RDP (Data elements C0,0, C1,1,
C3,5, C4,0, C4,3 and C5,3 are read and other
data elements C0,5, C2,1, C2,2, C3,4, C4,2 and
C5,4 are written, which is a 50% read 50% write
mode).

4
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2 2 2
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Number of Data Elements

(d) The corresponding I/O distribution among
different columns (e.g., the I/O operations in
column 1 is 2 reads and 1 write, 3 operations in
total; the I/O operations in disk 6 is 6 reads and 6
writes, 12 operations in total; the I/O operations
in disk 7 is 10 reads and 10 writes, 20 operations
in total).

Figure 3.1: Load balancing problem in RDP code for an 8-disk array.
In this figure, the I/O operations in columns 0, 1, 2, 3, 4 and 5 are very low, while in
columns 6 and 7 are very high. These high workload in parity disks may lead to a sharp
decrease of reliability and performance of a storage system.

to achieve well balanced I/O. The corresponding code using HDP parities is called

Horizontal-Diagonal Parity Code (HDP Code) and distributes all parities evenly to achieve

balanced I/O. Depending on the number of disks in a disk array, HDP Code is a solution

for p− 1 disks, where p is a prime number.
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(a) Vertical parity layout of P-Code with prime
disks (p = 7).

1 1
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(b) I/O distribution among different columns
when six writes to different columns occur
(Continuous data elements C0,6, C1,0, C1,1,
C1,2, C1,3, C1,4 and C1,5 are written, each
column has just one write to data element and
it is a uniform write mode to various disks).

Figure 3.2: Load balancing problem in P-Code for a 7-disk array.
In this figure, the I/O operations in columns 0 and 5 are very high which also may lead to
a sharp decrease of reliability and performance of a storage system.

The rest of this chapter continues as follows: Section 3.2 discusses the motivation. HDP

Code is described in detail in Section 3.3. Load balancing and reliability analysis are given

in Section 3.4 and 3.5. Finally we conclude the chapter in Section 3.6.

3.2 Summary on Load Balancing of Various Parities and

Our Motivation

To find out the root of unbalanced I/O in various MDS coding approaches, we analysis the

features of different parities, which can be classified into three categories: horizontal parity

(row parity), diagonal/anti-diagonal parity (special vertical parity) and vertical parity.
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3.2.1 Horizontal Parity (HP)

Horizontal Parity is the most important feature for all horizontal codes, such as EVENODD

[8] and RDP [18], etc. The horizontal parity layout is shown in Figure 3.1(a) and can be

calculated by,

Ci,n−2 =
n−3∑
j=0

Ci,j (3.1)

From Equation 3.1, we can see that typical HP can be calculated by some simple XOR

computations. For a partial stripe write to continuous data elements, it could have lower

cost than other parities due to these elements can share the same HP (e.g., partial write

cost to continuous data elements C2,1 and C2,2 shown in Figure 3.1(c)). Through the layout

of HP, horizontal codes can be optimized to reduce the recovery time when data disk fails

[84].

However, there is an obvious disadvantage for HP, which is workload unbalance as

introduced in Section 3.1.

3.2.2 Diagonal/Anti-diagonal Parity (DP/ADP)

Diagonal or anti-diagonal parity typically appears in horizontal codes or vertical codes,

such as in RDP [18] and X-Code [86], which are shown in Figure 3.1(b) and 1.5 and keep

balance well. The anti-diagonal parity of X-Code can be calculated by,

Cn−1,i =
n−3∑
k=0

Ck,〈i−k−2〉n (3.2)

From Equation 3.2, some modular computation to calculate the corresponding data

elements (e.g., 〈i− k − 2〉n) are added compared to Equation 3.1.
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For DP/ADP, it has a little effect to reduce the single disk failure as discussed in Section

1.3.3.

3.2.3 Vertical Parity (VP)

Vertical parity is normally in vertical codes, such as in B-Code [85] and P-Code [45].

Figure 3.2(a) shows the layout of vertical parity. The construction of vertical parity is a

little more complex: first some data elements are selected as a set and then do the modular

calculation. So the computation cost for a vertical parity is higher than other parities.

Except for some variations like P-Code shown in Figure 3.2(a), most vertical codes keep

balance well. Due to the complex layout, vertical codes like P-Code are too hard to reduce

the I/O cost of any single disk.

3.2.4 Motivation

Table 3.1 summarizes different parities, which all suffer from unbalanced I/O and the

efficiency to reduce the I/O cost of single disk failure. To address these issues, we propose

a new parity named HDP to take advantage of both vertical and horizontal parities to offer

low computation cost, high reliability and balanced I/O. The layout of HDP is shown in

Figure 3.3(a). In next section we will discuss how to use HDP parity to build HDP code to

achieve I/O balance and high reliability.
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Table 3.1: Summary of Different Parities

Parities
Computation Workload Reduce I/O cost of

cost balance single disk failure

HP very low unbalance
a lot for data disks,

little for parity disks
DP/ADP medium balance some for all disks

VP high
mostly balance

none
(unbalance in P-Code)

3.3 HDP Code

To overcome the shortcomings of existing MDS codes, in this section we propose the HDP

Code, which takes the advantage of both both horizontal and diagonal/anti-diagonal parities

in MDS codes. HDP is a solution for p− 1 disks, where p is a prime number.

3.3.1 Data/Parity Layout and Encoding of HDP Code

HDP Code is composed of a p− 1-row-p− 1-column square matrix with a total number of

(p − 1)2 elements. There are three types of elements in the square matrix: data elements,

horizontal-diagonal parity elements, and anti-diagonal parity elements. Ci,j (0 ≤ i ≤

p− 2, 0 ≤ j ≤ p− 2) denotes the element at the ith row and the jth column. Two

diagonals of this square matrix are used as horizontal-diagonal parity and anti-diagonal

parity, respectively.

Horizontal-diagonal parity and anti-diagonal parity elements of HDP Code are con-

structed according to the following encoding equations:

Horizontal parity:

Ci,i =

p−2∑
j=0

Ci,j (j 6= i) (3.3)
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Anti-diagonal parity:

Ci,p−2−i =
p−2∑
j=0

C〈2i+j+2〉p,j

(j 6= p− 2− i and j 6= 〈p− 3− 2i〉p)
(3.4)

Figure 3.3 shows an example of HDP Code for an 6-disk array (p = 7). It is a 6-row-

6-column square matrix. Two diagonals of this matrix are used for the horizontal-diagonal

parity elements (C0,0, C1,1, C2,2, etc.) and the anti-diagonal parity elements (C0,5, C1,4,

C2,3, etc.).

(a) Horizontal-diagonal parity coding of HDP
Code: a horizontal-diagonal parity element can
be calculated by XOR operations among the
corresponding data elements in the same row.
For example, C0,0 = C0,1⊕C0,2⊕C0,3⊕C0,4⊕
C0,5.

(b) Anti-diagonal parity coding of HDP Code:
an anti-diagonal parity element can be calculated
by XOR operations among the corresponding
data elements in anti-diagonal. For example,
C1,4 = C4,0 ⊕ C5,1 ⊕ C0,3 ⊕ C2,5.

Figure 3.3: HDP Code (p = 7).

The encoding of the horizontal-diagonal parity of HDP Code is shown in Figure

3.3(a). We use different icon shapes to denote different sets of horizontal-diagonal

elements and the corresponding data elements. Based on Equation 3.3, all horizontal
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elements are calculated. For example, the horizontal element C0,0 can be calculated by

C0,1 ⊕ C0,2 ⊕ C0,3 ⊕ C0,4 ⊕ C0,5.

The encoding of anti-diagonal parity of HDP Code is given in Figure 3.3(b). According

to Equation 3.3, the anti-diagonal elements can be calculated through modular arithmetic

and XOR operations. For example, to calculate the anti-diagonal element C1,4 (i = 1),

first we should fetch the proper data elements (C〈2i+j+2〉p,j). If j = 0, 2i + j + 2 = 4 and

〈4〉p = 4, we get the first data element C4,0. The following data elements, which take part

in XOR operations, can be calculated in the same way (the following data elements are

C5,1, C0,3, C2,5). Second, the corresponding anti-diagonal element (C1,4) is constructed by

an XOR operation on these data elements, i.e., C1,4 = C4,0 ⊕ C5,1 ⊕ C0,3 ⊕ C2,5.

3.3.2 Construction Process

According to the above data/parity layout and encoding scheme, the construction process

of HDP Code is straightforward:

• Label all data elements.

• Calculate both horizontal and anti-diagonal parity elements according to Equations

3.3 and 3.4.

3.3.3 Proof of Correctness

To prove the correctness of HDP Code, we take the case of one stripe for example here. The

reconstruction of multiple stripes is just a matter of scale and similar to the reconstruction

of one stripe. In a stripe, we have the following lemma and theorem,
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Lemma 3.1. We can find a sequence of a two-integer tuple (Tk, T
′
k) where

Tk =

〈
p− 2 +

k+1+
1+(−1)k

2

2
(f2 − f1)

〉
p−1

,

T ′k =
1+(−1)k

2
f1 +

1+(−1)k+1

2
f2 (k = 0, 1, · · · , 2p− 3)

with 0 < f2− f1 < p− 1, all two-integer tuples (0, f1), (0, f2), · · · , (p− 2, f1), (p− 2, f2)

occur exactly once in the sequence. The similar proof of this lemma can be found in many

papers on RAID-6 codes [8, 18, 86, 45].

Theorem 3.1. A p − 1-row-p − 1-column stripe constructed according to the formal

description of HDP Code can be reconstructed under concurrent failures from any two

columns.

Proof. The two failed columns are denoted as f1 and f2, where 0 < f1 < f2 < p.

In the construction of HDP Code, any two horizontal-diagonal parity elements cannot

be placed in the same row, as well for any two anti-diagonal parity elements. For any two

concurrently failed columns f1 and f2, based on the layout of HDP Code, two data elements

Cp−1−f2+f1,f1 and Cf2−f1−1,f2 can be reconstructed since the corresponding anti-diagonal

parity element does not appear in the other failed column.

For the failed columns f1 and f2, if a data element Ci,f2 on column f2 can be

reconstructed, we can reconstruct the missing data element C〈i+f1−f2〉p,f1 on the same anti-

diagonal parity chain if its corresponding anti-diagonal parity elements exist. Similarly,

a data element Ci,f1 in column f1 can be reconstructed, we can reconstruct the missing

data element C〈i+f2−f1〉p,f2 on the same anti-diagonal parity chain if its anti-diagonal parity

element parity element exist. Let us consider the construction process from data element

Cf2−f1−1,f2 on the f2th column to the corresponding endpoint (element Cf1,f1 on the f1th
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column). In this reconstruction process, all data elements can be reconstructed and the

reconstruction sequence is based on the sequence of the two-integer tuple in Lemma 3.1.

Similarly, without any missing parity elements, we may start the reconstruction process

from data element Cf2−1,f1 on the f1th column to the corresponding endpoint (element

Cf2,f2 on the f2th column).

In conclusion, HDP Code can be reconstructed under concurrent failures from any two

columns.

3.3.4 Reconstruction Process

We first consider how to recover a missing data element since any missing parity element

can be recovered based on Equations 3.3 and 3.4. If the horizontal-diagonal parity element

and the related p−2 data elements exist, we can recover the missing data element (assuming

it’s Ci,f1 in column f1 and 0 ≤ f1 ≤ p− 2) using the following equation,

Ci,f1 =

p−2∑
j=0

Ci,j (j 6= f1) (3.5)

If there exists an anti-diagonal parity element and its p−3 data elements, to recover the

data element (Ci,f1), first we should recover the corresponding anti-diagonal parity element.

Assume it is in row r and this anti-diagonal parity element can be represented by Cr,p−2−r

based on Equation 3.4, then we have:

i = 〈2r + f1 + 2〉p (3.6)

So r can be calculated by (k is an arbitrary positive integer):
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r =


(i− f1 + p− 2)/2 (i− f1 = ±2k + 1)

(i− f1 + 2p− 2)/2 (i− f1 = −2k)

(i− f1 − 2)/2 (i− f1 = 2k)

(3.7)

According to Equation 3.4, the missing data element can be recovered,

Ci,f1 = Cr,p−2−r ⊕
p−2∑
j=0

C〈2i+j+2〉p,j

(j 6= f1 and j 6= 〈p− 3− 2i〉p)
(3.8)

Figure 3.4: Reconstruction by two recovery chains.
In this figure, there are double failures in columns 2 and 3. To recover the lost columns,
first we identify the two starting points of recovery chain: data elements A and G. Second
we reconstruct data elements according to the corresponding recovery chains until they
reach the endpoints (data elements F and L).The orders to recover data elements are: one
is A→B→C→D→E→F, the other is G→H→I→J→K→L.

Based on Equations 3.5 to 3.8, we can easily recover the elements upon single disk

failure. If two disks failed (for example, column f1 and column f2, 0 ≤ f1 < f2 ≤

p− 2), based on Theorem 3.1, we have our reconstruction algorithm of HDP Code shown

in Algorithm 3.1.
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Algorithm 3.1: Reconstruction Algorithm of HDP Code
Step 1: Identify the double failure columns: f1 and f2 (f1 < f2).
Step 2: Start reconstruction process and recover the lost data and parity elements.
switch 0 ≤ f1 < f2 ≤ p− 2 do

Step 2-A: Compute two starting points (Cp−1−f2+f1,f1 and Cf2−f1−1,f2) of the
recovery chains based on Equations 3.6 to 3.8.
Step 2-B: Recover the lost data elements in the two recovery chains.
Two cases start synchronously:
case starting point is Cp−1−f2+f1,f1 repeat

(1) Compute the next lost data element (in column f2) in the recovery chain
based on Equation 3.5;
(2) Then compute the next lost data element (in column f1) in the recovery
chain based on Equations3.6 to 3.8.

until at the endpoint of the recovery chain.
case starting point is Cf2−f1−1,f2 repeat

(1) Compute the next lost data element (in column f2) in the recovery chain
based on Equation 3.5;
(2) Then compute the next lost data element (in column f1) in the recovery
chain based on Equations 3.6 to 3.8.

until at the endpoint of the recovery chain.

In Algorithm 3.1, we notice that the two recovery chains of HDP Code can be recovered

synchronously, and this process will be discussed in detail in Section 3.5.2.

3.3.5 Property of HDP Code

From the proof of HDP Code’s correctness, HDP Code is essentially an MDS code, which

has optimal storage efficiency [86, 15, 45].

3.4 Load Balancing Analysis

In this section, we evaluate HDP to demonstrate its effectiveness on load balancing.
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3.4.1 Evaluation Methodology

We compare HDP Code with following popular codes in typical scenarios (when p = 5 and

p = 7):

• Codes for p− 1 disks: HDP Code;

• Codes for p disks: P-Code [45];

• Codes for p+ 1 disks: RDP code [18];

• Codes for p+ 2 disks: EVENODD code [8].

For each coding method, we analyze a trace as shown in Figure 3.5. We can see that

most of the write requests are 4KB and 8 KB in Microsoft Exchange application. Typically

a stripe size is 256KB [20] and a data block size is 4KB, so single write and partial stripe

write to two continuous data elements are dominant and have significant impacts on the

performance of disk array.
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Figure 3.5: Write request distribution in Microsoft Exchange trace (most write requests
are 4KB and 8KB).

Based on the analysis of exchange trace, we select various types of read/write requests

to evaluate various codes as follows:
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• Read (R): read only;

• Single Write (SW): only single write request without any read or partial write to

continuous data elements;

• Continuous Write (CW): only write request to two continuous data elements

without any read or single write;

• Mixed Read/Write (MIX): mixed above three types. For example, “RSW” means

mixed read and single write requests, “50R50SW” means 50% read requests and

50% single write requests.

To show the status of I/O distribution among different codes, we envision an ideal

sequence to read/write requests in a stripe as follows,

For each data element, it is treated as the beginning read/written element at least once.

If there is no data element at the end of a stripe, the data element at the beginning of the

stripe will be written.

Based on the description of ideal sequence, for HDP Code shown in Figure 3.3 (which

has (p− 3) ∗ (p− 1) total data elements in a stripe), the ideal sequence of CW requests to

(p − 3) ∗ (p − 1) data elements is: C0,1C0,2, C0,2C0,3, C0,3C0,4, and so on, · · · · · · , the last

partial stripe write in this sequence is Cp−2,p−3C0,0.

We also select two access patterns combined with different types of read/write requests:

• Uniform access. Each request occurs only once, so for read requests, each data

element is read once; for write requests, each data element is written once; for

continuous write requests, each data element is written twice.
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Table 3.2: 50 Random Integer Numbers

221 811 706 753 34 862 353 428 99 502
32 800 969 346 889 335 361 209 609 11
18 76 136 303 175 71 427 143 870 855
706 297 50 824 324 212 404 199 11 56
822 301 430 558 954 100 884 410 604 253

• Random access. Since the number of total data elements in a stripe is less than

49 when p = 5 and p = 7, we use 50 random numbers (ranging from 1 to 1000)

generated by a random integer generator [66] as the frequencies of partial stripe

writes in the sequence one after another. These 50 random numbers are shown in

Table 3.2. For example, in HDP Code, the first number in the table,“221” is used as

the frequency of a CW request to elements C0,1C0,2.

We define Oj(Ci,j) as the number of I/O operations in column j, which is caused by a

request to data element(s) with beginning element Ci,j . And we use O(j) to delegate the

total number of I/O operations of requests to column j in a stripe, which can be calculated

by,

O(j) =
∑

Oj(Ci,j) (3.9)

We use Omax and Omin to delegate maximum/minimum number of I/O operations

among all columns, obviously,

Omax = maxO(j), Omin = minO(j) (3.10)

We evaluate HDP Code and other codes in terms of the following metrics. We define

“metric of load balancing (L)” to evaluate the ratio between the columns with the highest
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I/O Omax and the lowest I/O Omin. The smaller value of L is, the better load balancing is.

L can be calculated by,

L =
Omax

Omin

(3.11)

For uniform access in HDP Code, Omax is equal to Omin. According to Equation 3.11,

L =
Omax

Omin

= 1 (3.12)

3.4.2 Numerical Results

In this subsection, we give the numerical results of HDP Code compared to other typical

codes using above metrics.

First, we calculate the metric of load balancing (L values) for different codes with

various p shown in Figure 3.6 and Figure 3.7. In the following figures, because there is no

I/O in parity disks, the minimum I/O Omin = 0 thus L = ∞. The results show that HDP

Code has the lowest L value and thus the best balanced I/O compared to the other codes.
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Figure 3.6: Metric of load balancing L under various codes (p = 5).

Second, to discover the trend of unbalanced I/O in horizontal codes, especially for

uniform write requests, we also calculate the L value in RDP, EVENODD and HDP.
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Figure 3.7: Metric of load balancing L under various codes (p = 7).

Table 3.3: Different L Value in Horizontal Codes

Code Uniform SW requests Uniform CW requests
RDP 2p− 4 + 1

p−1
3p
2
− 5

2
+ 1

2p−2
EVENODD 2p− 2 2p− 3

HDP 1 1

For HDP Code, which is well balanced as calculated in Equation 3.12 for any uniform

request. For RDP and EVENODD codes, based on their layout, the maximum number

of I/O operations appears in their diagonal parity disk and the minimum number of I/O

operations appears in their data disk. By this method, we can get different L according to

various values of p. For example, for uniform SW requests in RDP code,

L =
Omax

Omin

=
2(p− 1)2 + 2(p− 2)2

2(p− 1)
= 2p− 4 +

1

p− 1
(3.13)

We summarize the results in Table 3.3 and give the trend of L in horizontal codes with

different p values in Figure 3.8 and 3.9. With the increasing number of disks (p becomes

larger), RDP and EVENODD suffer extremely unbalanced I/O while HDP code gets well

balanced I/O in the write-intensive environment.
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Figure 3.8: Metric of load balancing L under uniform SW requests with different p in
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0

8

16

24

32

40

5 7 11 13 17 19

L

RDP EVENODD HDP
P

Figure 3.9: Metric of load balancing L under uniform CW requests with different p in
various horizontal codes.

3.5 Reliability Analysis

By using special horizontal-diagonal and anti-diagonal parities, HDP Code also provides

high reliability in terms of fast recovery on single disk and parallel recovery on double

disks.
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3.5.1 Fast Recovery on Single Disk

As discussed in Section 1.3.3, some MDS codes like RDP can be optimized to reduce the

recovery time when single disk fails. This approach also can be used for HDP Code to

get higher reliability. For example, as shown in Figure 3.10, when column 0 fails, not all

elements need to be read for recovery. Because there are some elements like C0,4 can be

shared to recover two failed elements in different parities. By this approach, when p = 7,

HDP Code reduces up to 37% read operations and 26% total I/O per stripe to recover single

disk, which can decrease the recovery time thus increase the reliability of the disk array.

Figure 3.10: Single disk recovery in HDP Code when column 0 fails.
In this figure, the corresponding data or parity elements to recover the failed elements are
signed with the same character, e.g., element C0,4 signed with “AD” is used to recover the
elements A and D.

We summarize the reduced read I/O and total I/O in different codes in Table 3.4. We can

see that HDP achieves highest gain on reduced I/O compared to RDP and X-Code. Based

on the layout of HDP Code, we also keep well balanced read I/O when one disk fails. For
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Table 3.4: Reduced I/O of Single Disk failure in Different Codes

Code Reduced Read I/O Reduced Total I/O
Optimized RDP (p = 5) 25% 16.7%

Optimized X-Code (p = 5) 13% 12%
Optimized HDP (p = 5) 33% 20%
Optimized RDP (p = 7) 25% 19%

Optimized X-Code (p = 7) 19% 14%
Optimized HDP (p = 7) 37% 26%

example, as shown in Figure 3.11, the remaining disks all 4 read operations, which are well

balanced.

Figure 3.11: Single disk recovery in HDP Code when column 0 fails.
In this figure, each remain column has 4 read operations to keep load balancing well. Data
elements A, C and F are recovered by their horizontal-diagonal parity while B, D and E
are recovered by their anti-diagonal parity.

3.5.2 Parallel Recovery on Double Disks

According to Figure 3.4 and Algorithm 3.1, HDP Code can be recovered by two recovery

chains all the time. It means that HDP Code can be reconstructed in parallel when any
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Table 3.5: Recovery Time of Any Two Disk Failures in HDP Code (p = 5)

failed columns total recovered
0, 1 0, 2 0, 3 1, 2 1, 3 2, 3 elements
6Rt 6Rt 4Rt 4Rt 6Rt 6Rt 8*6=48

two disks fail, which can reduce the recovery time of double disks failure thus improve

the reliability of the disk array. To efficiently evaluate the effect of parallel recovery, we

assume that Rt is the average time to recover a data/parity element, then we can get the

parallel recovery time of any two disks as shown in Table 3.5 when p = 5. Suppose Navg.

delegates the average number of elements can be recovered in a time interval Rt, the larger

of Navg. value is, the better parallel recovery on double disks and the lower recovery time

will be. And we can calculate Navg. value by the results shown in Table 3.5,

Navg. =
48

6 + 6 + 4 + 4 + 6 + 6
= 1.5 (3.14)

We also get the Navg. = 1.43 when p = 7 in our HDP Code. It means that HDP can

recover 50% or 43% more elements during the same time interval. It also shows that our

HDP Code reduces 33% or 31% total recovery time compared to most RAID-6 codes with

single recovery chain as RDP [18], Cyclic [15] and P-Code [45].

3.6 Summary

In this chapter, we propose the Horizontal-Diagonal Parity Code (HDP Code) to op-

timize the I/O load balancing for RAID-6 by taking advantage of both horizontal and

diagonal/anti-diagonal parities in MDS codes. HDP Code is a solution for an array of
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p − 1 disks, where p is a prime number. The parities in HDP Code include horizontal-

diagonal parity and anti-diagonal parity, where all parity elements are distributed among

disks in the array to achieve well balanced I/O. Our mathematic analysis shows that HDP

Code achieves the best load balancing and high reliability compared to other MDS codes.
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Chapter 4

Stripe-based Data Migration (SDM)

Scheme

4.1 Introduction

In recent years, with the development of cloud computing, scalability becomes an important

issue [2] which is urgently demanded by RAID systems due to following reasons,

1. By extending more disks, a disk array provides higher I/O throughput and larger

capacity [87]. It not only satisfies the sharp increasing on user data in various online

applications [27], but also avoids the extremely high downtime cost [56].

2. RAID-based architectures are widely used for clusters and large scale storage

systems, where scalability plays a significant role [43, 70].

3. The storage efficiency can be improved by adding more disks into an existing disk

array which also decreases the cost of the storage system.
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However, existing solutions in disk arrays [29, 55, 88, 28, 89, 37, 90] are not suitable for

RAID-6 scaling process to add disks to an existing disk array. Researchers face a challenge

to find an effective solution to scale RAID-6 systems based on MDS codes efficiently. First,

existing approaches are proposed for general case in RAID-0 or RAID-5 [29, 55, 88, 28,

89, 37, 90], which cannot adopt various coding methods in RAID-6. For example, RDP

and P-Code have different layouts of data and parity. Thus the scaling scheme should be

designed according to the characteristic of RDP or P-Code, respectively. Second, typical

scaling schemes are based on round-robin order [29, 55, 88, 89], which are not suitable

for RAID-6 due to high overhead on parity migration, modification and computation. One

of the reasons is that the parity layouts of RAID-6 codes are complex. Another reason is

that the stripes are dramatically changed after scaling. For example, a movement on any

data element may lead to up to eight additional I/O operations on its corresponding parity

elements.

To address the above challenge, we propose a new Stripe-based Data Migration (SDM)

scheme to accelerate RAID-6 scaling. Different from existing approaches, SDM exploits

the relationships between the stripe layouts before and after scaling to make scaling process

efficiently.

The rest of this chapter continues as follows: Section 4.2 discusses the motivation.

SDM scheme is described in detail in Section 4.3. Section 4.4 gives the quantitative

analysis on scalability. Finally we conclude the chapter in Section 4.5.
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Table 4.1: Summary on Various Fast Scaling Approaches

Name
Features in Section 1.3.4

Used in RAID-6?
Feature 1 Feature 2 Feature 3 Feature 4

RR
√

×
√

× conditionally
Semi-RR × ×

√
× conditionally

ALV
√

×
√

× ×
MDM ×

√ √ √
×

FastScale
√ √ √ √

×
SDM

√ √ √ √ √

4.2 Motivation

We summarize the existing fast scaling approaches in Table 4.1. Although these fast scaling

approaches offer some nice features for RAID-0 or RAID-5, it is not suitable for RAID-6

due to the special coding methods, of which MDS codes are popular. Figures 1.4 and 1.6

show the parity layout of RDP [18] and P-Code [45], where there are several problems

regarding scalability. First, existing scaling approaches are difficult to be applied in these

codes. If we extend a RAID-6 disk array based on RDP from 6 to 8 disks, any new

data cannot be migrated into the dedicated parity disks (columns 6 and 7). On the other

hand, if we select P-Code, we needn’t care about the dedicated parity disks. Second, few

strategies on reducing parity modification are involved in existing methods. Actually, for

keeping parity consistency, too many parity elements have to be recalculated and modified

because of the movements on their corresponding data elements in RAID-6. It causes high

computation cost, modification overhead, and an unbalanced migration I/O.

In summary, existing scaling approaches are insufficient to satisfy the desired four

features listed in Section 1.3.4, which motivates us to propose a new approach on RAID-6

scaling.
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4.3 SDM Scheme

In this section, an Stripe-based Data Migration (SDM) scheme is designed to accelerate the

RAID-6 scaling. The purpose of SDM is to minimize the parity migration, modification

and computation according to a global point view on single/multiple stripe(s), not limited

to a migration on single data/parity element as Round-Robin [29, 55, 88].

To clearly illustrate the stripes before/after scaling, we define four types of stripes as

follows,

• Old Used Stripe (OUS): A used stripe before scaling.

• Old Empty Stripe (OES): An empty stripe before scaling.

• New Used Stripe (NUS): A used stripe after scaling.

• New Empty Stripe (NES): An empty stripe after scaling.

In our SDM scheme, an OUS/OES corresponds to a NUS/NES with the same stripe ID,

respectively. SDM scheme takes the following steps,

1. Priority Definition: Define the different priorities for the movements on single

data/parity.

2. Layout Comparison: Compare the layouts before and after scaling and find a cost-

effective way to change the layout of a stripe. The data/parity movements in this step should

have the highest priority.

3. Load Balancing Check: According to the data distribution in the stripes (after Step

2), select a small portion of stripes to balance the workload. The data/parity movements in

this step can have acceptable overhead.
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Table 4.2: Priorities of Data/Parity Migration in SDM (For A Movement on Single
Data/Parity Element)

Priority
Number of modified Overhead of Parity

Parities (for Data/Parity Migration Computation
parity consistency) & Modification Cost

1 none 2 I/Os none
2 one 4 I/Os 1 XOR
3 two 6 I/Os 2 XORs
4 three or more ≥ 8 I/Os 4 XORs

4. Data Migration: Based on the migration schemes in Steps 2 and 3, start data

migration for each stripe.

Typically, without any special instructions, a data/parity block (in logical address view)

corresponds to a data/parity element (in parity layout view) in a stripe. Due to the difference

between horizontal and vertical codes, we design various scaling schemes and discuss them

separately. In this section, we use RDP [18] (a typical horizontal code) and P-Code [45] (a

typical vertical code) as examples to show how SDM works in RAID-6, scaling from 6 to

8 disks and from 6 to 7 disks, respectively. Their corresponding parity layouts are shown

in Figures 1.4 and 1.6.

4.3.1 Priority Definition of Data/Parity Movements

Due to complex parity layouts in RAID-6, several scenarios on data movements should be

considered. Due to this reason, we define the priorities of data/parity migration in SDM

according to the number of modified parities as summarized in Table 4.2. Higher priority

means lower overhead on total IOs and parity computation.

According to the various priorities in Table 4.2, we can measure whether a movement

is efficient or not. For example, as shown in Figure 4.1, Block 0 is migrated from disk 2
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to disk 0, and other blocks are retained without any movement. From horizontal parity’s

point of view (shown in Figure 4.1(a)), Block 0 also stays in the original horizontal parity

chain and the corresponding parity P0 needn’t be changed. On the other hand, considering

the aspect of diagonal parity (shown in Figure 4.1(b)), Block 0 also shares the same parity

chain with other blocks (e.g., Blocks 11, 14, P1 and Q0), and the corresponding parity

element could be retained. Therefore, the movement of Block 0 doesn’t change any parity

and has the highest priority (Priority 1) in the scaling process.

(a) Horizontal parity view. (b) Diagonal parity view.

Figure 4.1: Data movement of Block 0 in Figure 1.10.

4.3.2 Layout Comparison

Compared to the current and future parity layouts, we propose different rules for horizontal

and vertical codes,

Rules for Horizontal Codes

• (Parity Disks Labeling) Original parity disks are retained and the extending disk(s)

are used for data disk(s).
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• (Extended Disk(s) Labeling) If m disk(s) are added into a disk array, the new disk(s)

are labeled as the m middle column(s) (in the middle of all data columns).

• (Rows Labeling) If an Old Used Stripe (OUS) contains nr rows, these rows are

labeled as the first nr rows in the New Used Stripe (NUS).

• (Special parity handling) If horizontal parities take part in the calculation of

diagonal/anti-diagonal parities, the priority of data/parity movement in the horizontal

chain is higher than that in diagonal/anti-diagonal parity chain. Conversely, if

diagonal/anti-diagonal parities take part in the calculation of horizontal parities, the

priority of data/parity movement in the diagonal/anti-diagonal chain is higher than

that in horizontal chain.

• (Data/Parity Migration) Select proper data/parity movements with the highest

priority.

For example, if we want to scale a RAID-6 array using RDP from 6 to 8 disks, compared

to the layouts in Figures 1.4 and 4.2, we have the following strategies according to the above

rules,

1.(Parity Disks Labeling) Columns 4 and 5 in Figure 1.4 are retained as parity columns,

and the column IDs are changed to columns 6 and 7 in Figure 4.2.

2.(Extended Disk(s) Labeling) Two extended disks are regarded as data disks and

labeled as columns 2 and 3, causing the lowest overhead as shown in Table 4.3.

3.(Rows Labeling) The row IDs in each Old Used Stripe (OUS) are retained. By

extending more disks, the size of stripes becomes larger and contains several new rows,

which are known as “phantom” rows [62] in the scaling process.
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(a) Horizontal parity coding. (b) Diagonal parity coding.

Figure 4.2: RDP code for p+ 1 disks (p = 7, n = 8).

Table 4.3: Different overhead of Extended Disk(s) Labelling in SDM

Extended disk(s) Minimal number of Migration
labeling moved data/parity Cost

columns 0 and 1 10 20 I/Os
columns 1 and 2 6 12 I/Os
columns 2 and 3 4 8 I/Os
columns 3 and 4 4 8 I/Os
columns 4 and 5 6 12 I/Os

other cases ≥ 6 ≥ 12 I/Os

4.(Special parity handling) The priority of data/parity movement in the horizontal chain

is higher than that in diagonal/anti-diagonal parity chain.

5.(Data/Parity Migration) Blocks 2, 6, 3 and 13 are selected to migrate as shown in

Figure 4.3, and all data blocks also share the same parities with the new parity layout.

Therefore, all parity blocks are retained and these movements have the highest priority.

Rules for Vertical Codes

• (Original Disks Labeling) Original disk IDs are retained and the extended disks are

used for data disks.
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(a) Logical address view.

(b) Horizontal parity view. (c) Diagonal parity view.

Figure 4.3: Data/parity migration in Layout Comparison Step (RDP code, scaling from 6
to 8 disks).

• (Extended Disk(s) Labeling) By extending m disk(s) into a disk array, the new disks

are labeled as the last m columns.

• (Rows Labeling) If an Old Used Stripe (OUS) contains nr data rows, which are

labeled as the same row ID in the New Used Stripe (NUS). The dedicated parity

rows are labeled according to the new layout.

• (Data/Parity Migration) Select proper data/parity movements which have the highest

priority.
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For example, if we want to scale a RAID-6 array using P-Code from 6 to 7 disks,

compared to the layouts in Figure 1.6, we have the following strategies according to the

above rules,

1.(Disks Labeling) As shown in Figure 4.4, original column IDs are retained. The new

disk is labeled as Column 6.

2.(Rows Labeling) The row IDs in each Old Used Stripes (OUSs) are retained.

3.(Data/Parity Migration) Blocks 0 and 1 are selected to migrate as shown in Figure

4.4, which have the highest priority and three parities (P3, P4 and P5) are modified in

each stripe.

(a) Logical address view.

(b) Vertical parity view.

Figure 4.4: Data/parity migration in Layout Comparison Step (P-Code, scaling from 6 to 7
disks).
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Table 4.4: Data Distribution of RAID-6 Scaling by Using SDM Scheme (RDP code,
Scaling from 6 to 8 disks)

Stripe Total Data Column ID
ID Elements 0 1 2 3 4 5
0 16 4 3 2 2 2 3
1 16 4 3 2 2 2 3
2 16 0 2 4 4 4 2

stripe set
48 8 8 8 8 8 8

(three stripes)

Table 4.5: Data Distribution of RAID-6 Scaling by Using SDM Scheme (P-Code, Scaling
from 6 to 7 disks)

Stripe Total Data Column ID
ID Elements 0 1 2 3 4 5 6
0 12 1 1 2 2 2 2 2
1 12 2 2 1 1 2 2 2
2 12 2 2 2 2 1 1 2
3 12 1 1 2 2 2 2 2
4 12 2 2 1 1 2 2 2
5 12 2 2 2 2 1 1 2
6 12 2 2 2 2 2 2 0

stripe set
84 12 12 12 12 12 12 12

(seven stripes)

4.3.3 Load Balancing Check in SDM

In the load balancing checking step, first we get the statistics of data distribution after

layout comparison. For example, the data distribution in RDP and P-Code are shown in

the second row (Stripe ID is 0) in the Tables 4.4 and 4.5. We notice that it is unbalanced

distribution, where different column has various number of data elements.

For horizontal and vertical codes, we use different ways to get a uniform data

distribution as follows,

• (Typically for horizontal codes) Most horizontal codes have unsymmetrical data and

parity distribution, a small portion of stripes will be sacrificed with a little higher
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migration cost (called “sacrificed stripes”). In the load balancing checking step, the

portion of sacrificed stripes will be calculated and the migration scheme in these

stripes will be proposed.

• (Typically for vertical codes) Most vertical codes have symmetrical data and parity

distribution, the data elements in each stripes will be migrated alternately, and a small

portion of stripes will be chosen without any movement (called “retained stripes”).

To calculate the percentage of sacrificed/retained stripes, we define “Stripe Set” which

includes ns stripes with uniform data distribution. Suppose nd′ is the total number of data

disks after scaling, and ne is the total number of data elements in a stripe before scaling. ns

can be computed by,

ns =
lcm {nd′ , ne}

ne

(4.1)

According to Equation4.1, in a stripe set, the total number of data elements in each

column (denoted by nec) is,

nec =
lcm {nd′ , ne}

nd′
(4.2)

Typically, a small portion of stripes in each stripe set will be selected as sacrificed or

retained stripe and we can calculate the number of data elements in these stripes. For

example, as shown in Table 4.4, each stripe set contains three stripes (ns = lcm{16,6}
16

=

48/16 = 3), where the last one is served as sacrificed stripe. In each stripe set, each

column should contain 8 data elements (nec = lcm{16,6}
6

= 48/6 = 8). So based on

the number of data elements in each stripe after layout comparison, we can get the data

distribution in the sacrificed stripe is 0, 2, 4, 4, 4, 2 (e.g., the number of data elements in
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column 0 is: nec − 2 ∗ 4 = 8 − 8 = 0). Similarly, we also can get the stripe set size

for P-Code is 7 (ns = lcm{12,7}
12

= 84/12 = 7) and each column should contain 12 data

elements to maintain a uniform workload (nec =
lcm{12,7}

7
= 84/7 = 12), if data elements

are migrated alternately as shown in Table 4.5, the last stripe is used for retained stripe.

Finally, we summarize the migration process in the load balancing checking step based

on the priority level, shown in Figures 4.5 and 4.6. Due to space limit, in Figure 4.6, we

only give the migration process of the second stripe in each stripe set (Stripe 1 in Table

4.5). Obviously, in Tables 4.4 and 4.5, each stripe set has an even data distribution.

(a) Logical address view.

(b) Horizontal parity view. (c) Diagonal parity view.

Figure 4.5: Data/parity migration in load balancing check step (RDP code, scaling from 6
to 8 disks).
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(a) Logical address view.

(b) Vertical parity view.

Figure 4.6: Data/parity migration in load balancing check step (P-code, scaling from 6 to
7 disks).

4.3.4 Data Migration

After the steps of layout comparison and load balancing check, a comprehensive migration

strategy can be derived and then the system can start the data migration process. We notice

that Feature 2 can be satisfied and have the following theorem,

Theorem 4.1. For any MDS code scaling from n disks to n+m disks by using SDM scheme,

the total number of migrated data blocks is m ∗B/(m+ nd), where nd is the number of

data disks before scaling.

Here we only demonstrate this theorem is correct for RDP scaling from 6 to 8 disks

and P-Code scaling from 6 to 7 disks. The total number of migrated data blocks in the two

examples are B/3 and B/7, respectively.
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Proof. First we demonstrate the case for RDP scaling from 6 disks to 8 disks. In each

stripe set, two stripes are migrated based on Figure 4.3, the remain one stripe is migrated

according to Figure 4.5, so the total number of data movements in each stripe set is 4 ∗

2 + 8 = 16. The total number of stripe set is B/48 and the total number of migrated data

blocks is 16 ∗ B/48 = B/3. In this case, m = 2 and nd = 4, the total number of migrated

data blocks is m ∗B/(m+ nd) = 4 ∗B/(4 + 2) = B/3.

Second consider the other case for P-Code scaling from 6 disks to 7 disks. According

to migration methods in Figures 4.4 and 4.6, the total number of data movements in each

stripe set is 12. The total number of stripe set is B/84 and the total number of migrated

data blocks is 12 ∗ B/84 = B/7. In this case, m = 1 and nd = 6, the total number of

migrated data blocks is also equal to m ∗B/(m+ nd) = 1 ∗B/(6 + 1) = B/7.

Thus the theorem is correct.

4.3.5 Data Addressing Algorithm

The data addressing algorithms of the two examples on RDP and P-Code are shown in

Algorithms 4.1 and 4.2. SDM scheme satisfies fast addressing feature in Section 1.3.4. For

a disk array scaling from 6 to 8 then to 12 disks by using RDP code, our algorithms can be

used multiple times by saving the initialization information.

4.3.6 Property of SDM

From the above discussion, we can see that SDM satisfies the desired features 1-3 of RAID-

6 scaling defined in Section 1.3.4. SDM also satisfies the Feature 4: minimal modification

and computation cost of the parity elements, which is discussed in detail in Sections 4.4.
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Algorithm 4.1: Data Addressing Algorithm of RDP Scaling from n to n + m disks
Using SDM Scheme (where n = p1 + 1, n + m = p2 + 1, p1 < p2, p1 and p2 are
prime numbers)

Get or calculate the Sid, i, j, ns and nss value, then label the new disks with column IDs
from n− m

2 − 3 to n+ m
2 − 4

S′id = Sid; /*Stripe ID unchanged*/
k = Sid mod ns;
if 0 ≤ k ≤ ns − nss − 1 (migrated stripes in layout comparison step) then

if i+ j ≤ p1 − 1 then
i′ = i, j′ = j;

end
else

i′ = i, j′ = j +m.
end

end
if ns − nss ≤ k ≤ ns − 1 (sacrificed stripes in load balancing checking step) then

if (i = 1, 3, 5, · · · , p1 − 1) && (j = 1, 3, 5, · · · , n+m− 3) then
i′ = i, j′ = j;

end
else

i′ = i, j′ = j +m.
end

end

Algorithm 4.2: Data Addressing Algorithm of P-Code Scaling from n to n+m disks
Using SDM Scheme (where n = p1 − 1, n +m = p2, p1 ≤ p2, p1 and p2 are prime
numbers)

Get or calculate the Sid, i, j, ns and nrs value, then label the new disks with column IDs
from n to n+m− 1
S′id = Sid; /*Stripe ID unchanged*/
k = Sid mod ns;
if 0 ≤ k ≤ ns − nrs − 1 (migrated stripes in layout comparison and load balancing
checking step) then

if migrated data elements then
distribute i′ and j′ based on round-robin order, where 0 ≤ i′ ≤ p1−1

2 ,
n ≤ j′ ≤ n+m− 1;

end
else

i′ = i, j′ = j.
end

end
if ns − nrs ≤ k ≤ ns − 1 (retained stripes in load balancing checking step) then

i′ = i, j′ = j.
end
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4.4 Scalability Analysis

In this section, we evaluate the scalability of various MDS codes by using different

approaches.

4.4.1 Evaluation Methodology

We compare SDM scheme to Round-Robin (RR) [29, 55, 88] and Semi-RR [28]

approaches. ALV [89], MDM [37] and FastScale [90] cannot be used in RAID-6, so they

are not evaluated.

We also propose an ideal fast scaling method as a baseline. The ideal case is based on

the Feature 2 (Section 1.3.4) with minimal data movements to maintain a uniform workload

in the enlarged new used stripe. We assume this case doesn’t involve any parity migration,

modification and computation as in RAID-0. Because no movement in dedicate parity disks

(e.g., for RDP code), actually the number of ideal movements is m ∗ B/(m + nd), where

nd is the number of data disks.

Several popular MDS codes in RAID-6 are selected for comparison,

1) Codes for p − 1 disks: P-Code (two variations are shown in Figure 1.6. [45] and

HDP (Paper III, introduced in Chapter 3);

2) Codes for p disks: X-Code [86] and P-Code;

3) Codes for p+1 disks: RDP code [18] and H-Code (Paper IV, introduced in Chapter

2);

4) Codes for p+ 2 disks: EVENODD code [8].
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Table 4.6: Overhead of RAID-6 Scaling by Using SDM Scheme (RDP code, Scaling from
6 disks to 8 disks)

Stripe ID
Number of Number of

Total I/Os
Number of

Data & Parity Modified XOR
Movements Parities Calculations

0 4 none 8 I/Os none
1 4 none 8 I/Os none
2 8 16 48 I/Os 32 XORs

stripe set
16 16 64 I/Os 32 XORs

(three stripes)

Suppose the total number of data blocks in a disk array is B, the total number of

stripes in a disk array before scaling is S, we can derive the relationship between these two

parameters. For example, for RDP code when p = 5, B = 16S; when p = 7, B = 36S.

We define Data Migration Ratio (Rd) is the ratio between the number of migrated

data/parity blocks and the total number of data blocks. Parity Modification Ratio (Rp)

delegates the ratio between the number of modified parity blocks and the total number of

data blocks, which is caused by the data/parity migration.

For example, if we choose the case RDP code(6, 2) using SDM scheme and according

to the results are presented in Table 4.6,

 Rd =
16S

16S∗3 = 33.3%

Rp =
16S

16S∗3 = 33.3%

(4.3)

We also can get the results for P-Code(6, 1) based on the digitals in Table 4.7,

 Rd =
12S

12S∗7 = 14.3%

Rp =
24S

12S∗7 = 28.6%

(4.4)
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Table 4.7: Overhead of RAID-6 Scaling by Using SDM Scheme (P-Code, Scaling from 6
disks to 7 disks)

Stripe ID
Number of Number of

Total I/Os
Number of

Data & Parity Modified XOR
Movements Parities Calculations

0 2 4 12 I/Os 8 XORs
1 2 4 12 I/Os 8 XORs
2 2 4 12 I/Os 8 XORs
3 2 4 12 I/Os 8 XORs
4 2 4 12 I/Os 8 XORs
5 2 4 12 I/Os 8 XORs
6 none none none none

stripe set
12 24 72 I/Os 48 XORs

(seven stripes)

In RAID-6 scaling, each data or parity migration only cost two I/O operations, and the

modification cost of each parity is two I/Os as well. So based on the data migration ratio

(Rd) and parity modification ratio (Rp), the total number of I/O operations is,

nio = 2 ∗Rd ∗B + 2 ∗Rp ∗B (4.5)

Based on Equation 4.5, by using SDM scheme, the total number of I/O operations for

RDP Code(6, 2) is 2 ∗ B ∗ 33.3% + 2 ∗ B ∗ 33.3% = 1.33B, the total number of I/Os for

P-Code(6, 1) is 2 ∗B ∗ 14.3% + 2 ∗B ∗ 28.6% = 0.86B.

If we ignore the computation time and assume the same time on a read or write request

to a block (denoted by Tb), and suppose the migration I/O can be processed in parallel on

each disk, the migration time Tm for RDP Code(6, 2) using SDM scheme is (I/O distribution

is shown in Figure 4.7(a) where column 7 has the highest I/O and longest migration time

cost),

Tm = 32STb/3 = 2BTb/3 (4.6)
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Similarly, based on Figure 4.7(b), the migration time of P-Code(6, 1) using SDM

scheme is (column 6 has the highest I/O and longest migration time cost),

Tm = 12STb/7 = BTb/7 (4.7)

8 8 8 8 8 8
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32
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Column number

Number of I/O operations

(a) RDP Code (every three stripes, scaling from 6 to
8 disks).
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0

4
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16

0 1 2 3 4 5 6
Column number

Number of I/O operations

(b) P-Code (every seven stripes, scaling from 6 to 7
disks).

Figure 4.7: I/O distribution in multiple stripes using SDM scheme.

4.4.2 Numerical Results

In this section, we give the numerical results of scalability using different scaling

approaches and various coding methods. In the following Figures 4.8 to 4.13, a two-integer

tuple (n, m) denotes the original number of disks and the extended number of disks. For

example, RDP (6, 2) means a RAID-6 scaling from 6 to 6 + 2 disks using RDP code.

Data Distribution

Regarding to data distribution, we use the coefficient of variation as a metric to examine

whether the distribution is even or not as other approaches [28, 90]. The coefficient of

variation delegates the standard deviation (a percentage on average). The small value of
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the coefficient of variation means highly uniform distribution. From the introduction in

Section 4.2, Semi-RR suffers I/O load balancing problem, RR and SDM keep a uniform

distribution.

The results are shown in Figure 4.8. We notice that semi-RR and SDM without

load balancing checking causes extremely unbalanced I/O, which cannot satisfy Feature

1 (uniform distribution).
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Figure 4.8: Comparison on data distribution under various RAID-6 scaling approaches.

Data Migration Ratio

Second, we calculate the data migration ratio (Rd) among various fast scaling approaches

under different cases as shown in Figure 4.9. Our SDM scheme has the approximate

migration ratio compared to Semi-RR and the ideal case in RAID-0.
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Figure 4.9: Comparison on data migration ratio under various RAID-6 scaling approaches.
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Parity Modification Ratio

Third, parity modification ratio (Rp) among various RAID-6 scaling approaches under

different cases is presented in Figure 4.10. Compared to other schemes with the same p

and m, SDM sharply decreases the number of modified parities by up to 96.2%.
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Figure 4.10: Comparison on parity modification ratio under various RAID-6 scaling
approaches.

Computation Cost

We calculate the total number of XOR operations under various cases as shown in Figure

4.11. By using RR-based approaches, various codes have similar computation cost. SDM

scheme decreases more than 80% computation cost compared to other approaches.
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Figure 4.11: Comparison on computation cost under various RAID-6 scaling approaches
(The number of B XORs is normalized to 100%).
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Total Number of I/O Operations

Next, total number of I/O operations is calculated in these cases. If we use B as the

baseline, the results of total I/Os are shown in Figure 4.12. By using SDM scheme,

72.7%− 91.1% I/Os are reduced.
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Figure 4.12: Comparison on total I/Os under various RAID-6 scaling approaches (The
number of B I/O operations is normalized to 100%).

Migration Time

Migration time is evaluated as shown in Figure 4.13 and summarized in Table 4.8.

Compared to other approaches, SDM performs well in multiple disks extension and

decreases the migration time by up to 96.9%, which speeds up the scaling process to a

factor of 32.
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Figure 4.13: Comparison on migration time under various RAID-6 scaling approaches
(The time B ∗ Tb is normalized to 100%).
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Table 4.8: Speed Up of SDM Scheme over Other RAID-6 Scaling Schemes in terms of
Migration Time

m & p RDP P-Code HDP H-Code X-Code EVENODD
m = 2

10.9× − 7.1× 32.0× 3.3× 19.0×
p = 5

m = 4
15.2× 3.8× 4.2× 29.6× 3.4× 7.8×

p = 7

4.4.3 Analysis

From the results in Section 4.4.2, compared to RR, Semi-RR and ALV, SDM has great

advantages. There are several reasons to achieve these gains. First, SDM scheme is a global

management on multiple stripes according to the priorities of data movements, which can

minimize the parity modification cost, computation cost, total I/Os, etc. Second, compared

to other approaches, SDM scheme distributes the migration I/O more evenly among data

and parity disks, which can accelerate the scaling process in parallel. That is why SDM

has better effects in horizontal codes which suffer unbalanced I/O. Third, although SDM

sacrifices a small portion of stripes in each stripe set, it helps SDM to maintains a uniform

workload, which creates favorable conditions for the storage system after scaling. SDM

also has potential to have positive impacts on migration by aggregating small I/Os as ALV

[89] and FastScale [90].

4.5 Summary

In this chapter, we have proposed a Stripe-based Data Migration (SDM) scheme to achieve

high scalability for RAID-6. Our comprehensive mathematic analysis shows that SDM

achieves better scalability compared to other approaches in the following aspects: 1) lower

computation cost by reducing more than 80% XOR calculations; 2) less I/O operations by
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72.7%-91.1%; and 3) shorter migration time and faster scaling process by a factor of up to

32.
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Chapter 5

MDS Coding Scaling Framework

(MDS-Frame)

5.1 Introduction

With the popularity of cloud computing [2], existing RAID-6 systems are difficult to

meet these increasing requirements, where scalability plays a significant role. Fast scaling

process also decreases the downtime cost of computer systems [56, 90]. Previous solutions

[29, 55, 88] in RAID-6 are based on single MDS code, which has a large granularity on the

extending number of disks. For example, it is impossible for scaling an existing disk array

using RDP code from 6 to 7 disks. That’s because RDP code only supports p+1 disks (e.g.,

6 or 8 disks), where p is a prime number. Second, previous scaling approaches are focus

on scale-up (adding disks), while scale-down (removing disks) is also important because

removing inefficient disks can save energy consumption. Third, in a scaling process, most

previous approaches [29, 55, 88, 28, 89, 37, 90] cannot estimate high overhead on disk
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I/Os, such as parity modification. That’s reasonable because these approaches are focus on

RAID-0 or RAID-5, while RAID-6 has a more complex parity layout.

To address these challenges and to integrate techniques in previous chapters, in this

chapter, we propose an MDS Code Scaling Framework called MDS-Frame, which

establishes the relationships and enables bidirectional scaling among various MDS codes.

It consists of three layers: a management layer, an intermediate code layer and an MDS

code repository.

The rest of this paper continues as follows: Section 5.2 discusses the motivation of our

work. MDS-Frame is described in Section 5.3 to 5.5. Section 5.6 gives the quantitative

analysis on scalability. Finally we conclude this chapter in Section 5.7.

5.2 Motivation

Besides the features discussed in Section 1.3.4, two new features need to be added to

address the challenges in Section 5.1.

• Feature 5 (Bidirectional Scaling): A desired scaling approach should support both

scale-up (adding disks) and scale-down (removing disks).

• Feature 6 (Minimal Scaling Granularity): The minimum number of adding/removing

disk(s) could be one.

Based on SDM scheme (introduced in last chapter), it is possible to scaling from one

code to another to avoid phenomena on the scalability problem, which motivates us to

investigate the similarities among these codes and thus speed up the scaling process.
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5.3 MDS-Frame

To overcome the scalability problem of existing MDS codes, we present an MDS Code

Scaling Framework (MDS-Frame), which is a unified management on MDS codes and

provides flexible bidirectional scaling among these codes. We use “→” and “←” to

delegate scale-up (adding disks) and scale-down (removing disks) between any two codes.

For example, “RDP→EVENODD(6,7)” represents scaling from a 6-disk array using RDP

to a 7-disk array using EVENODD. “RDP←EVENODD” is a scale-down process from

EVENODD to RDP, and they have a same p value if disk number is not dedicated.

As shown in Figure 5.1, MDS-Frame has three layers, a management layer, an

intermediate code layer and an MDS code repository.

Scaling Algorithms + SDM Scheme

Management 
Layer
(ML)

prime-1 
disks

prime 
disks
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prime+2
disks

Sp-1-Code Sp-Code Sp+1-Code Sp+2-Code
(EVENODD)

Intermediate
Code
Layer
(ICL)

MDS
Code

Repository
(MCR)

HE
Scaling

HE 
Scaling

HE 
Scaling

LE Scaling LE Scaling

HDP RDPH-Code

Future new codes

Unified Management User Interface

Blaum-Roth
(w=p-1)

Other Codes

LE ScalingLE Scaling

X-Code

LE Scaling

Figure 5.1: MDS-Frame Architecture.

Management Layer (ML) consists of a unified management user interface on MDS

codes, scaling algorithms of these codes and SDM scheme. The unified management user

interface provides the information of MDS codes and processes adding a new code or

deleting an existing code in MDS-Frame. SDM scheme and scaling algorithms are also

provided in this layer.
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Intermediate Code Layer (ICL) includes four Scalable Intermediate Codes (S-Codes),

which are RAID-6 solutions for p − 1, p, p + 1 and p + 2 disks. The corresponding

codes are called Sp−1-Code, Sp-Code, Sp+1-Code and Sp+2-Code, respectively. Due to

the similarities among S-Codes, a premier advantage of S-Codes is that high flexible

bidirectional scaling can be achieved between any two codes by adding or deleting one

disk. They act as a scaling highway to connect various MDS codes.

Existing MDS codes are stored in MDS Code Repository (MCR), such as EVENODD

[8], RDP [18], H-Code, HDP code, etc. After a new MDS code is added into the MDS code

repository, the links between the new code and intermediate codes will be established.

To clearly illustrate the efficiency of scaling process between/among various coding

methods, we define two types of scaling (the quantitative definition will be given in

Section 5.5.2), which are High Efficiency Scaling (HE) and Low Efficiency Scaling (LE).

HE Scaling have low overhead on bidirectional scaling between two MDS codes, which

includes data/parity migration, parity modification, computation cost, etc.

Detailed descriptions of ML and ICL are given in next two sections.

5.4 Intermediate Code Layer

In this section, S-Codes are introduced to improve the scalability, which act as intermediate

codes in MDS-Frame. They are similar to each other and provide a comprehensive solution

for p− 1, p, p+ 1 and p+ 2 disks as follows (shown in Figure 5.2),

• For p − 1 disks: Sp−1-Code, which is a variant of HDP code (Paper III, introduced

in Chapter 3);

• For p disks: Sp-Code, which is a new code;
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(a) Horizontal parity coding.

(b) Diagonal parity coding.

Figure 5.2: S-Codes (p = 5).

• For p + 1 disks: Sp+1-Code, which is a variant of H-Code(Paper IV, introduced in

Chapter 2);

• For p+ 2 disks: Sp+2-Code, which is the same as EVENODD code [8].

RDP, EVENODD, H-Code and HDP are presented in previous literatures [18] [8] and

Chapters 2 and 3, respectively. So in this section, we briefly list the encoding/decoding

equations of Sp−1-Code, Sp-Code and Sp+1-Code.

5.4.1 Sp-Code

Data/Parity Layout and Encoding

As shown in Figure 5.2, Sp-Code is represented by a (p − 1)-row-p-column matrix with

a total of (p − 1) ∗ p elements. There are three types of elements in these matrices: data

elements, horizontal parity elements, and diagonal parity elements. The last column of

Sp-Code is used for horizontal parity. Excluding the last column, the remaining matrices
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are (p−1)-row-(p−1)-column square matrices. The diagonal part of these square matrices

represents the diagonal parity of Sp-Code.

Assume Ci,j (0 ≤ i ≤ p− 2, 0 ≤ j ≤ p− 1) represents the element at the ith row and

the jth column. Horizontal parity and diagonal parity elements of Sp-Code are constructed

based on the following encoding equations,

Horizontal parity of Sp-Code:

Ci,p−1 =

p−2∑
j=0

Ci,j (j 6= p− 2− i) (5.1)

Diagonal parity of Sp-Code:

Ci,p−2−i =

p−2∑
j=0

C〈p−3−i−j〉p,j (j 6= p− 2− i) (5.2)

Figure 5.2 shows an example of Sp-Code for a 5-disk array (p = 5). It is a 4-row-5-

column matrix. Column 4 is used for horizontal parity and the diagonal elements (C0,3,

C1,2, C2,1, etc.) are used for diagonal parity.

The horizontal parity encoding of Sp-Code is shown in Figure 5.2. We use different

shapes to indicate different horizontal parity chains. Based on Equation 5.1, all horizontal

parity elements could be encoded. For example, the horizontal parity element C0,6 can be

calculated by C0,0 ⊕C0,1 ⊕C0,2. The element C0,3 is not involved in this example because

of j = p− 2− i.

The diagonal parity encoding of Sp-Code is given in Figure 5.2. Different diagonal

parity chains are also distinguished by various shapes. According to Equation 5.2, the

diagonal parity elements can be got through modular arithmetic and XOR operations. For

example, to calculate the diagonal parity element C1,2 (i = 1), first all the data elements
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in the same diagonal parity chain should be selected (C〈p−3−i−j〉p,j). If j = 0, based on

Equation 5.2, p−3−i−j = 1 and 〈1〉p = 1, so the first data element is C1,0. The following

data elements which take part in XOR operations can be calculated similarly (the following

data elements are C0,1 and C3,3). Second, the diagonal parity element (C1,4) is constructed

by performing an XOR operation on these data elements, i.e., C1,2 = C1,0 ⊕ C0,1 ⊕ C3,3.

Construction Process

Based on the above data/parity layout and encoding scheme, the construction process of

Sp-Code is straightforward.

• Label all data elements.

• Calculate both horizontal and diagonal parity elements according to the Equations

5.1 and 5.2.

Proof of Correctness

To prove that Sp-Code is correct, we consider one stripe in Sp-Code. The reconstruction of

multiple stripes is just a matter of scale and similar to the reconstruction of one stripe. In a

stripe, we have the following lemma and theorem,

Lemma 5.1. We can find a sequence of a two-integer tuple (Tk, T
′
k) where

Tk =

〈
p− 2 +

k+1+
1+(−1)k

2

2
(f2 − f1)

〉
p−1

,

T ′k =
1+(−1)k

2
f1 +

1+(−1)k+1

2
f2 (k = 0, 1, · · · , 2p− 3)

with 0 < f2− f1 < p− 1, all two-integer tuples (0, f1), (0, f2), · · · , (p− 2, f1), (p− 2, f2)

occur exactly once in the sequence.
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Similar proof of this lemma can be found in many literatures in RAID-6 codes such as

[8, 18, 86, 45].

Theorem 5.1. A (p− 1)-row-p-column stripe constructed according to the formal descrip-

tion of Sp-Code can be reconstructed under concurrent failures from any two columns.

Proof. There are two cases, depending on dedicated horizontal parity column fails or not.

Case I: Double failures, one is from the horizontal parity column, the other is from a

data column.

From the construction of Sp-Code, any two of the lost data elements cannot share a

same diagonal parity chain. Therefore, any lost data elements can be recovered through the

diagonal parity chains. After all lost data elements are recovered, the lost parity elements

can be reconstructed using the above Equations 5.1 and 5.2.

Case II: Double failures of any two data columns.

We assume that the two failed columns are f1 and f2, where 0 < f1 < f2 < p− 1.

From the encoding of Sp-Code, any horizontal parity chain (in the ith row) includes

all elements in the same row except Ci,p−2−i, which is served as diagonal parity. Thus

two horizontal parity chains only contain one lost data element for each (Cp−2−f2,f1 and

Cp−2−f1,f2), which can be recovered by the retained elements.

For the failed columns f1 and f2, if an data element Ci,f2 on column f2 could be

reconstructed by its horizontal parity chain, then we can reconstruct the missing data

element C〈i+f2−f1〉p,f1 who shares the same diagonal parity chain. Similarly, if a data

element Ci,f1 on column f1 could be recovered from its horizontal parity chain, the missing

data element C〈i+f2−f1〉p,f2 who shares the same diagonal parity can be recovered. Then

the reconstruction continues until all data elements are recovered. In this reconstruction
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process, the reconstruction sequence is based on the sequence of the two-integer tuple

shown in Lemma 3.1. Finally, the missing diagonal parity elements can be reconstructed

according to Equation 5.2.

In conclusion, Sp-Code can be reconstructed under concurrent failures of any two

columns.

Reconstruction

We first consider how to recover a missing data element Sp-Code since any lost parity

element can be recovered based on Equations 5.1 and 5.2. If a horizontal parity chain

retains p− 1 elements (including the parity element), the missing data element (assume it’s

Ci,f1 in column f1 and 0 ≤ f1 ≤ p− 1) in this chain can be reconstructed by the following

equation,

Ci,f1 =

p−1∑
j=0

Ci,j (j 6= p− 2− i and j 6= f1) (5.3)

If a diagonal parity chain retains p− 2 elements (including the parity element) and has

a lost data element (Ci,f1), the diagonal parity element (assume is in row r and represented

by Cr,p−2−r based on Equation 5.2) can be expressed as,

r = 〈p− 3− i− f1〉p (5.4)

Based on Equation 5.2, the lost data element can be recovered by,

Ci,f1 = Cr,p−2−r ⊕
p−2∑
j=0

C〈i+f1−j〉p,j

(j 6= f1 and j 6= 〈i+ 1 + f1〉p)
(5.5)
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Based on the Equations 5.1 to 5.5, we can easily recover all lost elements with any

single disk failure. If two disks fail, as the proof of Theorem 2.1, there are two cases in

our reconstruction process of Sp-Code based on horizontal parity column fails or not. A

reconstruction example is given in Figure 5.3, which shows how to recover double columns

failures by two recovery chains.

Figure 5.3: Reconstruction by two recovery chains in Sp-Code.
In this figure, there are double failures in columns 1 and 2: First we identify the two
starting points of recovery chain: data elements A and D. Second we reconstruct data
elements according to the corresponding recovery chains until they reach the endpoints
(data elements C and F and the chains end by two “Xs” here). The orders to recover data
elements are: one is A→B→C, the other is D→E→F. Finally we reconstruct diagonal
parity elements G and H according to Equation 5.2.

5.4.2 Sp−1-Code and Sp+1-Code

Here we only list the equations of encoding/decoding of Sp−1-Code and Sp+1-Code, which

are similar to Sp-Code.
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Encoding equations of Sp−1-Code are,


Ci,i =

p−2∑
j=0

Ci,j (j 6= i and j 6= p− 2− i)

Ci,p−2−i =
p−2∑
j=0

C〈p−3−i−j〉p,j (j 6= p− 2− i)

(5.6)

Decoding equations of Sp−1-Code are (assume the lost data element is Ci,f1 and its

corresponding diagonal parity element is Cr,p−2−r),



Ci,f1 =
p−1∑
j=0

Ci,j (j 6= f1 and j 6= p− 2− i)

r = 〈p− 3− i− f1〉p

Ci,f1 = Cr,p−2−r ⊕
p−2∑
j=0

C〈i+f1−j〉p,j

(j 6= f1 and j 6= 〈i+ f1 + 1〉p)

(5.7)

Encoding equations of Sp+1-Code are,


Ci,p =

p−1∑
j=0

Ci,j (j 6= p− 1− i)

Ci,p−1−i =
p−1∑
j=0

C〈p−2−i−j〉p,j (j 6= p− 1− i)

(5.8)

Decoding equations of Sp+1-Code are (assume the lost data element is Ci,f1 and its

corresponding diagonal parity element is Cr,p−1−r),



Ci,f1 =
p∑

j=0

Ci,j (j 6= f1 and j 6= p− 1− i)

r = 〈p− 2− i− f1〉p

Ci,f1 = Cr,p−1−r ⊕
p−1∑
j=0

C〈i+f1−j〉p,j

(j 6= f1 and j 6= 〈i+ f1 + 1〉p)

(5.9)
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5.4.3 Observations

As shown in Figure 5.2, S-Codes are represented by a (p − 1)-row-(p + x − 2)-column

matrix with a total of (p − 1) ∗ (p + x − 2) elements (x=-1,0,1,2). There are three types

of elements in these matrices: data elements, horizontal parity elements, and diagonal

parity elements. By investigating the similarities among S-Codes, we have the following

observations,

Observation 5.1. (variation of number of elements.) If an intermediate code in MDS-

Frame supports (p + x) disks (x=-1,0,1,2), the number of data elements per stripe is (p−

1) ∗ (p+ x− 2), the number of parity elements per stripe is 2 ∗ (p− 1).

Observation 5.2. (variation of parity chain length and parity disks) If an intermediate

code in MDS-Frame supports (p+x) disks (x=-1,0,1,2), the horizontal parity chain length

is equal to p + x − 1 or p + x. With the increasing value of x, the number of parity chain

length and dedicated parity disks will be increased.

Observation 5.3. (variation of parity encoding complexity.) If an intermediate code in

MDS-Frame supports (p+x) disks (x=-1,0,1,2), with the increasing value of |x|, the parity

encoding complexity will be increased.

Observation 5.4. (variation of encoding/decoding performance) For intermediate codes

in MDS-Frame supporting (p + x) disks (x=-1,0,1,2), when p is large enough, they have

the optimal or near-optimal encoding/decoding performance.
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5.5 Management Layer

In this section, Management Layer (ML) is introduced in detail. Because SDM scheme is

presented in last chapter, in this section we mainly discuss the unified management user

interface and scaling algorithms of these codes.

5.5.1 Unified Management User Interface

The unified management user interface provides information on MDS codes in MDS-Frame

and processes adding or deleting codes. The information of MDS codes involves code

name, the number of disks provided, encoding and decoding equations, etc. Adding a new

code into MDS-Frame is shown in Algorithm 5.1.

Algorithm 5.1: Add A New Code into MDS-Frame
Step 1: Get the information of the new code (assume it is called “Code-X1”, which
supports p+ x1 disks).
Step 2: Establish the relationship between Code-X1 and intermediate codes
(S-Codes).
if −1 ≤ x1 ≤ 2 then

Step 2A: Compare the layouts between Code-X1 and Sp+x-Code
(x = x1 − 1, x1 + 1 where −1 ≤ x ≤ 2) sequentially and calculate the cost of
scaling process.
Step 2B: According to the cost, establish a link and label the scaling link (HE or
LE).

end

5.5.2 Definition of the HE and LE Scaling

Suppose the total number of data elements in a disk array is B. According to the results

in RAID-0 scaling [90], by adding m disks to a disk array with n disks, the optimal data

migration under uniform data distribution is mB
n+m

. Similarly, deleting m disk from a disk
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array with n disks, the optimal data migration is |m|B
n

. In RAID-6, the capacity of two

disks are used for parities and the actual data disks is n − 2, so the optimal data and

parity migration for adding/deleting m disks with uniform distribution is mB
n−2+m

, |m|B
n−2 ,

respectively. Thus the average amount of data and parity migration by scaling one disk

(scale-up and scale-down) is,

1

2
(

B

n− 2 + 1
+

B

n− 2
) ≈ B

n− 2
(5.10)

Based on Equation 5.10, we define HE scaling in terms of the amount of data and parity

migration,

Definition 5.1. For a bidirectional scaling between two random codes Code-X1 and Code-

X2 supporting p + x1 and p + x2 disks (−1 ≤ x1 ≤ x2 ≤ 2 and |x1 − x2| ≤ 1),

if the amount of data and parity migration in any one-way scaling (Code-X1→Code-X2

and Code-X1←Code-X2) is no more than B/(p + x1 − 2), these scaling are HE scaling.

Otherwise they are LE scaling.

5.5.3 Scaling Algorithms

Scaling algorithms in MDS-Frame are presented by comparing the layouts of various codes.

The lower overhead of the scaling is, the simpler scaling algorithm will be. In the following

we show an example when a scaling from Sp-Code to Sp+1-Code with a same value of p

(Sp-Code→Sp+1-Code). By comparing the layouts as shown in Figure 5.2, an efficient

scaling algorithm is shown in Algorithm 5.2 (add an empty disk as the first column).
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Algorithm 5.2: Scaling Algorithm (Sp−1-Code→Sp-Code)
Step 1: Get the information of the Sp−1-Code and Sp-Code.
Step 2: Label a new disk as column 4.
Step 3: Assume Ci,j is a random element in a stripe based on the layout of
Sp−1-Code and the corresponding element after scaling is Ci′,j′ (the same stripe ID
in Sp-Code).
if 0 ≤ i, j ≤ p− 2 then

if i==j (horizontal parity elements) then
move this element to column 4;
i′ = i, j′ = 4.

end
else

other elements are retained at the original position;
i′ = i, j′ = j.

end
end

Table 5.1: Overhead of Typical scaling in MDS-Frame

Transformations Migrated Modified Total
Data/Parities Parities I/Os

Sp−1-Code→Sp-Code B/(p− 3) 0 2B/(p− 3)
Sp−1-Code←Sp-Code 0 4B/(p− 2) 10B/(p− 2)
Sp-Code→Sp+1-Code 0 0 0
Sp-Code←Sp+1-Code B/(p− 1) 4B/(p− 1) 10B/(p− 1)
Sp+1-Code→Sp+2-Code B/(p− 1) B/(p− 1) 4B/(p− 1)
Sp+1-Code←Sp+2-Code 0 4B/p 10B/p

5.5.4 Overhead Analysis of Scaling between Intermediate Codes

We use three metrics to measure the overhead of data/parity migration, parity modification

and total I/Os: 1) total number of migrated data and parities; 2) total number of modified

parities; 3) total number of I/O operations. And we calculate the scaling between adjunct

intermediate codes with a same value of p. The results are shown in Table 5.1 and show

that scaling satisfies the condition of high efficiency (HE).
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5.5.5 Scaling Rules

For a random MDS codes (assume it is called “Code-X”, which supports p + x disks) in

MDS-Frame, we have the following rules by scaling m disks,

1) if −1 ≤ x+m ≤ 2, scale m times by adding or removing one disk once. The

scaling targets are intermediate codes, which provide HE scaling. The scaling sequence is

Code-X→intermediate Code→intermediate Code→. . .→intermediate Code.

2) if x + m < −1 or x + m > 2, we need to find a proper p′ which satisfies

−1 ≤ x+m− (p′ − p) ≤ 2. First we scale from p + x disks to p′ + x disks by

using Code-X, existing fast scaling approaches [29, 55, 88] can be used to accelerate

the process. Second repeat the scaling process as the rule 1. The scaling sequence

is Code-X (p + x disks)→Code-X (p′ + x disks)→intermediate Code→intermediate

Code→. . .→intermediate Code.

For example, if we want to scale from a 6-disk array using HDP code to a RAID-6 array

with 9 disks, we can follow the scaling sequence: HDP→Sp-Code→Sp+1-Code→Sp+2-

Code(EVENODD).

5.6 Scalability Analysis

In this section, we evaluate scaling cost between various codes in MDS-Frame to

demonstrate its effectiveness on scalability.
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5.6.1 Evaluation Methodology

We compare the scaling in MDS-Frame to Round-Robin (RR) [29, 55, 88], which provides

RAID-6 bidirectional scaling. Other approaches [28, 89, 37, 90] don’t support bidirectional

scaling in RAID-6.

In our comparison, Round-Robin (RR) approach is optimized to adopt the layout of

MDS codes in RAID-6. All data elements are migrated in round-robin order, and the

parities are updated when a data element is moved into (or out from) the corresponding

parity chains. Different from MDS-Frame, all MDS codes in RR approach are scaled

directly without using any immediate codes.

In addition to the metric of total I/Os (introduced in Section 5.5.4), we also use the

following two metrics,

1) total number of XOR operations: It is used to measure the computation cost in the

scaling process;

2) migration time: If we ignore the remapping time and computation time, then assume

the same time on a read or write request to a data/parity element (denoted by Te). Suppose

the migration I/O can be processed in parallel on each disk. We can calculate the migration

time for each scaling process which reflects the effectiveness of the scalability.

5.6.2 Numerical Results and Analysis

Here we give the numerical results of MDS-Frame compared to RR using above metrics.

1) Total number of I/O operations: First, the total number of I/Os for different scaling

are shown in Figure 5.4. We notice that MDS-Frame reduces more than 44.1% and up to

97.4% I/O cost compared to RR.
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Figure 5.4: Total I/Os of various scaling processes in MDS-Frame vs. Round-Robin when
p = 5 and p = 7 (The number of B I/O operations is normalized to 100%).

2) Total number of XOR operations: Second, we calculate the total number of XOR

operations under various cases as shown in Figure 5.5, where MDS-Frames reduces up to

98.5% computation cost compared to RR.
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Figure 5.5: Computation cost of various scaling processes in MDS-Frame vs.
Round-Robin when p = 5 and p = 7 (The number of B XORs is normalized to 100%).

3) Migration time: Next, Migration time is evaluated as shown in Figure 5.6.

Compared to Round-Robin, SDM-Frame performs better with lower the migration time

by up to 95.2%, which can speed up the scaling process to a factor of 20.7.

4) Value of p: Finally, we select a scaling HDP→EVENODD and evaluate the

migration time under different value of p as shown in Figure 5.7. It is clear that MDS-

Frame keeps a gradual downward trend on overhead with the increasing value of p.

Above results show that compared to RR approach, MDS-Frame presents great

advantage on scalability among various MDS codes. There are several reasons to achieve
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these gains. First, MDS-Frame is a unified management for all MDS codes, which select

the optimal scaling path with the lowest cost. Second, the intermediate code provides a

scaling highway with low overhead, which connects various horizontal codes. Third, the

scaling algorithms in MDS-Frame is based on the minor differences of the layouts among

various codes, which guarantees high efficiency scaling processes. All these aspects can

minimize the movement of data and parities thus reduces total overhead.
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5.7 Summary

In this chapter, we propose an MDS Code Scaling Framework (MDS-Frame) to improve the

scalability of RAID-6. Our comprehensive mathematic analysis shows that MDS-Frame

achieves high scalability in the following aspects: 1) reduced I/Os by up to 97.4% due

to less migration data and modified parities; 2) lowered computation cost in terms of less

XOR calculations by up to 98.5%; 3) shorter migration time by up to 95.2%, and 4) faster

scaling process by a factor of up to 20.7.
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Chapter 6

Conclusions

In this dissertation, we make the following contributions to improve the performance and

scalability of RAID-6 systems using erasure codes:

1. We propose a novel and efficient XOR-based RAID-6 code (H-Code) to of-

fer optimal partial stripe write performance among all MDS codes, which is

demonstrated by analyzing the overhead of partial stripe write to multiple data

elements with a quantitative approach. We prove that H-Code has not only the

optimal property demonstrated by vertical MDS codes including storage efficiency,

encoding/decoding computational complexity and single write complexity, but also

the optimized partial stripe write complexity to multiple data elements.

2. We propose a novel and efficient XOR-based RAID-6 code (HDP Code) to offer not

only the property provided by typical MDS codes such as optimal storage efficiency,

but also best load balancing and high reliability due to horizontal-diagonal parity.

3. We propose a new data migration scheme (SDM) to address RAID-6 scalability

problem, a significant issue in large scale data storage systems. SDM accelerates
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RAID-6 scaling process, in terms of the number of modified parities, the number of

XOR calculations, the total number of I/O operations and the migration time. SDM

balances I/O distribution among multiple disks in a disk array, reducing the migration

time indirectly. And SDM provides fast data addressing algorithms.

4. We propose a novel MDS code scaling framework (MDS-Frame), which is a unified

management scheme on MDS codes to allow flexible scaling from one code to

another.

5. We quantitatively analyze the cost of performance and scalability among various

MDS codes, and prove that H-Code, HDP, SDM and MDS-Frame are cost-effective

solutions to improve the performance and scalability of RAID-6 systems.

6. We summarize the pros and cons of several MDS codes and give some insightful

observations, which can help guide future code design.
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