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Abstract 

Supervised classification of remote sensing imagery has long been recognised as an 

essential technology for large area land cover mapping. Remote sensing derived land 

cover and forest classification maps are important sources of information for 

understanding environmental processes and informing natural resource management 

decision making. In recent years, the supervised transformation of remote sensing 

data into thematic products has been advanced through the introduction and 

development of machine learning classification techniques. Applied to a variety of 

science and engineering problems over the past twenty years (Lary et al., 2016), 

machine learning provides greater accuracy and efficiency than traditional parametric 

classifiers, capable of dealing with large data volumes across complex measurement 

spaces. The Random forest (RF) classifier in particular, has become popular in the 

remote sensing community, with a range of commonly cited advantages, including its 

low parameterisation requirements, excellent classification results and ability to 

handle noisy observation data and outliers, in a complex measurement space and 

small training data relative to the study area size. 

In the context of large area land cover classification for forest cover, using 

multisource remote sensing and geospatial data, this research sets out to examine 

proposed advantages of the RF classifier - insensitivity to training data noise 

(mislabelling) and handling training data class imbalance. Through margin theory, 

the research also investigates the utility of ensemble learning – in which multiple 

base classifiers are combined to reduce generalisation error in classification – as a 

means of designing more efficient classifiers, improving classification performance, 

and reducing reference (training and test) data redundancy. The first part of the thesis 

(chapters 2 and 3) introduces the experimental setting and data used in the research, 

including a description (in chapter 2) of the sampling framework for the reference 

data used in classification experiments that follow. Chapter 3 evaluates the 

performance of the RF classifier applied across 7.2 million hectares of public land 

study area in Victoria, Australia. This chapter describes an open-source framework 

for deploying the RF classifier over large areas and processing significant volumes of 

multi-source remote sensing and ancillary spatial data.   
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The second part of this thesis (research chapters 4 through 6) examines the effect of 

training data characteristics (class imbalance and mislabelling) on the performance of 

RF, and explores the application of the ensemble margin, as a means of both 

examining RF classification performance, and informing training data sampling to 

improve classification accuracy. Results of binary and multiclass experiments 

described in chapter 4, provide insights into the behaviour of RF, in which training 

data are not evenly distributed among classes and contain systematically mislabelled 

instances. Results show that while the error rate of the RF classifier is relatively 

insensitive to mislabelled training data (in the multiclass experiment, overall 78.3% 

Kappa with no mislabelled instances to 70.1% with 25% mislabelling in each class), 

the level of associated confidence falls at a faster rate than overall accuracy with 

increasing rates of mislabelled training data. This study section also demonstrates 

that imbalanced training data can be introduced to reduce error in classes that are 

most difficult to classify. 

The relationship between per-class and overall classification performance and the 

diversity of members in a RF ensemble classifier, is explored through experiments 

presented in chapter 5. This research examines ways of targeting particular training 

data samples to induce RF ensemble diversity and improve per-class and overall 

classification performance and efficiency. Through use of the ensemble margin, this 

study offers insights into the trade-off between ensemble classification accuracy and 

diversity. The research shows that boosting diversity among RF ensemble members, 

by emphasising the contribution of lower margin training instances used in the 

learning process, is an effective means of improving classification performance, 

particularly for more difficult or rarer classes, and is a way of reducing information 

redundancy and improving the efficiency of classification problems.  

Research chapter 6 looks at the application of the RF classifier for calculating 

Landscape Pattern Indices (LPIs) from classification prediction maps, and examines 

the sensitivity of these indices to training data characteristics and sampling based on 

the ensemble margin. This research reveals a range of commonly used LPIs to have 

significant sensitivity to training data mislabelling in RF classification, as well as 

margin-based training data sampling.  
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In conclusion, this thesis examines proposed advantages of the popular machine 

learning classifier, Random forests - the relative insensitivity to training data noise 

(mislabelling) and its ability to handle class imbalance. This research also explores 

the utility of the ensemble margin for designing more efficient classifiers, measuring 

and improving classification performance, and designing ensemble classification 

systems which use reference data more efficiently and effectively, with less data 

redundancy. These findings have practical applications and implications for large 

area land cover classification, for which the generation of high quality reference data 

is often a time consuming, subjective and expensive exercise.  
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Chapter 1.  Introduction 
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1.1. Background: Large area land cover mapping  

Timely and accurate large area land cover maps provide critical information to meet 

a range of environmental, social and economic needs. Such maps are essential inputs 

to a range of scientific applications, a source of input parameters for models and 

provide a basis of policy analysis (Wulder et al., 2008). Maps at a range of global, 

regional, national and sub-national scales, which characterise land cover and support 

land cover change assessment, support the needs of natural resource managers, 

scientists, policy makers and researchers (Vogelmann et al., 2004; Ståhl et al., 2016). 

The applications of such maps include assessment of global carbon budgets and 

climate modelling, assessing food security (Liu et al., 2008), predicting fire 

behaviour and hydrological modelling. Large area mapping products provide critical 

inventory data and information for understanding environmental processes and for 

effective natural resource management, land use planning and decision making 

(Lowry et al., 2007). 

Satellite-based (remote sensing) earth observation has been recognised as an 

essential technology for large area, contiguous land cover mapping, which allows for 

frequent re-measurement for monitoring (DeFries and Townshend, 1994; Boyd and 

Danson, 2005; Hansen and Loveland, 2012; Chen et al., 2015). Remote sensing 

derived vegetation and forest maps (and forest cover change products) in particular, 

are important for understanding the spatial configuration and fragmentation of forest 

cover (Riitters et al., 2012), modelling forest productivity (Tramontana et al., 2015), 

invasive species and forest health (Coops et al., 2010) and locating priority areas for 

biodiversity conservation.  

Remote sensing derived forest cover maps and monitoring systems are an important 

part of many national and regional forest inventory programs - used as a surrogate 

for field-based observations, to improve the precision of statistical estimates derived 

from field (plot) measurements and for creating spatially explicit forest cover maps 

(Deppe, 1998; McRoberts et al., 2005; McRoberts and Tomppo, 2007; Tomppo et 

al., 2010; Haywood et al., 2016). Forest extent is an indicator under the Montreal 

Process' seven criteria used to characterise sustainable forest management (Howell et 
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al., 2008) to which twelve countries are signatories, together representing about 60 

per cent of the world's forests and 90 per cent of the world's temperate and boreal 

forests (Montréal Process Working Group, 2015). 

1.2. Remote sensing for large area land cover 

 classification 

Remote sensing classification - the transformation of image data into thematic map 

products has been a fundamental aspect of remote sensing since multi-spectral 

imagery first became available in the early 1970s (Wilkinson, 2005). Supervised 

classification in particular, is one of the most common forms of analysis undertaken 

with remote sensing data  (Foody and Mathur, 2004). Supervised remote sensing 

image classification is broadly defined as the guided categorisation of pixels in an 

image (or remotely sensed data), to generate a particular set of labels of land cover 

themes (Lillesand and Kiefer, 1994). A review of image classification methods by Lu 

& Weng (2007), describes the complexity of this classification process, which 

requires many factors to be considered. These range from the determination of a 

suitable classification system, the selection of suitable training samples and image 

processing feature extraction, to post classification processing and accuracy 

assessment.  

A review of remote sensing classification experiments by Wilkinson (2005), 

identified advances in three main areas of satellite image classification: 

1. The development of particular components of classification algorithms - 

including training strategies; 

2. Augmentation of classification algorithms through novel systems-level 

approaches; 

3. The use of multiple types of ancillary data (including numerical and 

categorical data). 

This fifteen year review (published in 2005) however, found as a whole, no 

significant upward trend in classification results across the hundreds of experiments 

reviewed (Wilkinson, 2005).  
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1.3. Machine Learning for remote sensing land cover 

 classification 

Machine learning (ML) techniques – the advanced application of statistics to learning 

for identifying patterns in data and then making predictions from those patterns – 

have been used in a variety of science and engineering problems for nearly twenty 

years (Lary et al., 2016) and over the past decade have become increasingly popular 

techniques for remote sensing classification (e.g. Foody and Cutler, 2006; Foody et 

al., 2016; Ghimire et al., 2012; Graves et al., 2016; Rodriguez-Galiano et al., 2012; 

Rogan et al., 2008). Despite criticism directed at many ML techniques, considered 

'black-boxes' which are unable to generate practical prediction equations  (Lary et al., 

2016), ML algorithms have proved to be more accurate and efficient techniques over 

traditional parametric approaches, particularly when dealing with large volumes of 

data across complex measurement spaces (Foody et al., 1995; Rogan et al., 2008).  

Unlike more traditional parametric classifiers, non-parametric ML algorithms make 

no assumptions as to the frequency distribution of input data. ML techniques do 

require prior knowledge about the nature of the relationships between the data (Lary 

et al., 2016). Traditional parametric techniques (such as Maximum Likelihood 

Classification) assume a normal distribution of data and as such, are limited in their 

application to multi-modal input data (Belgiu and Drăguţ, 2016). With respect to 

remote sensing data, which rarely have normal distributions, simple classifiers are 

also constrained in their application to dealing with the complex interactions between 

scene complexity, scale and aggregation (Marceau et al., 1994). Indeed, the 

application of traditional remote sensing classifiers are limited in heterogeneous 

landscapes which are characterised by land cover classes which are difficult to 

discriminate because of both low inter-class separability, as well as high intra-class 

variability (Ghimire et al., 2012). Other challenges include the complexity of 

measurement space and error and variability in calibration (reference) data (DeFries 

and Cheung-Wai Chan, 2000). Moisture, elevation and temperature (environmental) 

gradients and topographic heterogeneity also present challenges for image 

classification (Ghimire et al., 2012).  

ML algorithms applied in remote sensing classification include Artificial Neural 

Network (ANN) (Foody and Arora, 1997; Yuan et al., 2009), deep learning neural 
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networks (Yu et al., 2017), Adaboost (Chan and Paelinckx, 2008; Haywood and 

Stone, 2011), Classification and Regression Tree (CART) (Lawrence and Wright, 

2001). In recent years however, Support Vector Machines (SVM) and Random 

forests (RF) have stood out as the most popular ML classification algorithms used in 

the field of remote sensing.  A Scopus database search across title, abstract and 

keywords "SVM" AND "Remote sensing" returned the highest number of 

publications, with an yearly average of 142 between 2010 and 2015. Over the same 

period, a search of "Random forests" AND "remote sensing" showed the highest 

annual increase in publications in remote sensing, with an annual average increase of 

33% (compared to 27% for SVM). Moreover, across all fields (i.e. constraining the 

search terms to the algorithm name only), since 2010, the number of publications 

based on the search "Random forests" have increased on average 22% each year.   

1.4. Random forests 

Random forests (RF) (Breiman, 2001) is an ensemble machine learning technique 

that combines a collection of decision trees (created using random bootstrap samples 

of training data), and determines an output class through modal vote (classification) 

or mean prediction (regression) of the individual trees. Building on research by Amit 

& Geman (1997) and Ho (1998), Breiman (2001) developed Random forests, 

defining the classifier as consisting of a collection (or ensemble) of tree structured 

classifiers 

{ℎ(𝒙, Θ𝑘),𝑘 = 1, … } 

where Θ𝑘 are independent identically distributed random vectors and each tree casts 

a unit vote for the most popular class at input.  

Individual decision trees in a random forest ensemble are constructed by partitioning 

a subset training data (bagging sample) at each decision tree node, into increasingly 

homogeneous subsets, using randomly drawn predictor variables. The node-splitting 

predictor variable selected from the variable subset is one which results in the 

greatest increase in training data purity (variance or Gini) before and after the tree 

node split (Cutler et al., 2007). Purity here is defined as the relative homogeneity of 

training data in each sub-node after node splitting. This decision tree construction 

continues until there are no further gains in training data purity. Two key model 
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parameters need to be defined in training the random forest classifier (following 

notation in the randomForest library (Liaw and Wiener, 2002) available in statistical 

software package R (R Core Team, 2013). 

1. The number of trees generated in the random forest ensemble (ntree) 

2. The number of randomly selected predictor (or input) variables used at each 

decision tree split (mtry) - of this predictor variable subset, that which forms 

the best split is selected. 

Figure 1-1 and Figure 1-2 illustrate the training and classification phases of the 

random forest classifier. 
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 Figure 1-1 Random forest classifier training phase, adapted from Parnell et al. (2011) 

 

Figure 1-2  Random forest classifier classification phase, adapted from (Nguyen et al., 

2013) 

Advantages of RF over other machine learning and traditional classifiers have been 

widely cited in the literature. Chiefly among its attributes are the excellent 

classification results, efficiency and processing speed (Pal, 2005; Du et al., 2015a; 

Chutia et al., 2016). Compared to other  ML algorithms (such as Boosting and 
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Support Vector Machine), RF does not require a great deal of parameter adjustment 

and fine-tuning, with default parameterization often leading to excellent performance 

(Breiman, 2001; Svetnik et al., 2003; Statnikov et al., 2008) - this makes RF 

accessible, with good ease of use. Other cited advantages that demonstrate its 

performance and versatility include its applicability to both binary and multiclass 

prediction problems (Huang and Boutros, 2016); its handling of thousands of input 

variables (including a mixture of both categorical and continuous data), and 

providing estimates of their relative importance in the classification process; its 

ability to handle noisy observation data and outliers, in a complex measurement 

space and small training data relative to the study area size (DeFries and Cheung-

Wai Chan, 2000; Rogan et al., 2008; Rodriguez-Galiano et al., 2012; Pelletier et al., 

2017) and its ability to characterize complex variable interactions (Cutler et al., 

2007). RF also demonstrates good predictive performance in applications with more 

variables than sample data (Huang and Boutros, 2016) and has been argued to not 

overfit (Peters et al., 2009). The RF algorithm grows an ensemble (forest) of decision 

trees which have high variance and low bias (Belgiu and Drăguţ, 2016).  

The RF algorithm can handle diverse multisource remote sensing and geographic 

data (e.g. soil and terrain variables), making it well-suited to land cover classification 

(Corcoran et al., 2013; Inglada et al., 2017). Coupled with another of its advantages – 

the ability to produce variable importance measures, which aid interpretation of the 

classification model – RF can be used to evaluate the contribution and influence of 

data sources, for both optimising the classifier and interpreting results (which is 

typically more challenging in ensemble classification compared to an individual 

classification tree (Strobl et al., 2007).   

1.5. RF classification reference data 

The RF classifier has been shown to perform better with large numbers of training 

samples (Deng and Wu, 2013; Du et al., 2015b). Moreover, van der Ploeg et al. 

(2014) compared the performance of different machine learning techniques 

(including SVM and RF) for binary problem solving in relation to the effective 

sample size (or 'data hungriness'), and concluded that far more events per variable 

(10 times as many in this study) were needed to achieve stable model performance 
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(Area Under Curve) compared to classical techniques such as linear regression. 

Indeed, in the context of this medical study, the authors proposed that such "modern 

modelling techniques should only be considered....if very large data sets with many 

events are available" (van der Ploeg et al., 2014). These findings are consistent with 

earlier research (Selker et al., 1995), which found ML algorithms' ultimate 

limitations were associated with a "data barrier" (the availability of the information 

in data). 

In an experimental study using data from various application domains, Dietterich 

(2000) established that boosting is more accurate than bagging. Boosting approaches 

have been shown to reduce classification variance and bias (Gislason et al., 2006; 

Ghimire et al., 2012). However, they require large computational resources, overfit if 

there are insufficient training samples, and are sensitive to any outliers present in the 

training samples. Other studies have also highlighted the sensitivity of the RF 

classifier to spatial auto-correlation of training data (Colditz, 2015; Millard and 

Richardson, 2015), as well as the proportion of different classes within training 

samples (Dalponte et al., 2013) – highlighting the importance of reference data given 

its cost and resource requirements. 

In the context of large area supervised land cover classification using Earth 

observation data, the generation of reference data (hereafter used to describe the 

combination of training and validation or test data) whether through ground-based or 

sampled from high spatial resolution imagery, is an expensive and time consuming 

process (Ghimire et al., 2012; Gomez et al., 2016) and the quality of reference data 

can substantially affect the quality of derived land cover maps (Foody et al., 2016). 

Indeed, labelling  reference data samples is prone to error and can result in poor 

classification performance and bias (Bradley and Friedl, 1996; Pal and Mather, 

2006). Moreover, where ground truth data is assumed to be accurate, but does in fact 

contain errors, the classification algorithm can be wrongly supposed to be the source 

of inaccuracy rather than the training data (Carlotto, 2009).  

Three developments are facilitating the take up and ease-of-use of modern machine 

learning algorithms, such as RF, for large area land cover classification problems.  

1. Access to cloud computing 
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Cloud computing - the practice of using a network of internet hosted, remotely 

accessed servers to store, manage and process data, provides significant opportunities 

to address the challenge of large scale data-intensive remote sensing applications 

(Sugumaran et al., 2015). Increasing spatial, temporal, spectral and radiometric 

remote sensing data resolutions, across a range of platforms, coupled with access to 

data processing algorithms, and rapidly increasing internet data access and speed, is a 

technological nexus - one that can be referred to as big data (Sugumaran et al. 2015). 

Kumar et al. (2013) defines the questions as no longer "how do we capture 

imagery?", but rather, "how do we handle the immense volume of imagery we 

already have and to which we're adding every day?".  

Amazon Web Services (a subsidiary of Amazon.com) provides a suite of cloud-

computing, storage and analytics services in 13 regions across the world, from 2015 

made publically available the entire archive of Landsat 8 scenes. Machine Learning 

AWS also provides tools to build machine learning models, including data analysis, 

training and evaluation. Google Earth Engine is a cloud-computing platform for 

processing satellite imagery and other earth observation data. GEE contains over 200 

public datasets, over 5 million images and more than 5 petabytes of data. GEE's suite 

of tools include a suite of supervised classification algorithms (including Random 

forest, CART and SVM) and workflow for building, training, applying and assessing 

classification algorithms (Google Earth Engine Team, 2015). 

2. Open Source software 

Increasing ease of access to machine learning algorithms like RF via open-source 

software environments (including through cloud-computing services), allows users to 

access and readily automate classifiers through a set of adjustable parameters, which 

makes RF straightforward to apply for relatively inexperienced users (Qi et al., 

2006). Several implementations of the RF classifier are now available, including the 

most popular randomForest (Liaw and Wiener, 2002) on the statistics package R (R 

Core Team, 2013), as well as implementations in Python, such as scikit learn 

Ensemble forest (scikit-learn developers, 2016) and through the Machine Learning 

Tool Kit (MILK) (Coelho, 2017) and Fast random forest in the WEKA 

Environment.  

3. Remote Sensing Data  
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Launched in July 1972, Landsat 1 became the first global satellite earth observing 

mission (Belward and Skøien, 2015).  The number of near polar orbiting operational 

earth observing satellite missions grew rapidly after 1972, to eight in August 1982, 

twenty a decade later, thirty-nine by August 2002 and eighty-three by 2012. Figure 

1-3 (Belward and Skøien, 2015) shows the number of satellites operating by year and 

illustrates the rapid increase overtime.  

 

Figure 1-3 The number of near-polar orbiting, land imaging civilian satellites operational as 

of 1 August 1972 to 2013 (Belward and Skøien, 2015). 

Commensurate with the increase in earth observing platforms has been the increase 

in available remote sensing data. A policy change in 2008 resulted in the all new and 

archived United States Geological Survey (USGS) held Landsat satellite image data 

becoming freely available to any user (Wulder et al., 2012). The significance of this 

policy change cannot be underestimated - as at June 30 2016, over 42 million 

Landsat scenes have been downloaded by users worldwide (U.S. Geological Survey, 

2017). Open data policies, like the Landsat Data Policy (http://landsat.usgs.gov/ 

documents/Landsat_Data_Policy.pdf), have increased the practicality of combining 

multiple data from multiple sensors and support data assimilation approaches for 

generating information, which, unlike in the meteorological community, are under-

represented in terrestrial remote sensing (Wulder et al., 2012). Wulder et al. (2012) 

contend that the decision to make Landsat data freely available supports the efforts of 

international earth observing organisations in encouraging open data standards.   



 
 

12 
 

The range of open-access satellite imagery extends to the European Space Agency's 

Sentinel program (including 10 metre multispectral data) and Synthetic Aperture 

Radar (European Space Agency, 2016); MODIS (Moderate Resolution Imaging 

Spectroradiometer) aboard the Terra and Aqua satellites, acquiring data across 36 

spectral bands over the entire Earth's surface every 1-2 days (NASA, 2016). Together 

with Landsat 8, the Sentinel satellite constellations will provide potential for 

landscape-scale observation data every three to four days (Turner et al., 2015). The 

combination of Landsat 8 and two Sentinel satellite sensors (2A and 2B) offer a 

global median average revisit interval of 2.9 days and maximum revisit interval of 7 

days (Li and Roy, 2017). 

Low-cost and accessible cloud-computing infrastructure, the free availability of 

open-access versions of a range of popular ML classification algorithms, and open-

access policies for moderate resolution multi-spectral remote sensing data and a 

range of other spatial data, are all factors which promote the uptake of ML classifiers 

and provide great opportunities for improving the accuracy, currency and quality of 

large area land cover maps for a range of applications.  

1.6. Research aims and experimental setting 

In the context of large area classification using multisource remote sensing and 

geospatial data, the primary aim of this research is to examine two of the proposed 

advantages for RF described in this introduction - the relative insensitivity to training 

data noise (mislabelling) and its ability to handle class imbalance. This research will 

also investigate the utility of ensemble learning (and associated margin theory) – in 

which multiple base classifiers are combined to reduce generalisation error in 

classification – to design more efficient classifiers, improve classification 

performance, to reduce reference data redundancy and design ensemble classification 

systems which use reference data more efficiently and effectively.  

The experimental setting and data used in this research (introduced and described in 

detail in chapters 2 and 3) provides a unique real-world testing environment through 

which to explore and apply ML concepts – typically constrained to simulation-based 

studies in the field of information science – to a large area remote sensing problem, 

using reference data (stratified, unbiased and proportional to the study area) and an 
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environment which is both realistic and a representative testing environment to 

provide insights for classification problems applied in alternative geographic settings 

where greater reference data typically constraints apply. 

1.7. Research Questions 

Three research questions are explored in this thesis: 

Question 1: How do training data characteristics of class imbalance and class 

mislabelling affect RF performance?  

This question is explored through the application of margin theory, employed as a 

measure of confidence in classification results, to supplement traditional 

classification performance measures used in remote sensing classification.  

Question 2: What is the relationship between ensemble diversity and classification 

performance? 

This question seeks to examine the degree of influence that ensemble diversity has 

on classification performance, and how ensemble classifier diversity can be 

controlled to improve the efficiency and effectiveness of classification training data. 

Question 3: What is the relationship between training data characteristics (used to 

construct RF ensemble classification models) and Landscape Pattern Indices (LPIs) 

calculated from RF derived prediction maps?  

This questions looks at the application of RF classification models to generate LPIs, 

and examines the sensitivity of these indices to training data characteristics and 

sampling based on the ensemble margin. 

1.8. Thesis structure  

This thesis is presented such that each chapter (with the exclusion of the introduction 

and synthesis) may be read independently. The research chapters match the 

published (or prepared for publication) versions, with changes only to formatting in 

order to maintain a consistent style through the thesis. Cited references are compiled 

into a single bibliography at the end of the thesis.  



 
 

14 
 

The thesis comprises seven chapters, of which four are research chapters (three of 

which have been published in peer-reviewed journals). There is no stand-alone 

literature review chapter, as these are included in the introduction sections of each 

research chapter. 

Chapter 2 describes the experimental setting for this research - including the 

sampling framework for the reference (training and test) data used in classification 

experiments that follow. This chapter summarises the advantages and opportunities 

afforded by the experimental design to explore the key research questions introduced 

in Chapter 1. Chapter 3 evaluates the performance of the Random forest (RF) 

classifier applied across 7.2 million hectares of public land in Victoria, Australia. 

This chapter describes an open-source framework for deploying the RF classifier 

over large areas and processing significant volumes of multi-source remote sensing 

and ancillary spatial data.   

Chapter 4 examines the effect of training data characteristics of class imbalance and 

mislabelling on the performance of Random forests. Through different experiments 

applied to binary and multiclass problems, this research chapter examines the 

sensitivity of RF classification performance to training class imbalance and training 

data mislabelling. Chapter 4 also introduces the ensemble margin, and derived 

metrics that can be used as ancillary measures of classification performance.  

Chapter 5 explores the relationship between per-class and overall classification 

performance and the diversity of members in a RF ensemble classifier. This chapter 

brings together the understanding of the ensemble margin developed in Chapter 4, to 

look at ways to target particular training data samples to induce ensemble diversity 

and improve per-class and overall classification performance and efficiency.  

Chapter 6 explores the application of the RF classifier for deriving landscape pattern 

indices from classification prediction maps and examines the sensitivity of these 

indices to training data characteristics and sampling based on the ensemble margin. 

Chapter 7 provide a synthesis of the research and discussing the research findings 

and their implications in the context of recent technology and data developments, 

which have increased the accessibility of advanced classification algorithms such as 

RF.   
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Chapter 2. Experimental Setting and 

Sampling Design 
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2.1. Experimental setting 

The following chapter describes the experimental context for this research - 

including the study area and the sampling framework for the reference (training and 

test) data used in large area land cover classification experiments that follow. This 

chapter summarises the advantages and opportunities afforded by the experimental 

design to explore the key research questions introduced in Chapter 1.  

2.2. Victorian Forest Monitoring Program 

The reference data used in the research experiments described in chapters 3 through 

6, is drawn from the Victorian Forest Monitoring Program (VFMP). The VFMP 

(Haywood et al., 2016; Haywood and Stone, 2017) is a strategic forest inventory 

established in the State of Victoria in south east Australia. The VFMP combines field 

measurement plots with remote sensing data across the State's public land forests, the 

information from which is used to assess Victoria’s progress towards achieving 

sustainable forest management objectives and targets (Haywood et al., 2016). The 

VFMP and other similar strategic forest inventories have been established in many 

jurisdictions around the world (e.g. in north America and Scandinavia) – historically 

with the primary objective of monitoring and assessing forest (i.e. timber) resources. 

More recently however, there has been a shift in public focus and awareness towards 

the essential role that forests also play in climate regulation, as a source of biological 

and genetic diversity, in the storage and maintenance of carbon cycles, and the 

provision of cultural, tourism and amenity values (Myers, 1996; Boyd and Danson, 

2005). The increasing need for consistent data with which to make comparisons 

between land and forest management regimes or between different jurisdictions is 

also driving the need to establish and maintain forest data collection systems – which 

also support national and international forest policy and decision making. 

2.3. Design-based sampling  

The VFMP uses a design-based sampling framework (also known as a probability-

based sampling design) - a classical approach to sampling (Cochran, 1977), for 

which the objective is to describe the characteristics of a real and explicitly defined 

population. Such sampling is necessary to address the impracticality of collecting 
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reference data for a census of an entire region (Stehman, 2000). In design-based 

frameworks, sampling locations are selected through probability sampling and 

statistical inference used to, for example, estimate a spatial mean, is based on 

sampling design (Brus, 2010).  Design-based inference typically assumes a finite 

population of elements to which one or more fixed target quantities are linked (Ståhl 

et al., 2016). In contrast to design-based sampling, model-based sampling does not 

have requirements on a method for selecting sampling locations, and typically are 

selected by purposive (targeted) sampling, for instance on a centred grid (Brus, 

2010). Model-based approaches, sometimes characterized as model dependent 

approaches (Hansen et al., 1983), use predictions based on models and ancillary 

variables to produce estimates (McRoberts, 2010). 

Simple random sampling and systematic sampling are sampling approaches which 

provide a foundation for most probability or design-based sampling. The VFMP 

applies stratified random sampling for its design-based approach. In stratified 

random sampling, the total population is divided into mutually exclusive, non-

overlapping strata, from which simple random samples are taken. Each potential 

sample unit can only be assigned to one stratum and all unit are included. Among the 

advantages of stratified random sampling include minimizing sample selection bias 

and reducing over and under-representation of certain population segments. 

2.4. VFMP Sampling Design 

The VFMP is a plot-based design made up of permanent observational units located 

on a state-wide grid (Haywood and Stone, 2017). The guiding principle of the VFMP 

design is the consistency of data collected through monitoring, whereby the same 

attributes are measured over space and time, with the same standards and in a 

statistically defensible manner and at an acceptable level of precision. For the 

VFMP, the desired stratum level target precision (standard error) is 12.5%. The 

VFMP's sampling framework has the following key elements (which are described in 

further detail below) (Haywood et al., 2017). 

1. Target population: the public land estate of Victoria 
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2. Stratification: Two-way stratification of the target population with each 

stratum adequately sampled for statistical reliability through variable 

sampling intensity. 

3. Plot design: comprising two components, a) ground-based - from which a 

range of direct measurements of forest structure and composition are taken, 

and b) a remotely sensed photo-plot 

2.5. Target population 

The target population (study area, or sampling frame) comprises 7.1 million hectares 

of public land, covering about one third of the state of Victoria, in south East 

Australia. This includes about 3.9 million hectares of mostly forested parks and 

conservation reserves – managed primarily for ecosystem and biodiversity 

conservation, as well as tourism, recreation and cultural and historic values. State 

forests cover about a further 3.1 million hectares – land management in State forests 

include the water catchments and water supply, flora and fauna conservation, as well 

as the provision of timber (The State of Victoria Department of Environment and 

Primary Industry, 2013). The target population is assumed to consist of an infinite 

number of points within the public land estate. Chapter 3 includes a more detailed 

description of the study area climatologically and environmental and topographic 

characteristics.  

2.6. Sampling Stratification 

The target population was stratified with respect to two factors, bioregion and tenure. 

Firstly, the target population was stratified into 11 IBRA (Interim Biogeographic 

Regionalisation for Australia) Bioregions – these are large and geographically 

distinct areas of land which share common geology, landform, climatic and 

ecological characteristics (Cummings and Hardy, 2000).  The target population was 

further stratified into the two major public land tenure (Parks and Reserves, including 

national, state, and regional parks, and State forest (described above).  Figure 2-1 

shows the distribution of sampling plots (units) located across Victoria's major public 

land tenures. Figure 2-2 shows the sampling plots (units) and IBRA Bioregions (the 

primary stratification unit). 
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Within each stratum, sample units were placed at the intersections of a grid which 

utilised the VicGrid coordinate system (DSE, 2000) whose spacing varied between 2 

km and 20 km and was selected to produce a per stratum sample size of 

approximately 30 samples. The target within-stratum sample size of 30 samples was 

based on the assumption of a coefficient of variation for a quantitative trait measured 

in the VFMP (such as biomass) of at least 70% and a stratum-level target precision 

(or standard error) of no more than 12.5% (Haywood et al., 2016). Within a 

geographically large stratum, sample points are more widely spaced to achieve the 

optimal and most resource efficient target number of sampling locations, compared 

to smaller strata. Table 2-1 shows the number and spacing of Victorian strategic 

forest inventory sample points by stratum. A more detailed description of the VFMP 

sampling design and its rationale can be found in Haywood et al. (2016).  Unlike 

many other strategic forest inventories - which collect information about the state 

and dynamics of forests for management planning -  the VFMP sampling (from field 

and remote sensing) deliberately extends to include all land covers types within the 

public land estate. 

Table 2-1 Victorian Forest Monitoring Program sample points by stratum, adapted from 

(Haywood et al., 2016, 2017) 

IBRA Bioregion 

Parks and 

Reserves 

Grid spacing 

(km) 
State forest 

Grid spacing 

(km) 

 Sample Units  

Australian Alps 36 10 53 8 

Flinders 26 4 * - 

Murray-Darling Depression 39 20 28 10 

Naracoorte Coastal Plain 42 4 42 4 

NSW South Western Slopes 43 4 31 4 

Riverina 69 6 8 4 

South East Coastal Plain 27 8 25 4 

South East Corner 39 10 44 12 

South East Highlands 49 12 42 18 

Victorian Midlands 35 10 38 8 

Victorian Volcanic Plains 30 6 40 2 

Total 435  351  

 * Flinders Bioregion does not contain any State forest 
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Figure 2-1 Location of sampling units (plots) across Victoria's public land Forest Monitoring 

Program 

 

Figure 2-2 VFMP sampling units by IBRA Bioregion 
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2.7. Sampling 

The plot design of each sample point comprises two main components – a multi-

staged field-plot and an aerial photoplot. At the field-plot level, 215 variables are 

measured and assessed, within a 0.04 ha circular plot and soil and vegetation 

quadrats. These variables include physical and biotic characteristics (such as slope, 

aspect, topographic position and site disturbance), as well as tree measurements (e.g. 

species, diameter at breast height over bark, canopy health and cover), coarse woody 

debris, understory vegetation and groundcover attributes and soil. A detailed 

description of the field-plot inventory method and attributes measured is available in 

Haywood et al. (2016).  

Above each field-plot point, 2 km x 2 km photoplot sampling units provide the 

primary source of land cover information for the VFMP inventory and the source of 

reference data used in the research experiments described in the following chapters. 

Digital high resolution (30 cm and 50 cm pixels) colour (RGB and Near Infrared) 

aerial photographs acquired over the period 2006 to 2010 were used to map 

landcover, following a classification system comprising broad forest type, height and 

canopy cover classes (Mellor and Haywood, 2010). A detailed description of the land 

cover mapping method applied to VFMP photoplots and used as the source of 

reference data in this study, is included in chapter 2 and documented in Farmer et al. 

(2013).  

Figure 2-3 illustrates the primary sampling components of the VFMP ground plot, 

together with an example land cover photoplot map (above).  
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Figure 2-3 Primary components (field plot and aerial photoplot) of the VFMP sampling unit 

2.8. Summary 

The design-based statistical sampling framework of the VFMP and the nature of the 

photoplot sampling units from which reference data is collected, afford several 

advantages which provide a unique opportunity to explore how training data 

characteristics affect RF performance in this research. For example, the spread of 

sampling units is comprehensive and their geographic coverage extensive. The 
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systematic and stratified sampling framework helps ensure that sampling is balanced, 

unbiased and addresses heterogeneity characteristics of the large and diverse study 

area. Furthermore, the training data generated at sampling units is temporally 

consistent.   

These  training data sampling characteristics are not typical - particularly in large 

regions or jurisdictions in which areas are inaccessible or suitable high resolution 

data is scarce. Research findings from this exemplar reference dataset from a real-

world experimental environment, might be used to design and parameterise more 

efficient ML classifiers in other jurisdictions, making more efficient and effective 

use of training data, which may of poorer quality (e.g. less geographic or class 

coverage, noisy and mislabelled and collected with temporal variability).  
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Chapter 3. The Performance of 

Random Forests in an 

Operational Setting for 

Large Area Sclerophyll 

Forest Classification 
 

 

 

Based on the peer-reviewed published article: 

 Mellor, A., Haywood, A., Stone, C. and Jones, S., 2013. The performance of 

random forests in an operational setting for large area sclerophyll forest 

classification. Remote Sensing, 5(6), pp.2838-2856.   
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3.1. Introduction 

Forest extent is a measure commonly assessed in national forest inventories (NFI) 

(McRoberts, 2010) and, under the Montreal process (Howell et al., 2008), is a 

specific indicator used for monitoring and reporting sustainable forest management. 

For natural resource management agencies, current and accurate forest area estimates 

are critical for effective environmental monitoring. While ground-based (field plot) 

forest inventories can provide accurate and unbiased forest area estimates, spatially 

explicit remote sensing-derived forest extent maps can be used to assess the spatial 

configuration of forest at the landscape scale and used in combination with a high 

resolution sample (two-staged sampling) to improve forest area estimates (Deppe, 

1998). 

In Australia, under the Australian National Forest Inventory, forest is defined as “A 

land area, incorporating all living and non-living components, dominated by trees 

having usually a single stem and a mature or potentially mature stand height 

exceeding two metres and with existing or potential crown cover of overstory strata 

about equal to or greater than 20 percent. This definition includes native forests and 

plantations and areas of trees that are sometimes described as woodlands” 

(Department of Agriculture Fisheries and Forestry, 2012). The structural components 

in this definition encompass a wide range of forest types, from open low sparse 

canopy woodland to tall dense canopy forests (as illustrated by Figure 3-1, 

(Australian Surveying and Land Information Group, 1990)). 

In Australia (and the state of Victoria, in particular), dry, damp and wet sclerophyll 

forests and woodlands comprise many of the forested ecosystems. The canopies in 

these ecosystems are dominated by eucalypt species and are characteristically open 

with irregular (asymmetrical) crown configurations and low foliage density (Jenkins 

and Coops, 2011). Canopy foliage is often clumped, leaves tend to concentrate 

around crown perimeters (Jacobs, 1955) and exhibit an erectophile (vertical) leaf 

angle distribution. In Victoria, as in much of Australia’s forests, there is a high 

diversity of forest development phases, vertical and horizontal forest structures, 

topography and soil types (Behn et al., 2001), as well as dynamic phenological 

processes in understory vegetation (Bhandari, 2011). 
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These characteristics pose a number of challenges to the use of remote sensing in 

these environments for classifying and mapping forests. The mid- and under-story 

components, shadows and background soils all exhibit a strong influence on spectral 

reflectance characteristics. From a synoptic perspective, forest cover in Victoria can 

appear indistinguishable from shrub and other low and sparse woody vegetation 

species. Complexity and background noise in remote sensing signatures from open 

sclerophyll eucalypt forests is further intensified by the influence of dynamic 

understory elements and variation in forest structures (Jupp and Walker, 1997). The 

challenges and complexities associated with forest extent mapping across state and 

territories in Australia is evidenced by large differences and inconsistencies in forest 

extent maps and forest area estimates produced by state and federal government 

agencies and the variability in forest area estimates published in Australia’s national 

five-yearly State of the Forests reports (Montreal Process Implementation Group for 

Australia, 2008). The processing of large area remote sensing datasets poses a further 

challenge for state land management agencies. 

 

Figure 3-1 Australian forest structural definitions (Australian Surveying and Land 

Information Group, 1990). 
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Random Forests (RF) (Breiman, 2001) offers a possible solution to address these 

large area forest classification challenges, universal across many of Australia’s forest 

ecosystems. Machine learning classifiers, such as RF, are increasingly being used for 

environmental mapping and modelling applications in fields, such as natural resource 

management and forestry (Main-Knorn et al., 2011; Clerici et al., 2012; Rodriguez-

Galiano et al., 2012). RF is an ensemble decision tree classifier, which combines 

bootstrap sampling to construct many individual decision trees, from which a final 

class assignment is determined (Breiman, 2001). 

RF can be used to learn complex non-linear relationships, such as those present in 

variable vertical forest structure and the association of overstory to understorey forest 

vegetation. RF has been demonstrated to be very effective for accurate land cover 

mapping across complex and heterogeneous landscapes and to be relatively 

insensitive to noise (Rodriguez-Galiano et al., 2012), making it suitable for 

application in complex and dynamic forest environments. As RF does not require 

normally distributed model training data, its application is appropriate for areas 

where species distributions of ecological communities follow non-linear patterns 

across the landscape (Austin and Meyers, 1996) and where complex terrain effects 

data normality (Khalyani et al., 2012). Other reported benefits of RF include its 

relative insensitivity to outliers (Breiman, 2001; Cutler et al., 2007), common 

characteristics of open canopies across large areas of dynamic and highly variable 

forest ecosystems. Furthermore, the RF classifier runs efficiently on large datasets 

(Rodriguez-Galiano et al., 2012), making it suitable for regional-scale mapping, 

comprising millions of hectares. 

As only a random subset of variable data is used to construct each decision tree in a 

random forest classifier ensemble, correlation between decision trees is reduced, 

thereby improving predictive power and classification accuracy, whilst decreasing 

the computational complexity of the algorithm. As has been demonstrated in recent 

studies (Fahsi et al., 2000; Joy et al., 2003; Gislason et al., 2006; Sesnie et al., 2008), 

RF can incorporate multiple-sources of remote sensing data with ancillary 

continuous and categorical biophysical spatial data to improve classification 

performance and discriminate between forest and non-forest. 
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Moderate resolution multi-spectral imagery, such as Landsat Thematic Mapper 

(TM)/Enhanced Thematic Mapper (ETM+) has been commonly applied for estimating 

forest cover (Green and Sussman, 1990; Boyd and Danson, 2005), discrimination of 

some forest types (Lu et al., 2003), forest cover change detection (Tucker and 

Townshend, 2000; Rogan, 2002) and for model-based forest area estimation 

(McRoberts, 2010). Because of the challenges described above, limitations arise in 

classifying forest extent where different forest structures and composition and land 

cover types can appear spectrally alike using traditional remote sensing data analysis 

techniques. Improved forest classification accuracy and forest area estimates have 

been achieved for large areas using multi-temporal imagery, e.g., MODIS (Wulder et 

al., 2010; Maselli, 2011). The high temporal resolution of the MODIS sensor can 

provide valuable information about the phenological variability of different land 

covers and, as such, help address the challenge of forest canopy-to-understory 

discrimination in the type of open canopy forest environments described above. 

In the context of open-canopy forest extent classification, textural information 

(spatial variation data derived from optical imagery) can provide additional 

information to a RF classifier, by differentiating vegetation that appears spectrally 

similar when integrated into a remote sensing image pixel, but whose spatial patterns 

differ (Culbert et al., 2009). Recent studies have used satellite image-derived texture 

indices to improve forest stand classification (Coburn and Roberts, 2004), biomass and 

carbon estimation (Lu, 2005; Proisy et al., 2007; Eckert, 2012) and forest structure 

derivation (Kayitakire et al., 2006). In a large heterogeneous landscape RF 

classification study, Rodríguez-Galiano et al. (2011), increased overall accuracy by 

8% (and Kappa by 9%) by including textural information. 

The conditional relationships between forest vegetation and biophysical factors can 

also be used to further improve forest/non-forest discrimination. Species-

environment relationships are central to predictive geographical modelling (Guisan 

and Zimmermann, 2000). Topographic variables (e.g., elevation, slope and aspect) 

used in combination with spectral data have been demonstrated to enhance forest, 

habitat and vegetation classification (Fahsi et al., 2000; Joy et al., 2003; Gislason et 

al., 2006; Sesnie et al., 2008). Bioclimatic maps (e.g., temperature, precipitation) are 

an additional source of commonly used ancillary classification data.  
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These maps are typically developed through elevation-sensitive interpolation of 

climate station data and digital elevation models (Guisan and Zimmermann, 2000), 

which support the assumption that climate has a major influence on species 

distribution at broad geographic scales (Beaumont et al., 2005) and that similar 

compositions of vegetation can be expected to occur at sites with comparable soil, 

climate and topography (Franklin, 1995). In this paper, we evaluate the operational 

performance and utility of RF for classifying forest extent across Victoria, Australia, 

using remote sensing, topographic and climate predictor variables. The originality of 

this study lies firstly in the scale of the application of the RF algorithm, to construct, 

evaluate and implement an RF classifier to produce an accurate ~220,000 km2 land 

management agency forest map. As far as we know, this scale of RF operation is 

unique. The second novel aspect to this study is in its application setting, which, to 

our knowledge, is the first time RF has been used in an operational environment at a 

regional scale comprising highly diverse and complex Australian forest ecosystems 

and topography, dominated by open canopy sclerophyll forests and woodland. 

While studies on the production of forest and land cover maps derived from RF (or 

similar) classification techniques using multi-source remote sensing and ancillary 

data are published routinely in the academic literature, a secondary objective of this 

paper is to describe a framework for operational implementation of the RF algorithm 

using open-source software. The framework includes each phase of the RF 

classification process (from predictor variable pre-processing, through model 

development and implementation), to support transfer of this technology in an 

operational land management agency context and make use of the freely available 

and growing archives of remote sensing and geographic data. 

3.2. Random Forests 

Random Forests uses bootstrap (a form of sampling with replacement) aggregated 

sampling (bagging) to construct many individual decision trees from which a final 

class assignment is determined (Cutler et al., 2007). The RF algorithm constructs 

each decision tree using a bootstrap sample from available training data, with the 

remaining assigned as out-of-bag (OOB) samples. At each decision tree node, a 

random subset of predictor variables are tested to partition the observation data into 
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increasingly homogeneous subsets. The node-splitting variable selected from the 

variable subset is that which results in the greatest increase in data purity (variance or 

Gini) before and after the tree node split (Cutler et al., 2007). Tree building continues 

until there are no further gains in purity. A response variable can be predicted as an 

average (continuous variable classification) or model vote (categorical classification) 

among all decision trees built in the forest. The OOB sample data are used to 

compute accuracies and error rates averaged over all predictions (Cutler et al., 2007) 

and estimate variable importance in the classification. The computational complexity 

of the algorithm is reduced, as only a random subset of variables is used at each node 

split. This process also reduces correlation between trees, thereby improving both 

predictive power and classification accuracy. RF includes two methods to estimate 

the importance of each predictor variable in the model. The mean decrease in 

accuracy (MDA) importance measure is calculated as the normalised difference 

between OOB accuracy of the original observations to randomly permuted variables 

(Cutler et al., 2007). An alternative variable importance measure is calculated by 

summing all of the decreases in Gini impurity at each tree node split, normalised by 

the number of trees (Breiman and Cutler, 2001; Calle and Urrea, 2011). 

3.3. Open-Source Software 

By adopting an open-source framework for spatial data management, processing and 

analysis, users, such as land management agencies, can benefit from freely available 

software products and access to source code through which new algorithms can be 

integrated and manipulated. Stallman (1985) describes the four freedoms of the free 

and open-source software approach, as freedom to (i) run the program for any 

purpose, (ii) study how the program works, (iii) redistribute copies and (iv) improve 

the program and release such improvements to the public (Rocchini et al., 2013). 

3.3.1. Geographic Resources Analysis Support System (GRASS) 

GRASS (Geographic Resources Analysis Support System) (GRASS Development 

Team, 2012) is an open-source geographical information system capable of handling 

raster, topological vector, image processing and graphic data. Released under the 

GNU General Public License (GPL), GRASS is developed by a multi-national group 
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of developers and is one of the eight initial software projects of the Open Source 

Geospatial Foundation. GRASS has a modular structure into which may be plugged 

new routines programmed in a variety of languages (e.g., Python, C, shell), and there 

are over 300 modules and more than 100 add-on modules for the creation, 

manipulation and visualisation of both raster and vector data. The GRASS modules 

are designed under the UNIX philosophy (i.e., that programs work together and 

handle text streams) and can be combined using shell scripting to create more 

complex or specialized modules by a user. GRASS supports an extensive range of 

raster and vector formats through GDAL/OGR libraries, including OGC-conformal 

(Open Geospatial Consortium) Simple Features for interoperability with other GIS. 

3.3.2. R and Python 

R (R Development Core Team, 2011) is an open-source language and software 

environment commonly used in research fields for statistical computing and 

graphics. One of the main advantages of R is its object-orientated approach, which 

allows results of statistical procedures to be stored as objects and used as input in 

further computations. R is a simple and effective formal complete programming 

language, and the R environment is, therefore, highly extensible. GRASS and R 

software can be integrated through the R package, spgrass (Bivand, 2007), an 

interface allowing GRASS GIS functions to be implemented within R code and data 

to be easily exchanged between the two software packages. Python (Python Software 

Foundation, 2011) is an object-orientated high-level programming language that is 

widely used as a scripting language in the spatial analysis environment. Python’s 

popularity has led to the creation of many useful libraries, increasing its flexibility 

and interoperability, and it has well developed modules for linking with GRASS and 

R. 

3.4. Methods 

3.4.1. Study Area 

The study area comprises approximately 7.2 million hectares of public land forests 

and parks tenure (hereafter, referred to as public land forests) in the state of Victoria, 

in southeast Australia. This area includes 4 million ha of national parks and 
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conservation reserves, managed primarily for ecosystem and biodiversity protection, 

tourism and recreation. The remaining 3.2 million ha are multiple-use state forest 

tenure, which include the provision of timber and non-timber forest products. 

Bounding extents of Victoria are north 141°47'36" E 33°58'54"S, east 149°58'36"E 

37°30'20"S, south 146°17'13"E 39°9'33"S and west 140°57'29"E 34°28'23"S. 

Public land forests extend to all parts of the state and range from low multi-stemmed 

Mallee woodland across flat and gently undulating topography in the Northwest and 

Box-Ironbark forests, characterised by sparse to dense canopies of box, ironbark and 

gum-barked eucalypts up to 25 m tall, on flat to undulating landscapes on rocky, 

auriferous soils across central Victoria. Highly variable medium and tall canopy 

damp sclerophyll forests are widespread across the study area, found on a range of 

loamy, clay-loam and sandy-loam soils. Tall (up to and above 75 m) wet sclerophyll 

forests are found mostly in the eastern part of the study area on deep loamy soils at 

higher elevations. Dry sclerophyll forests are prevalent throughout the east, central 

and southwest parts of the study area on clay-loam, sandy-loam and shallow rocky 

soils of exposed hillsides, with canopies typically less than 25m tall, with crooked, 

spreading trees (Viridans, 2000). 

The study area is characterised by a range of different climate zones and diverse 

topography. The northwest region experiences semi-arid conditions, with low median 

annual rainfall (less than 250 mm in parts), with coastal areas experiencing a cooler 

temperate climate. Dry inland plains dominate much of the central and western parts 

of the state. The Victorian Alps—part of the Australian Great Dividing Range 

mountain system—extend east-west from the centre of the study area, with elevation 

up to 2,000 m. The Victorian Alps experience the lowest average temperatures and 

highest precipitation (greater than 1,400 mm/yr) in the study area. This variety of 

climate and topography is reflected in the variation in forest types and structure 

across the study area. 

3.4.2. Training Data  

Classification training data were derived from seven hundred and sixty-six 2 × 2 km 

land cover maps, systematically distributed across the Victorian Forest Monitoring 

Program (VFMP) (Haywood et al., 2016) random stratified grid (Figure 3-2). On-
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screen digital aerial photographic interpretation (API) of high-resolution (30 cm and 

50 cm pixels) colour aerial photographs (photoplots) across the study area (acquired 

over the period 2006 to 2010) were used to create the land cover maps, based on a 

land cover classification system (Mellor and Haywood, 2010) comprising broad 

forest type, canopy height and cover. The delineation of landscape objects into broad 

forest type/land cover classes, three canopy cover and three height classes, was 

undertaken by trained interpreters. Crown shape, size and arrangement, shadow and 

photographic image colour were all used for interpretation of the aerial photography. 

For the classification of forest, the Australian National Forest Inventory (NFI) forest 

definition (National Forest Inventory, 2003) was used, with an applied 0.5 ha 

minimum mapping unit, consistent with the UNFAO forest definition (Food and 

Agriculture Organization of the United Nations, 2001). 

API data were aggregated into forest and non-forest training data classes. Mapping 

on pre- and post-2008 photography was adjusted to a baseline date of December 31, 

2008, using ancillary GIS data to re-attribute and update API polygons, based on 

major known land cover changes associated with wildfire and clear fell logging. 

Training data API maps are further stratified by IBRA (Interim Biogeographic 

Regionalisation for Australia) Bioregions—relatively large, geographically distinct 

areas of land that share common characteristics, including geology, landform 

patterns, climate, ecological features and plant and animal communities. Eleven 

Bioregions are located within the study area. Figure 3-2 shows the distribution of 

VFMP sample land cover maps across the study area and Bioregions and example 

API land cover maps. For further information on the API method, refer to (Farmer et 

al., 2013). API vector data were converted to raster format to align with the 30 × 30 

m pixels of Landsat satellite imagery (described in the following section). 

3.4.3. Predictor Variables 

Nineteen cloud-free Landsat TM scenes were used to build a study area mosaic; 

selected and downloaded from USGS Earth Explorer (U.S. Geological Survey, 

2013). Satellite images were acquired between February and March 2009, 

corresponding to late summer conditions with relatively high scene sun angles (to 

minimise shadow and terrain effects) and designed to maximise spectral differences 

between overstory evergreen woody vegetation and seasonal understory vegetation. 
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Where cloud-free images were unavailable, the acquisition period was extended to 

December 2008 or the summer period in the preceding or following year. Images 

were downloaded in USGS L1T georectified and terrain-corrected format, at a spatial 

accuracy considered acceptable for the study (± one 30 m pixel). Landsat TM 

spectral bands 1–5 and 7 were pre-processed to minimise sources of between-scene 

spatial and temporal variation associated with different atmospheric conditions, 

topography, sensor location and sun elevation. A physical model was applied to 

convert image digital numbers (DNs) to surface reflectance standardised to a fixed 

viewing and illumination geometry, incorporating the Shuttle Radar Topography 

Mission (SRTM) Digital Elevation Model (CSIRO, 2011), using a methodology 

described in Flood et al., (2013). Pre-processed image tiles were mosaicked to create 

six study area surface reflectance Landsat TM bands. 

 

 

Figure 3-2 Victorian Interim Biogeographic Regionalisation for Australia (IBRA 

Bioregions) and aerial photographic interpretation (API) land cover maps (1:25,000) 
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Textural indices were derived from an NDVI layer produced using the Landsat TM 

surface reflectance bands 3 and 4, rescaled to a 6-bit raster (64 grey levels). Three 

first order (occurrence) texture measures were calculated using 3 × 3, 5 × 5 and 7 × 7 

cell neighbourhood moving windows across the grey-scaled (Haralick, 1979) NDVI 

layer—these were variance, diversity (number of different values within the 

neighbourhood) and interspersion (proportion of cells in the neighbourhood, which 

differ from values assigned to the centre cell in the neighbourhood plus one). Three 

different sizes of neighbourhood windows were designed to capture the range in 

ecosystem textural variance across the study area. 

Phenological temporal-variance in the study area was derived from state-wide multi-

temporal MODIS NDVI data (MOD13Q1). A multi-temporal raster stack of twenty-

three 250 m spatial resolution MODIS (16-day) NDVI images were extracted for 

Victoria, over the calendar year January 2008 to January 2009, from Australian 

mosaics (produced using the methodology described in (Paget and King, 2008)). To 

generate the temporal variance in NDVI, a one standard deviation raster was 

calculated from each annual multi-temporal image pixel-stack.  

Elevation (metres), slope (degrees) and aspect (degrees) were derived from a one 

second (~30 m) smoothed digital elevation model (CSIRO, 2011). Climate surfaces 

were generated using the BIOCLIM component of the ANUCLIM (version 5.1) 

software package (Houlder, 2001), a correlative modelling tool that interpolates 

climate parameters using spatially explicit digital elevation data and point-based 

long-term monthly averages of climate variables. A full description of the process 

can be found in (Houlder, 2001; Beaumont et al., 2005). Elevation data raster cells 

were resampled to 250 m (an appropriate resolution for the distribution of climate 

stations across the study area) and used as an input to run the BIOCLIM climate 

model. A subset of the 35 climatic parameters generated by BIOCLIM was selected 

for inclusion in the model associated with precipitation, temperature, radiation and 

moisture. BIOCLIM and MODIS NDVI variance surfaces were resampled from 250 

m spatial resolution, using the nearest neighbour method, to align with the 30 × 30 m 

Landsat TM data, elevation layers and textural indices. 

3.4.4. Data Collation 
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Training and predictor variable data were collated in a GIS database—open-source 

GRASS Geographic Resources Analysis Support System (GRASS Development 

Team, 2012)—and exported into statistics package R (R Development Core Team, 

2011) for model implementation and analysis, together with training sample raster 

pixel centroid coordinates. To reduce data redundancy and facilitate interpretation of 

the model, Pearson correlation coefficients were calculated between all paired 

combinations of predictor variables. Highly correlated variables (r2 > 0.9, p < 0.001) 

were further examined to calculate biserial correlation coefficients between these 

predictor variables and a dichotomous forest/non-forest training sample class. Of the 

highly correlated variable pairs, those with the weaker forest/non-forest relationship 

were excluded from the model. Table 3-1 shows the final predictor variables used in 

the RF model. Variables excluded from the model were the climate layers mean 

diurnal range, temperature seasonality and annual mean radiation; and textural 

indices variance (5 × 5 and 7 × 7 windows), diversity (3 × 3 and 7 × 7 windows) and 

interspersion (3 × 3, 5 × 5 and 7 × 7 windows). 

 

Table 3-1 Random Forests (RF) predictor variables 

Predictor Variable 
Units/Data 

Source 
Spatial Resolution (m) 

Surface Reflectance 

Landsat TM band 1 0.45–0.52 µm 30 

Landsat TM band 2 0.52–0.60 µm 30 

Landsat TM band 3 0.63–0.69 µm 30 

Landsat TM band 4 0.76–0.90 µm 30 

Landsat TM band 5 1.55–1.75 µm 30 

Landsat TM band 7 2.08–2.35 µm 30 

Textural Indices 

Variance (3 × 3) 
Landsat TM 

NDVI 

30 

Variance (5 × 5) 30 

Diversity (3 × 3) 30 

Phenological Variability 

NDVI Variance MODIS NDVI 250 

Topography and Climate 

Elevation SRTM DEM 30 

Slope SRTM DEM 30 

Aspect SRTM DEM 30 

Annual Precipitation mm 250 

Annual Temperature Range ○C 250 
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Annual Mean Temperature ○C 250 

Annual Mean Moisture Index 0–1 250 

 

3.5. Random Forest Model 

3.5.1. Construction and evaluation 

The randomForest package (Liaw and Wiener, 2002) in R (R Core Team, 2013) was 

used to build the RF model, for which there are several adjustable implementation 

parameters. The primary parameters being (i) number of predictor variables 

randomly sampled as candidates at each decision tree node split (parameter mtry); 

(ii) the number of decision trees (or base classifiers) constructed as part of the 

classifier ensemble (parameter ntree); and (iii) the type of model—classification, 

regression or unsupervised (parameter type). For model construction in this study, 

the default mtry value was used (equal to the square root of the total number of 

predictor variables). To optimize the number of trees (ntree) constructed in the final 

model, an initial decision tree ensemble was produced with 1,000 trees. Error 

estimates from the OOB sample showed stabilization of the overall error at 100 trees; 

therefore, 100 was used for the parameter ntree in the final model. 

In addition to the RF model OOB test data, for performance evaluation, a 25% subset 

of training data was randomly sampled, left out of the training dataset (stratified 

evenly by forest and non-forest classes). The R package PresenceAbsence (Freeman 

and Moisen, 2008) was used to calculate the optimal threshold for converting forest 

probability (0–100) into a binary forest/non-forest classification, based on maximum 

Kappa. Kappa, percent correctly classified, user’s and producer’s accuracy and area 

under receiver operator curve were calculated to evaluate classification performance. 

The area under receiver operator curve (ROC) is a measure of a model’s ability to 

discriminate presence (i.e., forest) and absence (i.e., non-forest) (Pearce and Ferrier, 

2000), calculated from predicted forest probabilities. The ROC is a plot of sensitivity 

(true positive rate) against specificity (false positive rate). Poor model performance 

(i.e., where predictive ability is essentially random) returns a near-diagonal ROC plot 

(true positive rate equal to false positive rate). The area under ROC curve ranges 

from 0.5 (poor) up to 1. Producer’s accuracy (or omission error, one minus 
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producer’s accuracy) is the proportion of a land cover class on the ground (i.e., 

reference) that is correctly classified in the map (prediction). User’s accuracy (or 

commission error, one minus user’s accuracy), is the proportion of a mapped 

(predicted) class on a map, which matches the corresponding class on the ground 

(reference). Producer’s accuracy measures classification scheme accuracy, while 

user’s accuracy measures the output map generated from the classification (Shao and 

Wu, 2008). 

3.5.2. Implementation 

The RF model was implemented to predict and map forest probability across the 

study area. As R holds objects in virtual memory, there are limitations on the 

resources available for data processing. Therefore, the RPy Python package (Gautier, 

2012) was used, allowing R functionality to be managed within the Python 

environment outside of R. The study area was divided into two hundred 40 km2 tiles, 

and the RF model was implemented using parallel processing to calculate forest 

probability across multiple tiles simultaneously, after which the forest probability 

tiles were mosaicked together into a single forest probability layer. 

Probability values (calculated from the proportion of decision tree votes among all 

base classifiers in the ensemble) were converted into binary forest and non-forest 

classes using the probability threshold calculated to maximise the Kappa statistic. To 

apply the forest definition 0.5 ha minimum mapping unit (MMU) and remove noise 

from the map, the forest/non-forest classification raster was first re-sampled from 30 

m to 28.86 m, so that a 0.5 ha MMU area comprised six whole raster pixels. 

Horizontally, vertically and diagonally contiguous forest and non-forest cells were 

grouped together and attributed a count of the cells within each group. Raster cells 

within forest cell groups comprising less than six cells (i.e., less than 0.5 ha) were re-

labelled as non-forest, and raster cells within non-forest cell groups comprising less 

than 6 cells were re-labelled as forest. Figure 3-3 shows the forest probability and 

final binary forest/non-forest maps. 
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Figure 3-3 Implemented Random Forests model forest probability map (a) inset forest 

probability map (0–100); (b) final forest classification, based on a binary threshold. 

 

3.6. Results and Discussion 

3.6.1. Classification Accuracy 

Overall accuracy (percent correctly classified) and Kappa results were high for forest 

and non-forest prediction using the RF model (Table 3-2). Overall accuracy of 96% 

was achieved, with a Kappa coefficient of 0.91. The threshold value for converting 

continuous forest probability scores into forest/non-forest classes, optimized to 

maximize overall Kappa, was 0.5. User’s accuracy was marginally higher for the 

forest class than the non-forest class, indicating a greater tendency for the model to 

misclassify non-forest land cover as forest, leading to a slight overestimation of 

forest extent. A comparison of model performance (user’s and producer’s accuracy) 

between the test data and the RF OOB accuracy assessment shows marginally lower 

producer’s and user’s accuracy for non-forest classification, and user’s accuracy in 
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the forest class was returned by the OOB; however, differences between the two 

accuracy assessment data sources are minor. 

The high Kappa coefficient (0.91) for the forest/non-forest classification model is 

encouraging, and the model accuracy performance is consistent with studies that 

have successfully discriminated forest from non-forest land cover categories in other 

natural environments using RF (Gislason et al., 2006; Chan and Paelinckx, 2008). 

The area under curve (AUC) score (0.91) shows that the RF forest/non-forest 

classifier has excellent overall model accuracy. 

Table 3-2 Random Forests accuracy assessment. CI, confidence interval; OOB, out-of-bag. 

Kappa (CI 95%) 0.914 (0.909–0.919) 

AUC (CI 95%) 0.992 (0.991–0.992) 

Percent Correctly Classified (CI 

95%) 
95.7 (95.4–95.9) 

 Forest Non-forest 

Kappa maximised binary threshold 

value 
0.5 

Sensitivity 94.42 96.94 

Specificity 96.94 94.42 

Test (Validation Data) 

Producer’s accuracy (omission) 94.42 96.94 

User’s accuracy (commission) 96.86 94.56 

Test OOB 

Producer’s accuracy 94.60 96.44 

User’s accuracy 96.51 94.49 

 

3.6.2. Variable Importance 

Landsat TM band 5 (shortwave infrared) was shown to be the most important 

variable in predicting forest (Figure 3-4(a)) based on the calculated mean decrease in 

accuracy (MDA) score. Band 5 was considerably more important than the next most 

important predictor variables—Landsat TM bands 2, 3 and 7, followed by elevation 
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and the four climate surfaces. The high importance of the middle-infrared band 5 

(1.55–1.75 µm) in differentiating forest from non-forest at the pixel-level is likely to 

be associated with its vegetation and soil moisture sensitivity properties. For non-

forest classification, based on MDA, elevation was the most important variable in the 

RF model, followed by bands 2 and 5. The influence of elevation may be associated 

with less rainfall at lower elevations, but is also very likely to reflect the land use 

history of the study area, whereby low flat land productive agricultural land has been 

extensively cleared (Woodgate and Black, 1988). Landsat bands 5, 2, 3 and 7 were 

the most important predictor variables for forest/non-forest differentiation (Figure 

3-4(c)).  

Landsat TM band 2 was the most important predictor variable, followed closely by 

band 5, based on the mean decrease Gini (MDG) measure (calculated for each 

predictor variable as the cumulative increase in data purity associated with each 

decision tree node split). Bands 3 and 4 were the next most important variables, 

followed by NDVI variance and band 7. In comparing the variable importance ranks 

between the two measures, MODIS NDVI variance was ranked 7 places higher in the 

MDG measure compared to MDA and band 4 (near-infrared), six places higher. 

These bands can be considered more important with respect to increasing the purity 

of training data samples after splitting at decision tree nodes, but less important 

based on the mean decrease accuracy. 
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  a)       b) 

 

  c)      d) 

Figure 3-4 Random Forests predictor variable importance measures.  

(a) Mean decrease accuracy for forest prediction; (b) mean decrease accuracy for non-forest 

prediction; Random Forests predictor variable importance measures. (a) Mean decrease 

accuracy for forest prediction; (b) mean decrease accuracy for non-forest prediction; (c) 

mean decrease accuracy for forest and non-forest prediction; and (d) mean decrease Gini for 

forest and non-forest prediction. 

 

The MODIS NDVI variance was included in the model as a means of discriminating 

seasonally dynamic grasses and understory vegetation from more phenologically 

‘stable’ forest canopy reflectance. While results rank this variable as having a 

reasonably high degree of importance in decision tree node splitting (Gini purity), the 

low spatial resolution of this layer (250 m) and high spectral heterogeneity within 

MODIS pixels is likely to be a factor in its lower MDA importance ranking for forest 

prediction. 

Results of this study on application of RF for large area forest classification are 

encouraging and demonstrate the classifier’s utility in an operational land 

management agency context. Our results confirm the findings of other studies using 

RF, that this ensemble classifier can be used to learn complex non-linear 
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relationships. Variable importance measures demonstrate the successful integration 

of multiple sources of data in predicting forest—remote sensing spectral data and 

contextual topographic-climate variables. 

This study demonstrates the feasibility of using an open-source framework for 

constructing and evaluating an RF model and its implementation to produce an 

accurate operational land management agency forest cover map. The framework 

established successfully integrates freely available spatial data—pre-processed and 

collated in GRASS—into the R statistical analysis environment. After construction 

and validation of an RF classifier, the resulting model was implemented in GRASS 

using an R-GRASS interface package, spgrass (Bivand, 2007), before finally using 

GRASS to filter the forest prediction map and apply the minimum mapping unit of 

the adopted forest definition to the final forest extent spatial product. 

In this study, we evaluated the operational performance and utility of the ensemble 

decision tree classifier, Random Forests (RF), for producing an accurate large area 

(about 220,000 km2) land management agency forest map. This study is unique in 

demonstrating the operational implementation of RF at the regional-scale within an 

open-source software framework, using GRASS GIS (GRASS Development Team, 

2012) and R (R Development Core Team, 2011) statistics software. The framework 

described, comprising stages of data pre-processing, collation, modelling, evaluation 

and implementation, contributes to the deployment of affordable programs for 

collating and processing large volumes of multi-source remote sensing and ancillary 

GIS data to produce consistent and accurate forest cover maps across complex, noisy 

and heterogeneous landscapes. 

We incorporated Landsat TM and MODIS satellite imagery, textural indices, 

modelled climate surfaces and topographic layers into an RF model, to accurately 

predict and map forest across an area comprising millions of hectares of complex and 

highly diverse forest ecosystems over varying topography, dominated by open 

canopy sclerophyll forests and woodland. Sample aerial photography land cover 

maps were used to derive training and test (validation) data. The overall accuracy 

and Kappa statistics for forest/non-forest classification were 96% and 0.91, 

respectively. Forest classification achieved a producer’s accuracy of 96% and a 

user’s accuracy of 94%. Estimated predictor variable importance measures derived 
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from the Gini Index and out-of-bag (OOB) training data, showed Landsat TM bands 

5 and 2 to have the strongest influence in forest/non-forest class-separability. 

3.7. Conclusions 

Results show how the RF algorithm can be effectively used to learn the conditional, 

complex and non-linear relationships between forest vegetation and biophysical 

factors, to build an accurate forest classifier across highly diverse and dynamic 

ecosystems. In a land management agency context, the study demonstrates how the 

RF can be used to address the challenges and operational constraints of land cover 

classification, including the use of non-parametric and noisy data, its implementation 

using open-source software, and the integration of multi-source regional scale 

ancillary spatial data. 

While these results are encouraging for the application of RF in an applied natural 

resource management context, there are several important areas of further research 

that warrant further investigation. Based on the “Strong Law of Large Numbers”, 

Breiman (Breiman, 2001) showed that RF does not over-fit training data as more 

trees are grown. While results from OOB accuracy and test data support this, the 

performance of the RF model is based on the important assumption that training data 

is representative of forest and non-forest classes from across the study area. As 

proposed by Armston et al. (2009), in a study investigating the use of RF regression 

analysis to predict overstory foliage projective cover (FPC) from Landsat TM and 

ETM imagery, an important next step would be to undertake an independent 

assessment of the implemented classification model (forest extent map, Figure 4) 

from sites located away from training data. This would improve understanding of the 

extent to which spatial autocorrelation between training data samples (i.e., 

contiguous or closely located pixels) lead to bias, as well as reduced variance and 

representativeness (Chen and Stow, 2002). In short, how do spatially auto-correlated 

model training and validation data over-estimate the accuracy and performance of the 

RF classifier across large heterogeneous landscapes? Other important directions for 

further research include: (1) the characteristics of RF training data, to better understand 

how the classifier manages noise and outliers; (2) understanding how different 

sampling techniques affect classifier performance; and (3) the implementation of the 
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classifier model on other acquired and calibrated remote sensing image dates and its 

utility for producing accurate multi-temporal forest extent maps in a monitoring 

context. 
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Chapter 4. Exploring issues of 

training data imbalance 

and mislabelling on 

random forest performance 

for large area land cover 

classification using the 

ensemble margin 

 

Based on the peer-reviewed published article: 

 Mellor, A., Boukir, S., Haywood, A. and Jones, S., 2015. Exploring issues of 

training data imbalance and mislabelling on random forest performance for large 

area land cover classification using the ensemble margin. ISPRS Journal of 

Photogrammetry and Remote Sensing, 105, pp.155-168. 
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4.1. Introduction 

Accurate spatially explicit classification maps are important sources of information 

for natural resource land managers and forest monitoring programs. Land 

management agencies typically monitor and report on large areas (i.e. regional or 

continental scale, covering millions of hectares) relying on the interpretation of large 

complex remotely sensed data, calibrated and validated using, typically, a limited 

amount of ground reference data (Lippitt et al., 2008). Studies have demonstrated the 

successful application of ensemble machine learning classifiers, such as Random 

Forests (RF), integrating remote sensing (satellite imagery) and ancillary spatial data, 

to improve supervised classification accuracy of forest and other natural environment 

land cover maps (Cutler et al., 2007; Mellor et al., 2013; Rodriguez-Galiano et al., 

2012), for which conventional parametric statistical classification techniques might 

not be appropriate (Gislason et al., 2006). In ensemble classification, multiple (base) 

classifiers are constructed. From the ensemble, a final class is determined by, for 

example, averaging or a majority vote. In machine learning, the margin theory 

examines the proximity of data points to decision boundaries.  

Margin theory is a means by which to understand and evaluate ensemble 

classification and can be used to estimate confidence in the classification outcome 

(Schapire et al., 1998). Such ancillary information is important, particularly when 

relying on satellite image derived maps for scientific inference (McRoberts, 2011). 

The characteristics of training data is a fundamental consideration when constructing 

any supervised classifier (including ensemble machine learning).  

Learning from imbalanced training data (i.e. unevenly distributed data between 

classes) is a common problem (Japkowicz & Stephen, 2002). Machine learning 

algorithms, such as RF, are constructed to minimize the overall classification error 

rate and imbalanced training data can result in poor accuracy for minority classes 

(Chen et al., 2004). Furthermore, it is assumed that, in its implementation, the 

classifier is run using data drawn from the same distribution as the training data 

(Provost, 2000). In RF, decision trees are induced using bootstrap samples of training 

data (Breiman 2001) and in situations where training data includes only a minority of 

training data samples for a particular class (relative to other classes), it is likely that a 

bootstrap sample may include few or even no samples from this class and hence 
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fewer leaves describing the minority class, resulting in poor classification accuracy 

for the minority class prediction (Chen et al., 2004) as well as weaker confidence 

estimates (He & Garcia 2009).  

The imbalance training data problem is common in large area natural resource 

applications using remote sensing (e.g. forest classification), whereby within 

reference data, rare land cover or forest classes may be under-represented relative to 

more abundant classes, due to the time and cost resource constraints of collecting 

enough representative training samples. Studies have shown balanced datasets 

improve overall classification compared to imbalanced data (Weiss and Provost, 

2003; Estabrooks et al., 2004). Several techniques have been demonstrated to address 

the imbalance training data problem. These include down-sampling majority classes 

(Freeman et al., 2012) and weighting rare training observations more highly than 

common classes (Chen et al., 2004). Techniques involving over-sampling the 

minority class through replication of samples to match the quantity of majority class 

training samples (Ling & Li, 1998) and a combination of over-sampling (minority) 

and down-sampling (majority) training classes (Chawla et al., 2002) have also been 

explored.  

Training data class mislabelling (or noise) (Sluban et al., 2013) is another important 

consideration in using bagging ensemble algorithms such as RF. This is an issue that 

often adversely affects machine learning algorithms (Guo, 2011). In large area 

remote sensing classification for forest monitoring programs, training data typically 

include ground-based (i.e. field data collection) (Lillesand and Kiefer, 1994) or data 

sampled from remote sensing imagery of a higher spatial resolution, such as very 

high resolution satellite imagery (e.g. Quickbird) or digital aerial photography 

(Wulder, 1998).  

Deriving training data using manual and semi-automated mapping from high spatial 

resolution imagery are methods which are prone to a variety of sources of labelling 

error and bias. These sources include interpreter bias and inconsistency, spatial 

resolution (scale), geometric and radiometric variability, and error associated with 

temporal discontinuity between training data (i.e. aerial photography acquisition date 

or season) and satellite imagery used for classification (Morgan et al., 2010). Other 

training data labelling errors are associated with inconsistency of vegetation 
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classification methods, techniques and spatial resolution (Bradley and Friedl, 1996). 

In forest environments, common training data class mislabelling errors are caused by 

the similarity of forest types as their signatures appear in aerial photography 

(Delaney and Skidmore, 1998).  

For their application in an operational setting (such as a large area forest monitoring 

program), it is important that machine learning classifiers are resilient to mislabelling 

in training data (Lippitt et al., 2008). Studies have demonstrated the relative 

resilience of bagging ensemble classifiers, such as RF, to training data noise (class 

mislabelling) (DeFries and Cheung-Wai Chan, 2000). In evaluating machine learning 

algorithms for land cover change mapping, Rogan et al. (2008) investigated the 

effect of artificially introduced training data noise to classification accuracy. Their 

study found the addition of 10% noise reduced accuracy of decision tree classifiers 

S-Plus and C4.5 by 7% and 20% respectively. In a land cover classification study, 

Rodriguez-Galiano et. al. (2012) found the RF classifier performance (overall 

classification error) to be relatively insensitive for up to 20% deliberately mislabelled 

training instances, above which error rate increased exponentially. Na et al. (2009) 

reported a reduction in RF overall accuracy by almost 50% associated with a 30% 

increase in the amount of artificial noise.  

In this chapter, we examine how training data class imbalance and class mislabelling 

affect RF performance in the context of large area forest classification in an 

operational land management agency setting. This was achieved across diverse and 

complex forest ecosystems and topography, dominated by open canopy sclerophyll 

forests and woodland. We evaluate RF performance associated with training data 

characteristics through a new perspective involving ensemble margins. The 

magnitude of ensemble margin is usually interpreted as a measure of confidence in 

classification prediction and significant work has been published about bounding and 

reducing prediction error based on the classification margin (Schapire et al., 1998; 

Guo, 2011).  

The nature of a training set can have a major impact on classification accuracy 

(Foody, 1999) and the margin ensemble can be used to understand how training data 

characteristics can affect classification outcomes. Foody (2002) emphasizes the need 

for more accuracy assessment information (including confidence measures) to be 
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provided with land cover and other remote sensing derived classification maps, to aid 

user interpretation and application. The value of very large area mapping is 

ultimately limited by poor quality accuracy assessment and reporting (Foody, 2002).  

In this study, we evaluate new ensemble margin statistics as a means of providing 

distinct information about margin distribution and classification prediction 

confidence and supplementing traditional measures of classification performance. 

Furthermore, we introduce a novel method for assessing classification uncertainty 

through the use of an ensemble margin weighted confusion matrix, that to the best of 

our knowledge is used for the first time in land cover classification using remote 

sensing and ancillary geospatial data. 

4.2. Random Forests 

Random Forests (RF) uses a bootstrap aggregation technique (bagging) (Breiman, 

1996) to generate sub-sets of training data with which to build an ensemble of 

decision trees (base classifiers). The bagging process involves resampling the 

original training set with replacement, resulting in a greater diversity of decision 

trees, thereby improving classifier stability and accuracy. Moreover, in constructing 

trees, as some training data instances may be used more than once or not at all, 

correlation between trees is reduced, and as a result, RF is more robust to variations 

in input data and less sensitive to mislabeled training data or over-fitting (Pal, 2005; 

Rodriguez-Galiano et al., 2012) .  

In constructing each decision tree, at each node (split) a randomly selected subset of 

model predictor variables are evaluated for partitioning the data into increasingly 

homogeneous subsets - the variable used to split the data is that which results in the 

greatest increase in data purity. Increasing the number of predictor variables selected 

for tree construction results in stronger individual decision trees, but with increased 

correlation between trees, model accuracy is reduced (Rodriguez-Galiano et al., 

2012). Therefore, to minimize the generalization error, it is necessary to optimize this 

parameter, together with the number of decision trees in the ensemble. Tree building 

continues until there are no further gains in purity. A response variable can be 

predicted as an average (continuous variable classification) or model vote 

(categorical classification) among all decision trees. Sample Out of Bag (OOB) data 
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(that are not drawn in the bagging sample used for tree construction) are used to 

compute accuracies and error rates averaged over all predictions (Cutler et al., 2007).  

4.3. Ensemble Margin 

The margin function is an important concept in ensemble classifiers such as RF. The 

classical margin function (Schapire et al., 1998) is calculated for each known data 

instance, and ranging from -1 to +1, is the normalised difference between the votes 

assigned to the true class and those assigned to the most voted class that is different 

from the true class (Guo et al., 2011). An alternative margin function, which does not 

require the known class labels, is an unsupervised version of Schapire’s margin. It 

combines the first and second most probable class labels under the model. Equation 1 

shows how the unsupervised margin is calculated where Vc1 represents the number of 

votes for the most voted class c1 for instance x and Vc2 the number of votes for the 

second most popular class c2. The unsupervised margin ranges from 0 to 1. Instances 

close to class boundaries (margin values around 0, i.e. not redundant and which are 

located near decision boundaries) are the most informative for the classification task. 

In that case, the true class labels are not of significance. As such, the unsupervised 

margin may be more robust to class mislabelling (Guo, 2011). Hereafter, unless 

otherwise specified, the term margin is used to describe the unsupervised margin.  

 

𝑚𝑎𝑟𝑔𝑖𝑛(𝑥) =  
𝑉𝑐1 − 𝑉𝑐2

∑ (𝑉𝑐)𝐿
𝑐=1

 

This may be also be expressed as: 

𝑚𝑎𝑥𝑐=1,…,𝐿(𝑉𝑐) −  𝑚𝑎𝑥𝑐=1,…,𝐿∩𝑐≠𝑐1
(𝑉𝑐)

𝑇
 

where T represents the size of the ensemble and L represents the number of classes. 

The margin of a correctly classified instance should be as high as possible (close to 

1) and the margin of a misclassified instance, as low as possible (close to zero). 

Indeed, the lower the margin of a misclassified instance, the greater the opportunity 

for improving the classification by the ensemble of base classifiers. 

 

(1) 
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4.4. Study Site and Data 

4.4.1. Study Area 

The study area (Figure 1) comprises approximately 7.1 million hectares of public 

land covering about one third of the state of Victoria, south east Australia. The 

extents of Victoria are north 141°47'36" E  33°58'54" S, east 149°58'36" E  

37°30'20" S, south  146°17'13" E  39°9'33" S and west 140°57'29" E  34°28'23" S. 

The study area includes two public land tenures – national parks and conservation 

reserves and multiple-use commercial State forests, and covers a wide range of 

ecosystem types and a high diversity of forest types and structures, dominated by 

open sclerophyll forests. The state is characterised by diverse topography and a range 

of climate zones.  

4.4.2. Reference (Training and Test) Data 

On-screen digital Aerial Photographic Interpretation (API) of 30-50 cm ground 

sample distance colour aerial photographs (photoplots), acquired between 2006 and 

2010, was the source of classification reference data (used for model training and test 

validation data). Seven hundred and sixty-six 2×2 km photo-plots, systematically 

distributed across a state-wide random stratified grid (Figure 3-2), were used to 

produce land cover maps based on a land cover classification system (Mellor and 

Haywood, 2010) which included broad forest or land cover type, forest canopy 

height class (low, medium, tall) and canopy cover class (woodland, open, closed). 

Thresholds for forest canopy height and cover are shown in Figure 3-1. Land cover 

object delineation was undertaken by trained interpreters, using photo-plot 

information including crown shape, size and arrangement, colour and shadow. Forest 

delineation followed the Australian National Forest Inventory forest definition 

(greater than 20% crown cover, minimum two metre stand height) (Department of 

Agriculture Fisheries and Forestry, 2012) with a 0.5 ha minimum mapping unit 

applied to the land cover maps, based on the UNFAO forest definition (Food and 

Agriculture Organization of the United Nations, 2001). Ancillary GIS polygons 

representing the boundaries of clear-fell logging and wild fires were used to update 

land cover polygons to a summer season 2008/09 baseline. A comprehensive 
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description of the API land cover mapping method can be found in (Farmer et al., 

2013).  

For this study, land cover data were aggregated into three forest canopy cover classes 

(woodland, open, closed), shrub (woody vegetation not meeting the 2 m height 

threshold or 20 % crown cover) and other non-forest land cover, and binary 

forest/non-forest classes. Land cover polygons were converted into raster format 

aligned with the resolution of classifier predictor variables described in the following 

section. Test (validation) data were randomly selected, using simple random 

sampling, from the total reference data and set-aside prior to selection of training 

data for building RF models.  

4.4.3. Predictor variables 

Predictor data comprised multi-source remote sensing, topographic and climate 

variables. Landsat TM data are commonly used in studies for forest type 

discrimination and cover estimation (Boyd and Danson, 2005). In this study, a 6-

band study-area Landsat TM mosaic comprising nineteen scenes acquired between 

February and March 2009, was used. The time of acquisition was designed to 

correspond with the training and test data (land cover mapping) and late summer 

conditions, where high sun angles reduce shadow and terrain effects and where 

spectral reflectance differences between overstory evergreen woody vegetation and 

seasonally dynamic understory vegetation is maximized (Mellor et al., 2013). 

Following Flood et al. (2013), Landsat TM scenes were standardized to surface 

reflectance to reduce sources of inter-scene variation associated with atmospheric 

conditions, topography, sensor location and sun elevation.  

Where vegetation appears spectrally similar but has differing spatial patterns, textural 

indices derived from satellite imagery have been shown to improve classification 

performance (Kayitakire et al., 2006; Rodríguez-Galiano et al., 2011). For this study, 

a grey-scaled (8-bit) Normalized Difference Vegetation Index (NDVI) layer was 

generated using Landsat TM bands 3 and 4, from which were produced textural 

indices representing spatial variation in optical imagery (Haralick, 1979). First order 

texture measures of variance and diversity were generated for 3x3 and 5x5 cell 
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neighbourhood moving windows, designed to capture textural variance of the study 

area's forested ecosystems (Mellor et al., 2013). 

Multi-temporal MODIS NDVI data was used to represent phenological variance in 

the study area over a calendar year. Twenty-three 250 m spatial resolution 16-day 

MODIS NDVI images from 2008, covering the study area, were extracted from an 

Australian national mosaic (Paget and King, 2008), from which one standard 

deviation raster was calculated using each multi-temporal image pixel stack – to 

represent seasonal variance in NDVI.  

Topographic and biophysical information was included in the model as a means of 

capturing species-environmental relationships, which are central to predictive 

geographical modeling (Guisan and Zimmermann, 2000; Mellor et al., 2013).  

Bioclimatic maps support assumptions about the influence climate has on forest type 

distribution (Beaumont et al., 2005) and the composition of vegetation that can be 

expected to occur in areas with similar soils, climate and topography (Franklin, 

1995). Following Gislason et al. (2006), topographic predictor variables of elevation 

(metres), slope and aspect (degrees) were included in the model, derived from a 1 

second (~30 m) smoothed Digital Elevation Model (DEM) (CSIRO, 2011). The 

DEM was used to generate precipitation, temperature, radiation and moisture climate 

prediction surfaces using BIOCLIM in the ANUCLIM (v 5.1) software package 

(Houlder, 2001). A detailed description of the BIOCLIM modelling process can be 

found in (Beaumont et al., 2005). 

Reference data vector polygons were converted into raster format and resampled, 

using the nearest neighbour method, together with the predictor variables, to align 

with the resolution and extent of the 30 m x 30 m Landsat TM raster cells.  

4.5. Methods 

4.5.1. Experiments 

Five experiments were carried out, using binary (experiments 1 and 4) and multiclass 

(experiments 2, 3 and 5) models, to examine the effect of training data class 

imbalance and mislabelling on RF performance. Binary classification experiments 

used forest/non-forest categories. Multiclass experiments used canopy cover classes 
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(woodland, open and closed), together with two non-forest classes (shrub and other 

non-forest). For each experiment, two training data sizes (subsets) were established: 

optimal and critical (Table 4-1). The optimal subsets for binary and multiclass 

experiments were estimated by running multiple iterations of the RF classifier with a 

balanced distribution of training samples per class, increasing the training set size 

with each iteration. Classification accuracy typically increases with training data size 

until reaching an asymptotic level (constant accuracy) indicating that the optimal 

accuracy has been achieved. The optimal training size is the minimum training size 

leading to this maximum accuracy, hence it is optimal in terms of both classification 

accuracy and complexity. Critical subset sizes for binary and multiclass experiments 

were 1% and 5% of the optimal subsets respectively.  To ensure stable accuracy 

estimates from critical training sets, ten iterations of each experiment were run, from 

which mean performance measures were calculated.  

Table 4-1 Optimal and critical training and test set sizes used for binary and multiclass 

experiments 

Classification 
Training data (total samples) 

   Test data 
Critical Optimal 

Binary (experiments 1 & 4) 100 10,000 2,500 

Multiclass (experiments 2, 3 

& 5) 
5,000 100,000 25,000 

 

Training data class imbalance experiments 

An examination of the impact of class imbalance on RF model performance was 

undertaken on training sets for binary (experiment 1) and multiclass (experiments 2 

and 3) classification. For the binary imbalance experiment (1), for each RF model, 

balance as a ratio of forest to non-forest training samples was adjusted while 

maintaining the same total number of training samples. For the multiclass (forest 

cover) classification experiments (2 and 3), an initial RF model was generated using 

a class-balanced distribution of training data. Canopy cover classes from the forest 

super class (comprising woodland, open and closed forest classes) with the highest 

and lowest producer's accuracies (omission errors) were identified from a confusion 

matrix generated with test data. Hereafter these are referred to as best class (i.e. 

easiest class) and worst class (i.e. hardest class).  



 
 

56 
 

The first multiclass imbalance experiment (2) adjusted the ratio of best to worst class 

training samples in each RF model. The second multiclass imbalance experiment (3) 

involved generating imbalance in the training data samples by increasing the 

proportion of the worst class while simultaneously decreasing the proportion of the 

best class by the same amount. This is a sensible strategy that can outperform a 

balanced distribution at least in terms of per class accuracies as will be shown later 

by our experiment results. Hence, balancing training data is not always the best 

strategy especially if the classification task involves classes of differing complexity. 

For every iteration of both multiclass imbalance experiments, the number of samples 

representing the remaining classes was kept constant, thereby maintaining the same 

total number of multiclass training samples for each experiment.  

For the binary classification, imbalance experiment (1) involved adjusting balance as 

a ratio of forest to non-forest training samples (10:90, 25:75, 50:50 (balanced), 75:25 

and 90:10) while maintaining the same total number of samples (10,000 and 100 for 

optimal and critical sizes respectively). For the multiclass classification experiments 

(2 & 3), an initial RF model using a class-balanced training data distribution, 

determined the closed canopy cover and open canopy cover classes to be the best 

(easiest) and worst (hardest) of the forest cover super class. These classes were 

adjusted in the multiclass imbalance experiments. Firstly by changing the ratio of 

open to closed cover class samples (10:90, 25:75, 50:50 (balanced), 75:25 and 

90:10), while maintaining the same total number of samples including each of the 

remaining classes (woodland, shrub and other non-forest) for both optimal (100,000 

samples) and critical (5,000 samples) cases. In the second multiclass imbalance 

experiment, the proportion of open and closed cover classes in each model was 

adjusted by increasing the proportion of the Open (worst, or most difficult) class 

(5%, 10%, 25%, 50%, 75% and 90%), while simultaneously decreasing, by the same 

proportion, the number of Closed (best, or easiest) class training samples (Table 4-2). 

Table 4-2 Training set sizes for each class for multiclass imbalance (experiments 2 and 3) 

Class 

Training 

set size 

per class 

% Increase in worst class and decrease in best class 

5 10 25 50 75 90 

Optimal 

Woodland 20,000 20,000 

Open (worst) 20,000 21,000 22,000 25,000 30,000 35,000 38,000 
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Closed (best) 20,000 19,000 18,000 15,000 10,000 5,000 2,000 

Shrub 20,000 20,000 

Non-forest 20,000 20,000 

Critical 

Woodland 1,000 1,000 

Open (worst) 1,000 1,050 1,100 1,250 1,500 1,750 1,900 

Closed (best) 1,000 950 900 750 500 250 100 

Shrub 1,000 1,000 

Non-forest 1,000 1,000 

 

4.5.2. Training data class mislabelling experiments 

For the binary classification mislabelling experiment (4), training data mislabelling 

was undertaken by randomly re-assigning a proportion of forest instances as non-

forest and non-forest instances as forest. While introducing artificial noise into 

binary class training data is a straightforward process, it is not always the case for 

multiclass problems. Studies typically use random class-label switching to simulate 

noise in a classification (Rogan et al., 2008; Guo, 2011; Rodriguez-Galiano et al., 

2012; Sluban et al., 2014). We propose an alternative approach, designed to replicate 

realistic real-world operator misclassification (mislabelling) of reference data 

instances (Lowell et al., 2005), that results in a more reliable analysis of noise effects 

on a supervised classifier performance. In the multiclass mislabelling experiment (4), 

a preliminary RF model was built using a balanced distribution of samples of the 

multiclass training data. A confusion matrix derived from the OOB data (not used in 

the bootstrap training samples) was used to determine, for each class 𝑐𝑖, the class to 

which it was most frequently misclassified 𝑙𝑖, i.e. the most frequent error class 

predicted by the model from the OOB data. For the multiclass classification, starting 

with a training data set with more or less "real" noisy labels whose amount is 

unknown in practice, the introduction of artificial noise in class labels is performed 

by mislabelling a proportion of each class 𝑐𝑖 to 𝑙𝑖 (𝑐𝑖  →  𝑙𝑖) . For this experiment, 

iterations of the multiclass model were run, mislabelling an increasing proportion of 

each class 𝑐𝑖 to 𝑙𝑖 each time. Based on the results (confusion matrix) of a clean 

balanced training set, these were as follows: 

 Woodland  → Open 
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 Open → Closed 

 Closed → Open 

 Shrub → Woodland 

 Non-forest → Woodland 

 

4.5.3. Random forest model parameters 

The randomForest package (Liaw and Wiener, 2002) in R (R Development Core 

Team, 2011) was used to build the RF models. For all models, the default number of 

randomly sampled variables as candidates for each decision tree node split was used 

(equal to the square root of the total number of predictor variables). For binary 

classification experiments, RF decision tree ensembles were constructed with 100 

trees, a typical moderate size ensemble (Tsoumakas et al., 2009). For the more 

complex multiclass case, more trees were used in each ensemble (150). Assignment 

of class was determined by the majority of votes from all decision trees in the 

ensemble, a standard approach for combining the decisions of multiple component 

learners.  

4.5.4. Random forest model performance evaluation 

2,500 samples (1,250 per class) were used as test data for binary classification 

experiments, and 25,000 (5,000 per class) for multi-class experiments (Table 2). Test 

data were used to calculate overall and per-class accuracies and Kappa coefficient. 

Kappa is a measure of accuracy adjusted for chance agreement (Carletta, 1996). 

Kappa coefficient ranges from 0 to 1.0, with 1.0 representing 100% better agreement 

than by chance alone.  

We introduce three ensemble margin descriptive statistics (mean, dominant 

(frequency) mode, entropy) – measures to analyse the effect of imbalance and 

mislabelling on RF. Besides, the classification uncertainty is assessed through the use 

of a novel weighted confusion matrix based on ensemble margin. These measures 

were calculated from unsupervised margin values (equation 1) of each model. 

Cumulative frequency distribution curves of correct and misclassified instance 
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margins were also used to illustrate and compare confidence rates between different 

models and experiments. 

Mean margin 

A margin criterion measuring a strong ensemble classifier is one which maximises 

the mean margin of correctly classified samples and minimises the mean margin of 

misclassified samples. This normalised measure, ranging from -1 (weakest classifier) 

to +1 (strongest classifier), is defined as follows (equation 2): 

𝜇 =  
(𝑛𝑐 𝜇𝑐) − (𝑛𝑚 𝜇𝑚) 

𝑛𝑐 +  𝑛𝑚
 

where 𝑛𝑐 is the number of correctly classified instances, 𝑛𝑚 is the number of 

misclassified instances and  𝜇𝑐 and  𝜇𝑚 are mean margins for correctly and 

misclassified instances respectively.  

Dominant margin 

The dominant margin is based on the mode of the margin histogram (margin value 

with highest frequency). The margin mode is calculated as follows: 

1. Group margin values into bins (10 bins were used in this study): [0,0.1[, 

[0.1,0.2[, …, [0.9,1] 

2. Calculate margin bins histogram 

3. Detect the peak of the histogram (the bin with the highest frequency).  

A normalised measure of the dominant margin is calculated from two margin modes, 

one for the margin distribution of correctly classified instances and another for 

misclassified instances (equation 3). 

 

𝑀 =
𝑛𝑐𝑀𝑐 − 𝑛𝑚𝑀𝑚

𝑛𝑐 + 𝑛𝑚
 

 

where 𝑀𝑐 and 𝑀𝑚 are the margin modes of correctly classified and misclassified 

instances respectively. 

Margin entropy 

(2) 

(3) 



 
 

60 
 

Shannon’s entropy (Shannon, 1948) was used to measure diversity and redundancy 

in margin distribution, applied on margin normalised frequency values. The margin 

entropy is estimated using the following steps: 

1. Group margin values into bins 

2. Calculate margin bins histogram 

3. Normalise the histogram to determine bin (or coarse margin) probabilities for 

each margin bin 

4. Calculate entropy on resulting bin probabilities using Shannon’s formula 

(equation 4) 

 

H = − ∑[𝑃(𝑚𝑖) ∗ 𝑙𝑜𝑔2(𝑃(𝑚𝑖) )

𝑛−1

𝑖=0

]  𝑃(𝑚𝑖) ≠ 0   

 

where  𝑃 represents probability, 𝑚𝑖  (0 ≤ 𝑖 < 𝑛)  a margin bin and 𝑛 the number of 

margin bins. 

The minimum value for margin entropy is 0 (lowest diversity). The entropy is 

maximum when underlying events are equiprobable, i.e. all margin frequencies are 

the same. For 10 margin bins, the maximum value of margin entropy is 3.32 (highest 

diversity such as random distribution). Unlike mean and dominant margins, the 

introduced margin entropy, which expresses diversity in ensemble models at data 

level, has to be high, but not at its maximum. Indeed, more diversity does not 

necessarily induce higher classification accuracy (Kuncheva and Whitaker, 2003). 

The complex relationship between diversity and ensemble accuracy is still not well 

understood, but diversity is recognised as an indispensable condition in designing 

effective ensemble classifiers (Kuncheva and Whitaker, 2003). 

Margin-weighted confusion matrix 

We introduce a novel Weighted Confusion Matrix (WCM) that uses the unsupervised 

margin of ensemble classifiers. It has been recommended that traditional accuracy 

estimates should be accompanied by confidence limits, which are rarely provided in 

published papers (Foody, 2004). This WCM, used together with a confusion matrix, 

provides a more thorough analysis of multiple classifier performance than a 

(4) 
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traditional deterministic approach based solely on a confusion matrix. The Margin-

Weighted Confusion Matrix (MWCM) measures the degree of certainty  associated 

with the correctly and misclassified instances in the RF model. The MWCM is 

calculated as follows: 

1. Calculate the unsupervised margin of each instance (Equation 1) 

2. Assign to each instance its reference and RF model predicted class labels 

3. For every reference-to-predicted class combination (e.g. woodland predicted 

as woodland, woodland predicted as open, etc.) calculate the sum of margins 

and the count of instances 

4. Populate each confusion matrix cell with the sum of margins divided by the 

count of instances in the cell (normalisation). 

The ideal MWCM is an identity matrix (i.e. L×L square matrix with ones on the 

main diagonal and zeros elsewhere), and the closer a model MWCM to this 

configuration, the stronger the underlying ensemble classifier. The classification 

confidence of correctly classified instances (MWCM main diagonal cells) should be 

as high as possible (close to 1). Conversely, the confidence of misclassified instances 

(MWCM non-diagonal cells) should be as low as possible (close to 0). 

4.6. Results and Discussion 

4.6.1. Effect of training data imbalance on RF performance 

Experiment 1: Binary imbalance 

The effect of training data class imbalance on binary classification performance is 

shown in Table 4-3 and Table 4-4, and in Figure 4-1 and Figure 4-2. Overall 

accuracy was highest in the balanced case for both optimal (overall accuracy 91.16 

%, Kappa 82.32 %) and critical (overall accuracy 84.61 %, Kappa 69.22 %) cases. 

Results demonstrate that imbalance increases per class accuracy in favour of the 

majority class, and at the expense of the minority class (Table 4-3), as fewer training 

instances of the minority class are selected in each bootstrap sample used in tree 

construction. This effect is more pronounced in the critical case, where very few 

training samples between highly imbalanced minority cases (e.g.  90% forest to 10% 
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non-forest) results in large differences in majority and minority class accuracies 

(59.9 % difference in the critical case versus 30.2 % difference in the optimal case). 

Nevertheless, the balanced case provides the best (more balanced) pairwise per-class 

accuracies for both optimal and critical training set sizes. The minimum accuracy per 

class for an optimal training set size is 90% (80.45% Kappa) versus 83.36% (70.16% 

Kappa) for the best imbalanced case performance (25:75). 

Mean margins, measuring the overall classification confidence, are also highest 

where training data are balanced (Figure 4-2). Confusion Matrices (CM) and Margin 

Weighted Confusion Matrices (MWCM), comparing optimal and critical balanced 

and imbalanced (25:75) experiments, are shown in Table 4-4. The outcome of both 

class label prediction and underlying uncertainties has significantly evolved in favour 

of the majority class (non-forest). The non-forest accuracy increased by 4.88% while 

the forest accuracy decreased by 8.9% (almost a factor of 2). The MWCM shows an 

increase in non-forest classification confidence of 7% and a decrease in the certainty 

of misclassifying non-forest as forest by the same amount. However, the class 

imbalance led to poor classification confidence for the minority class: loss in 

classification confidence of 14% and increase in uncertainty associated with forest to 

non-forest confusion of 12%. Hence, the RF performance loss for the minority class 

(forest) is twice as big as the gain for the majority class (non-forest) in both 

classification accuracy and associated confidence. These class imbalance effects are 

again, more pronounced in the critical case (Table 4-4). Unsupervised margin 

cumulative distribution curves (Figure 4-3) for balanced training data, illustrate the 

higher degree of uncertainty associated with the correctly classified instances for 

critical experiment and the lower certainty associated with misclassified instances for 

the optimal case. Furthermore, the critical margin distribution of correctly classified 

instances exhibits a significantly higher proportion of low margins (<0.5). 

Meanwhile, the critical margin distribution of misclassified instances exhibits a 

lower proportion of low margins. Both reflect poorer behavior of the underlying RF 

model.   

The margin entropy values (equation 4) are higher for critical than for optimal size 

(e.g. 3.02 vs. 2.61 for the balanced case) (Table 4-3). This is expected as less data 

increases uncertainty leading to greater diversity. The interpretation of this concept 

has to be carefully addressed. For instance, for the critical case, the margin entropy 
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value for ratio 50:50 is already high: 3.02 (maximum at around 3.32 for 10 margin 

bins). It increases to 3.09 for ratio 25:75. In the meantime, the mean margin 

decreases (Figure 4-2), reflecting an increase in lower margin frequencies. The 

increase in margin entropy suggests an initially higher proportion of higher margins 

at ratio 50:50 which becomes more balanced at 25:75. From ratio 25:75 to 10:90, the 

entropy decreases while the mean margin continues to decrease. This means that the 

behaviour is reversed: the proportion of lower margins has become dominant with 

respect to higher margins. Among the five tested ratios, 25:75 results in maximum 

entropy (and hence maximum diversity) but it is the balanced case (50:50) which 

results in maximum accuracy. This is consistent with entropy theory outlined in 

section 4.6. 

Table 4-3 RF model performance results for binary classification imbalance (experiment 1) 

Balance, ratio Forest to Non-Forest training samples 

 10:90 25:75 50:50 75:25 90:10 

Overall Kappa (%) 

Optimal 60.8 78.24 82.32 77.44 66.4 

Critical 30.74 62.34 69.22 61.02 37.26 

Margin entropy 

Optimal 2.85 2.78 2.61 2.54 2.52 

Critical 2.97 3.09 3.02 2.93 2.70 

Optimal 

Per-class producer Kappa (%) 

Forest 45.02 70.16 84.28 92.19 95.18 

Non-forest 93.6 88.43 80.45 66.76 50.98 

Critical 

Per-class producer Kappa (%) 

Forest 18.68 52.46 77.32 87.66 93.12 

Non-forest 86.89 76.82 62.66 46.8 23.29 

 

Table 4-4 Binary imbalance confusion matrices and margin-weighted confusion matrices for 

evenly balanced and imbalanced training data in optimal and critical cases 

 
 

Observed (test) data 

 
 

Confusion Matrix 
Margin-weighted 

confusion matrix 

 

Forest to Non-forest 

training sample 

balance 

Forest Non-Forest Forest 
Non-

Forest 

 Optimal 
    

P r e d i c t i o n
 

50:50 (Balanced) 
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Forest 1149 127 0.80 0.49 

Non-forest 101 1123 0.37 0.81 

25:75 
    

Forest 1054 70 0.66 0.42 

Non-forest 196 1180 0.49 0.88 
 Critical 

    

P
re

d
ic

ti
o

n
 

50:50 (Balanced) 
    

Forest 1095 237 0.70 0.47 

Non-forest 155 1013 0.39 0.71 

25:75 
    

Forest 842 102 0.53 0.37 

Non-forest 408 1148 0.47 0.82 

 

 

Figure 4-1 Effect of binary class imbalance on overall classification accuracy 
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Figure 4-2 Effect of binary class imbalance on mean margin 
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Figure 4-3 Binary classification unsupervised margin cumulative frequency distribution 

curve, comparing correctly and misclassified instance confidence, for optimal and critical 

training sizes. 

 

Multiclass imbalance (experiments 2 and 3) 

For the multiclass model (experiment 2), in the balanced optimal case, per class 

(producer) accuracies were highest for the closed canopy cover (89 %), shrub (88.9 

%) and Non-forest (87.8 %) classes. Increasing the proportion of the most difficult 

class (open canopy cover) whilst simultaneously decreasing the proportion of the 

easiest class (closed canopy cover), improved class accuracy and Kappa for the most 

difficult (open cover) class (Table 4-5). Compared to the balanced class case, a 25 % 

increase in open class samples and decrease in closed class samples resulted in 7.5 % 

gain in producer accuracy for the open class, but a 9 % reduction in producer 

accuracy for the closed class, leading to more balanced pairwise (Open/Closed) per-

class accuracies. However, despite this introduced imbalance, overall accuracy was 

only marginally affected (1.2 % less than the balanced model). Similarly, this 

imbalance resulted in only a minor reduction in per class accuracy for the shrub and 

non-forest classes (1.4 % and 0.3 % respectively for a 25 % imbalance).  A 10% 

increase in open class samples and decrease in closed class samples led to the best 
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performance (overall producer accuracy). Indeed, this resulted in an increase in the 

minimum accuracy per class by 1.22 % (1.56 % Kappa) compared to the balanced 

case, in the optimal experiment (Table 4-5). The same ratio also led to optimal per 

class accuracies in the critical case. Two-class imbalance (between hardest and 

easiest classes) had only a minor effect on overall multiclass classification accuracy 

up to 25 % (particularly in the critical case), above which accuracy drops steeply 

with increasing imbalance (Figure 4-4). Mean  margins show a similar pattern 

(though less distinct), whereby certainty in the model (i.e. high margins associated 

with correctly-classified samples together with low margins associated with 

misclassified samples), drops steadily above 25 % imbalance (Figure 4-5)).  

 

Figure 4-4 Effect of multiclass imbalance on overall multiclass classification accuracy 
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Figure 4-5 Effect of multiclass imbalance on mean margin 

 

Table 4-5 RF model performance results for optimal and critical multiclass classification 

imbalance experiments 

% Increase worst class (open) and Decrease best class (closed) 

 
Balanced 5 10 25 50 75 90 

Overall Kappa (%) 

Optimal 78.3 77.64 77.25 76.78 73.96 68.26 62.23 

Critical 62.61 61.85 61.84 60.91 57.81 51.77 48.04 

Margin entropy 

Optimal 3.24 3.24 3.23 3.24 3.24 3.25 3.25 

Critical 3.19 3.19 3.17 3.17 3.17 3.24 3.30 

Optimal 

Per-class producer Kappa (%) 

Woodland 69.04 68.52 67.6 65.89 63.8 60.93 59.97 

Open 66.04 66.47 68.21 73.73 81.86 87.52 88.99 

Closed 85.96 83.21 81.72 75.48 59.66 34.97 13.21 

Shrub 86.12 85.5 84.69 84.48 83.06 83.24 83.33 

Non-forest 84.76 84.74 84.08 84.42 83.5 83.39 82.84 

Critical 

Per-class producer Kappa (%) 

Woodland 49.12 46.72 46.79 44.78 41.78 38.5 37.46 

Open 45.54 47.17 49.36 56.74 68.6 77.34 79.88 

Closed 72.42 70.12 67.25 58.27 38.54 14.3 1.66 
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Shrub 70.53 69.54 69.77 69.16 69.18 68.74 68.56 

Non-forest 76.13 75.99 75.89 75.52 75.44 75.43 75.35 

 

Margin-weighted confusion matrices (Table 4-6) for multiclass model class 

imbalance, show the degree of certainty associated with correctly classified and 

misclassified samples. For each class, the highest normalised margin scores are 

associated with correctly classified instances (i.e. main diagonal cells). Margins for 

the most difficult classes (open cover, 0.46 and woodland, 0.5) are lower than the 

closed cover (0.57), shrub (0.75) and non-forest (0.77) classes. A 50% increase and 

decrease in proportion of open and closed classes improved model classification 

certainty in the open class by (0.46 to 0.53) and reduced the certainty of the 

misclassification of open class predicted as closed cover (0.27 to 0.19). Conversely, 

the same degree of imbalance reduced certainty in the correct classification of the 

closed class (0.57 to 0.43). However, an associated increase in the certainty of 

misclassifying closed as open (between balanced and 50% imbalanced), was less 

(3%) than the decrease (8%) in certainty of misclassifying open as closed. The latter 

is closer to a potential shift of the RF ensemble from incorrect to correct majority 

decisions, thereby resulting in a change in the outcome of misclassified instances. 

The results of experiment 2 demonstrate that introducing a sensible imbalance can 

improve ensemble classifier performances.  
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Table 4-6 Multiclass imbalance confusion matrices and margin-weighted confusion matrices 

for optimal case (balanced and 50% imbalanced) 

  Confusion Matrix  Margin-weighted confusion matrix 

  Observed (test) data 

  
 

Evenly balanced training samples 
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 Woodland 3714 449 121 261 265  0.50 0.20 0.17 0.21 0.28 

Open 512 3559 335 164 129  0.18 0.46 0.20 0.19 0.22 

Closed 245 784 4434 110 63  0.18 0.27 0.57 0.18 0.21 

Shrub 236 73 49 4379 168  0.32 0.16 0.13 0.75 0.40 

Non-forest 293 135 61 86 4375  0.32 0.34 0.28 0.23 0.77 

  

 

 

50% increase in Open canopy samples and 50% reduction in Closed canopy samples 
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 Woodland 3478 234 139 230 237  0.47 0.22 0.19 0.20 0.27 

Open 937 4370 1430 291 226  0.23 0.53 0.23 0.23 0.24 

Closed 61 220 3282 27 21  0.18 0.19 0.43 0.15 0.20 

Shrub 225 58 64 4369 179  0.33 0.14 0.18 0.75 0.37 

Non-forest 299 118 85 83 4337  0.30 0.35 0.29 0.24 0.77 

 

Unsupervised margin cumulative frequency distribution curves, associated with 

correctly classified and misclassified instances, comparing balanced and imbalanced 

training data are shown in Figure 4-6 and Figure 4-7. Curves shifting toward the 

lower right corner of the plot indicate a higher degree of certainty in correctly 

classified instances and curves moving towards the upper-left indicate a decrease in 

the certainty of misclassified instances. Figure 4-6 and Figure 4-7 demonstrate that 

increasing the degree of imbalance (90% increase worst/decrease best) (Figure 4-7) 

results in a higher degree of divergence from the balanced case, relative to 50% 

imbalance (Figure 4-6). The margin distribution pair (correct and misclassified) 

associated with the evenly balanced case exhibits better behaviour than the 

distribution pair related to the 50% imbalance, the latter located entirely within the 
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'leaf-like' pattern of the evenly balanced pair of curves (Figure 4-6). However, a 

different pattern is shown in Figure 4-7 comparing balanced and 90% imbalanced 

cases. The even leaf-shaped pairwise margin distribution only partially contains the 

imbalanced pairwise margin distribution curves. While the even distribution 

associated with misclassified instances behaves significantly better than its 

imbalanced counterpart, the balanced distribution related to correctly classified 

samples exhibits lower classification confidence than the imbalanced case. This is 

due to the fact that only 16 % of the closed samples have been correctly classified in 

the extremely imbalanced case (versus 89% for the balanced case). Meanwhile, the 

accuracy of the open class increased by more than 20% relative to the balanced case. 

Both imbalanced results have a positive impact on the correctly classified 

imbalanced margin distribution. On the other hand, the very high misclassification 

rate of the closed class in the imbalanced case adversely affects the imbalanced 

misclassified margin distribution.   

 

Figure 4-6 Unsupervised margin cumulative frequency distribution curves associated with 

correctly and misclassified instances, comparing balanced versus 50% increase/decrease 

open/closed 
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Figure 4-7 Unsupervised margin cumulative frequency distribution curves associated with 

correctly and misclassified instances, comparing balanced versus 90% increase/decrease 

open/closed 
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Figure 4-8 Unsupervised margin cumulative frequency distribution curves, comparing 

balanced and ratio-imbalanced (10 open: 90 closed) for optimal cases 
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Figure 4-9 Unsupervised margin cumulative frequency distribution curves, comparing 

balanced and ratio-imbalanced (10 open: 90 closed) for critical cases 

 

Comparing pairwise margin distribution curves for the other multiclass imbalance 

experiment (ratio of open to closed training instances) shows that, in the critical case 

(Figure 4-9), the divergence of curves from evenly balanced and imbalanced 

experiments (both correctly classified and misclassified instances) is more 

pronounced than in the optimal case (Figure 4-8). 

4.6.2. Effect of training data mislabelling on RF performance 

Binary mislabelling (experiment 4) 

Results of the binary classification class mislabelling experiment are shown in Table 

4-7 and Figure 4-10 and Figure 4-11. For the optimal case, the impact of the 

introduction of mislabeled data (i.e. forest class mislabeled as non-forest and non-

forest as forest) on overall classification accuracy was negligible (only a 2.8% 

reduction from 0% mislabeled to 25% mislabeled). For the smaller (critical) training 

size, the reduction in overall accuracy was higher (a 6.9% accuracy reduction from 

0% mislabeled to 25% mislabeled). The classifier uncertainty statistic (mean margin) 

showed a greater reduction associated with an increasing number of mislabeled 
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training instances. Mean margin decreases with each incremental increase in the 

proportion of mislabeled training instances for both optimal and critical cases (Figure 

4-10 and Figure 4-11). Results showing this decline in overall model certainty is 

supported by a reduction in the margin mode (Table 4-7). For the optimal case, with 

each increase in the proportion of mislabeled instances, the dominant margin reduced 

from 0.86 to 0.30 for 25% mislabeled instances. Loss in classification confidence is 

more pronounced for the critical case.  

Table 4-7 RF model performance results for optimal and critical binary class mislabelling 

experiments 

% of Mislabeled training instances (per class) 

 
0% 2.5% 5% 10% 15% 20% 25% 

Overall Kappa (%) 

Optimal 81.04 80.96 81.12 80.08 79.12 78.32 75.36 

Critical 68.42 67.34 67.26 64.59 63.13 56.65 54.64 

                  Margin entropy 
 

Optimal 2.67 2.91 3.07 3.11 3.11 3.04 2.90 

Critical 3.18 3.23 3.26 3.28 3.26 3.10 2.93 

Dominant margin 

Optimal 0.86 0.85 0.77 0.67 0.58 0.48 0.30 

Critical 0.79 0.70 0.70 0.61 0.52 0.34 0.18 

Per-class producer Kappa (%) 

Optimal 

Forest 82.96 83.09 83.11 82.66 80.87 80.05 78.37 

Non-forest 79.2 78.94 79.22 77.66 77.45 76.66 72.57 

Critical 

Forest 70.41 69.22 68.79 66.22 66.94 56.45 56.9 

Non-forest 66.53 65.57 65.79 63.04 59.73 56.84 52.55 
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Figure 4-10 Effect of class mislabelling on binary classification overall accuracy 

 

 

Figure 4-11 Effect of class mislabelling on binary classification mean margin 
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Multiclass mislabelling (experiment 5) 

Between clean training data and 25% class mislabelling, overall classification 

accuracy was reduced by 6.6% for the optimal case and 7.2% for the critical case 

(Table 4-8). However, associated with this was about a 55% decrease in the mean 

margin for both optimal and critical cases, which indicates that while training data 

noise has only a minor impact on accuracy relative to the amount of mislabeled 

training data, it does have a strong influence on classification uncertainty. Dominant 

margin results for the optimal case support this - from 10% to 25% mislabelling, the 

dominant margin drops from 0.52 to 0.18 (Table 4-8). 

Figure 4-12 and Figure 4-13 show change in classification accuracy and mean 

margin with mislabeled training instances. By selecting a random subset of training 

instances to build each decision tree in the ensemble, as well as randomly selecting 

the features involved in data partitioning at each tree node, RF is robust to noise. 

This is further demonstrated by comparison to the accuracy of a classifier comprising 

only a single decision tree constructed using all available training instances (optimal 

case) and not a bootstrapped sample (reduced by about a third in standard bagging) 

(Figure 4-12). Results of the single tree classifier show a lower overall accuracy 

(17% less than the optimal ensemble case) and a steeper reduction in overall 

accuracy associated with the increasing proportion of mislabeled training instances. 

Despite a dramatic reduction in training data, the accuracy curve of RF for the 

critical case behaves significantly better than the single curve. This again, highlights 

the capability of ensemble classifiers, especially RF, in handling multiple 

mislabelling classification problems. 
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Figure 4-12 Effect of class mislabelling on multiclass classification overall accuracy 

 

 

 Figure 4-13 Effect of class mislabelling on multiclass classification mean margin 
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Table 4-8 RF model performance results for optimal and critical size multiclass class 

mislabelling experiments 

% of Mislabelled training instances in each class 

  0 2.5 5% 10% 15% 20% 25% 

Overall Kappa (%) 

Optimal 78.3 77.1 76.8 76 74.4 72.7 70.1 

Critical 62.61 61.7 61 59.9 58.4 56.4 53.6 

Margin entropy 

Optimal 3.24 3.3 3.31 3.25 3.12 2.96 2.79 

Critical 3.23 3.22 3.18 3.09 2.95 2.79 2.61 

                                                Dominant margin 

Optimal 0.78 0.77 0.68 0.52 0.43 0.26 0.18 

Critical 0.65 0.02 0.02 0.02 0.02 0.02 0.01 

 

Margin weighted confusion matrices (optimal case, Table 4-9, and critical case, 

Table 4-10) demonstrate the increase in per-class uncertainty (lower classification 

confidence values) associated with correctly classified instances (main diagonals) 

with an increasing proportion of mislabeled instances. For the critical case in 

particular, where a training set is small, the addition of even low levels of class 

mislabelling can greatly increase ensemble diversity and the likelihood of more 

randomness in the classifier outcome. At the 25% mislabelling level, both optimal 

and critical cases have similar margins. Margin entropy values (Table 4-8) are 

initially (0% artificial mislabelling) very high (close to maximum entropy), reflecting 

a high diversity in the large area forest data. The margin entropy results should be 

interpreted with caution. In the optimal case, the margin entropy increases from the 

original (0% mislabelling) to 5% mislabelling. An increase in entropy with noise is 

an expected behavior, as uncertainty increases with noise. In the meantime, the mean 

margin decreases (Figure 4-13), suggesting an increase in lower margins to achieve a 

more balanced distribution between higher and lower margins, and consequently an 

increase in entropy. Then, with increasing mislabeled instances (i.e. more noise), 

entropy decreases as lower margins become over-represented (as illustrated by the 

decreasing mean margin) inducing an increasing imbalance in margin frequencies.  

Table 4-9 Multiclass mislabelling confusion matrices and margin weighted confusion 

matrices for optimal case 

  Confusion Matrix  Margin-weighted confusion matrix 

  Observed (test) data 
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5% mislabeled training instances per class 
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Woodland 3658 439 104 287 300  0.45 0.18 0.14 0.21 0.26 

Open 619 3590 414 173 139  0.17 0.42 0.17 0.17 0.19 

Closed 253 763 4370 108 62  0.19 0.25 0.50 0.15 0.20 

Shrub 202 70 45 4355 168  0.31 0.13 0.13 0.67 0.37 

Non-forest 268 138 67 77 4331  0.30 0.32 0.26 0.23 0.69 

  
 

25% mislabeled training instances per class 
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Woodland 3352 359 90 658 634  0.29 0.13 0.11 0.15 0.17 

Open 1088 3677 782 251 154  0.15 0.26 0.12 0.12 0.12 

Closed 240 825 4051 104 63  0.12 0.14 0.28 0.10 0.11 

Shrub 138 35 22 3935 146  0.19 0.10 0.10 0.38 0.23 

Non-forest 182 104 55 52 4003  0.19 0.19 0.19 0.17 0.39 

 

 

 

Table 4-10 Multiclass mislabelling confusion matrices and margin weighted confusion 

matrices for critical case 

  Confusion Matrix  Margin-weighted confusion matrix 

  Observed (test) data 

  
 

5% mislabeled training instances per class 
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Woodland 2850 693 180 552 461  0.31 0.18 0.12 0.19 0.21 

Open 979 2872 813 338 169  0.15 0.27 0.15 0.13 0.14 

Closed 505 1219 3869 294 115  0.19 0.25 0.40 0.18 0.15 

Shrub 285 67 58 3662 305  0.30 0.10 0.11 0.63 0.37 

Non-forest 381 150 79 154 3950  0.28 0.30 0.25 0.21 0.61 

  
 

25% mislabeled training instances per class 
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Woodland 2576 602 158 921 971  0.24 0.15 0.10 0.16 0.16 

Open 1540 3092 1354 503 242  0.14 0.21 0.13 0.12 0.11 

Closed 446 1179 3409 271 102  0.13 0.16 0.24 0.12 0.11 

Shrub 194 30 28 3208 254  0.20 0.09 0.07 0.36 0.24 

Non-forest 243 98 50 96 3432  0.18 0.20 0.17 0.15 0.36 

 

Results of the binary (experiment 4) and multi-class mislabelling (experiment 5) 

experiments support previous research demonstrating RF resistance to mislabelling 

(Rodriguez-Galiano et al., 2012; Rogan et al., 2008). While results of these 

experiments are encouraging for noise resistance, ensemble margin statistics (mean 

and dominant margins) and MWCM reveal mislabelling to have a large effect on 

classification uncertainty.  

Results on the affect of training data characteristics on random forest performance 

inform the design and implementation of large area land cover classification for 

natural resource management. The study's findings  highlight issues for consideration 

in the design, training data collection and RF model construction phases of a 

classification. Furthermore, these are issues which inform where best to allocate 

limited resources in building a robust and accurate RF classification. While results 

demonstrate that balanced distributions of training data achieve the greatest overall 

classification accuracy and certainty, introducing imbalance favouring more difficult 

to classify classes, can be used to boost per class accuracy without compromising a 

classification's overall accuracy. Results from mislabelling  experiments emphasize 

the importance of training data labelling accuracy in large area classifications. While 

the accuracy of random forests is relatively robust to  noise in training data, 

associated model certainty is less so. As such, assuming that increasing that amount 

of training data collected leads to an increase in the proportion of mislabelled 

training data instances, it is important to consider an appropriate balance between the 

amount of training data (per class), class mislabelling, classification accuracy and 

uncertainty.  
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4.7. Conclusion 

Results from this study provide important insights into the behaviour of the RF 

ensemble classifier that should provide a guide to the design of an operational 

implementation in other large area settings, particularly across complex, dynamic 

and heterogeneous environments. Measures of accuracy and confidence reveal the 

degree of influence that training data imbalance and mislabelling have on overall and 

per-class classification performance. The binary and multiclass land cover 

classification experiments showed the relevance of the introduced ensemble margin 

criteria and margin weighted confusion matrix for the investigation of both 

imbalance and mislabelling problems in ensemble classification.  

Across large areas with spectrally similar and noisy land cover classes, a degree of 

training class mislabelling is inevitable. Our findings reveal that while traditional 

confusion matrices (derived either from independent validation data or an Out-Of-

Bag (OOB) sample) can show reasonable classification performance, classification 

certainty can be significantly reduced, especially where the amount of training data is 

limited. While previous studies have shown classification to perform better with 

balanced datasets (Estabrooks et al., 2004; Freeman et al., 2012), we demonstrate 

that deliberately imbalancing classes can be used to improve the classification and 

performance of more challenging classes, without significantly compromising overall 

and other per-class classification results. Given the costs of training data collection 

(ground-based collection or from high resolution remote sensing data), in an 

operational setting, optimising a  classification involves balancing the total amount, 

class distribution and labelling accuracy of training data. For example, prioritising 

rare or more difficult classes over those that are more common or easy to classify. 

And, where resources limit the amount of available training data, the quality (i.e. 

correct labelling) becomes a more important  consideration. 

Future research will investigate methods to address imbalance and mislabelling 

problems and using margin statistics and the MWCM to evaluate their success. 
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Chapter 5. Exploring Diversity in 

Ensemble Classification: 

Applications in Large Area 

Land Cover Mapping 

 

 

Based on the peer-reviewed published article: 

 Mellor, A. and Boukir, S., 2017. Exploring diversity in ensemble classification: 

Applications in large area land cover mapping. ISPRS Journal of Photogrammetry 

and Remote Sensing, 129, pp.151-161. 
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5.1. Introduction 

Across a broad range of applications, ensemble classification systems (also known as 

multiple or committee  classifiers) have been shown to produce better results than 

single expert systems (Polikar, 2006) and achieve reduced generalization error 

(Tumer and Ghosh, 1996; Opitz and Maclin, 1999). In remote sensing application 

areas, such as ecology and natural resource management, ensemble classifiers, like 

Random Forests (RF) (Breiman, 2001), have become increasingly popular. 

Incorporating remote sensing data and ancillary continuous and categorical 

biophysical spatial data, RF has been applied in a variety of large area land cover 

(Rodriguez-Galiano et al., 2012) and forest attribution studies, including biomass 

(Baccini et al., 2008), canopy height (Wilkes et al., 2015), canopy cover (Mellor et 

al., 2015)  and species (Evans and Cushman, 2009; Dalponte et al., 2013). The RF 

classifier builds an ensemble of decision trees (known as base classifiers or ensemble 

members) and assigns classification through voting or averaging among these 

ensemble members.  

Diversity between ensemble members is considered a key factor affecting overall 

classification performance (Kuncheva and Whitaker, 2003; Ham et al., 2005; 

Melville and Mooney, 2005; Kapp et al., 2007). Ensemble classifiers which achieve 

higher overall classification rates are those in which misclassified instances (errors) 

made by ensemble members are uncorrelated  (Banfield et al., 2005; Elghazel et al., 

2011). Ensemble classifiers are often more accurate than their component (base) 

classifiers, and diversity is greater, if errors made by ensemble members are 

uncorrelated (Hansen and Salamon, 1990; Díez-Pastor et al., 2015) and more 

uniformly distributed (Banfield et al., 2005). While ensemble diversity has been 

studied in the fields of information science and machine learning, to the best of our 

knowledge, the relationship between ensemble diversity and classification 

performance has not been actively explored in remote sensing. Gaining a greater 

insight into the role of diversity in ensemble classification is important, not least 

because of the increasing popularity of ensemble classifiers, such as random forests 

in this field (Belgiu and Drăguţ, 2016). Moreover, while advances in remote sensing 

science and technology (such as new sensors and image analysis techniques) seek to 

address land cover mapping (classification) error, the availability of suitable 
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reference (training and test) data is a fundamental requirement in supervised image 

classification (Foody et al., 2016). Training and test data are also expensive 

(Pflugmacher et al., 2012), and as such, there are significant benefits to designing 

classifiers which make more efficient use of training data, such as reducing class 

information redundancy and maximizing the application of training data for classes 

which are rarer or more difficult to classify.  

In this paper, we explore the relationship between ensemble diversity and 

classification performance in the context of large area land cover classification across 

complex forest ecosystems and topography, using remote sensing and ancillary 

spatial data. We focus on the relationship between ensemble diversity and ensemble 

margin, two fundamental theories in ensemble learning. Applying the RF classifier, 

we evaluate different ways of inducing diversity in ensemble classification to 

improve classification performance and efficiency, and reduce training data 

redundancy. The main novelty of our work is on boosting diversity by targeting 

lower margin training samples (which represent class decision boundaries or more 

difficult or rarer classes) in the learning process. We also propose a new empirical 

analysis that explores the influence of tree pruning, and decision tree depth, on 

diversity, which leads to a better understanding of RF classifier performance.  The 

findings of this work may be used to inform training data collection strategies and to 

design more efficient classification. Key concepts used in the paper are introduced in 

sections 5.2 through 5.4. Section 5.5 describes the study area and data, and 

experiments, results and discussion are included in sections 5.6 through 5.7. 

5.2. Random Forests 

Random forests (Breiman, 2001) is a popular ensemble classifier (Belgiu and Drăguţ, 

2016), which generates decision trees using sub-sets of bootstrap-aggregated training 

data (sampling with replacement), otherwise known as bagging. These decision trees 

represent diverse base classifiers, which are combined into an ensemble. In addition 

to bagging, diversity is induced through the random selection of a sub-set of input 

(explanatory or predictor) variables which are evaluated for partitioning data at each 

decision tree node (Elghazel et al., 2011). A response variable is predicted as a modal 

vote (for categorical data) or average (for continuous variables) among the ensemble 
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decision trees. Studies have reported that the number of variables randomly sampled 

to split training data at decision tree nodes does not affect classification rates (and 

other RF performance measures)  (Cutler et al., 2007).  

5.3. Ensemble Margin 

As demonstrated in previous chapters of this research, the margin provides a measure 

of confidence in ensemble classification (Guo et al., 2011; Mellor et al., 2014, 2015) 

and is an important concept in ensemble methods (Schapire and Freund, 1998). The 

ensemble margin is calculated as the difference between the number of votes 

assigned to different classes by the base classifiers in an ensemble. The unsupervised 

version of Schapire's margin (equation 1) of a sample 𝑥 is the difference between the 

number of votes (respectively 𝑉𝑐1 and 𝑉𝑐2) assigned to the first and second most 

popular classes (respectively 𝑐1 and 𝑐2), normalised by the number of base classifiers 

(𝑇) in the ensemble, regardless of true class labels (Guo and Boukir, 2013). It has 

been used in large area remote sensing classification as an ancillary measure of 

random forest classifier performance (Mellor et al., 2014, 2015). 

𝑚𝑎𝑟𝑔𝑖𝑛(𝑥) =  
𝑉𝑐1 − 𝑉𝑐2

𝑇
,   0 ≤ 𝑚𝑎𝑟𝑔𝑖𝑛 (𝑥) ≤ 1 

Correctly classified training instances with high margin values (i.e. close to 1) 

represent instances located away from class decision boundaries and can contain a 

high degree of redundant information in a classification problem. Conversely, 

training instances with low margin values (i.e. close to 0) are located near decision 

boundaries and are more informative in a classification task. Unlike Schapire's 

margin (Schapire and Freund, 1998), which is supervised and calculated as the 

difference between votes assigned to the true class and those assigned to the most 

voted class that is different from the true class, class labels in the unsupervised 

margin (Guo and Boukir, 2013) (applied in this study) are not of significance. As 

such, the unsupervised margin may be more robust to noise (e.g. incorrect class 

labels) (Guo, 2011). The mean margin (equation 2) is a descriptive statistic for the 

ensemble margin, calculated from the unsupervised margin values (equation 1), 

which can be used as a confidence measure for model performance (Mellor et al., 

(1) 
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2014, 2015). This measure ranges from -1 (weakest ensemble classifier) to +1 

(strongest ensemble classifier). 

 

𝜇 =  
(𝑛𝑐  𝜇𝑐) − (𝑛𝑚 𝜇𝑚) 

𝑛𝑐 +  𝑛𝑚
 , −1 ≤  𝜇 ≤ 1 

where 𝑛𝑐 is the number of correctly classified instances, 𝑛𝑚 is the number of 

misclassified instances,  𝜇𝑐 and  𝜇𝑚 are mean margins for correctly and misclassified 

instances respectively.  

5.4. Ensemble diversity 

Ensemble diversity is important for majority vote accuracy and  aims at decreasing 

the probability of identical errors (correlation between ensemble members).  While 

it is accepted that diversity improves overall ensemble classification performance, 

there is no general agreement on how it should be quantified or dealt with (Kapp et 

al., 2007), nor is there a widely perceived concept of diversity or theoretical 

framework which supports the development of methods to capture diversity among 

classifiers (Bi, 2012). A review by Kuncheva and Whitaker  (2003) compared ten 

measures of pairwise and non pairwise diversity, finding most to be highly 

correlated. In pairwise measures, the diversity values between all pairs of classifiers 

are initially calculated. The overall diversity measure value is then computed as the 

mean of all pairwise values. Unlike pairwise measures, non-pairwise measures are 

calculated by counting a statistical value of all ensemble classifiers to measure the 

whole diversity. Therefore they generally run much faster than pairwise measures 

(Guo, 2011). Diversity can be measured at the output (prediction) level, the input 

(training data) level and at the structure or parameter level (Guo and Boukir, 2014). 

In this study, we measure diversity at the output level (i.e. diversity among the class 

labels assigned across each of the base classifiers in the ensemble), using KW 

(Kohavi and Wolpert) variance (Kohavi and Wolpert, 1996), a popular non-pairwise 

diversity measure, which can be expressed as equation (3) (Kapp et al., 2007). 

𝐾𝑊 =  
1

𝑁𝑇2
∑ 𝑡 (𝑥𝑗) (𝑇 − 𝑡(𝑥𝑗))

𝑁

𝑗 = 1

, 0 ≤ 𝐾𝑊 ≤ 0.25 

(2) 

(3) 
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where diversity increases with KW variance, 𝑇 is the size of the ensemble of 

classifiers, 𝑡(𝑥𝑗) is the number of classifiers that correctly recognise sample 𝑥𝑗, and 

𝑁 represents the number of samples.  

The minimum value for KW diversity is 0 (lowest diversity), which  occurs when all 

the 𝑇 ensemble members correctly classify all of the samples (overall accuracy of 

100% and mean margin 𝜇 of 1), or conversely, when all of the 𝑇 ensemble members 

misclassify all of the samples (overall accuracy of 0% and negative mean margins 𝜇 

ranging from -1, in binary classification, to 0). KW Diversity is maximised (KW = 

0.25) when half of the 𝑇 ensemble members correctly classify each of the samples, 

and mean margin 𝜇 ranges from 0  to 0.5 (in the case of binary classification). In this 

case, underlying events are equiprobable i.e. the probability of an instance being 

correctly classified and misclassified are the same, such as in random prediction.  

A good diversity measure would have the ability to find the extent of diversity 

among classifiers and estimate the improvement or deterioration in accuracy of 

individual classifiers when they have been combined (Bi, 2012). An optimal 

ensemble classifier achieves the right balance between the accuracy of base 

classifiers and the diversity of the ensemble. Over-fitting can occur if diversity is too 

low and there is too much correlation between base classifiers. Too much diversity 

however, can reduce the accuracy of the ensemble. For example, an ensemble 

classifier with random prediction has the highest diversity but the lowest accuracy. 

This accuracy-diversity trade-off will be investigated in this study. An emphasis is 

placed on analysing the relationship between diversity and ensemble margin which 

play a key role in majority vote performance. 

5.5. Study Area and Data 

The experiments study area covers about seven million hectares of diverse dry-

sclerophyll dominated public forests in Victoria, Australia. This area is characterised 

by varied topography and a range of climate zones. Classification predictor variables 

include remote sensing data (Landsat TM and MODIS), derived texture indices, 

elevation, slope, aspect and biophysical climate data. Landsat TM data - frequently 

applied in studies for forest type mapping and canopy cover assessment (e.g. Boyd 

and Danson, 2005) - comprises a mosaic of nineteen scenes, captured between 
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February and March 2009, coinciding with the time of training and test data land 

cover mapping. High sun angles during the summer period of Landsat data 

acquisition minimised shadow and terrain artifacts in the imagery, and enhanced 

spectral differences between overstorey evergreen vegetation and more seasonally 

dynamic understory vegetation (Mellor et al., 2013). Landsat TM scenes were 

processed to standardised surface reflectance (Flood et al., 2013), reducing inter-

scene variation due to atmospheric conditions, topography, sun angle and sensor 

location. A single standard deviation raster surface was extracted from an annual 

twenty-three image multi-temporal stack of 16-day MODIS NDVI mosaics (Paget 

and King, 2008) - this was used to represent phenological variance over a calendar 

year across the study area.   

To characterise vegetation regions which can appear spectrally similar, but have 

different spatial patterns, textural indices were included as variables in the model. 

Texture indices have been shown to improve classification performance (Kayitakire 

et al., 2006; Rodríguez-Galiano et al., 2011). First order texture measures of variance 

and entropy (Haralick, 1979) were generated for 3x3 and 5x5 cell neighbourhood 

moving windows, from a grey-scaled (8-bit) Landsat TM derived Normalized 

Difference Vegetation Index (NDVI). Textural indices were designed to capture 

textural variance of the study area's forested ecosystems (Mellor et al., 2013). 

Topographic and biophysical data were used in the classifier to capture species-

environmental relationships, which are key information to geographical modeling 

(Guisan and Zimmermann, 2000). Vegetation composition is expected to occur in 

locations with similar soils, topography and climate (Franklin, 1995), and bioclimatic 

maps provide information about the climatic influence on the distribution of different 

forest types (Beaumont et al., 2005). Elevation, slope and aspect data were derived 

from a 30m Digital Elevation Model (DEM) (CSIRO, 2011). The DEM was also 

used to generate precipitation, temperature, radiation and moisture climate prediction 

surfaces using BIOCLIM in the ANUCLIM (v 5.1) software package (Houlder, 

2001) -  a description of the BIOCLIM process can be found in Beaumont et al., 

(2005). 
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Figure 5-1 Study area map: Victorian Interim Biogeographic Regionalisation for Australia 

(IBRA Bioregions) and Aerial Photographic Interpretation (API) land cover maps. 

 

Classification reference (training and test) data were derived from seven hundred and 

sixty-six 2×2 km digital aerial photograph interpreted (API) land cover maps, 

systematically distributed across a state-wide random stratified grid (Figure 5-1) 

from imagery acquired between 2006 and 2010. Trained interpreters delineated land 

cover classes based on information which included crown-shape, colour, shadow and 

size. A land cover classification system was applied based on Mellor and Haywood, 

(2010), which included broad forest or other land cover types, three forest canopy 

height classes (low, medium and tall) and three canopy cover classes (woodland, 

open and closed). The forest definition applied followed the Australian National 

Forest Inventory (Department of Agriculture Fisheries and Forestry, 2012), whereby 

forest is defined as having a greater than 20% crown cover and a minimum stand 

height of two metres. A half hectare minimum mapping unit was also applied to land 

cover maps, following UNFAO forest definition (Food and Agriculture Organization 

of the United Nations, 2001). A detailed description of the land cover reference data 

methodology can be found in Farmer et al. (2013).  
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For this study, land cover data were aggregated into three broad canopy cover classes 

(woodland, open, closed) and two non-forest classes (shrub and non-forest). 

Examples of canopy cover classes in aerial photography are shown in Figure 2. Land 

cover polygons were converted to raster and combined with the classification 

predictor variables. Following Mellor et al. (2015), reference data were divided into 

training and test subsets, comprising 100,000 (20,000 per class) and 25,000 (5,000 

per class) samples respectively.  

  

a) Woodland b) Open 

  

c) Closed d) Shrub 

Figure 5-2 Aerial photography examples of forest canopy cover used in the multiclass 

classification ( a) Woodland, 20-50% canopy cover; b) Open, 51-80% canopy cover; c) 

Closed, >80% canopy cover; d) Shrub (land cover dominated by woody vegetation shrub 

species, up to 2 m in height). Scale various around 1:25,000 
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5.6. Experiments 

Three experiments were performed using the RF algorithm and assessed using 

measures of overall and per-class accuracies, Kappa coefficient, ensemble margin 

and KW diversity. The experiments were designed to explore the influence of, and 

relationship between, ensemble diversity and classification performance. The main 

originality of this empirical analysis lies in how the ensemble margin is explicitly 

involved in the learning process, to induce greater diversity in the ensemble and  

influence its performance. The randomForest package (Liaw and Wiener, 2002) in R 

(R Development Core Team, 2011) was used to build the RF models and run 

experiments. Following our previous work (Mellor et al., 2015), 150 base classifiers 

(decision trees) were used in each experiment. Training data were used to calculate 

unsupervised margin values then mean margin. Test data were used to calculate RF 

model overall and per-class accuracies, Kappa statistic and KW diversity. Overall 

accuracy was first calculated for each individual ensemble base classifier before 

being combined to calculate ensemble accuracy, ensemble margin and KW diversity 

for the ensemble. To more clearly illustrate results, all diversity values were 

normalised, to range from 0 to 1. Calculated Kappa coefficients (Carletta, 1996) also 

range from 0 to 1.  

5.6.1. Experiment 1: Influence of the number of predictor variables 

 on diversity and margin 

The number of variables randomly sampled as candidates to partition training data at 

each decision tree node (hereafter referred to as mtry from the randomForest R 

package) was adjusted to evaluate the parameter's effect on classification 

performance and diversity. For this experiment, starting with two, mtry was 

increased (in single increments) for each RF ensemble model, up to 17 (the 

maximum number of predictor variables available). Classification accuracy, Kappa 

statistic, mean margin and KW diversity were calculated for each ensemble.  

5.6.2. Experiment 2: Training margins and high diversity data 

 selection  
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The second experiment constitutes the major contribution of this exploration of 

ensemble diversity - by investigating a new means of inducing diversity in ensemble 

learning. This consists of emphasizing the role of lower margin samples in the 

learning process at the expense of highest margin samples, the latter having the least 

influence on diversity and ensemble classification performance. For this experiment 

(Figure 5-3), the unsupervised margin (equation 1) was first calculated for each 

training data instance as the difference between the maximum number of decision 

tree (ensemble member) votes assigned to a class minus the number of votes 

assigned to the second most voted for class, by the ensemble. Percentile distributions 

were then calculated from the unsupervised margin values of the training set. RF 

classifications were run on sub-sets of the original training set using only training 

instances in the bottom (lowest margins) and top (highest margins) 50th, 60th, 70th, 

80th and 90th percentiles to build RF models, as well as all training instances. For 

each ensemble, the mean of the individual ensemble members overall and per-class 

accuracy and Kappa statistic, the ensemble overall and per-class accuracy and Kappa 

statistic, and KW diversity, were calculated. These results were compared to 

ensemble classifiers generated using random subsets (50%, 60%, 70%, 80% and 

90%) of all available training instances.  

 

Figure 5-3 Flow chart illustrating training margins experiment (2) 
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5.6.3. Experiment 3: Influence of the minimum node size on diversity  

The last original empirical analysis aims to investigate the influence of tree pruning 

(and therefore decision tree depth) on diversity for a better understanding of 

ensemble performance in general, and RF performance in particular. The minimum 

node size is a model parameter used to control the minimum size of terminal nodes in 

each decision tree, and therefore, the depth of decision trees.  By default in the RF 

package (and the other experiments applied in this study), the minimum node size is 

set to 1. In this experiment (Figure 5-4), the minimum node size was increased for 

each RF ensemble model (from 1 up to 250) and ensemble and mean base classifier 

accuracies, Kappa statistics and diversity were calculated for each. 

 

Figure 5-4 Flow chart illustrating minimum node size experiment (3) 

 

5.7. Results and Discussion 

5.7.1. Influence of the number of predictor variables on diversity and 

 margin 

Figure 5-5 and Table 5-1 show the results of experiment 1. These results show  that 

diversity decreases as the number of predictor variables selected for decision tree 

splitting (mtry) increases.  Indeed, the fewer the variables assessed for node splitting, 

the greater the amount of introduced uncertainty and the higher the diversity 

achieved (as shown by the mean margin). Increasing the number of predictor 
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variables assessed at each node split increases classification confidence (Guo and 

Boukir, 2014).  

Table 5-1 Mean tree, ensemble accuracies (%) and Kappa statistic results for the number of 

predictor variables experiment 

 Mtry 

Mean Tree 

Accuracy 

(%) 

Mean Tree 

Kappa 

Ensemble 

Accuracy (%) 
Ensemble Kappa 

 

2 65.48 0.57 80.95 0.76 

3 67.11 0.59 81.82 0.77 

4 68.13 0.60 82.21 0.78 

5 68.65 0.61 82.43 0.78 

6 69.21 0.61 82.93 0.78 

7 69.39 0.62 82.88 0.78 

8 69.74 0.62 83.00 0.79 

9 69.87 0.62 83.11 0.79 

10 70.11 0.63 83.14 0.79 

11 70.13 0.63 83.21 0.79 

12 70.33 0.63 83.10 0.79 

13 70.34 0.63 82.94 0.79 

14 70.48 0.63 82.92 0.79 

15 70.58 0.63 82.89 0.79 

16 70.65 0.63 82.70 0.79 

17 70.63 0.63 82.84 0.79 

 

The ensemble and mean individual decision tree classification accuracies increase 

marginally with increasing mtry. Above an mtry value of 5, overall ensemble and 

mean base classifier accuracies are stable (83.0%, 0.79 Kappa, and 70.2%, 0.63 

Kappa respectively). Note that a standard RF model would use 4 node split variables 

(mtry = √17 ), which, applied here, does not result in the highest overall ensemble 

classification accuracy.. Overall classification accuracy and Kappa coefficient by 

mtry are shown in Table 5-1.  
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While the mean single tree accuracy is reduced with less variables (and uncertainty is 

higher), the difference between overall (ensemble) and single tree accuracies is 

greater for 2 variables than for the maximum 17 variables (15.5% and 12% 

respectively). This illustrates how a loss in tree accuracy and uncertainty associated 

with a low number of variables is compensated for by higher diversity which 

influences classification performance.  

 

Figure 5-5 Ensemble and mean base classifier accuracies, mean margin and KW diversity 

plotted against mtry 

5.7.2. Training margins and high diversity data selection 

Figure 5-6 to Figure 5-8 show results from experiment 2, the mean base classifier 

accuracy, ensemble accuracy and normalised KW diversity as a function of training 

set size, selected by training instances in the bottom (lowest margins) and top 

(highest margins) 50th to 90th percentiles, and randomly selected training instances 

(equivalent proportions of the total training set). The x-axis on Figure 5-6 to Figure 

5-8 ranges from 50 to 100, and represents the margin percentile (in the case of 

margin-based training data selection), and the proportion of the training set size (in 

the case of random training data selection). For example, the bottom 50th margin 

percentile training data sub-set is the same size as the randomly sampled 50% 

training set.  
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Table 5-2 shows mean tree and ensemble accuracies (%) and Kappa results for the 

training margin experiments. Lower margin models (using training samples with 

margin values in the bottom 50th, 60th, 70th, 80th and 90th percentiles) result in 

lower mean decision tree accuracies compared to higher margin models (using 

training samples with margin values in the top 50th to 90th percentiles) (Figure 5-6). 

This is especially true when comparing the top and bottom training instance margin 

models in the 50th to 70th percentile range.   

 

Figure 5-6 Mean tree accuracy as a function of training set size by lowest and highest 

unsupervised margins, and random sampling 

 

Highest margin generated models (50th to 90th percentiles) exhibit the highest mean 

tree accuracy (Figure 5-6), but apart from the 50th margin percentile case, return the 

poorest ensemble accuracies compared to equivalent training set size models from 

bottom margin percentiles and random sampling (Figure 5-7). It is worth 

highlighting that for the 70th lowest margin percentile, the overall accuracy achieved 

is the same as that of the entire training set. Hence, the 30% highest margin samples 

that have been discarded from the training set are redundant. Redundancy not only 

slows down the training task,  it also weakens bagging performance, affecting the 

rarer and most difficult classes. The lowest margin training sample selection 

approach minimises data redundancy.  
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Figure 5-7 Ensemble accuracy as a function of training set size by lowest and highest 

unsupervised margins, and random sampling 

 

Models generated from training instances in the bottom 70th, 80th and 90th margin 

percentiles achieve the best ensemble accuracy (Figure 5-7). Figure 5-8 shows that 

low margin sampling models also exhibit the highest diversity (close to maximum 

diversity for the 50th lowest percentile) compared to random and highest margin 

sampling models. Diversity for lowest margins and random sampling converge at the 

90th lowest percentile and 90% training set size models. The strength of the RF 

ensemble bagging approach to induce diversity is underscored by the relative 

stability of the mean tree (Figure 5-6) and ensemble accuracy curves (Figure 5-7) for 

random sampling models by training set size, even when only half of the training 

data are used, particularly in comparison to the low and high margin sampling cases. 

Indeed, bootstrap sampling (Efron and Tibshirani, 1994) is a robust and effective 

approach that is suitable for small datasets. 
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Figure 5-8 Ensemble KW diversity as a function of training set size by lowest and highest 

unsupervised margins, and random sampling 

 

These results, comparing two opposite margin sampling strategies, show that 

targeting lower margin training data (which represent samples closer to class 

boundaries and/or  more difficult than higher margin samples) is a means of inducing 

further diversity among decision trees in an ensemble classifier. The low margin 

sampling selection strategy (targeting more class decision boundary, difficult and 

rare class examples) while decreasing mean tree accuracy, demonstrates improved 

ensemble performance induced by the underlying increase in ensemble diversity. 

  

Table 5-2 Mean tree and ensemble accuracies (%), and Kappa statistic results for the training 

margin experiments 

Margin 

Percentile 
Mean Tree 

Accuracy 

(%) 

Mean Tree 

Kappa 

Ensemble 

Accuracy 

(%) 

Ensemble 

Kappa 
Bottom 

50th 45.71 0.33 66.87 0.60 

60th 54.41 0.44 78.96 0.73 

70th 60.80 0.52 81.94 0.78 
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80th 66.64 0.58 82.26 0.78 

90th 68.08 0.60 82.15 0.78 

Top 

    50th 68.37 0.60 72.76 0.66 

60th 69.98 0.62 75.01 0.68 

70th 71.04 0.64 76.78 0.71 

80th 71.41 0.64 78.72 0.73 

90th 70.92 0.63 80.59 0.76 

Random 

Sampling  (%) 

    50 64.93 0.56 79.36 0.74 

60 65.76 0.57 80.24 0.75 

70 66.45 0.58 80.85 0.76 

80 67.08 0.59 81.32 0.77 

90 67.45 0.60 81.54 0.77 

100 68.10 0.60 82.06 0.78 

 

The effect of low margin sampling is even more pronounced when looking at 

ensemble accuracy results for only the open canopy class (the most challenging class 

to classify) (Figure 5-9). Unsurprisingly, this class returns its highest accuracy (74%) 

in the bottom 50th percentile margins model and its lowest accuracy (53%) in the top 

50th percentile margins model. Furthermore, there is a greater than 5% increase in 

accuracy between lowest margin and random sampling for 50% training set size. 

Indeed, open canopy has the highest proportion of low margin samples (Figure 5-11). 

Consequently, as any hard or rare class, it is favoured by an approach which favours 

the selection of lower margin training data. This strategy reduces data redundancy 

and increases information significance (e.g. class decision boundary instances are 

more informative). Therefore, it designs stronger classifiers with an increased 

capability for handling hard or rare classes.  
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Classes which are more challenging to predict, such as the open canopy class, may 

be more commonly misidentified (as woodland or shrub for example) than more 

easily distinguishable forest canopy classes (e.g. the closed canopy class - which has 

the lowest proportion of low margin samples among the forest canopy classes - 

Figure 5-11). Reducing the dominance of highest margin instances in the training 

dataset may be a strategy to increase ensemble diversity, whereby bagging samples 

used to construct each decision tree are themselves more diverse, through the 

inclusion of more instances close to class decision boundaries and more hard class 

examples.  

However, an important reduction in the proportion of higher margin instances in the 

training set would affect the ensemble classifier performance on easier classes, such 

as closed canopy, whose loss in accuracy is about 10% in the bottom 50th percentile 

margin model (Figure 5-10), while this model allows the hardest class (open canopy) 

to achieve its highest accuracy. This poor ensemble per-class accuracy is associated 

with relative training data imbalance for the pair closed/open canopies of about 40%-

60% (Figure 5-11) - an increase of 10% for the hardest class and a decrease of 10% 

for the easiest class compared to the balanced case, as well as a reduction in training 

set size of half of the original set. This result is consistent with the pairwise 

(open/closed canopies) class imbalance experiment results, involving random 

sampling, reported in chapter 4. A trade-off in the proportion of low and high margin 

training samples will benefit harder classes while maintaining, or even improving, 

the classification performance of easier classes. As Figure 5-10 shows, from the 60th 

lowest margin percentile, the ensemble accuracy is increased slightly for the closed 

canopy class, compared to using all of the training data. 
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Figure 5-9 Ensemble accuracy for the open canopy class as a function of training set size by 

lowest and highest unsupervised margins, and random sampling 

 

Figure 5-10 Ensemble accuracy for the closed canopy class as a function of training set size 

by lowest and highest unsupervised margins, and random sampling 
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Figure 5-11 Proportion of training samples by class and lowest unsupervised margins by 

percentile 

5.7.3. Influence of the minimum node size on diversity  

Results of the minimum node size experiment (Figure 5-12 and Table 5-3) reveal 

ensemble accuracy to be highest where decision trees are grown to their greatest 

depth (minimum node size of 1), such as in RF ensembles which use unpruned trees. 

Decreasing ensemble diversity is associated with lower ensemble accuracy and 

increasing minimum node size (shallower decision trees). Mean tree accuracy is 

relatively stable for minimum node size under 50. Hence, the loss in ensemble 

accuracy in this range is mainly due to the loss in diversity. A minimum node size 

over 50 also affects mean tree accuracy and therefore induces a steeper drop in 

ensemble accuracy. Indeed, the generalisation error can be attributed to the 

combination of the  precision of base classifiers and a relative diversity between 

them (Kapp et al., 2007). While these results demonstrate the relationship between 

diversity across decision trees and ensemble accuracy, deeper trees mean more 

complex decision rules which can result in overfitting - particularly if trees are 

permitted to split down to a single observation. 
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Table 5-3 Mean tree and ensemble accuracies (%) and Kappa statistic results for the 

minimum node size experiment 

Minimum 

node size 

Mean Tree 

Accuracy (%) 

Mean Tree 

Kappa 

Ensemble 

Accuracy 

(%) 

Ensemble Kappa 

1 68.08 0.62 82.18 0.78 

7 67.83 0.63 81.64 0.77 

15 68.08 0.62 80.60 0.76 

30 68.50 0.62 78.90 0.73 

50 68.37 0.62 76.99 0.71 

100 67.17 0.62 74.06 0.68 

250 65.14 0.62 71.06 0.64 

 

 

Figure 5-12 Ensemble and mean base classifier accuracies and KW diversity as a function of 

minimum node size 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

65

70

75

80

85

0 0 0 0 0 0 0

K
W

 D
iv

e
rs

it
y

A
cc

u
ra

cy
 (

%
)

Minimum node size

Mean tree accuracy

Ensemble Accuracy

KW Diversity



 
 

105 
 

 

 

5.8. Conclusion 

The results of these experiments provide insights into the relationship between 

ensemble diversity and classification performance, in a large area classification 

problem context using the random forest ensemble classifier. Investigating the effect 

of the number of decision tree splitting variables on classification and performance 

showed how lower single tree classification performance (both accuracy and 

uncertainty) associated with fewer splitting variables is compensated for by higher 

ensemble diversity, influencing ensemble classification performance. Targeting 

lower margin training samples (which represent class decision boundaries or more 

difficult or rarer classes), is a way to increase uncertainty and consequently induce 

diversity in ensemble learning - a strategy which reduces data redundancy and 

increases the significance of training information. In the context of large area remote 

sensing classification, where reference data can be expensive and time-consuming to 

collect, the margin-based selection of training samples is a way to optimise ensemble 

classification design, boost efficiency and reduce reference data resource and 

processing costs. Exploring the influence of tree pruning (through the variation of 

minimum node size) on classification performance, demonstrated that unpruned 

decision trees (minimum node size of 1) achieve both the highest single tree 

classification accuracy and the highest diversity among ensemble members, two 

ingredients for optimal ensemble classification performance. This result partly 

explains the superiority of random forests, which use unpruned trees, over other tree-

based ensembles such as boosting and bagging, which involve tree pruning.  

The findings of this study may inform the design of training data collection strategies 

and ensemble classification design and parameterisation. Future research will 

investigate the combined use of ensemble diversity and ensemble margin, two key 

concepts in ensemble learning, to guide RF training data selection for improved 

learning and better large area land cover mapping performance. 
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Chapter 6. Sensitivity of forest 

Landscape Pattern Indices 

to training data 

characteristics in the 

Random forest classifier  
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Sensitivity of forest Landscape Pattern Indices to training data characteristics in the 

Random forest classifier 
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6.1. Introduction 

Forest fragmentation – the division of forest habitat into smaller and isolated 

fragments – is considered a significant threat to biodiversity (Haddad et al., 2015) 

resulting in the geographic and genetic isolation of populations, limiting flora and 

fauna interactions, interfering with pollination, seed dispersal, wildlife migration and 

breeding. The effects of forest fragmentation are a function of the number of and 

distance between forest patches, as well as the amount of edge habitat within each 

forest patch (Gergel, 2007; Uuemaa et al., 2009). Increased exposure along forest 

fragment edges as fragmentation increases beyond natural disturbance, leads to long-

term changes in structure and function of habitat which remains (Haddad et al., 

2015). Fragmentation of forests is an indicator (1.1.c) under Criterion 1 

(Conservation of Biological Diversity) of The Montreal Process Criteria and 

Indicators for the Conservation and Sustainable Management of Temperate and 

Boreal Forests (Montréal Process Working Group, 2015). The fragmentation of 

forests indicator describes the loss of forest cover as well as the spatial configuration 

of that loss. Measures of forest fragmentation and spatial configuration of forest 

patches, hereafter referred to as Landscape Pattern Indices (LPIs), are used in a 

number forest monitoring and reporting at national and sub-national scales (e.g. Food 

and Agriculture Organization of the United Nations, 2015; McRoberts and Liknes, 

2002; The State of Victoria Department of Environment and Primary Industry, 2014; 

Vermont Department of Forests Parks and Recreation, 2015).  

LPIs provide quantitative measures for the analysis of landscape structure and 

composition, including forest fragmentation (Shao et al., 2001). Studies have 

demonstrated a number of factors which influence the characterisation and 

computation of landscape indices, including spatial resolution, scale and minimum 

mappable unit (Wu et al., 1997; Riitters et al., 2000; Shen et al., 2004; Lechner et al., 

2012), the distribution, size, and shape of patches in a landscape, and their alignment 

to remote sensing sensor (Lechner et al., 2009). Methods use to examine and 

quantify landscape configuration and derive measures of fragmentation, strongly 

influence the outcome of spatial analysis (Lechner et al., 2013).  

Error is always present in the classification of image pixels into land cover classes, 

and previous research has shown that classification accuracy is not always a good 
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indicator for the accuracy of landscape pattern characterisation (Langford et al., 

2006; Lechner et al., 2013). Moreover, the propagation of error from classification 

into landscape pattern analysis is of critical importance in landscape ecology (Shao 

and Wu, 2008). Moreover, classification errors can lead to significant errors and 

variation in classification map derived landscape pattern indices (Hess, 1994). The 

sensitivity of landscape pattern indices to classification error - whether resulting from 

scale-dependent factors such as pixel size or minimum mappable unit (Shen et al., 

2004), classification method applied or from mislabelled training data - needs 

consideration given the potential implications of their application in resource 

management decision making (Kleindl et al., 2015).   

While the sensitivity of landscape metrics to the scale of analysis is reasonably well 

understood (Shen et al., 2004; Shao and Wu, 2008), their sensitivity to classification 

error is less known. However, some studies have shown particular metrics (such as 

mean patch size and patch density) to be more sensitive to classification error than 

others (e.g. Wickham et al., 1997).  

LPIs can be categorised into five groups: area, shape, isolation/proximity, 

contagion/interspersion and diversity (McGarigal and Marks, 1995). Within these 

groups, a range of metrics have been used to quantify landscape structure for 

different land cover classes, including patch area, patch density, patch size, patch 

variability, amount of edge, shape complexity, core area, nearest neighbour, diversity 

and contagion and interspersion among patches (Butler et al., 2004). A review by 

Betts (2000) showed the most commonly applied metrics to be percentage habitat 

cover, the distribution of patch sizes, edge effects and landscape configuration.  

Remote sensing classification is used routinely to generate spatially explicit thematic 

land cover products, at a range of spatial and temporal scales, from which to measure 

fragmentation and calculate LPIs. And ensemble machine learning classifiers, like 

Random Forests (RF) (Breiman, 2001), are now popular techniques for generating 

land cover maps using remote sensing and ancillary spatial data  (Pal, 2005; Mellor 

et al., 2013; Stefanski et al., 2013; Du et al., 2015b; Belgiu and Drăguţ, 2016). The 

Random Forest (RF) classifier (Breiman, 2001) uses bootstrap aggregated (bagging) 

sampling of training data to construct decision trees (base classifiers) which represent 

a set of diverse base classifiers, which combined into an ensemble are used to assign 
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a class (prediction) to a response variable through voting (in the case of categorical 

data) or by averaging (for continuous variables). 

Previous studies have demonstrated RF classifier's resistance to mislabelled training 

data (Rodriguez-Galiano et al., 2012; Rogan et al., 2008), but that associated 

classification uncertainty is present at even low amounts of mislabelling (Mellor et 

al., 2015). Given the cited claims about RF robustness to noise, and the inevitability 

of training class mislabelling in any large area land cover classification setting, it is 

important to understand the sensitivity of landscape pattern indices to error 

associated with mislabelled training data. Research has also demonstrated that 

targeting training data selection on the basis on proximity to class decision boundary 

is a means to affect per class and overall classification performance.  

The specific objectives of this study were to examine, through two experiments, the 

relationship and sensitivity of LPIs, calculated from RF binary classification forest 

cover maps, to 1) different rates of mislabelled training data and 2) training data 

sampling based on the class boundary (i.e. low and high margin training data margin 

selection strategies). The results from this analysis will provide information to guide 

the use of LPIs for reporting in forest and monitoring and reporting of forest 

fragmentation.  

6.2. Study Areas 

Experiments were applied in two study areas (Figure 6-1) representing contrasting 

different degrees of forest habitat connectivity and configuration. Study area 1 

(Naringal) is located in south west Victoria, Australia. Covering 43,000 hectares 

(extents -38.29 dd north, 142.85 dd east, -38.49 dd south and 142.63 dd west), the 

Naringal study area is a highly fragmented agricultural landscape, dominated by 

grazed pastures, with forest limited to small patches connected by linear forest strips 

along creeks and road reserves.  

Remnant native vegetation in the Naringal study area include heathland, dry forests, 

herb rich and riverine woodlands, riparian scrub, riverine grass and coastal scrub. 

The Naringal study area is almost exclusively (98%) private land tenure, it includes 

about 800 hectares of mostly linear riparian national park and conservation reserve 
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land. Since European settlement, the Naringal study area and surrounding landscape 

has experienced significant loss (more than 90%) of its original forest and ongoing 

fragmentation and isolation of remaining patches  (Bennett, 1990) 

Study area 2 (Newstead) is located in west central Victoria, about 75 km north west 

of Melbourne and covers 44,000 hectares (extents -37.06 dd north, 144.24 dd east, -

37.26 dd south and 144.02 dd west). Approximately one-third (12,000 ha) of the 

Newstead study area is public land, comprising mostly large contiguous forested 

areas of multiple-use commercial State forest tenure (5,000 ha), National park and 

conservation land (5,000 hectares) and other public land (1,500 ha). The Newstead 

study area includes the townships of Newstead, Guildford and part of Castlemaine. 

Native vegetation types in the study area include Box-iron bark forest and herb-rich 

and riverine woodlands. 

 

Figure 6-1 Study areas map 

6.3. Data 

6.3.1. Reference Data 

Forest cover reference (training and test) data used to construct and validate RF 

models, were derived from Aerial Photographic Interpretation of seven hundred and 

sixty six 2 x 2 km photo-plots, systematically distributed on a random stratified grid 
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across the State of Victoria. A detailed description of the reference data sources and 

methodology can be found in (Farmer et al., 2013; Mellor et al., 2013).  

For this study, land cover classes were aggregated into a binary forest and non-forest 

classes. Following Australian National Forest Inventory’s definition, forest is defined 

as having a crown cover greater than 20% and a minimum two metre stand height 

(Department of Agriculture Fisheries and Forestry, 2012). A half hectare minimum 

mapping unit was applied to forest cover maps, following the UNFAO forest 

definition (Food and Agriculture Organization of the United Nations, 2001).  API 

maps from which reference (training and test) data were sampled, were limited to 

Bioregions containing forest with the most similar structural characteristics to the 

two study area sites. 

6.3.2.  Feature variables 

Feature variables, comprised remote sensing data - Landsat TM standardised to 

surface reflectance (Schmidt et al., 2013); Landsat NDVI derived texture indices and 

Tasselled cap features (Crist and Cicone, 1984); elevation, slope, aspect (Farr et al., 

2007) and biophysical climate data (Houlder, 2001).  

6.3.3. Geospatial Database 

Google Earth Engine - a cloud-based online platform which combines public remote 

sensing and geospatial data with large computational facility designed for parallel 

processing geospatial data (Hansen et al., 2013; Google Earth Engine Team, 2015) 

was used to source and pre-process feature variable input data.  

Reference data were imported into Google Earth Engine (Google Earth Engine 

Team, 2015) as vector polygons, converted to raster and resampled to align with 

feature resolution. Reference and feature variable data were extracted into two forest 

and non-forest datasets, comprising about 1 million  randomly sampled candidate 

forest and non forest pixels. Feature variables were extracted over the extents of the 

two study area sites (Figure 1). All data were imported into R (R Development Core 

Team, 2011) for RF model construction and evaluation and LPI generation. 
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6.4. Random forest 

The randomForest package (Liaw and Wiener, 2002) in R (R Development Core 

Team, 2011) was used to build RF models in each experiment. The R package SDM 

Tools (VanDerWal and Falconi, 2014)  was used to calculate landscape shape indices 

(class statistics) from forest cover class in each forest/non-forest map. The default 

number of randomly sampled predictor variables (parameter mtry) was used as 

candidates for each decision tree splitting node (equal to the square root of the total 

number of predictor variables). RF ensembles were constructed with 100 trees (base 

classifiers). Assignment of class was determined by the majority of votes from all 

decision trees in the ensemble, a standard approach for combining the decisions of 

multiple component learners. 

6.5. Ensemble margin 

Margin theory is a machine learning concept which explores data proximity to 

decision boundaries. It is a means of understanding ensemble classification (such as 

RF) and of estimating confidence in classification outcomes  (Schapire et al., 1998; 

Mellor et al., 2015). The ensemble margin of a training data instance is the difference 

between the number of class votes to which it is assigned by decision trees in an 

ensemble classifier. For example, in a binary classification problem, with an 

ensemble containing 100 trees, a training instance (of Class A) assigned 60 decision 

tree votes to Class A and the remaining 40 votes to class B, would have a margin 

score of 20 (or 0.2, normalised by the total number of decision trees). Correctly 

classified training instances with high margin values (i.e. close to or equal to 1), 

where there is strong consensus among all decision trees, typically represent training 

instances located away from class decision boundaries. Training instances with low 

margin values, which are located closer to class decision boundaries may offer more 

information to a classification problem, unlike high margin values which may 

contain a high degree of redundant information. 

The unsupervised Schapire's margin, a variant show by  equation 1 (Guo and Boukir, 

2013) for a sample 𝑥, is the difference between the number of votes (respectively 

𝑉𝑐1 and 𝑉𝑐2) assigned to the first and second most voted for classes (respectively 𝑐1 
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and 𝑐2), normalised by the number of decision trees (or base classifiers) in the 

ensemble (𝑇), regardless of the true class label. 

 

𝑚𝑎𝑟𝑔𝑖𝑛(𝑥) =  
𝑉𝑐1 − 𝑉𝑐2

∑ (𝑉𝑐)𝐿
𝑐=1

 

 

True class labels are not considered in the unsupervised margin and so this measure 

may be more robust to noise (Guo, 2011).  

Previous chapters and Mellor et al., (2015) and Mellor and Boukir (2017) have 

shown that using the ensemble margin is an effective training data sampling 

technique that can be used to increase the significance of particular training samples 

in a classification problem, such as deliberately targeting samples close to 

classification decision boundaries and reducing the proportion of redundant high 

margin training samples - both means of increasing the significance of training 

information, boosting classification efficiency and improving global classification 

model performance (as well as the performance of more difficult classes).  

6.6. Landscape Pattern Indices 

Six commonly applied LPIs in the categories of area, shape and aggregation were 

evaluated in this study (Table 6-1).  

Table 6-1 Description of Landscape Pattern Indices (LPIs) 

Landscape Pattern Index Description Category 

Number of (forest) patches Total number of patches in the forest class 

category in the landscape 

Area 

Class (forest) area (ha) Total area (in hectares) of the forest class 

category in the landscape 

Area 

Area weighted mean patch 

size (ha) 

The sum of all forest patches in the 

landscape multiplied by the proportional 

abundance of the of the patch (i.e. patch area 

divided by the sum of all patch areas).  

Area 

Edge Density Ratio of total edges (number of cells at patch 

boundary) to total area (all cells) (m/ha) 

Shape 

Area weighted mean fractal 

dimension 

Measure of patch shape complexity (mean 

fractal dimension of patches weighted by 

patch area) 

Shape 

Percentage of like 

adjacencies 

The frequency with which different pairs of 

patch types (including like adjacencies 

between the same patch type) appear side-

by-side on the map (measures the degree of 

aggregation of patch types) 

Aggregation 

(1) 
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6.7. Experiment 1: Margin-based training data sampling  

Using all available training data (50,000 forest and 50,000 non-forest samples), an 

initial RF model was constructed from which the unsupervised margin values for all 

training data samples was calculated (equation 1). Percentiles were then calculated 

from the unsupervised margin values of the total training set, and RF models 

constructed using 20,000 training instances (10,000 per class) randomly selected 

from margins in the bottom 40th, 50th, 60th, 70th, 80th and 90th percentiles, and all 

available training data regardless of margin score. For each model, a random sub-set 

of 10,000 samples (5,000 per class) was drawn from the master training set as 

validation (test) data with which to calculate the overall and per-class accuracy of 

each RF model.  

Each RF model was applied to create forest/non-forest land cover maps in each study 

area. A minimum mapping unit of 0.5 hectares was applied to the forest cover maps 

to meet the forest cover definition (FAO, 2000; The State of Victoria Department of 

Environment and Primary Industry, 2014) and remove classification noise, by first 

resampling cells to 28m, grouping together horizontally, vertically and diagonally 

contiguous forest and non-forest classified cells, and reclassifying cells in groups of 

less than six (from either forest to non-forest, or non-forest to forest).  

Landscape Pattern Indices (Table 6-1) were calculated from the post-processed 

forest/non-forest classified maps. The process of randomly selecting training samples 

by margin percentile, constructing RF models, creating forest/non-forest prediction 

maps and calculating LPIs, was repeated to generate 30 sets of LPI results using 

training data drawn (in 10 percentile ranges) from the bottom and top 40th to 90th 

percentiles, and randomly sampled. 

6.8. Experiment 2: Training data mislabeling  

A second experiment examined the relationship between the proportion of 

mislabeled training instances used to construct RF ensemble models, and derived 

Landscape shape indices. Training data sub-sets comprising 20,000 samples (10,000 
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per class) were randomly drawn from the master training set and for each sub-set, 

training data instances were randomly re-assigned their class label at proportions of 5 

per cent of the training sample (i.e. 1,000 out of 20,000 samples), increasing the 

proportion of mislabeling at 5 per cent increments up to 30 per cent mislabeling. 

Following steps outlined in Experiment 1 (above), RF models were constructed, 

forest classification maps generated (and minimum mapping unit applied), from 

which LPIs were calculated for each study site. 

6.9. Analysis of sensitivity of experiments 

A simple linear model (equation 2) and linear model with quadratic function 

(equation 3) were fitted to the results to test whether there was an overall trend 

(sensitivity) between the margin-based training data selection (experiment 1) or 

mislabeling (experiment 2) and the derived accuracy and landscape shape indices, 

and if so (and significant), whether this trend was linear or curve linear. 

 

𝑌 = 𝑎 + 𝑏𝑋  

 

𝑌 = 𝑎 + 𝑏𝑋 + 𝑐𝑋2 

 

where 𝑌 represents the Landscape Pattern Index, 𝑎 the intercept, 𝑏 the slope and 𝑋 is 

the training margin percentile selection.  

6.10. Results and discussion 

6.10.1. Experiment 1 results 

Table 6-2 and Table 6-3 show results of the first experiment (margin-based training 

data selection) for the two study areas. For each LPI and study area, results show the 

nature of the overall trend (relationship) – linear (L), curve linear (CL) or Not 

Significant (NS) as well the associated p-value, between LPI and training margins 

percentile.  

(2) 

(3) 
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Table 6-2 Nature of the trend between margin-based training selection (40th to 90th 

percentile and random sampling) and LPIs for the Naringal Study area. Curve Linear (CL), 

Linear (L) or Not-significant (NS). 

Landscape Pattern Index Trend p-value 

Number of forest patches CL 0.005 

Total Area of Forest NS 0.167 

Area weighted mean patch size NS 0.212 

Edge density CL 0.001 

Area weighted mean fractal 

dimension 
NS 0.113 

Percentage of like adjecencies L 0.028 

Overall accuracy CL 2.85E-105 

User accuracy forest CL 2.24E-83 

User accuracy non-forest CL 3.70E-79 

 

Table 6-3 Nature of the trend between margin-based training selection (40th to 90th 

percentiles and random sampling) and LPIs for the Newstead Study area. Curve Linear (CL), 

Linear (L) or Not-significant (NS). 

Landscape Pattern Index Trend p-value 

Number of forest patches CL 0.010 

Total Area of Forest NS 0.881 

Area weighted mean patch size CL 0.004 

Edge density NS 0.931 

Area weighted mean fractal 

dimension NS 0.170 

Percentage of like adjecencies NS 0.757 

Overall accuracy CL 2.85E-105 

User accuracy forest CL 2.24E-83 

User accuracy non-forest CL 3.70E-79 

 

Results for the Naringal study site, show no significant linear or curve linear 

relationship between the RF classifiers trained with samples selected based on the 
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ensemble margin (bottom 40th to 90th percentile and random sampling) and, the total 

area of forest, the area weighted mean patch size or the area weighted mean fractal 

dimension. The number of forest patches (Figure 6-2) and edge density (Figure 6-3) 

LPIs exhibit a curve linear relationship with margin percentile. Edge density is 

lowest for maps classified with RF models constructed with training data randomly 

sampled from the bottom 90th percentile by ensemble margin value. Bottom 90th 

percentile models include a greater representation of training instances close to 

decision boundaries compared to models built using training data selected in the 

lower percentile range (e.g. 40th percentile), in which there are a greater proportion 

of training samples further from decision boundaries.   

Figure 6-2 illustrates a trend at the Naringal Study Site in which the lowest margin 

sampling strategy (the bottom 40th percentile) produces classified forest maps with 

the fewest forest patches.  This LPI increases (curve linearly) as training data are 

sampled from a greater range of margin values (i.e. up to the 90th percentile, and 

random sampling). 
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Figure 6-2 Scatter plot showing curve linear trend between Number of Forest Patches and 

training data sampling margin percentile (Naringal) 

 

Figure 6-3 Scatter plot showing curve linear trend between Edge Density and training data 

sampling margin percentile (Naringal) 
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Figure 6-4 Scatter plot showing curve linear trend between overall model accuracy and 

training data sampling margin percentile 

The percentage of like agencies LPI is also sensitive to margin-based training sample 

selection (with a linear trend). In the Narginal landscape - like the edge density 

metric - the percentage of like agencies (a measure of landscape heterogeneity) 

decreases with  the proportion of higher margin training samples.  

The total area of forest metric shows no significant linear or curve linear trend 

(Figure 6-5) with the margin percentile sampling. Figure 6-5 also highlights the 

relatively high variance in calculated forest area for the different iterations of the 

model run for each margin percentile. There was an average difference of 676 ha 

between the minimum and maximum total forest area calculated among the margin 

percentile sampling levels, with the lowest and lowest variance in the 40th and 80th 

margin percentile sampling respectively.   
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Figure 6-5 Scatter plot showing no significant relationship between Total area of forest and 

training data sampling margin percentile (Naringal) 

 

Figure 6-6 and Figure 6-7 shows example forest extent maps generated from training 

data sampled in the bottom 40th percentile margin, and training data sampled in the 

bottom 90th percentile margin.  
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Figure 6-6 Naringal forest extent map from classification training data sampled from the 

40th percentile margin values 

 

Figure 6-7 Naringal forest extent map from classification training data sampled from the 

90th percentile margin values 
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Previous research has demonstrated that targeting lower margin training samples 

(which are closer to class decision boundaries) is an effective technique to increase 

the diversity and performance of an ensemble classifier like RF (Mellor and Boukir, 

2017). A training set sampled from the bottom 90th margin percentile contains a 

higher greater proportion of training instances located away from decision 

boundaries, and therefore more redundant and less significant information in the 

classifier.  

Overall classification accuracy (calculated from set-aside test data), exhibits a strong 

curve linear relationship with training margin. Highest overall accuracy is achieved 

with RF models generated using lowest margin (bottom 40th percentile) training data 

(an average overall accuracy of 94.4% over 30 iterations), which drops to an average 

90.6% for the bottom 80th and 90th percentiles, and random sampling models.  

The classification of smaller and fragmented patches of forest and as well as linear 

strips along roadside and riperian vegetation, common across the Naringal site,  

improves with a higher proportion of low margin training instances in the RF model 

(i.e. training data close to forest-non-forest decision boundaries). As the proportion 

of higher margin training instances increases in the RF models, the edge density LPI, 

representing the ratio of total (forest patch) edges and total area, falls (curve 

linearly). These results show that for the Naringal site, low margin model (bottom 

40th percentile) classified forest extent is slightly less fragmented, compared to 

higher margin models (bottom 90th percentile or random sampling). The curve linear 

increasing trend in the total number of forest patches, also shows fragmentation of 

forest cover increases with the training margin percentile.  

In contrast, in Newstead study site (which has a greater proportion of contiguous 

forest and larger forest patches compared to the Naringal site), the area weighted 

mean patch size exhibits a curve linear relationship with margin percentile and the 

number of forest patches.  

In the Newstead study area, results show only area weighted mean patch size, 

number of forest patches LPIs and the accuracy metrics, have a significant curve 

linear relationship with margin-based training data selection. While the number of 

forest patches had a positive relationship with margin percentile (Figure 6-8), there 

was no associated increase in the total area of forest for the Newstead study area.  
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Figure 6-8 Scatter plot showing curve linear relationship between the number the forest 

patches and training data sampling margin percentile (Newstead). 
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Figure 6-9 Newstead forest extent map from classification training data sampled from the 

90th percentile margin values 

 

Results of experiment 2 (training data mislabeling) at the Naringal site, show all LPIs 

to have a significant curve linear relationship with increasing rate of training data 

mislabeling (Table 6-4) and for all but Total area of forest and edge density, at the 

Newstead site (Table 6-5).   

Table 6-4 Nature of the trend between mislabeled training data (from 0% up to 30%) and 

LPIs for the Naringal Study area. Curve Linear (CL), Linear (L) or Not-significant (NS). 

 Landscape Pattern Index Trend p-value 

Number of forest patches CL 5.14E-20 

Total Area of Forest CL 2.80E-08 

Area weighted mean patch size CL 1.17E-31 

Edge density CL 0.002 

Area weighted mean fractal 

dimension CL 1.17E-31 

Percentage of like adjecencies CL 1.23E-55 

Overall accuracy CL 1.06E-135 
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User accuracy forest CL 7.80E-112 

User accuracy non-forest CL 1.42E-106 

 

Table 6-5 Nature of the trend between mislabeled training data (from 0% up to 30%) and 

LPIs for the Newstead Study area. Curve Linear (CL), Linear (L) or Not-significant (NS). 

Landscape Pattern Index Trend p-value 

Number of forest patches CL 1.18E-36 

Total Area of Forest NS 0.109 

Area weighted mean patch size CL 0.001 

Edge density NS 0.978 

Area weighted mean fractal 

dimension CL 2.00E-21 

Percentage of like adjecencies CL 1.00E-69 

Overall accuracy CL 4.96E-106 

User accuracy forest CL 4.47E-100 

User accuracy non-forest CL 4.60E-95 

 

6.11. Conclusion 

This investigation contributes to the understanding of the sensitivity of LPIs to 

training data characteristics used in machine learning classification.  The study's 

findings demonstrate that LPIs can have strong sensitivity to training data selected on 

the basis of the ensemble margin and proximity to class decision boundaries. 

Although the accuracy of forest extent maps produced using the RF algorithm are 

generally insensitive to low to moderate levels of training data mislabelling 

(Rodriguez-Galiano et al., 2012; Mellor et al., 2015), the study's findings indicate 

LPIs have a high degree of sensitivity to training data quality (even at low rates of 

mislabelling). As such, forest and other land cover mapping applications need to 

consider the implications of training data quality used in the generation of LPIs 

through RF classification.  
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Chapter 7. Thesis Synthesis and 

Conclusions 
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Satellite-based (remote sensing) earth observing technology has long been 

recognised as a critical source of large area land cover maps and information, used 

for a variety of natural resource management applications. Over the past decade, 

machine learning algorithms have become increasingly popular techniques for 

classifying remote sensing data, superseding traditional parametric classification 

algorithms, due to improved performance and their ability to address complexity 

inherent in many large and heterogeneous landscapes. In the remote sensing 

literature, the Random Forests (RF) ensemble classifier stands out as an increasingly 

popular ML technique - with an average 30% increase in published articles citing 

Random forests in remote sensing since 2010.  

The overarching objective of this thesis was to examine cited advantages of the RF 

classifier in the context of large area land cover classification problems. The research 

also explored the utility of ensemble learning as a means to design more efficient 

classification systems which use reference data more efficiently and effectively.  

7.1. Research Questions 

Research Question 1: How do training data characteristics of class imbalance and 

class mislabelling affect RF performance? 

A series of binary and multiclass forest cover classification experiments presented in 

Chapter 4, provide insight into the behaviour of the RF ensemble classifier and the 

degree of influence training data imbalance and mislabelling can have on 

classification performance.  

Class-balanced classification models for binary and multi-class experiments - for 

both optimal (large) and critical (small) training dataset sizes - provided highest 

overall classification accuracies and associated measures of confidence. However, 

results of multiclass classification imbalance experiments showed that careful and 

deliberate imbalancing of training data is an effective means to improve the 

performance of challenging (or difficult classes), that does not appreciably 

compromise overall or other per-class classification results. A 10% decrease in the 

number of training samples in the easiest class (closed forest canopy cover) coupled 
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with a 10% increase in the hardest class (open canopy) achieved the best 

classification performance result.  

Previous studies have shown key features of the RF classifier make the performance 

of this algorithm relatively robust to training data mislabelling (or noise) - including 

bagging used to select random sub-sets of training data to construct decision trees, as 

well as the random selection of features used to partition training data at decision tree 

nodes. Indeed, results of training data multiclass mislabelling experiments in chapter 

4 showed that compared to clean (i.e. not deliberately mislabelled) training data, 

applying a 25% mislabelling rate to training samples only resulted in reductions of 

6.6% and 7.2% in overall classification accuracies for optimal and critical training 

set sizes respectively. However, an associated 55% decrease in the mean margin for 

these mislabelling experiments showed that while class mislabelling effects on 

reduced classification accuracy is not considerable, even low mislabelling rates can 

strongly influence rates of classification confidence (uncertainty).  

 

Research Question 2: What is the relationship between ensemble diversity and 

classification performance? 

This research question sought to examine the degree of influence that RF ensemble 

diversity has on classification performance, and to understand how diversity can be 

controlled or induced to improve RF classification effectiveness and efficiency. 

While the complex relationship between diversity and ensemble classification 

performance is not yet fully explored nor understood, diversity is recognised as an 

essential condition for designing high performing ensemble classifiers, such as RF.  

Building on ensemble margin theory introduced in chapter 4, research chapter 5 

examined the theme of ensemble diversity and its association with RF performance 

in a large area land cover classification setting. Results provide insights into the 

trade-off between ensemble classification accuracy and diversity, and through the 

ensemble margin, demonstrate how inducing diversity by targeting lower margin 

training samples is an effective means of achieving better classifier performance for 

more difficult or rarer classes and reducing information redundancy in classification 

problems. For the most difficult canopy cover class (open forest), targeting low 

margin training samples in the bottom 50th percentile returned its highest accuracy 
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(74%), compared to training data selection in the top 50th percentile (only 53% 

accuracy). Moreover, results showed a more than 5% improvement in accuracy using 

lowest margin training data sampling, compared to random sampling selection of 

training data. This chapter emphasised the importance of the trade-off between 

accuracy and RF ensemble member diversity, whereby over-fitting can be the result 

of too little diversity, and poor accuracy, the result of too much diversity.  

Research question 3: What is the relationship between training data characteristics 

(used to construct RF ensemble classification models) and Landscape Pattern Indices 

calculated from the derived RF forest prediction maps? 

The final research chapter (6), builds on the concepts introduced in chapters 4 and 5, 

by examining the relationship between training data characteristics used to construct 

RF ensemble models and landscape pattern indices derived from classified forest 

extent maps. LPIs provide quantitative measures for analysing land landscape 

structure and composition, including forest fragmentation. Through two experiments, 

this study examined the sensitivity of LPIs to increasing rates of training 

mislabelling, and also how training data sampling strategies (using the margin to 

sample training data on the basis of proximity to class decision boundary), affect LPI 

measures. The study revealed a high degree of sensitivity to training data 

mislabelling, even at low mislabelling rates, regardless of whether the landscape 

comprises highly fragmented forest cover or is characterised as more contiguous 

forest configuration.  

7.2. Summary 

Previous studies have cited the importance of various reference data attributes used 

in supervised land cover classification problems. Land cover map accuracy is 

sensitive to the quality of reference data (Foody et al., 2016). A number of key 

training data themes relating to the sensitivity of RF classifier in remote sensing 

have, and continue to be explored, ranging from sampling design (Colditz, 2015) and 

sample size (Stumpf and Kerle, 2011; Deng and Wu, 2013; Du et al., 2015a), to 

training data class imbalance (as explored in this research and Jin et al. (2014), and 

training data noise (mislabelling) e.g. this thesis, and Rodriguez-Galiano et al. 

(2012).  



 
 

130 
 

Generating sufficient supervised classification training data is a time consuming, 

expensive and subjective task (Lippitt et al., 2008; Ghimire et al., 2012). Moreover, 

training data-hungry machine learning techniques for large area land cover 

classification problems, requires large samples of unbiased representative reference 

data (Egorov et al., 2015) which account for within and between class heterogeneity, 

are of suitable accuracy, geographic coverage and align with remote sensing imagery 

acquisition/capture time or seasonal conditions. These training data challenges may 

be exacerbated in jurisdictions containing remote and inaccessible regions, or in 

resource poor environments.  

The novel exploration and application of the unsupervised ensemble margin in large 

area remote sensing classification in this thesis, provides some insight into the 

behaviour of RF with respect to class imbalance and mislabelling. Moreover, through 

the unsupervised margin, the work presents a useful means to evaluate the relative 

contribution of individual training samples to the learning process and boost 

classification performance. This technique could be applied to design more efficient 

RF classifiers and reduce the generation and use of wasteful "information redundant" 

training data and focus sampling on areas and classes which have a greater influence 

on the outcome of an ensemble RF classifier.  

Three key developments have facilitated the uptake of machine learning algorithms 

like RF, in the field remote sensing. These include the increasing availability of 

remote sensing data - associated with both an increasing number of satellite sensors, 

and open data policies (Wulder et al., 2012). Open-source implementations of 

machine learning algorithms which allow classifiers like RF to be readily automated 

with a set of user defined adjustable parameters (Rodriguez-Galiano et al., 2012) 

which make algorithms relatively straightforward to apply by relatively 

inexperienced users (Qi et al., 2006). Several implementations of the RF classifier 

are now available, including the most popular randomForest (Liaw and Wiener, 

2002) in the statistics package R (R Core Team, 2013), as well as implementations in 

Python, such as scikit learn Ensemble forest (scikit-learn developers, 2016) and 

through the Machine Learning Tool Kit (MILK) (Coelho, 2017) and Fast random 

forest in the WEKA Environment. The increased performance and availability of 

low-cost computing is also facilitating the uptake of machine learning in remote 

sensing. For example, cloud computing – the practice of using a network of internet 
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hosted, remotely accessed servers to store, manage and process data – provides 

significant opportunities to address the challenge of large scale and data and 

processing-hungry remote sensing applications (Sugumaran et al., 2015). Cloud-

computing offers relatively low-cost and scalability advantages in data storage and 

processing compared to traditional high powered, user owned computing clusters.  

7.3. Future research 

An extension of the research presented in this thesis, will be to extend the application 

of the ensemble margin as a means to improve RF stability and performance. This 

would include evaluating the application of the ensemble margin to inform up and 

down-sampling of class imbalanced training datasets. In addition, the link between 

ensemble diversity and machine learning performance in remote sensing 

classification has not been fully explored. Further research in this area could look at 

ways to induce diversity in ensemble algorithms such as RF to build more robust 

classifiers, that are, for example, more robust to noise in training data and predictor 

variables. Techniques to promote and artificially induce ensemble diversity could 

include through training data sampling strategies, decision tree construction 

techniques, and class switching (the deliberate introduction of class mislabelling).  
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