69 research outputs found

    Classifying multisensor remote sensing data : Concepts, Algorithms and Applications

    Get PDF
    Today, a large quantity of the Earth’s land surface has been affected by human induced land cover changes. Detailed knowledge of the land cover is elementary for several decision support and monitoring systems. Earth-observation (EO) systems have the potential to frequently provide information on land cover. Thus many land cover classifications are performed based on remotely sensed EO data. In this context, it has been shown that the performance of remote sensing applications is further improved by multisensor data sets, such as combinations of synthetic aperture radar (SAR) and multispectral imagery. The two systems operate in different wavelength domains and therefore provide different yet complementary information on land cover. Considering the increase in revisit times and better spatial resolutions of recent and upcoming systems like TerraSAR-X (11 days; up to1 m), Radarsat-2 (24 days; up to 3 m), or RapidEye constellation (up to 1 day; 5 m), multisensor approaches become even more promising. However, these data sets with high spatial and temporal resolution might become very large and complex. Commonly used statistical pattern recognition methods are usually not appropriate for the classification of multisensor data sets. Hence, one of the greatest challenges in remote sensing might be the development of adequate concepts for classifying multisensor imagery. The presented study aims at an adequate classification of multisensor data sets, including SAR data and multispectral images. Different conventional classifiers and recent developments are used, such as support vector machines (SVM) and random forests (RF), which are well known in the field of machine learning and pattern recognition. Furthermore, the impact of image segmentation on the classification accuracy is investigated and the value of a multilevel concept is discussed. To increase the performance of the algorithms in terms of classification accuracy, the concept of SVM is modified and combined with RF for optimized decision making. The results clearly demonstrate that the use of multisensor imagery is worthwhile. Irrespective of the classification method used, classification accuracies increase by combining SAR and multispectral imagery. Nevertheless, SVM and RF are more adequate for classifying multisensor data sets and significantly outperform conventional classifier algorithms in terms of accuracy. The finally introduced multisensor-multilevel classification strategy, which is based on the sequential use of SVM and RF, outperforms all other approaches. The proposed concept achieves an accuracy of 84.9%. This is significantly higher than all single-source results and also better than those achieved on any other combination of data. Both aspects, i.e. the fusion of SAR and multispectral data as well as the integration of multiple segmentation scales, improve the results. Contrary to the high accuracy value by the proposed concept, the pixel-based classification on single-source data sets achieves a maximal accuracy of 65% (SAR) and 69.8% (multispectral) respectively. The findings and good performance of the presented strategy are underlined by the successful application of the approach to data sets from a second year. Based on the results from this work it can be concluded that the suggested strategy is particularly interesting with regard to recent and future satellite missions

    Decision Tree Model of Smoking Behaviour

    Get PDF
    Smoking is considered the cause of many health problems. While most smokers wish to quit smoking, many relapse. In order to support an efficient and timely delivery of intervention for those wishing to quit smoking, it is important to be able to model the smoker’s behaviour. This research describes the creation of a combined Control Theory and Decision Tree Model that can learn the smoker’s daily routine and predict smoking events. The model structure combines a Control Theory model of smoking with a Bagged Decision Tree classifier to adapt to individual differences between smokers, and predict smoking actions based on internal stressors (nicotine level, with- drawal, and time since the last dose) and external stressors (e.g. location, environment, etc.). The designed model has 91.075% overall accuracy of classification rate and the error rate of forecasting the nicotine effect using the designed model is also low (MSE=0.048771, RMSE=0.216324, and NRMSE=0.153946) for regular days and (MSE=0.048804, RMSE=0.216637, and NRMSE=0.195929)

    Ensemble classifiers for land cover mapping

    Get PDF
    This study presents experimental investigations on supervised ensemble classification for land cover classification. Despite the arrays of classifiers available in machine learning to create an ensemble, knowing and understanding the correct classifier to use for a particular dataset remains a major challenge. The ensemble method increases classification accuracy by consulting experts taking final decision in the classification process. This study generated various land cover maps, using image classification. This is to authenticate the number of classifiers that should be used for creating an ensemble. The study exploits feature selection techniques to create diversity in ensemble classification. Landsat imagery of Kampala (the capital of Uganda, East Africa), AVIRIS hyperspectral dataset of Indian pine of Indiana and Support Vector Machines were used to carry out the investigation. The research reveals that the superiority of different classification approaches employed depends on the datasets used. In addition, the pre-processing stage and the strategy used during the designing phase of each classifier is very essential. The results obtained from the experiments conducted showed that, there is no significant benefit in using many base classifiers for decision making in ensemble classification. The research outcome also reveals how to design better ensemble using feature selection approach for land cover mapping. The study also reports the experimental comparison of generalized support vector machines, random forests, C4.5, neural network and bagging classifiers for land cover classification of hyperspectral images. These classifiers are among the state-of-the-art supervised machine learning methods for solving complex pattern recognition problems. The pixel purity index was used to obtain the endmembers from the Indiana pine and Washington DC mall hyperspectral image datasets. Generalized reduced gradient optimization algorithm was used to estimate fractional abundance in the image dataset thereafter obtained numeric values for land cover classification. The fractional abundance of each pixel was obtained using the spectral signature values of the endmembers and pixel values of class labels. As the results of the experiments, the classifiers show promising results. Using Indiana pine and Washington DC mall hyperspectral datasets, experimental comparison of all the classifiers’ performances reveals that random forests outperforms the other classifiers and it is computational effective. The study makes a positive contribution to the problem of classifying land cover hyperspectral images by exploring the use of generalized reduced gradient method and five supervised classifiers. The accuracy comparison of these classifiers is valuable for decision makers to consider tradeoffs in method accuracy versus complexity. The results from the research has attracted nine publications which include, six international and one local conference papers, one published in Computing Research Repository (CoRR), one Journal paper submitted and one Springer book chapter, Abe et al., 2012 obtained a merit award based on the reviewer reports and the score reports of the conference committee members during the conference period

    Um arcabouço para seleção e fusão de classificadores de padrão

    Get PDF
    Orientadores: Ricardo da Silva Torres, Anderson RochaTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: O crescente aumento de dados visuais, seja pelo uso de inúmeras câmeras de vídeo monitoramento disponíveis ou pela popularização de dispositivos móveis que permitem pessoas criar, editar e compartilhar suas próprias imagens/vídeos, tem contribuído enormemente para a chamada ''big data revolution". Esta grande quantidade de dados visuais dá origem a uma caixa de Pandora de novos problemas de classificação visuais nunca antes imaginados. Tarefas de classificação de imagens e vídeos foram inseridos em diferentes e complexas aplicações e o uso de soluções baseadas em aprendizagem de máquina tornou-se mais popular para diversas aplicações. Entretanto, por outro lado, não existe uma ''bala de prata" que resolva todos os problemas, ou seja, não é possível caracterizar todas as imagens de diferentes domínios com o mesmo método de descrição e nem utilizar o mesmo método de aprendizagem para alcançar bons resultados em qualquer tipo de aplicação. Nesta tese, propomos um arcabouço para seleção e fusão de classificadores. Nosso método busca combinar métodos de caracterização de imagem e aprendizagem por meio de uma abordagem meta-aprendizagem que avalia quais métodos contribuem melhor para solução de um determinado problema. O arcabouço utiliza três diferentes estratégias de seleção de classificadores para apontar o menos correlacionados e eficazes, por meio de análises de medidas de diversidade. Os experimentos mostram que as abordagens propostas produzem resultados comparáveis aos famosos métodos da literatura para diferentes aplicações, utilizando menos classificadores e não sofrendo com problemas que afetam outras técnicas como a maldição da dimensionalidade e normalização. Além disso, a nossa abordagem é capaz de alcançar resultados eficazes de classificação usando conjuntos de treinamento muito reduzidosAbstract: The frequent growth of visual data, either by countless available monitoring video cameras or the popularization of mobile devices that allow each person to create, edit, and share their own images and videos have contributed enormously to the so called ''big-data revolution''. This shear amount of visual data gives rise to a Pandora box of new visual classification problems never imagined before. Image and video classification tasks have been inserted in different and complex applications and the use of machine learning-based solutions has become the most popular approach to several applications. Notwithstanding, there is no silver bullet that solves all the problems, i.e., it is not possible to characterize all images of different domains with the same description method nor is it possible to use the same learning method to achieve good results in any kind of application. In this thesis, we aim at proposing a framework for classifier selection and fusion. Our method seeks to combine image characterization and learning methods by means of a meta-learning approach responsible for assessing which methods contribute more towards the solution of a given problem. The framework uses three different strategies of classifier selection which pinpoints the less correlated, yet effective, classifiers through a series of diversity measure analysis. The experiments show that the proposed approaches yield comparable results to well-known algorithms from the literature on many different applications but using less learning and description methods as well as not incurring in the curse of dimensionality and normalization problems common to some fusion techniques. Furthermore, our approach is able to achieve effective classification results using very reduced training setsDoutoradoCiência da ComputaçãoDoutor em Ciência da Computaçã

    Ensemble method based on individual evolving classifiers

    Get PDF
    Abstract: Humans often seek a second or third opinion about an important matter. Then, a final decision is reached after weighing and combining these opinions. This idea is the base of the ensemble based systems. Ensembles of classifiers are well established as a method for obtaining highly accurate classifiers by combining less accurate ones. On the other hand, evolving classifiers are inspired by the idea of evolve their structure in order to adapt to the changes of the environment. In this paper, we present a proof-of-concept method for constructing an ensemble system based on Evolving Fuzzy Systems. The main contribution of this approach is that the base-classifiers are self-developing (evolving) Fuzzy-rule-based (FRB) classifiers. Thus, we present an ensemble system which is based on evolving classifiers and keeps the properties of the evolving approach classification of streaming data. It is important to clarify that the evolving classifiers are gradually developing but they are not genetic or evolutionary.This work has been supported by the Spanish Government under i-Support (Intelligent Agent Based Driver Decision Support) Project (TRA2011-29454-C03-03)

    3D Classification of Power Line Scene Using Airborne Lidar Data

    Get PDF
    Failure to adequately maintain vegetation within a power line corridor has been identified as a main cause of the August 14, 2003 electric power blackout. Such that, timely and accurate corridor mapping and monitoring are indispensible to mitigate such disaster. Moreover, airborne LiDAR (Light Detection And Ranging) has been recently introduced and widely utilized in industries and academies thanks to its potential to automate the data processing for scene analysis including power line corridor mapping. However, today’s corridor mapping practice using LiDAR in industries still remains an expensive manual process that is not suitable for the large-scale, rapid commercial compilation of corridor maps. Additionally, in academies only few studies have developed algorithms capable of recognizing corridor objects in the power line scene, which are mostly based on 2-dimensional classification. Thus, the objective of this dissertation is to develop a 3-dimensional classification system which is able to automatically identify key objects in the power line corridor from large-scale LiDAR data. This dissertation introduces new features for power structures, especially for the electric pylon, and existing features which are derived through diverse piecewise (i.e., point, line and plane) feature extraction, and then constructs a classification model pool by building individual models according to the piecewise feature sets and diverse voltage training samples using Random Forests. Finally, this dissertation proposes a Multiple Classifier System (MCS) which provides an optimal committee of models from the model pool for classification of new incoming power line scene. The proposed MCS has been tested on a power line corridor where medium voltage transmission lines (115 kV and 230 kV) pass. The classification results based on the MCS applied by optimally selecting the pre-built classification models according to the voltage type of the test corridor demonstrate a good accuracy (89.07%) and computationally effective time cost (approximately 4 hours/km) without additional training fees

    Line Based Multi-Range Asymmetric Conditional Random Field For Terrestrial Laser Scanning Data Classification

    Get PDF
    Terrestrial Laser Scanning (TLS) is a ground-based, active imaging method that rapidly acquires accurate, highly dense three-dimensional point cloud of object surfaces by laser range finding. For fully utilizing its benefits, developing a robust method to classify many objects of interests from huge amounts of laser point clouds is urgently required. However, classifying massive TLS data faces many challenges, such as complex urban scene, partial data acquisition from occlusion. To make an automatic, accurate and robust TLS data classification, we present a line-based multi-range asymmetric Conditional Random Field algorithm. The first contribution is to propose a line-base TLS data classification method. In this thesis, we are interested in seven classes: building, roof, pedestrian road (PR), tree, low man-made object (LMO), vehicle road (VR), and low vegetation (LV). The line-based classification is implemented in each scan profile, which follows the line profiling nature of laser scanning mechanism.Ten conventional local classifiers are tested, including popular generative and discriminative classifiers, and experimental results validate that the line-based method can achieve satisfying classification performance. However, local classifiers implement labeling task on individual line independently of its neighborhood, the inference of which often suffers from similar local appearance across different object classes. The second contribution is to propose a multi-range asymmetric Conditional Random Field (maCRF) model, which uses object context as post-classification to improve the performance of a local generative classifier. The maCRF incorporates appearance, local smoothness constraint, and global scene layout regularity together into a probabilistic graphical model. The local smoothness enforces that lines in a local area to have the same class label, while scene layout favours an asymmetric regularity of spatial arrangement between different object classes within long-range, which is considered both in vertical (above-bellow relation) and horizontal (front-behind) directions. The asymmetric regularity allows capturing directional spatial arrangement between pairwise objects (e.g. it allows ground is lower than building, not vice-versa). The third contribution is to extend the maCRF model by adding across scan profile context, which is called Across scan profile Multi-range Asymmetric Conditional Random Field (amaCRF) model. Due to the sweeping nature of laser scanning, the sequentially acquired TLS data has strong spatial dependency, and the across scan profile context can provide more contextual information. The final contribution is to propose a sequential classification strategy. Along the sweeping direction of laser scanning, amaCRF models were sequentially constructed. By dynamically updating posterior probability of common scan profiles, contextual information propagates through adjacent scan profiles

    The impact of training data characteristics on ensemble classification of land cover

    Get PDF
    Supervised classification of remote sensing imagery has long been recognised as an essential technology for large area land cover mapping. Remote sensing derived land cover and forest classification maps are important sources of information for understanding environmental processes and informing natural resource management decision making. In recent years, the supervised transformation of remote sensing data into thematic products has been advanced through the introduction and development of machine learning classification techniques. Applied to a variety of science and engineering problems over the past twenty years (Lary et al., 2016), machine learning provides greater accuracy and efficiency than traditional parametric classifiers, capable of dealing with large data volumes across complex measurement spaces. The Random forest (RF) classifier in particular, has become popular in the remote sensing community, with a range of commonly cited advantages, including its low parameterisation requirements, excellent classification results and ability to handle noisy observation data and outliers, in a complex measurement space and small training data relative to the study area size. In the context of large area land cover classification for forest cover, using multisource remote sensing and geospatial data, this research sets out to examine proposed advantages of the RF classifier - insensitivity to training data noise (mislabelling) and handling training data class imbalance. Through margin theory, the research also investigates the utility of ensemble learning – in which multiple base classifiers are combined to reduce generalisation error in classification – as a means of designing more efficient classifiers, improving classification performance, and reducing reference (training and test) data redundancy. The first part of the thesis (chapters 2 and 3) introduces the experimental setting and data used in the research, including a description (in chapter 2) of the sampling framework for the reference data used in classification experiments that follow. Chapter 3 evaluates the performance of the RF classifier applied across 7.2 million hectares of public land study area in Victoria, Australia. This chapter describes an open-source framework for deploying the RF classifier over large areas and processing significant volumes of multi-source remote sensing and ancillary spatial data. The second part of this thesis (research chapters 4 through 6) examines the effect of training data characteristics (class imbalance and mislabelling) on the performance of RF, and explores the application of the ensemble margin, as a means of both examining RF classification performance, and informing training data sampling to improve classification accuracy. Results of binary and multiclass experiments described in chapter 4, provide insights into the behaviour of RF, in which training data are not evenly distributed among classes and contain systematically mislabelled instances. Results show that while the error rate of the RF classifier is relatively insensitive to mislabelled training data (in the multiclass experiment, overall 78.3% Kappa with no mislabelled instances to 70.1% with 25% mislabelling in each class), the level of associated confidence falls at a faster rate than overall accuracy with increasing rates of mislabelled training data. This study section also demonstrates that imbalanced training data can be introduced to reduce error in classes that are most difficult to classify. The relationship between per-class and overall classification performance and the diversity of members in a RF ensemble classifier, is explored through experiments presented in chapter 5. This research examines ways of targeting particular training data samples to induce RF ensemble diversity and improve per-class and overall classification performance and efficiency. Through use of the ensemble margin, this study offers insights into the trade-off between ensemble classification accuracy and diversity. The research shows that boosting diversity among RF ensemble members, by emphasising the contribution of lower margin training instances used in the learning process, is an effective means of improving classification performance, particularly for more difficult or rarer classes, and is a way of reducing information redundancy and improving the efficiency of classification problems. Research chapter 6 looks at the application of the RF classifier for calculating Landscape Pattern Indices (LPIs) from classification prediction maps, and examines the sensitivity of these indices to training data characteristics and sampling based on the ensemble margin. This research reveals a range of commonly used LPIs to have significant sensitivity to training data mislabelling in RF classification, as well as margin-based training data sampling. In conclusion, this thesis examines proposed advantages of the popular machine learning classifier, Random forests - the relative insensitivity to training data noise (mislabelling) and its ability to handle class imbalance. This research also explores the utility of the ensemble margin for designing more efficient classifiers, measuring and improving classification performance, and designing ensemble classification systems which use reference data more efficiently and effectively, with less data redundancy. These findings have practical applications and implications for large area land cover classification, for which the generation of high quality reference data is often a time consuming, subjective and expensive exercise
    • …
    corecore