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Abstract 
This study presents experimental investigations on supervised ensemble 

classification for land cover classification. Despite the arrays of classifiers available 

in machine learning to create an ensemble, knowing and understanding the correct 

classifier to use for a particular dataset remains a major challenge. The ensemble 

method increases classification accuracy by consulting experts taking final decision 

in the classification process. This study generated various land cover maps, using 

image classification. This is to authenticate the number of classifiers that should be 

used for creating an ensemble. The study exploits feature selection techniques to 

create diversity in ensemble classification. Landsat imagery of Kampala (the capital 

of Uganda, East Africa), AVIRIS hyperspectral dataset of Indian pine of Indiana and 

Support Vector Machines were used to carry out the investigation. The research 

reveals that the superiority of different classification approaches employed depends 

on the datasets used. In addition, the pre-processing stage and the strategy used 

during the designing phase of each classifier is very essential. The results obtained 

from the experiments conducted showed that, there is no significant benefit in using 

many base classifiers for decision making in ensemble classification. The research 

outcome also reveals how to design better ensemble using feature selection approach 

for land cover mapping. 

The study also reports the experimental comparison of generalized support vector 

machines, random forests, C4.5, neural network and bagging classifiers for land 

cover classification of hyperspectral images. These classifiers are among the state-of-

the-art supervised machine learning methods for solving complex pattern recognition 

problems. The pixel purity index was used to obtain the endmembers from the 

Indiana pine and Washington DC mall hyperspectral image datasets. Generalized 

reduced gradient optimization algorithm was used to estimate fractional abundance 

in the image dataset thereafter obtained numeric values for land cover classification. 
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The fractional abundance of each pixel was obtained using the spectral signature 

values of the endmembers and pixel values of class labels. As the results of the 

experiments, the classifiers show promising results. Using Indiana pine and 

Washington DC mall hyperspectral datasets, experimental comparison of all the 

classifiers’ performances reveals that random forests outperforms the other 

classifiers and it is computational effective.  

The study makes a positive contribution to the problem of classifying land cover 

hyperspectral images by exploring the use of generalized reduced gradient method 

and five supervised classifiers. The accuracy comparison of these classifiers is 

valuable for decision makers to consider tradeoffs in method accuracy versus 

complexity. The results from the research has attracted nine publications which 

include, six international and one local conference papers, one published in 

Computing Research Repository (CoRR), one Journal paper submitted and one 

Springer book chapter, Abe et al., 2012 obtained a merit award based on the 

reviewer reports and the score reports of the conference committee members during 

the conference period. 
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CHAPTER 1 

 Introduction 

1.1   Background of the study 

Increasingly earth observation has become a prime source of data in the Geosciences 

and many related disciplines permitting research into the distant past, the present and 

into the future. Earth observation is based on the premise that information is 

available from the electromagnetic energy field arising from the earth’s surface or 

atmosphere (or both) and in particular from the spatial, spectral and temporal 

variations in that field (Levin, 1999; Kramer, 2002; Sabino, 2005). Through this, the 

environment can be better monitored, modelled, and consequently, better policy 

decisions made. 

One of the areas of research interest has always been how to relate earth observation 

output e.g. Aerial photographs and satellite images (remotely sensed imagery) to 

known features (e.g. Land cover). Land cover refers to the physical surface of the 

earth, including various combinations of vegetation types, soils, exposed rocks and 

water bodies as well as anthropogenic elements, such as agriculture and built 

environments (Mathur, 2004; Udelhoven, 2009; Sánchez et al., 2010). A land cover 

map consists of a set of contiguous map units each of which is labelled according to 

a land cover class. The main reason for producing land cover maps is to give a clear 

idea of the stock, state of nature and built resources.  

One critical environmental aspect to which satellite images can be applied is land 

cover mapping using classification algorithms called classifiers. An emerging area of 
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research interest relating image classification to land cover mapping is ensemble 

classification (Breiman, 1996; Kittler et al., 1998; Opitz, 1999; Giacinto and Roli, 

2001; Polikar, 2006; Oza and Tumer, 2008; Marwala, 2009; Gidudu et al., 2009a). 

Whereas previous research (Wacker and Landgrebe, 1972; Roli et al., 1997; Pinho et 

al., 2008) has sought to find better classification algorithms, ensemble classification 

is premised on using a ‘consensus’ approach to land cover mapping, the ‘consensus’ 

being dependent on a collection of base classifiers. Ongoing research in the 

application of ensemble classification to land cover mapping has focused on the 

different ways ensembles can be constituted (Chen et al., 2007; Chan and Paelinckx, 

2008; Udelhoven et al., 2009). Some of the common approaches (Breiman, 1996; 

Opitz, 1999; Pal, 2003; Tsymbal, 2005; Polikar, 2006; Marwala, 2011) have 

involved constituting ensembles using different classification algorithms, 

constituting base classifiers from using different training data, or deriving base 

classifiers using different band combinations (ensemble feature selection) (Gidudu et 

al., 2008b).  

Classifying and mapping vegetation is an important technical task for managing 

natural resources as vegetation provides a base for all living beings and plays an 

essential role in affecting global climate change, such as influencing terrestrial 

(carbon dioxide) CO2 (Xiao et al., 2004; Xie et al., 2008). But classification 

accuracy poses serious challenge and this is due to, the design procedure of 

classifier, choice of training sets from dataset and information conveyed to the 

algorithm (Oza and Tumer, 2008). Statistical based classifiers have been successfully 

applied to multispectral data but are not effective for hyperspectral data (Hsu, 2007). 

The major reason is the fact that the number of spectral bands in hyperspectral data is 

too large, relative to the training samples. An effective way to solve this problem is 
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to reduce the dimension of the hyperspectral images. This can be done by extracting 

a number of salient features from the hyperspectral data (Keshava and Mustard, 

2002; Su et al., 2008; Sánchez et al., 2010).  

Furthermore, hyperspectral sensor uses many contiguous bands of high resolution, 

which covers the visible, near-infrared, and shortwave infrared spectral bands 

(Adams and Smith, 1986; Vane et al., 1993; Lillesand and Kiefer, 1994; Nascimento, 

2005). Information obtained from a particular pixel in a given hyperspectral band is a 

mixture of the energies scattered by the constituent substances in the respective pixel 

spatial coverage (Adams and Smith, 1986). According to Heinz and Chang (2001), 

Linear Spectral Mixture Analysis (LSMA) is a commonly accepted approach to 

mixed-pixel classification in remote sensing to estimate fractional abundance present 

in the image pixels. This study addresses the concerned issues for a remote sensing 

hyperspectral data and classification.  

1.2 Problem statement 

In remote sensing software, there are arrays of classifiers that can be used for image 

classification. Despite these arrays, knowing and understanding the correct classifier 

to use for a particular dataset remains a major challenge. Majority of preceding 

research has centred attention on developing classifiers that are better than existing 

ones (Steele and Patterson, 2001; Pal, 2007). Ensemble classification is an emerging 

approach to land cover mapping whereby the final classification output is a result of 

a ‘consensus’ of classifiers. Ensemble classification has been successfully deployed, 

but little has been done to systematically analyze the interplay between the ensemble 

size and the resulting classification accuracy. Hence, to date it has not been 

ascertained how many base classifiers an ensemble should have, or for a given 
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ensemble, how many features should the base classifiers have and the dependency of 

them on the data in question.  

An ensemble system should consist of base classifiers which are diverse i.e. 

Classifiers whose decision boundaries err differently. Nevertheless, it is not 

established if there is any correlation between classification accuracy and diversity 

measures. Previous work relating ensemble classification to land cover mapping has 

focused on investigating how combining different classifiers impacts on 

classification accuracy (Foody et al., 2007), how different types of ensembles can be 

applied to land cover mapping (Pal, 2007) and also enforcing diversity through 

bagging for land cover mapping (Steele and Patterson, 2001). Kittler et al., (1998) 

developed a common theoretical framework and revealed that many available 

algorithms are developed to solve different problems of classification where all the 

pattern representations are jointly used to make decisions. In this research, the 

influence of ensemble classification on land cover classification accuracy was 

investigated. 

Hyperspectral Imagery data provide ample spectral information to identify and 

distinguish spectrally unique materials. Therefore, the classification of the materials 

and classifier performance over the data is very crucial.  While the general 

procedures (pre-processing and classification) for hyperspectral images and 

multispectral images are the same, the processing of hyperspectral data remains a 

challenge. Especially, cost effective and computationally efficient procedures are 

required to process a large number of image bands (Varshney and Arora 2004; Xie et 

al., 2008, Abe et al., 2012). 
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A major problem with hyperspectral dataset is mixed pixels which are associated 

with the hyperspectral sensor used during sensing. Spectral mixture analysis provides 

an efficient mechanism for the interpretation and classification of remotely sensed 

multidimensional imagery (Plaza et al., 2002; Iordache et al., 2011). In remote 

sensing literature, a number of techniques have been developed for unconstrained, 

partially constrained and fully constrained linear spectral unmixing which can be 

computationally expensive (Sanchez et al., 2010; Iordache et al., 2011). For fully 

constrained linear spectral mixing analysis, two constraints are imposed. First, the 

sum of the abundance fractions of information present in an image pixel should be 

one. Secondly, these abundance fractions should be nonnegative. The first constraint 

can be easily solved while the second has not been fully solved because disparities 

can be experienced and the solution requires numerical approaches. For this purpose, 

an experimental comparison of supervised learning classifiers for land cover 

classification of hyperspectral imagery was investigated.  

1.3 Aim and Objectives  

The study investigates the influence of ensemble classification approach and spectral 

mixing problems associated with hyperspectral imagery for land cover classification 

accuracy. 

The objectives are to investigate: 

 Diversity through training a given classifier on different features and land 

cover accuracy 

 Interplay between the structure of ensemble and land cover classification 

accuracy 
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 Interplay between combination rules of the ensemble and land cover 

classification accuracy 

 Fully constrained spectral unmixing analysis for land cover classification. 

The process involved; 

 Data dimensionality reduction using the Eigenvalues and Maximum Noise 

Factor (MNF) 

 Separate noise from data 

 Obtain spectral endmembers and their corresponding spectral signatures 

 Obtain the best pure spectral pixels from the dataset using the Pixel Purity 

Index (PPI)  

 Estimate fractional abundance in the dataset thereby obtaining the numeric 

values for land cover classification 

1.4 Contribution to knowledge 

Several research studies have been reported in the remote sensing literature on 

different classification algorithms. The ensemble classification approach has been 

proven to yield favourable results compared to single systems for a broad range of 

applications (Polika, 2006). This research revealed that on combining classifiers in 

its application for land cover mapping, there is no significant benefit in having many 

base classifiers. In this study, three base classifiers were sufficient to give an 

accurate result (Gidudu et al., 2009a, Abe et al., 2010). 

Reports in the remote sensing literature on how to quantify diversity in the ensemble 

classification has focus investigation on finding measures to build diverse ensemble 

systems (Kuncheva and Whitaker, 2003). This research revealed that diversity 
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measures do not provide an adequate means upon which to constitute ensembles for 

land cover mapping (Gidudu et al., 2008a). 

The major contribution to knowledge of the study is the introduction of Generalized 

Reduced Gradient (GRG), an optimization technique to estimate fractional 

abundance in hyperspectral image for land cover classification. From literature, a 

number of techniques have been developed for unconstrained, partially constrained 

and fully constrained linear spectral unmixing which can be computationally 

expensive (Sanchez et al., 2010). For instance, quadratic programming has been 

applied to impose abundance sum-to-one constraint (ASC) and abundance no-

negativity constraint (ANC) to obtain fractional abundance, but the disadvantage is 

that the algorithms are computationally expensive (Boardman, 1995; Settle and 

Drake, 1993; Heinz and Chang, 2001).  

The method used by (Heinz and Chang, 2001) likewise has the limitation of 

excessive computational complexity as the number of endmember increases. Another 

approach is the application of the least square method which cannot satisfy the ASC 

and ANC. If applied, the solved abundance fractions of the material signatures may 

be negative and their sum within an image pixel may not necessarily be one. Hence, 

the solutions are generally not optimal in terms of material quantification (Heinz and 

Chang, 2001; Sanchez, et al., 2011).  

Introducing Generalized Reduced Gradient (GRG), an optimization technique with 

fully constraints algorithm in this study provides solution to the problems of 

estimating fractional abundance in hyperspectral image. The estimated numeric 

values obtained was successfully used for land cover classification using various 

classifiers and the classification accuracy results are remarkably good (Abe et al., 
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2012). This is important for decision maker to consider tradeoff in accuracy and 

complexity of methods. In addition, the research permits the analysis of spatial 

dimension of land cover change and will contribute to the assessment of 

consequences of land cover change. 

Another contribution to knowledge is the ability to successfully apply the GRG 

algorithm on the Indian pine dataset (Abe et al., 2012). The GRG algorithm has been 

able to solve the land-cover classification scenario associated with the Indian pine 

dataset which has been researched for a long time due to the problematic nature of 

the dataset (Landgrebe, 1998; Plaza et al., 2008). The algorithm was successfully 

applied to Washington DC mall hyperspectral dataset (Abe et al., 2012). The 

research reveals that the GRG algorithm can be successfully applied to any type of 

data. Hence, ensemble classifiers improve predictive accuracy.  

The research outputs have been able to produce nine publications to its credit. These 

include five international conference publications, two local conference publications, 

one published in the Computing Research Repository (CoRR), one submitted for 

Journal publication and one Book Chapters. Abe et al., 2012 obtained a merit award 

based on the reviewer reports and the score reports of the conference committee 

members during the conference period. 

1.5 Scope of the Thesis  

The techniques used in this work are made general and can be used for other 

applications, other than considered in this thesis. Land cover classification accuracy 

was investigated throughout this work, using various classification algorithms. 

According to Congalton and Green (2009), there are two types of map accuracy 

assessment. They are positional and thematic accuracy assessments. Positional 
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accuracy involves location of map features accuracy and measures the distance 

between the spatial feature on a map and its true location on the ground.  

On the other hand, thematic accuracy assessment deals with the labels or attributes of 

the features in the ground truth or reference map.  The accuracy assessment that was 

used for this study was based on thematic. This measures whether the mapped 

feature labels are different from the true feature label. The process includes; 

designing of the accuracy assessment sample, data collection for each sample and 

results’ analysis. The study areas used for the research are thematic Landsat imagery 

of Kampala, the capital of Uganda, Indiana pines and Washington DC mall 

hyperspectral datasets. 

 1.6 Thesis Layout   

The remaining parts of the thesis are structured as follows: 

Chapter 2 presents related theory on remote sensing and applications. It will also 

include a survey of work done using different classification algorithms as applied to 

remotely sensed imagery. 

Chapter 3 contains different design methodology used for this study. There are 

six investigations described in the chapter with each investigation carried out in 

accordance with the objectives of the study. 

Chapter 4 shows the results obtained from the investigations carried out in 

chapter 3. It also contains discussions on the results.  

Chapter 5 summarises the major findings of this research and recommendations 

for further research directions are given.  
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Appendices: Appendix A presents the Land cover maps obtained using Kampala 

dataset; Appendix B contains Land cover maps generated using Indiana pine dataset. 
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CHAPTER 2 

Related theory  

This chapter presents a summary of remote sensing and the concept of hyperspectral 

images. Related theories on feature extraction and classification algorithms used in 

the study are undertaken. 

2.1   Land cover 

The dynamic and complex nature of environmental changes poses numerous 

challenges to human development. With increasing deforestation, industrialization, 

urbanization, mineral exploration among others, the price has been environmental 

degradation. Some of the long term consequences of environmental degradation have 

included: increased poverty, as well as climate change resulting in unexpected 

prolonged rains and droughts (Xiao et al., 2004; Xie et al., 2008). Some of the 

mitigation measures include environmental monitoring, environmental modelling 

and advocacy about the importance of the environment. Assessing and monitoring 

the state of the earth’s surface is a major requirement for global change research and 

has resulted into new clarity and better awareness of the earth’s dynamic nature 

(Lambin et al., 2001; Jung et al., 2006).  

Land cover serves as a basic inventory of land resources for all levels of government, 

environmental agencies, and private industries throughout the world. Land Cover is 

characterized by a large variety of special distinct classes. The diagnosis and 

evaluation of the spectral separability measure yield the potential for automated 

identification and mapping of these classes. Land cover mapping has found 

applications in inventory and baseline land resource mapping, land change and time 
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series analysis, agricultural monitoring, natural resource monitoring, error 

assessment and uncertainty management among others (Bruzzone and Cossu, 2002; 

Wolter, 2005; Randall, 2006; Chen et al., 2007; Xie, et al., 2008)   

2.1.1 Why Land Cover mapping? 

Land cover refers to the surface cover of the earth. Land cover mapping constitutes 

an integral component of the process of managing the land resources and mapped 

information is the result of analysis of remotely sensed data (Levin, 1999). 

According to Congalton and Green, (2009), because the earth’s resources are scarce, 

and more people are added to it continually, there will be a shortage of resources and 

their values. Hence, the need for timely and accurate information dissemination on 

the type, quantity and degree of resources increase. For this reason, land cover 

mapping is regarded as important for environmental management and land use policy 

making. Because of its broad coverage and cost-effectiveness, application of remote 

sensing to derive land cover information, using either manual interpretation or 

automated classification has been on the increase. The latter is frequently used as it 

rapidly reduces the workload of the image interpretation and requires much less 

expert knowledge (Zhou and Yang, 2009).  

2.2 Remote sensing 

Remote sensing is the acquisition and analysis of information about the earth from a 

distance using a computer and sensor through electromagnetic radiation. This started 

in 1830s with the origination of the camera (Jorgensen, 2004). Figure 2.1 shows the 

concept of remote sensing. The leap from manual aerial photographic interpretation 

to ‘automatic’ classification was inspired by the availability of experimental data in 

various bands in the mid 1960’s as a prelude to the launch of the Earth Resources 
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Technology Satellite (ERTS – which was later renamed Landsat 1) (Maul and 

Gordon, 1975). Landsat Thematic (TM), a moderate resolution scanner makes it 

possible to view the co-occurrence of different materials within the ground 

instantaneous field of view of urban areas that are characterized by a pattern of very 

heterogeneous patches. This necessitated the adoption of digital multivariate 

statistical methods for the extraction of land cover information (Landgrebe, 1997).  

The conservation, preservation and sustainable yield of natural resources are 

increasingly dependent upon remotely sensed data for inventory and monitoring of 

changes (Xie, et al., 2008). A suite of digital data, such as high resolution satellite 

images is currently available for this purpose. New technologies such as Image 

Processing (IP), GPS and GIS are being used to integrate and process these data. 

Digital image processing is extremely important in fully harnessing the information 

in high resolution satellite imagery data. 

 

Figure 2.1: Concept of remote sensing  

(Landgrebe, 1998). 

Remote sensing technology not only can be applied to map vegetation covers over 

land areas, but also in underwater areas with focus on mapping Submergent Aquatic 
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Vegetation (SAV), which is regarded as a powerful indicator of environmental 

conditions in both marine and fresh water ecosystems (Wolter et al., 2005; Lathrop 

et al., 2006; Xie et al., 2008). 

2.3 Data collection 

Remote sensing instruments, measures reflected electromagnetic radiation with the 

aid of aerial or satellite platform (Figure 2.2). Remotely sensed imageries are 

obtained using passive or active remote sensors. Passive sensors measure energy that 

is naturally available through sun ray when available, while active sensors depend on 

their energy source for illumination. Passive sensor can only be used during the day 

since that is when the sun is available to illuminate the earth. Active sensors radiate 

energy directly to the target object to be investigated. The sensor detects and 

measures the radiation reflected from that target. 

 

Figure 2.2: Remote sensing sensors  

(Levin, 1999). 
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A remote sensing image is an objective recording of the electromagnetic reaching the 

sensor. The electromagnetic spectrum (figure 2.3) ranges from shorter wavelengths 

to the longer wavelengths. Though there are several regions of the spectrum that can 

be used for remote sensing, the most frequently used is the ultraviolet portion. The 

ultraviolet portion of the spectrum has the shortest wavelengths of the 

electromagnetic spectrum. 

 

Figure 2.3: Electromagnetic spectrum  

(Levin, 1999) 

The remote sensing process involves interaction between incident radiation and the 

targets of interest are as shown in figure 2.4. The radiation used for remote sensing 

travels through some distance through the atmosphere before reaching the earth to 

collect the information on the target. The seven stages comprising the process of 

remote sensing as shown in figure 2.4 are: 

 Energy source or illumination (A) 
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 Radiation and the atmosphere (B)  

 Interaction with the target (C) 

 Recording of energy by the sensor (D) 

 Transmission, Reception and Processing (E) 

 Interpretation and analysis (F) 

 Application (G) 

 

Figure 2.4: Remote Sensing process  

(Levin, 1999) 

2.4 Image resolutions 

Spectral resolution is the ability of a sensor to produce clear or distinguished 

wavelength interval, known as channels or bands in the electromagnetic spectrum 

(Fundamental of Remote Sensing). The arrangement of pixels in an image describes 

the spatial structure while radiometric describes the actual information contained in 
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the image. The temporal resolution is the length of time taken by the satellite to 

complete one entire orbit cycle. The image obtained by remote sensors may contain 

one spectral band called panchromatic image (black and white), multispectral images 

contains few spectral bands and contiguous spectral bands are hyperspectral images. 

Different class labels and details in an image can be distinguished when their 

responses over a distinct wavelength range are compared (Fundamental of Remote 

Sensing). Figure 2.5 shows the three dimensional hyperspectral data cube and can be 

treated as a stack of two dimensional spatial images, each corresponding to a 

particular narrow spectral band. 

 

Figure 2.5: Three dimensional hyperspectral data  

(Shaw and Burke, 2003) 

2.5 Hyperspectral Imagery 

Recent developments in sensor technology have resulted in the development of 

hyperspectral instruments. The instruments are capable of collecting hundreds of 

images (spectral bands) corresponding to wavelength channels, for the same area of 

the earth’s surface (Green et al., 1998; Plaza et al., 2003). Each pixel contains in 
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hyperspectral data cube is linked to spectral signature or fingerprint that uniquely 

characterize the materials within the pixel (Figure 2.6). Such recognition provides a 

great advantage for detecting minerals, urban planning and vegetation studies, 

monitoring and management of environment, security and defense matters among 

others (Varshney and Arora, 2004; Xie et al., 2008). However, accurate 

classification of remote sensing images is an important task to be able to achieve 

these advantages (Shaw and Burke, 2003). The existing classifiers are certainly 

diverse, robust and powerful, it is abundantly clear that much information remains 

untapped in modern hyperspectral data, awaiting new algorithms and software 

implementations.

 

Figure 2.6: Concept of imaging Spectrometer  

(Shaw and Burke, 2003) 
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2.6 Spectral mixture 

In hyperspectral imagery, a pixel is usually mixed with a number of materials present 

in the scene. Spectral mixture analysis has been extensively used in remote sensing 

for material discrimination, classification and detection. Various spectral mixture 

techniques have been reported in the remote sensing literature (Plaza et al., 2002; 

Keshava and Mustard, 2002; Plaza et al., 2004b; Pinho et al., 2008; Zhang and 

Huang, 2010). However, the spectral signature of a particular pixel contains a 

mixture of the signatures (fingerprints) of the numerous materials present within the 

spatial coverage of the target field view by the sensor. This is due to one of the 

following reasons:  

(1) Low spatial resolution of the sensor used that distinct material can jointly 

occupy one pixel. The outcome spectral measurement contains some composite of 

the individual spectral. This is common with remote sensing platforms operating at 

high altitude, covering large area surveillance with low spatial resolution.  

(2) Mixed pixel can also occur when unique materials are combined into a 

homogeneous mixture (Sanchez et al., 2010). 

Spectral unmixing is the process whereby the measured spectrum of a mixed pixel is 

broken down into a number of pure spectral components, referred to as endmembers. 

This is also known as class labels, class types, components or signatures (Gong and 

Zhang 1999) and a set of corresponding fractional abundance that indicate the 

amount of each endmember present in the pixel (Plaza et al., 2004b; Sanchez et al., 

2010). In hyperspectral imagery, linear spectral unmixing is a commonly accepted 

approach to mixed-pixel classification. Distinct substances such as water, tree, 

bridge, grass among others which are called the endmembers and the fraction in 
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(a) (b) 

which they emerge in the mixed pixel is referred to as fractional abundance. The 

other method used is the nonlinear mixing, where the incident sun ray comes across 

close mixture that causes multiple bounces.  

The disadvantage of using nonlinear method is that the particle size, composition and 

altered state of the endmembers due to the multiple bounce significantly control the 

parameters of the solution (Keshava and Mustard, 2002). For experiment 5 of this 

research, linear unmixing method was adapted to generate fractional abundance in 

order to determine the degree of abundance in each endmember present in the pixel. 

 

Figure 2.7: Linear and nonlinear mixing 

(a) Linear mixing: Radiated sun reflected from the target through a single bounce  

(b) Nonlinear mixing: Radiated sun encounters an intimate mixture that stimulates 

multiple bounce (Keshava and Mustard, 2002). 

We chose five algorithms from WEKA software for classification procedure because 

they are freely available and research has shown that the software has produced good 

results in remote sensing imagery classification (Garner, 1995; Pinho et al., 2008; 

Moore et al., 2009; Nandgaonkar et al., 2010). The algorithms used are: C4.5, 
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Random forest, Support vector machine, neural networks, bagging using REPtree as 

the base classifier. In the next session, some applications of these classifiers that 

were used in this research are discussed.  

2.7 Image processing and classification 

 Image processing is any form of signal processing for which the input is an image, 

such as satellite images, a photograph or video frame. The output of image 

processing may be either image, a set of characteristics or parameters related to the 

image. Image processing is of interest because it affords abundant data to be 

translated into useful information in time (Liu et al., 2009). Numerous sources of 

imagery are identified by their differences in spectral, spatial, radioactive and 

temporal characteristics, hence are suitable for different purposes of vegetation 

mapping. Then, correlations of the vegetation types (communities or species) within 

the classification system with discernible spectral characteristics of remote sensed 

imagery have to be identified. These spectral classes of the imagery are eventually 

translated into the vegetation types in the image interpretation process, which is also 

called image processing (Xie et al., 2008). 

The abilities to retrieve information from the data motivates researchers to explore 

methods of data mining, a non-trivial process of identifying valid, novel, potentially 

useful, and ultimately understandable patterns in data (Fayyad et al., 1996; Xie et al., 

2008; Li, 2011). Increasingly Earth observation has become a prime source of data in 

the Geosciences and many related disciplines permitting research into the distant 

past, the present and into the future. One of the areas of research interest has always 

been how to relate earth observation output e.g. Aerial photographs and satellite 

images (remotely sensed imagery) to known features. Pre-processing of remotely 

sensed (satellite) images prior to vegetation extraction is important to remove noise 

http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Photograph
http://en.wikipedia.org/wiki/Video_frame
http://en.wikipedia.org/wiki/Output
http://en.wikipedia.org/wiki/Parameter
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and increase the interpretability of image data. This is true when dealing with time 

series of imagery or when an area is covered with many images since it is crucial to 

make these images compatible spatially and spectrally. It is expected that results 

obtained after image pre-processing should appear as if the image were acquired 

from the same sensor (Hall et al., 1991; Xie et al., 2008). 

Image classification is the process whereby pixels in an image are automatically 

categorized into land cover classes. It is a fundamental analysis technique for 

remotely sensed data and involves the categorization of pixels based on their spectral 

characteristics (Cihlar et al., 1998). Image classification can be categorized into (i) 

supervised and unsupervised, (ii) Spectral and contextual classifications.  

2.7.1 Supervised and unsupervised classification 

Supervised classification requires the user to decide which classes exist in the image, 

and then delineate samples of these classes. These samples (known as training areas) 

are input into a classification program, which produces a classified image. The 

choice of the training area is based on the researcher’s familiarity with the 

geographical area and knowledge of the actual land cover types in the image.  

Unsupervised classification does not require training areas. Actually, it is the 

opposite of the supervised classification process. Spectral classes are grouped based 

significantly on the numerical information in the data and then matched by the 

researcher to the information classes (Bortolot, 1999; Sabino, 2005). Types of 

supervised classifiers include Minimum – Distance to Means, Neural Networks, and 

maximum likelihood classifiers, while examples of unsupervised classifiers include 

K – Mean, Fuzzy C means, and ISODATA among others (Bortolot, 1999; Sabino, 

2005). 
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2.7.2 Spectral and contextual classifications 

Spectral techniques are based on the spectral response pattern of a pixel and are 

divided into two categories, parametric and non-parametric classifiers. Parametric 

classifiers assume a Gaussian distribution of the data. In supervised parametric 

classification, a multivariate Gaussian distribution associated with each class is 

extracted from the training set by estimating the mean vector and the covariance 

matrix. Parametric classifiers are based on the definition of some discriminate 

functions based on the parameters of normal distribution. An example of parametric 

classifiers is a Gaussian maximum likelihood classifier. Non-parametric classifiers 

imply decision boundaries of arbitrary geometry and needs an iterative process to 

complete the boundaries. Example of these classifiers includes Nearest Neighbor (1-

NN) 3, K-Nearest Neighbor (k-NN) 4 techniques, kernel methods, and classification 

trees. Contextual classifiers consider the special context of a pixel in the image and 

are generally applied on remote sensing data when a large variety of spectral 

responses are observed in the same field. Contextual classifiers have been used 

successfully in a number of different problems such as coping with segmentation and 

classification of remotely sensed data (Dwivedi, et al., 2004). 

2.8 Classifiers 

This section presents a brief discussion on the classifiers used for this research. 

Supervised classification method was used for all the investigations carried out in the 

research. 

2.8.1 Support Vector Machines (SVMs) 

The construction of Support Vector Machines (SVMs) classifier has been described 

in many literatures (Boser et al., 1992; Vapnik, 1999; Witten and Frank, 2005; 
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Watanachaturaporn & Arora, 2004; Watanachaturaporn et al., 2004, Bruzzone et al., 

2006). The classifier has been proven to have a high generalized ability to solve 

classification problems and has been extensively used in supervised classification for 

land cover mapping (Cortes and Vapnik, 1995; Lennon et al., 2002; Melgani and 

Bruzzone, 2004; Gidudu, 2006; Abe et al., 2010). This technique has been used in 

different application domains, including object detection and text categorization and 

has outperformed the traditional neural network technique in terms of generalization 

capacity (Taratinno et al., 2006). It has a very interesting property for hyperspectral 

image analysis in the sense that it does not suffer from Hughes phenomenon and 

with a small number of training samples it can separate classes easily (Cortes and 

Vapnik, 1995; Lennon et al., 2002; Qi and Huang, 2007). SVM selects the optimal 

hypothesis as the one yielding the maximum margin of separation between two 

classes (Vapnik, 1995). Among multi-class SVMs frequently used is one against one 

(1A1) algorithm, a type used in this research. The method constructs k (k – 1) /2 

hyperplanes where each is trained on the data from two classes selected out of k 

classes. The performance and computation cost of (1A1) has been established, when 

compared with other SVM methods that no method can compete with one against 

one in terms of training and the good statistical performance. For a k-class problem, 

1A1 algorithm creates all pairwise discriminating hyperplanes, in the sense that (k – 

1) hyperplanes are created to separate one class from others. All final borderlines are 

included in the created hyperplanes. The decision function for class ij is defined as 

(Platt 2004): 
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 diverse decision function for a k – class 

problem exist. The 1A1 method used for class recognition in this research was the 

“max wins” algorithm. In this method, each classifier casts one vote for its chosen 

class and the class with majority vote wins. This means (Platt 2004): 

Class X  arg maxi   Xsign
k

ij ij
f  1

   (2.4) 

Where sign (fij) represents the sign function, meaning that it has the value 1 when fij 

is positive otherwise 0. When there is a tie on the decision, each point in the 
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unclassifiable region is given to the nearest neighbour applying real value decision 

functions as (Platt 2004): 

Class X  arg maxi   X
k

ij ij
f  1

    (2.5) 

The SVM used in this study experiment is the Gaussian kernel, which is Radial basis 

function (RBF) is given by (Platt 2004): 

  
  xxxx jK

iji
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exp,  
     (2.6) 

The network operates in a way that one basis function is centered on all training 

instances. The predicted outputs are combined linearly by computing the maximum 

margin hyperplane (Witten and Frank, 2005). The SVM (LIBSVM) used for 

sequential minimal optimization (Chang and Lin, 2001) in WEKA software was used 

for the classification. 

2.8.2 Neural network 

Neural network methods are general classifiers that can handle problems with lots of 

parameters and can classify objects, even when the distribution of object in n-

dimensional parameter space is very complex. Research activities have established 

that neural networks are capable alternative to numerous conventional methods 

(Zhang, 2000, Benediktsson et al., 1990; Benediktsson and Swain, 1992, Marwala, 

2010). They are data driven, self-adaptive technique that adjust themselves to data 

under investigation without any explicit specification of the functional or 

distributional form. They are also universal functional approximations that can 

approximate any function with arbitrary accuracy (Cybenko, 1989; Hornik, 1991; 
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Zhang, 2000). In addition, neural networks are nonlinear models that make them 

flexible in modelling real world complex relationships. Furthermore, they are 

capable of estimating the posterior capability that provides the basis for creating the 

classification rule and carrying out statistical analysis (Zhang, 2000; Richard and 

Lippman, 1991, Marwala, 2010). Various neural networks are available for 

classification purposes (Lippmann, 1989), but this paper focus on multilayer 

perceptron (MLP) that uses back propagation to classify instances. The nodes in the 

network are all sigmoid. 

2.8.3 C4.5 

The C4.5 for many years was the standard decision tree classification algorithm used 

in the machine learning and data mining communities. The algorithm creates 

decision tree classifier to predict membership cases of categorical dependent variable 

from measures on one or more variable. It uses information gain ration matrix for 

classification. C4.5 uses the significance of statistic of error to trim branches and 

uses probability weighting to deal with feature loss during the training period 

(Richard et al., 2006; Wang et al., 2008). The algorithm works in a way that each 

node of the decision tree matches an attribute and individual arc matches a value 

range of the attribute. The value of the expected attribute is known by the path from 

the root to individual leaf. The highest attribute is allocated to each node. This aims 

at associating the attribute to reduce the data entropy to a node (Pinho et al., 2008; 

Silva et al., 2008). Moore (2009) claimed that C4.5 is consistent and performs better 

using large data.  Using Remote Sensing (RS) data for classification, Yu and Ai 

(2009) implemented rough set and C4.5 algorithm. The classifier performs well on 

that particular data type. Polat and Gunes (2009) conducted investigation using ‘one 

against all method’ with C4.5. The experiment was conducted with Dermatology, 
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Image segmentation, Lymphography datasets.  They were able to achieve very good 

accuracy against other algorithms. But nothing was said about time taking by the 

algorithm and other datasets. Efficiency of an algorithm also depends on the type of 

data used. Jiang and Yu (2009) suggested a hybrid algorithm based on outlier 

detection and C4.5. They used imbalance data and make it stable with the application 

of outlier detection using C4.5 algorithm. The experiment produced good accuracy 

as compared with other algorithm.  

2.9 Ensemble classifier 

Ensemble classifiers are essentially a multi-classifier system, implying that their 

functionality is dependent on a collection of classifiers – an ensemble of classifiers to 

get an accurate result (Foody et al., 2007). In literature, ensemble classification 

systems go by a variety of names, such as a mixture of experts and a committee of 

classifiers (Marwala, 2001; Polikar, 2006; Gidudu et al., 2009; Marwala, 2009; 

Marwala, 2011). Individual predictions of the ensemble members are typically 

combined by weighted or unweighted voting to classify new data (Foody et al., 

2007; Qi and Huang, 2007; Marwala, 2011). Research has shown that ensemble 

generates better classification accuracy results than the individual classifier making 

up the ensemble (Jimenez et al., 1999; Giacinto and Roli, 2001; Polikar, 2006; Pal, 

2007). In remote sensing Giacinto and Roli, 1997; and Roli et al., (1997) report the 

application of an ensemble of neural networks and the integration of classification 

results of different type of classifiers. 

The main idea behind ensemble classification is that one is interested in taking 

advantage of various classifiers at their disposal to come up with a ‘consensus’ 

result. This is made possible by the following fundamental reasons (Dietterich, 

2009):  
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(i) Statistical: This problem comes up due to the small amount of training 

data available as compared to the size of the hypothesis space. By 

constructing an ensemble out of all of these accurate classifiers, the 

algorithm can “average” their votes and reduce the risk of choosing the 

wrong classifier. 

(ii) Representational: In most applications of machine learning, the true 

function cannot be represented by any of the hypotheses in the space. 

(iii) Computational: Many learning algorithms work by performing some 

form of local search that may get stuck in local optima.  An ensemble 

constructed by running the local search from many different starting 

points may provide a better approximation to the true unknown function. 

These three fundamental issues are the three most important ways in which existing 

learning algorithms fail. Hence, ensemble methods have the promise of reducing 

(and perhaps even eliminating) these three key shortcomings of standard learning 

algorithms, than any of the individual classifiers. 

The challenge at hand, involves deciding which classifiers to consider and how to 

combine their results. Polika (2006) affirmed that while the prediction of the 

ensemble may not be better than the best individual classifier in the ensemble, the 

method will surely minimize the overall risk of making a particularly poor choice. In 

another justification, Polika (2006) opine that ensemble method, handling large 

volume of data set by a single classifier will not be realistic. The best way to handle 

the data is to partition it into smaller subsets, train different classifiers with different 

partitions of data, and combine their predictions using an intelligent combination 

rule. The outcome often proves to be more efficient (Kittler, 1998; Polika; 2006).  
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From available literatures, Polkar, (2006) recommends that the constituent classifiers 

in the ensemble have different decision boundaries (that is diverse), because if 

identical there will be no gain in combining the classifiers (Shipp and Kuncheva, 

2002). Diversity in ensemble systems has been more commonly explored by 

considering different classifiers, training a given classifier on different portions of 

the data, using a classifier with different parameter specifications and using different 

features. Diversity in ensemble systems is ensured by selecting base classifiers which 

err differently, since strategically combining these classifiers can reduce the total 

error (Tsymbal et al., 2005; Parikh and Poikar, 2007; Oza and Tumer, 2008; 

Marwala, 2011) as illustrated in Figure 2.8. 

 

 

Figure 2.8: Graphical illustration of an Ensemble classifier system 

(Parikh and Polikar, 2007) 
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Two methods which have gained prominence in ensemble classification research 

include bagging or bootstrap aggregating (Breiman, 1996) and Adaboost or 

reweighting boosting (Freund and Schapire, 1996), which principally involve 

training a classifier on different training data. 

Of equal importance to ensemble classification is how to combine the results of the 

base classifiers (Foody et al., 2007). A number of approaches exist to combine 

information from multiple classifiers (Giacinto and Roli, 2001; Valentini and 

Masulli, 2003; Huang and Lees, 2004) such as majority voting (Chan and Paelinckx, 

2008), weighted majority voting (Polikar, 2006) or more sophisticated methods like 

consensus theory (Benediksson and Swain, 1992) and stacking (Džeroski and Zenko, 

2004). The majority vote rule was adopted as combination rule for the ensemble 

method used for this study. Majority vote rule functions on binary value function Δki, 

(Hurber and Dutra, 2000; Kittler et al., 1998) 

where  1ki
 if  

 (  |
  
→)         

  (  |
  
→) and Δki = 0   (2.7) 

Otherwise, class    is assigned by majority voting through (Hurber and Dutra, 

2000): 

  ∑     
 
     

 
   
   

∑     
 
        (2.8) 
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For each class     in (2.7), the sum on the right hand side counts the votes obtained 

for the prediction from the base classifiers. The class that has the highest number of 

votes is chosen as the consensus (majority) decision.  

2.9.1 Random forest  

The random forests (RF) ensemble classifier builds several decision trees randomly 

as proposed (Mountrakis et al., 2011) for classification of multisource remote 

sensing, geographic data and hyperspectral imaging. Various ensemble classification 

methods have been proposed in recent times and they have been proven to 

considerably improve classification accuracy. The most famous and widely used 

ensemble methods are boosting and bagging (Breiman, 2001). The boosting method 

is based on sample re-weighting technique, but a bagging method uses bootstrapping. 

Random Forest classifier uses bagging or bootstrap aggregating to yield an ensemble 

of classification and regression trees. The method works by searching only a random 

subset of the features for a split at each node to minimize the correlation between the 

classifiers in the ensemble. The method selects a set of features randomly and creates 

an algorithm with a bootstrapped sample of the training data (Breiman, 2001). This 

method provides a potential benefit that it is insensitive to noise or overtraining 

because resampling is independent of the weighting scheme employed. Additionally, 

the method is computationally lighter than methods based on boosting and bagging 

and often produces excellent results (Silva et al., 2008).  

The random forests algorithm uses Gini Index (Pal, 2005) as a feature selection 

measure. In this case, the impurity of a feature is measured against the classes. In 

certain training set T, selecting a pixel at random and allocates it to a class Ci (Pal, 

2005), (Rodriguez-Galiano, 2001); 



 

 

 

34 

 

 

 

     
1

/,/,
J

ii TTCfTTCf

   (2.9) 

Where   TTCf i /,  represent the possibility that a selection case belongs to 

class   . Hence, using a certain combination of features, a decision tree grows up to 

its maximum depth without pruning. For our experiment, 10 trees were constructed. 

Out of bag error was 0.5471 while considering 187 random features. 

2.9.2 Bagging  

Bagging (bootstrap aggregating) was the leading widely used technique of selecting 

sets for ensemble classifiers. The invention of bagging has its root from attempts to 

reduce the error variance. The algorithm operates by creating new training sets using 

resampling methods from the original data set n (the number of samples in the 

original training data) times, randomly with replacement. The sample being chosen 

will not be removed from the data set in the next draw. Therefore, some of the 

training samples will be selected more than once while some samples will not be 

chosen at all in a new set. The algorithm assists classification accuracy by reducing 

the variance of the classification errors. The classifiers are ensemble using majority 

vote and vote of each classifier carries the same weight (Breiman, 1996).  

2.10 Diversity measure 

Different diversity measures have been defined for quantitative assessment of 

diversity. The main focus of investigation has centered on finding measures which 

can be used as a basis upon which to build diverse ensemble systems (Masisi et al., 

2008). In literatures (Kuncheva and Whitaker 2003; Polkar, 2006), there are two 

categorizations of diversity measures, namely: pair-wise and non-pair-wise diversity 
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measures. Among pair-wise measures defined between two classifiers are 

Correlation, Q-Statistic, Disagreement and Double Fault Measures among others. 

For T classifiers, calculating T (T-1) /2 pair-wise diversity measures and the overall 

diversity of the ensemble is obtained by averaging these pair-wise measures. 

According to (Polikar, 2006), for two hypotheses hi and hj, the notations   

Table 2.1: Hypothesis for diversity 

 

 

a = fraction of instances that are correctly classified by both classifiers, 

b = fraction of instances correctly classified by hi but incorrectly classified by hj.  

a + b + c + d = 1  

Subsequently, the following pair-wise diversity measures can be defined: 

Correlation: Diversity is measured as the correlation between two classifier outputs 

define as (Polikar, 2006): 

     (      )               (2.10) 

Where y = √[(   )(   )(   )(   )]               

Maximum diversity is obtained for   = 0, indicating that the classifiers are 

uncorrelated. 

Q - Statistic is defined as (Polikar, 2006): 

 hj  is correct hj is incorrect 

hi is correct a B 

hj is incorrect c D 
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       (      ) (      )     (2.11) 

Q assumes positive values if the same instances are correctly classified by both 

classifiers, otherwise, negative values. Maximum diversity is also obtained for Q = 0. 

Disagreement and Double fault Measures: The disagreement is the probability that 

the two classifiers will disagree, whereas the double fault measure is the probability 

that both classifiers are incorrect. The diversity increases with both the disagreement 

and the double fault value (Polikar, 2006; Masisi et al., 2008).  

    Di.j = b + c,     (2.12) 

    DFi.j = d.      (2.13) 

The diversity measure for the ensemble is derived by calculating the average of the 

pair-wise measures of the constituent classifiers (Shipp and Kuncheva, 2002; 

Tsymbal et al., 2005). Non pair-wise diversity measures include: the entropy 

measure, Kohavi-Wolpert variance and measurement of inter-rater agreement 

(Kohavi and Wolpert, 1996). 

2.11 Feature selection 

Hyperspectral data has found applications in many areas due to the number of bands 

making up the dataset (Varshney and Arora, 2004). However, with increasing 

number of bands, cost of classification increases exponentially, though accuracy 

saturates after increase to a certain number of bands. Another problem is the Hughes 

phenomenon that states that the ratio of the number of pixels with a known class 

identity (known as instances) and the number of bands must be maintained at or 

above some minimum value to achieve statistical confidence (Hughes, 1968; Cheg et 
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al., 2006). Reducing the number of bands helps to maintain this law. This is very 

important at the pre-processing stage of either multispectral or hyperspectral remote 

sensing data (Cheg et al., 2006). Among various searching algorithms are, Random 

selection, Best-first have been successfully used for searching for an accurate subset 

(Kohavi, 1995). For ensemble classification method, the features to be included in a 

given base classifier may be selected using genetic algorithms (Optiz, 1999), 

exhaustive search methods and a random selection of feature subsets (Ho, 1998). 

Bhattacharya, Divergence, Transformed divergence and Random search schemes 

were used as feature selection methods in this study. 

2.11.1 Separability index  

Bhattacharya distance which measures the similarity of two discrete or 

continuous probability distributions (Bhattacharya, 1948; Choi and Lee, 2003) 

approach was used as an evaluation function for exhaustive search. This approach 

provides the statistical distance between each of the class pairs for each possible 

subset of features (Bhattacharyya, 1943). It provides the best subset of spectral 

features to be used for the classification process. The Bhattacharyya distance defined 

in eq. (2.13) can be written in a n-dimensional diagonalized coordinate. Feature 

selection attempts to select a subset of bands system (Guo et al., 2008): 
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Where 1
 and 1

 are the mean vector and covariance matrix of class i, respectively. 

The divergence separability index measures the distance between class means and 

Euclidean distance. Euclidean distance works using one band at a time. 

According to Eastman (2001), divergence is defined as; 

     1 1 1
0.5 0.5

t
trd c c c c c m m m mij i j i i j i j i j

               
    

  

          (2.15) 

(tr) represents trace, ( 1) means the inverse and (t) depicts the transpose, (i) and (j) 

represent subscripts for the two signatures, (C) stands for covariance matrix and (m) 

is the vector of means. The transformed divergence can be obtained using the 

formula (Eastman, 2001): 

      (   
 )       (2.16) 

where a =        , c is a constant multiplier and d is the divergence. 

2.12 Feature extraction model 

Guyon and Elisseeff, (2003) describes feature extraction as the transformation of 

original features to construct a new feature space. Examples of linear feature 

extraction models are the Principal Component Analysis (PCA) (Hyvarynën et al., 

2001), Independent Component Analysis (ICA) (Fukunaga, 1990) and Linear 

Discriminant Analysis (LDA) (Hyvarynën et al., 2001) among others. These 

algorithms minimize some criterion function like the mean square error (PCA), a 

class separability criterion (LDA) or an independence criterion (ICA). Various 
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classification models use the linear features to build a classifier, obtaining improved 

computational efficiency and accuracy (Grana and d'Anjou, 2004).  

Another approach to feature extraction is the linear spectral mixing analysis. A 

standard technique for spectral mixture analysis is linear spectral unmixing, (Hein 

and Chang, 2001; Plaza et al., 2004b), which assumes that the collected spectra at 

the spectrometer can be expressed in the form of a linear combination of 

endmembers weighted by their corresponding abundances. 

2.12.1 Linear mixing model 

Solving mixed different materials stirred up developing different algorithms to 

retrieve endmembers and the fractional abundance from mixed pixels. With 

reference to (Heinz and Chang, 2001; Keshava and Mustard, 2002; Plaza et al., 

2004b; Sanchez et al., 2010; Abe et al., 2012), each pixel (vector) in a remotely 

sensed hyperspectral image (I) having n number of bands is denoted by: 

 (   )  ∑   (   )     (   )   
 
              (2.17) 

Where, X (i, j) is a vector (L x 1) at a distinct spatial value  

= [  (   )   (   )   (   )       (   )]   
  

𝕽 = the real numbers in which pixel’s response   (   ) at sensor channels 

         is included. 

   = spectral response of endmember   at pixel  (   ) 

  = the total number of endmembers 
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 (   ) = noise vector and   (   ) is a scalar value that represents the fractional 

coverage of the endmember vector     at pixel  (   ) 

Linear mixing model operates under two constraints of the fractional abundance   .  

These are;  

(i) The abundance sum to one constraint (Heinz and Chang, 2001; Sanchez 

et al., 2010),  

∑   (   )   
 
   .    (2.18) 

(ii) Non-negativity constraint: All abundance should be no negative that is 

(Heinz and Chang, 2001; Sanchez et al., 2010) 

   (   )      for all           (2.19) 

This is the way of accounting for the full composition of a mixed pixel. In literatures, 

for fully constrained linear spectral mixing analysis, the first constraint imposed can 

be easily solved while the second has not been fully solved because disparities can 

be experienced and the solution requires numerical approaches (Heinz and Chang, 

2001; Sanchez et al., 2010).  

2.12.2 Linear unmixing procedure 

Endmember extraction and fractional abundance can be obtained by using the 

following three procedures as shown in Figure 2.9. They are dimension reduction, 

endmember determination and fractional abundance (inversion). 
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Figure 2.9: Spectral unmixing concepts  

(Sanchez et al., 2010). 

i. Dimension Reduction 

Dimension reduction method is aimed at reducing the number of spectral bands in an 

image. This is not compulsory when dealing with spectral unmixing. The process is 

carried out to reduce the time used during processing hyperspectral data. Dimension 

reduction algorithm does not generate an image different from the original image. 

Instead, it finds a minimum representation of the original image that adequately 

keeps the original information for successful unmixing in the lower dimension.  The 

algorithms are designed to reduce the error in the procedures action in the lower 

dimension (Keshava and Mustard, 2002). Among various algorithms developed for 

dimension reduction are the principal component analysis (PCA), maximum noise 

fraction (MNF) and the independent component analysis (ICA). 
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ii. Maximum Noise Fraction  

Maximum noise fraction (MNF) transforms and principal component analysis (PCA) 

are used to determine the dimensionality reduction to reduce computational 

complexity and also to compact information in transformed components (Green et 

al., 1988; Chaudhry et al., 2006). These algorithms are second order statistic-based 

transforms. PCA has the limitation of not being able to always produce images that 

gradually reduce image quality with an increasing component number. PCA 

maximizes the variance while MNF maximizes signal-to-noise ratio, hence the 

components will show increasing image quality. This is done by carrying out a 

forward transform, determining the bands that have coherent images (looking at the 

images and the eigenvalues), and perform an inverse MNF transform using a spectral 

subset to include only good bands or smoothing the noisy bands before the inverse.   

Let a remotely sensed hyperspectral image data set of n-bands with grey levels be 

given by eq. (2.20) (Green et al., 1988):  

   (   )                   (2.20) 

Where,     gives the coordinates of the sample. 

 (   )   (   )    (   )   (2.21) 

  (   )   {  (   )     (   )},   (   ) and  (   ) are the uncorrelated signal 

and noise components of  (   ) respectively. 

   { (   )}  ∑  ∑  ∑   (2.22) 
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where ∑  and ∑  represent the covariance matrices of   (   ) and  (   )  

respectively. 

It is easy to define MNF transform in matrix form (Green et al., 1988): 

 (   )     (   )      (2.23) 

Where   ( )   (  ( )     ( )) and    (       ) 

A significant difference between MNF transform and PCA is that,  

(i) Since MNF depends on the signal-to-noise ratios, it is invariant under 

scale changes to any band,  

(ii)   (   )  (   )     (   ) are orthogonal. 

In this study, MNF was adopted for dimensionality reduction in the endmember 

determination. 

iii. Endmember determination 

An endmember is defined as a spectrally pure pixel that portrays various mixed pixel 

in the image (Plaza et al., 2004b). For this study, the endmember extraction 

procedure was used to select the features used for the classification. The method of 

feature selection involves identifying the most discriminating measurements out of a 

set of D potentially useful measurements, where d ≤ D. Endmember extraction has 

been widely used in hyperspectral image analysis due to significantly improved 

spatial and spectral resolution provided by hyperspectral imaging sensor also known 

as imaging spectrometry (Chang et al., 2006; Chaudhry et al., 2006).  
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Identification of image endmember is a crucial task in hyperspectral data 

exploitation, especially classification (Martinez et al., 2006). When the endmembers 

have been selected, various methods can be used to construct their spartial 

distribution, associations and fractional abundances. For real hyperspectral data, 

various tools (algorithms) developed to execute the task of locating appropriate 

endmembers include, Pixel Purity Index (PPI), N-FINDR and Automatic 

Morphological Endmember Extraction (AMEE) (Plaza et al., 2004a; Chang et al., 

2006; Chaudhry et al., 2006; Martinez et al., 2006).  

Pixel Purity Index generates a large number of n-dimensional vectors called 

“skewer” (Boardman et al., 1995; Plaza et al., 2008), through the dataset. N-FINDR 

fully automated method locates the set of pixels with the largest possible volume by 

“inflating” a simplex within the image data (Winter, 1999; Plaza et al., 2004b). On 

the other hand, AMEE uses a morphological method where spectral and spatial 

information are equally required to derive endmembers. For the purpose of this 

research, PPI available in Environment for Visualizing Images (ENVI) was used to 

retrieve endmembers from the data. 

iv. Pixel Purity Index  

Pixel Purity Index (PPI) developed by Boardman et al., (1995) searches through a set 

of vertices of a convex geometry in a certain dataset that should present pure 

signatures present in the data (Chaudhry et al., 2006). The algorithm has a 

supervised characteristic nature. To generate the endmembers from the data, first, a 

“noise whitening” and dimensionality reduction step is performed using MNF 

transform (Boardman et al., 1995; Plaza et al., 2004b). Secondly, a Pixel purity score 

is obtained in the image cube through random producing lines in the n-dimensional 

space containing the MNF-transformed data. The spectral points are projected on the 
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lines and the points at the extremes of each line are counted. Bright pixels in the PPI 

image generally are image endmembers. The highest-valued of these pixels are input 

into the n-dimensional Visualizer for the clustering process that develops individual 

endmember spectra. 

v. Fractional abundance 

The Generalized Reduced Gradient (GRG) method is a well-known algorithm for the 

solution of optimization problems with non-linear objective function and constraints 

(Abadie and Carpentier, 1969; Haggag, 1981). From equation (2.17),   (   )  the 

fractional abundance can be derived using generalized reduced gradient (GRG) 

which is defined as (Haggag, 1981; Mouatasim, 2010) 

Optimize:  ( )    (2.24) 

Subject to: 

   ( )                                

    

where y:    →             
 →    are continuously differentiable, and       

is closed and convex set (for example,       
 [     ]. The problem in the equation 

(2.17) can be numerically solved by using the generalized reduced gradient method 

(Plaza et al., 2004b; Mouatasim, 2010). This produces a sequence {  }     where    

is an initial possible point. For each k>0, a new possible point      is created from  

   using operator     The iteration is given by: 

             ( 
 )   (2.25) 
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We introduce in this thesis an application of the generalized reduced gradient 

approach to generate fractional abundance from hyperspectral imagery for land cover 

mapping. 

2.13 Summary 

A review of relevant reported literature on remote sensing, data collection, image 

resolutions and processing, and different classification methods were summarized.  

Feature extraction model base on spectral unmixing was also presented. 

A gap in knowledge that is common to reported studies on ensemble is the lack of 

information on ensemble size and the resulting classification on land cover mapping. 

Also, it is not established if there is any correlation between classification accuracy 

and diversity measures. 

On spectral unmixing, studies also revealed that, a number of techniques have been 

developed for unconstrained, partially constrained and fully constrained linear 

spectral unmixing which can be computationally expensive (Sanchez et al. 2010). A 

major gap in knowledge that is common is, out of the two constraints imposed on 

fully constrained linear spectral mixing analysis, the second constraint, that is, the 

abundance fractions of information present in an image pixel should be nonnegative 

has not been fully solved. This is because disparities can be experienced and the 

solution requires numerical approaches. For these reasons, this work focuses on 

investigating the effect of ensemble size and correlation between classification 

accuracy and diversity measures. The issue on the second constraint imposed on 

fully constrained linear spectral analysis was also investigated. 
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CHAPTER 3 

Design methodology 

3.1 Introduction 

The process of extracting information from multispectral and hyperspectral images 

which are powerful tools in remote sensing are similar but there are procedures to 

undertake before analyzing hyperspectral datasets. The final performances of the 

datasets depend mainly on the processing systems (either hardware or software) of 

the collected data. This section presents various investigations conducted on 

multispectral and hyperspectral images for land cover classification. All 

investigations were conducted using supervised classification method in which each 

classifier is trained with pixels extracted from the region of interest on the selected 

features (bands) set. 

3.2 Research instruments 

3.2.1 Software 

There are various image processing software that are available among them are; 

SPAM; ISIS,.Tetracorder, SIPS (CU/CSES); MULTISPEC (Purdue) and ENVI. 

According to Boardman et al., 2006, using the available software on datasets, there is 

evident that not all information in modern hyperspectral data is tapped. This is 

because, the performance of each software on a dataset depends on the nature of the 

dataset been investigated. Therefore, there is need for new algorithms and software 

implementations 
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Multispec, a data analysis software system that originated in the LARSYS 

multispectral image data analysis system (Landgrebe and Biehl, 2001) was used to 

analyze the hyperspectral image data used. The software is a machine learning tool 

that has the ability of processing remotely sensed imagery. Among the various 

functions of the software is the Bhattacharyya seperability index, which was one of 

the separability index used in the research. The tool was used to separate unwanted 

bands from the dataset and was also used to combine different bands for the 

classification process in Matlab (MathWorks Inc., 2010).  

Matlab (Matrix laboratory) software is a high level language and interactive 

environment software used to perform computational intensive task. This software 

was used for the classification procedure. The algorithm programmed in the software 

was Support Vector Machine one against one. The predicted results from the 

classifiers were imported into IDRISI for land cover map generations.  

IDRISI, an integrated geographic information system (GIS) and remote sensing 

software was used for image processing. The software developed by Clark 

University has the capability of analyzing and displaying digital geospatial 

information (Eastman, 2006). The software has a comprehensive suite of image 

processing tools, making it an excellent choice for land cover mapping application 

with remotely sensed data. The software was used to extract regions of interest from 

the datasets for classification and was used to generate land cover maps using the 

results predicted by the classifiers. 

Environment for Visualizing Image (ENVI) software capable of extracting 

information from geospatial imagery was used to process the hyperspectral imagery 
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data for the purpose of the study. The image processing includes, dimension 

reduction, noise reduction and extraction of endmembers. 

Excel solver, an optimization tool written by Microsoft for use in Microsoft Excel. 

This was used to obtain the fractional abundance from the spectral signature obtained 

from the endmembers using Generalized Reduced Gradient (GRG) approach for 

classification. Solver model in excel has implicit constraints that are required to 

execute the GRG approach adopted in this study. 

WEKA (Waikato Environment for Knowledge Analysis) is a well-known suite of 

machine learning software written in Java. The software was developed at the 

University of Waikato, New Zealand. WEKA workbench has a collection of 

visualization tools and algorithms for remotely sensed imagery data analysis and 

predictive modelling (Witten and Frank, 2005). The software is freely available and 

has a comprehensive collection of data preprocessing and model techniques. Some of 

the classification algorithms available in WEKA were used for classification 

procedures in this study. 

3.2.2 Methods of creating ensembles 

Many methods for constructing ensembles have been developed among then are;  

(i) Bayesian Voting: This is done by enumerating the Hypotheses. In a Bayesian 

probabilistic setting, each hypothesis defines a conditional probability distribution. It 

primarily addresses the statistical component of ensembles. According to Dietterich 

(2001), the Bayesian approach does not address the computational and 

representational problems in any significant way 
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(ii) Manipulating the Training Examples: This involves manipulation of the 

training examples to generate multiple hypotheses. This technique works especially 

well for unstable learning algorithms, that is, algorithms whose output classifier 

undergoes major changes in response to small changes in the training data. Examples 

are Decision-tree, neural network, and rule learning algorithm. Training set can be 

manipulated using various methods such as; 

• Bagging (as discussed in chapter 2),  

• constructing the training sets by leaving out disjoint subsets of the training 

data  

• AdaBoost algorithm developed by Freund and Schapire, (1996): This 

manipulates the training examples to generate multiple hypotheses. 

(iii) Manipulating the Input Features: This method manipulates the set of input 

features available to the learning algorithm. This technique only works when the 

input features are highly redundant. 

(iv) Manipulating the Output Targets: This manipulates the output values that are 

given to the learning algorithm. According to Dietterich and Bakiri (1995), the 

technique improves the performance of both the C4.5 decision tree algorithm and the 

backpropagation neural network algorithm on a variety of difficult classification 

problems. 

(v) Injecting Randomness: This method injects randomness into the learning 

algorithm. While this is perhaps the most common way of generating ensembles of 

neural networks, manipulating the training set may be more effective.    
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All the methods described were used in the research study to investigate the impact 

of ensemble over the single classifier in the ensemble. The investigations conducted 

concludes that injecting randomness performed better as compared with other 

methods 

3.3 Land cover mapping using ensemble features selection    

methods on Kampala imagery 

The focus of this investigation is an ensemble feature selection that entails ensuring 

diversity through training a given classifier on different features, which in remote 

sensing would be the different sensor bands (Gidudu et al., 2008a). By varying the 

feature subsets used to generate the ensemble classifier, diversity is ensured since the 

base classifiers tend to err in different subspaces of the instance space (Tsymbal et 

al., 2005; Oza and Tumer, 2008). Some of the techniques used to select features to 

be used in ensemble systems include genetic algorithms (Opitz, 1999), exhaustive 

search methods and a random selection of feature subsets (Ho, 1998; Marwala, 

2009)). 

3.3.1 Study area 

The study area for this research was Kampala, the capital of Uganda (Gidudu, 2006). 

The optical bands of a 2001 Landsat image (column 171 and row 60) formed the 

dataset from which ensembles were created and investigated. There were five land 

cover classes of interest considered: water, built up areas, thick swamps, light 

swamps and other vegetation. Samples for classification were obtained from the 

region of interest (Gidudu et al., 2008a). 
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3.3.2 Design procedure 

Ten ensembles were created, each with five base classifiers, the number five having 

been arbitrarily chosen. For each ensemble, the base classifiers were made up of the 

bands which yielded the best separability indices (best five band combinations in this 

case). Three separability indices were used, namely, Bhattacharyya distance, 

divergence and transformed divergence. 

For each base classifier and corresponding ensemble, a land cover map was derived 

using Gaussian Support Vector Machines (Boser et al., 1992; Vapnik, 1999; Witten 

and Frank, 2005, Gidudu et al., 2008a). The land cover map for each ensemble was 

consequently derived through majority voting primarily due to its simplicity 

(Valentini and Masulli, 2002). Each of the derived land cover maps was compared 

with ground truth data to ascertain its classification accuracy. In order to determine 

the diversity of each ensemble, the kappa analysis was used to give the measure of 

agreement between the constituent base maps and ultimately the overall ensemble 

diversity. The influence of diversity on land cover classification accuracy for each 

ensemble was evaluated by comparing the derived land cover classification 

accuracies with the derived diversity measures.  

3.4 Ensemble feature selection for hyperspectral imagery 

3.4.1 Data description 

The hyperspectral dataset used in this study was sourced from the AVIRIS sensor 

and represents Indiana’s Indian Pines in the United States of America (Landgrebe, 

1998). The dataset is as shown in Figure 3.1. It is a freely accessible online dataset 

which comes with accompanying ground truth data (Figure 3.2). Of the 224 bands, 4 

were discarded because they contained zeros and of the remaining 180 bands were 
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used in this research. The rest of the bands were left out because of being affected by 

atmospheric distortion (Bazi and Melgani, 2006).  

 

Figure 3.1 Indiana Pine hyperspectral image  

(Landgrede, 1998) 

 

 

Figure 3.2 Indiana Pine Ground truth & the labels 

 (Landgrebe, 1998)  

The classes of interest are:  alfalfa (alf), corn-notill (cnt), corn-minimum till (cmn), 

corn, grass/pasture (gp), grass/trees (gt), grass/pasture-mowed (gpm), hay-
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windrowed (hw), oats, soybeans-notill (snt), soybeans-minimum till (smn), soybean-

clean (scl), wheat, woods, building-grass-tree drives (bgtd) and stone-steel towers 

(sst).  These classes were selected in reference to the ground truth data. This data was 

also used to carry out investigations in experiments 3.5 and 3.6 with the same 

number of spectral bands and class labels (Gidudu et al., 2008b; Abe et al., 2010). 

3.4.2 Research design 

Based on Chen et al., (2007)’s categorization, this investigation focuses on the 

ensemble approach dependent on one learning algorithm (in this case Gaussian 

SVMs), with diversity being enforced through using different feature (band) 

combinations. Two ensemble feature selection techniques were used, namely 

exhaustive search and random selection of feature subsets. The evaluation function 

of the exhaustive search was the Bhattacharyya Distance separability index 

(Bhattacharyya, 1943; Gidudu et al., 2008b).  

The results of the base classifiers in each ensemble were combined using two 

methods; majority voting and an adaptation of Cross Validation Majority (CVM) 

also called single best. In CVM, the cross validation method is used as a basis for 

selecting the best out of the whole ensemble. In this study, this was modified to 

consider the final classification results of each base classifier instead. For 

comparison, another ensemble was derived from sequential grouping subsequent 

bands into 10 base classifiers. That is, bands 1-18 made up the first base classifier, 

bands 19 – 36 the second base classifier and so on, making a total of 10 base 

classifiers for all the 180 bands. For each base classifier and corresponding 

ensemble, classification was carried out in Matlab with the results being imported 

into Idrisi Andes for data integration and generation of a land cover map. 

Classification accuracies were then calculated for each derived land cover map, by 
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making comparisons between the predicted output from the base and ensemble 

classifiers and the ground truth data. These results were then used as the basis upon 

which ensemble feature classification and its corresponding effect on land cover 

mapping was evaluated. 

3.5 Investigating the effect of ensemble size on classification 

`accuracy 

This study investigates the interplay between the ensemble size and classification 

accuracy. The online Indiana Pines hyperspectral dataset was used.  

3.5.1 Design procedure 

In this research, two aspects of ensemble size were considered. The number of base 

classifiers per ensemble and the number of features (bands) per base 

classifier/ensemble. A total of seven (7) ensembles were generated through an 

exhaustive search process, using the Bhattarcharya distance as separability index 

(Bhattacharyya, 1943). The seven ensembles had the following distribution of bands 

per ensemble: 2, 4, 6, 8, 10, 12 and 14. For each ensemble, base classifiers were 

constituted by considering the band combinations with the best separability index 

(Gidudu et al., 2009a). In each ensemble, the number of base classifiers was 

cumulatively increased and for each collection of base classifiers corresponding 

classification accuracy was determined. In all cases, majority voting was adopted as 

the consensus rule and Gaussian support vector machines (one against one) were 

used as the base classifier for the classification process. 
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3.6 Random ensemble features Selection for Land Cover Mapping 

This research investigates the effect of ensemble size on classification accuracy of 

land cover mapping using the hyperspectral AVIRIS data set of the Indian Pine. The 

research used random ensemble feature selection to investigate the effect of 

ensemble size on the consequent classification accuracies for land cover mapping 

(Gidudu et al., 2009b). 

3.6.1 Design procedure 

Two approaches were used to investigate the effect of ensemble size on classification 

accuracy. In the first case, classification accuracy was related to increasing numbers 

of features per base classifier and in the second case accuracy was related to 

increasing numbers of base classifiers per ensemble. A total of seven ensembles were 

constituted with increasing amount of features per base classifier. The ensemble had 

two features per base classifier in the sequence 2, 4, 6, 8, 10, 12 and 14. Similarly, 

for each ensemble predictions were cumulatively added and the ensemble 

classification consequently derived to give final decision. Image classification was 

conducted through the use of Support Vector Machines (SVMs) using one against 

one approach. 

3.7 Experimental comparisons of supervised learning classifiers 

for land cover classification of hyperspectral imagery  

This aspect of the study was aimed at identifying a set of reference signatures (also 

known as endmembers) to model the reflectance for land cover classification.  
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3.7.1 Data description 

The data used for this study was AVIRIS data set of the Indian Pine (AVIRIS 

Indiana dataset, 1992) test site acquired over a mixed agricultural/forest region in 

Northwestern Indiana has been researched extensively (Landgrebe, 1998; Plaza et 

al., 2004a; Guo et al., 2006; Plaza et al., 2009). This dataset is a descriptive of 

problems associated with hyperspectral image analysis and classification scenario, in 

the sense that, the primary crops of the area (corn and soybeans) were very early in 

their growth cycle, with only a 0.05 canopy cover. Distinguishing the differences 

among the main crops under these conditions can be very difficult (Landgrebe, 1998; 

Plaza et al., 2009). The pixels in the dataset are labelled as belonging to one of 16 

classes of vegetation. Not all the pixels are labelled because they correspond to 

uninteresting regions or were too difficult to label. Noisy channels and water 

absorption channels were removed (channels 1–3, 104–112, 148–165, and 217–224). 

About atmospheric correction, the image has been processed to remove path radiance 

including the light scattered by the interaction between surface and the atmosphere 

(Camps-Valls and Bruzzone, 2005; Nascimento and Bioucas-Dias, 2005). The 

remaining 186 channels were used for this study. Each image has size 145 x 145 = 

21 025 pixels. The study site has sixteen class labels out of which nine were used for 

the investigation because the remaining seven class labels has an insufficient number 

of pixels available (Lennon et al., 2002; Melbani and Bruzzone, 2004; Demir and 

Ertürk, 2007; Qi and Huang, 2007). The land cover classes used were, corn-notill 

(cnt), corn-minimum till (cmn), grass/pasture (gp), grass/trees (gt), hay-windrowed 

(hw), soybeans-notill (snt), soybeans-minimum till (smn), soybean-clean (scl), 

woods and background (Abe et al., 2012). 
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3.7.2 Problem formation 

The task of land cover classification can be generally formulated as a linear spectral 

unmixing problem. The linear spectral unmixing is a sub-pixel classification process 

that decomposes mixed pixels and determines the combination of fractional 

abundances. The basic idea behind the linear spectral mixture analysis is that every 

image pixel is a mixture of different endmember spectral responses. The spectrum 

recorded by the sensor is a linear combination of endmember spectral responses 

(Kärdi, 2007). The linear unmixing model can be mathematically expressed as 

(Sanchez et al., 2010; Zhang et al., 2011):        

      (3.1) 

The component  is a spectral response vector,  ,
k

a i j  is a scalar value 

representing fractional abundance of endmember vector ke
 at pixel ,  is 

a vector that denotes the spectral band error and P is the total number of endmember. 

Equation (3.1) operates under two physical constraints on fractional abundances to 

account for the full composition of a mixed pixel. These constraints are non-

negativity of all fractional abundance values and fractional abundance values must 

sum to unity (Heinz and Chang 2001; Sanchez et al. 2010).  

Previous efforts on linear spectral unmixing problem (Sanchez et al. 2010; Zhang et 

al. 2011; Iordache et al. 2011) have investigated the Least Square (LSU) method 

(Heinz and Chang, 2001) to estimate a set of fractional abundances as follows. 
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In Equation (3.2), Te  is the transpose of the matrix e of endmember spectral 

responses and 1e  represents the inverse matrix of e  matrix. 

In general, the fractional abundances obtained from Equation (3.2) can only satisfy 

the sum to unity constraint, but the non-negativity of fractional abundances cannot 

always be guaranteed. The solutions obtained by the LSU method are therefore 

generally not optimal in terms of material quantification (Heinz and Chang 2001; Du 

et al. 2008; Sanchez et al. 2010). The linear spectral unmixing problem has to be 

formulated as an optimization problem that minimizes the spectral band error. The 

reason for the minimization is to obtain optimal fractional abundances that 

simultaneously satisfy the two changing constraints 
1

  and 
2

  with respect to the 

spectral coordinate ( , )i j . The following fully constrained linear spectral unmixing 

optimization problem has to be solved by finding a set of fractional abundances 

( , )a i j  that minimizes the spectral band error ( , )a i j  in Equation (3.1). 

                        Minimize 
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In Equation (3.3), ( )J a  is the objective function to be minimized, 
1

  is the 

abundance sum-to-one constraint and 
2

  is the abundance nonnegativity constraint 

with respect to the spatial coordinate ( , )i j . The PPI algorithm is first applied to 

extract endmember spectral responses from the hyperspectral image before 

Equations (3.3) can be solved for optimal fractional abundances using the GRG 

algorithm (Abadie and Carpentier 1969; Lasdon et al. 1974; Su and Lii 1995). Once 

a set of endmember spectral responses   is determined, the corresponding 

fractional abundances  in a specific pixel, vector x(i,j) of the 

hyperspectral image can be estimated by using the GRG algorithm.  

The purpose of the land cover classification is to evaluate the performance of the RF 

and SVM classifiers per class basis. The GRG algorithm is used to obtain the 

estimated numeric values of the endmembers’ fractional abundance. 

3.7.3 Pre-processing procedure  

The input hyperspectral image has to be taken through five steps to obtain the 

desired classification result. Figure 3.3 shows the block diagram of the land cover 

classification process implemented in this study (Sanchez et al., 2010; Abe et al., 

2012). 
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Figure 3.3: Hyperspectral image classification procedure  

Image Dimension Reduction 

Noise whitening and dimensionality reduction were performed on the dataset using 

the maximum noise factor (MNF) transform to reduce the number of spectral bands 

in the hyperspectral image. The endmember spectral responses  in 

Equation (3.1) were determined by using PPI algorithm available in Environment for 

Visualizing Images (ENVI) software.  

Endmember Spectral Response Determination 

The PPI method efficiently handles hyperspectral images as it provides a convenient 

and physically motivated decomposition of an image in terms of relatively few 

components (Theiler et al., 2000). The algorithm searches through a set of vertices of 

a convex geometry in the dataset to present pure signatures in the data. This was 

accomplished by randomly generating lines in the N-Dimensional space (an ENVI’s 

visualizer that provides an interactive tool for finding endmember spectral responses) 

containing the MNF transformed data. In an N-Dimensional component space, it is 

assumed that endmember (P) spectral responses will occur at the vertices of the 

Pkek ,...,2,1, 
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hyper-solid or geometric shape bounding the pixel values in that space. The spectral 

points were projected on the lines and the points at the extremes of each line were 

selected by drawing a polygon around a few of the extreme data points to create the 

endmember (P) spectral responses.  The highest-value of these pixels were input to 

the ENVI visualizer for the clustering process that developed the individual 

endmember (1,2,3,….P) spectral response. The result is not a single map 

representation as in thematic image classification, but a series of images, each having 

the size of the original image (Settle and Drake, 1993; Adams et al., 1995; Van der 

Meer and Jia, 2012).  

Fractional Abundance Estimation 

The GRG optimization algorithm was executed to estimate per pixel fractional 

abundances by using spectral responses results obtained from PPI algorithm. Using 

the endmember set produced by the PPI, a set of endmember numeric values were 

generated as follows:  

(i) The first step is to calculate the compute matrix , where  

is formed by the P endmember extracted from the PPI. Using excel solver for 

calculation, the compute matrix is multiplied by all the pixel vectors   

(ii) The computed matrix calculated in step 1 is multiplied by each pixel 

from the region of interest, thus obtaining a set of vectors , each 

containing the fractional abundances of the P endmembers in each pixel. 

The new values obtained were used to train and test SVM and RF classifiers for the 

land cover classification procedure. 
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Land Cover Classification 

The purpose of thematic image classification is to represent the land cover in terms 

of a number of fixed classes where each image pixel represents a unique endmember 

which in turn is used to produce a single map representation. Table 3.1 shows the 

selected region of interest (ROI) from the Indiana pine dataset used for the 

classification procedure. The new generated numeric values obtained from the GRG 

algorithm in the two steps mentioned above were used for the classification 

procedure. The WEKA (Garner 1995) data mining software is selected to build 

SVM, RF, neural network, C4.5 and bagging classifiers. The five classifiers are 

experimentally compared for land cover classification. 

Table 3.1. Number of pixels extracted from the ROI 
Endmembers Number of Pixels 

Corn-notill (cnt) 359 

Corn-minimum till (cmn) 305 

Grass/pasture (gp) 264 

Grass/trees (gt) 339 

Hay-windowed (hw) 279 

Soybeans-notill (snt) 350 

Soybean-clean (scl) 203 

Soybeans-minimum till (smn) 425 

Woods 400 

Background (bg) 300 

Total number of pixels 3224 



 

 

 

64 

 

 

 

3.7.4 Conclusion 

This study aimed to evaluate the performance and a comparison of the supervised 

classifiers for land cover classification of a heterogeneous area of Indian Pine test 

site in Northwestern Indiana, USA. Spectral unmixing scheme for the hypespectral 

image procedure was used for preprocessing the dataset. Environment for visualizing 

image was used to extract endmember and to generate the spectral values of the 

region of interest. Generalized Reduced Gradient (GRG), an optimization technique 

with constraints was used to estimate fractional abundance of each pixel in the region 

of interest. The computed normalized fractional abundance values obtained were 

multiplied by all the pixel values extracted from the region of interest for the 

classification procedure. The experiments have established that ensemble method 

obtains better accurate classifiers by combining less accurate ones.  

3.8 Hyperspectral Image Classification using Random 

Forests and Neural Networks 

This work considers the problem of land cover classification of hyperspectral images 

by using a linear spectral mixture analysis technique, which is a commonly accepted 

approach to mixed-pixel classification. The objectives of the study are to (i) identify 

a collection of spectrally pure constituent spectral, which are referred to as the 

endmembers (Hein and Chang, 2001; Martinez et al., 2006). Thereafter, we express 

the measured spectrum of each mixed pixel as a linear combination of endmembers 

weighted by fractional abundances that indicate the proportion of each endmember 

present in the pixel (Martinez et al., 2006; Sanchez et al., 2010), (ii) explore 

Generalized Reduced Gradient (GRG) optimization algorithm to estimate the 

fractional abundance in the dataset thereby obtaining the numeric values for land 

cover classification (Abadie and Carpentier, 1969; Lasdo et al., 1974; Abe et al., 
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2012) and (iii) to experimentally compare the performance of random forests and 

neural network classifiers to examine the suitability of GRG algorithm for solving 

land cover classification problem. The procedure used in section 3.7 was adopted to 

execute this experiment. 

3.8.1 Data description 

Figure 3.8 shows the input airborne hyperspectral image of the Washington, D.C. 

dataset (Landgrebe, 2003). The sensor used to measure pixel response in 210 bands 

in the 0.4 to 2.4m region of the visible and infrared spectrum. It has 1208 scan lines 

with 307 pixels in each scan line, which is approximately 150 Megabytes. Bands in 

the 0.9 and 1.4m region where the atmosphere is opaque have been omitted. The 

remaining 191 spectral bands are used for this study. The dataset contains seven 

ground cover types, namely: Roofs, Street, Path, Grass, Trees, Water and Shadow. 

 

Fig 3.8: Hyperspectral image of Washington D. C. Mall  

(Landgrebe, 2003). 

Accompany the dataset is a copy of the file labelled dctest.project, which describes 

the land cover types used for the experimental procedure.  
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For this study, the problem formulated in experiment 3.7 was used to ascertain the 

authentication of our proposed GRG algorithm on the Washington DC mall dataset. 

The design methodology entails taking the input dataset through four stages to obtain 

desired classification results. The dataset was taken through the process of dimension 

reduction after which the endmembers were determined. Thereafter the fractional 

abundance of the endmembers was estimated and the numeric values obtained were 

used train the random forests and neural network classifiers for the land cover 

classification.  

Table 3.2 displays the land cover classes and the number of pixels extracted from the 

original image based on the ROI. The dataset was input into the ENVI visualizer for 

the clustering process that develops individual endmember spectral. The pixels 

extraction mechanism enables the image spectral to accurately account for any errors 

in atmospheric correction. 

Table 3.2: Number of pixels extracted from ROI 
Classes Number of Pixels 

Roof 724 

Paths 211 

Water 703 

Street 404 

Trees 398 

Shadow 97 

Grass 818 

Total  3355 
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3.8.2 Conclusion 

This study explored linear spectral mixture analysis technique to solve the mixed-

pixel classification problem associated with land cover classification of hyperspectral 

images. The study identified a collection of spectrally pure constituent spectral called 

endmembers in the hyperspectral dataset of the Washington DC mall. Six 

endmembers were generated from the study. These are used to obtain normalized 

numeric values of the fractional abundance generated using the spectral signatures of 

the land cover label. An ensemble method has three fundamental attributes (as 

discussed in chapter 2), which contributed to successful accuracy performance over 

the single classifier in the ensemble. These fundamental attributes are lacking in 

single classifier in the ensemble and this is the reason for the poor performance. 
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CHAPTER 4 

Results and discussions 

This section presents the classification results and findings from different 

experiments carried out in this study as a result of the instruments and methods used 

on remote sensing data for land cover classification. 

4.1  Ensemble classification with Kampala imagery 

Tables 4.1 – 4.4 give summaries of the results depicting the ensembles constituted 

depends on the separability index used, the respective base classifier classification 

accuracy assessment and the consequent ensemble classification accuracies. The 

relationship between ensemble classification accuracy and diversity was investigated 

by determining the correlation between ensemble classification accuracy and the 

agreement measure which in this case was the Kappa value. This was computed by 

averaging the in-ensemble pair-wise kappa values of the base classifiers measured 

against each other. In order to get a better appreciation on the in-ensemble diversity, 

the variance was also computed for the computed pair-wise kappa values. The 

calculated results for each separability measure are also presented in Tables 4.1 – 4.4 

(Gidudu et al., 2008).  
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Table 4.1:  Separability index classification results using Bhattacharyya distance 

   

Table 4.2:  Separability index classification results using divergence 

 

Ensemble B1 B2 B3 

 Bands Acc Bands Acc Bands Acc 

 

 

5, 6 0.8565 3, 5, 6 0.8718 3, 4, 5, 6 0.9269 

3, 5 0.8496 1, 2, 3 0.3841 2, 3, 5, 6 0.8794 

2, 3 0.5395 4, 5, 6 0.9191 1, 2, 3, 5 0.8599 

4, 5 0.9030 3, 4, 5 0.9201 2, 3, 4, 5 0.9295 

1, 3 0.2220 2, 3, 5 0.8591 1, 2, 3, 4 0.8994 

Accuracy 0.8922 0.8940 0.9160 

SB 0.9030 0.9201 0.9295 

Diversity 0.42 0.57 0.70 

Variance 0.03 0.02 0.01 

Ensemble D1 D2 D3 

 Bands Acc Bands Acc Bands Acc 

 2, 4 0.7921 2, 3, 4 0.8964 3, 4, 5, 6 0.9269 

1, 5 0.7283 1, 2, 4 0.8855 2, 4, 5, 6 0.9246 

1, 4 0.7750 4, 5, 6 0.9191 1, 4, 5, 6 0.9211 

3, 4 0.8814 1, 3, 4 0.8574 1, 3, 5, 6  0.8667 

2, 5 0.7569 2, 4, 5 0.9236 2, 3, 5, 6 0.8794 

Accuracy 0.8559 0.9007 0.9237 

SB 0.8814 0.9236 0.9269 

Diversity 0.47 0.70 0.72 

Variance 0.05 0.01 0.03 
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Table 4.3:  Separability index classification results using transformed divergence 

 

Table 4.4:  Ensemble using no Seperability measure 
Bands Accuracy % 

1,2,3,4,5 0.93 

1,2,4,5,6, 0.93 

1,3,4,5,6 0.88 

2,3,4,5,6 0.93 

1,2,3,4,6 0.93 

Accuracy 0.93 

Single Best 0.93 

Diversity 0.79 

Variance 0.02 

Where, Acc. – Accuracy: SB – Single best: SI – Seperability: Diversity – Diversity 

measure (Agreement): Variance – Diversity measure (variance) 

Ensemble T1 T2 T3 

 Bands Acc Bands Acc Bands Acc 

 

 

2, 4 0.7921 1, 2, 4 0.8855 1, 2, 5, 6 0.8678 

3, 4 0.8599 2, 3, 4 0.8964 1, 3, 5, 6 0.8667 

4, 6 0.9017 4, 5, 6 0.9191 2, 3, 5, 6 0.8794 

1, 4 0.7750 2, 4, 6 0.9175 3, 4, 5, 6 0.9269 

5, 6 0.8565 1, 3, 4 0.8574 1, 4, 5, 6 0.9211 

Accuracy 0.8680 0.8982 0.9049 

SB 0.9017 0.9191 0.9269 

Diversity 0.44 0.71 0.65 

Variance 0.04 0.01 0.03 
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Intuitively, the more diverse the ensemble, the lower the agreement between the 

classifiers and consequently the lower the consequent kappa values. By extension, 

the more diverse the ensemble, the bigger the variance between the in-ensemble pair-

wise kappa values. The Table also reveals that ensemble accuracy increases as the 

agreement between the base classifiers increases and as the variance between the 

base classifier output decreases. In effect, this would ideally imply that the ensemble 

classification accuracy would increase if there is more agreement between the base 

classifier outputs. The contradiction this imputes is that, to get higher ensemble 

classification accuracy there is a need for less diversity among the base classifiers. 

4.1.1 Prediction analysis  

From the summary of the ensemble classification results Tables 4.1 – 4.4, it can be 

observed that, for all the ensembles, the ensemble classification accuracy was better 

than many of the base classifiers, whereas in no case was it better than the best 

classifiers with the ensemble.  It is, however, critical to note, and the possibility is 

indicated here and reported elsewhere (e.g. Bruzzone and Cossu, 2004), that whereas 

the ensemble classification may not be more accurate than all of the base classifiers 

used in its construction (Foody et al., 2007), it certainly reduces the risk of making a 

particularly poor selection (Polikar, 2006). Table 4.1 – 4.4 also shows that across all 

ensembles, the respective classification accuracy increased as the size of the base 

classifiers increased. 

4.1.2 Binomial test of significance between ensembles 

This is further confirmed from Table 4.5 depicting the binomial tests of significance 

of the between ensemble classification accuracies. In the simple case of determining 

if there is a difference between two classifications (2 sided test), the null hypothesis 
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(Ho) that there is no significant difference will be rejected if |Z| > 1.96 (Congalton 

and Green, 1998). For each separability index used, increasing the number of 

features in the base classifiers in general significantly increased the ensemble 

classification accuracy. The ensemble (E) with five features per base classifier was 

seen to be significantly better than all the other ensembles apart from D3, where the 

difference was deemed insignificant. From the results, nothing conclusive can be 

deduced regarding which of the used separability indices is best suited as a basis 

upon which to build ensembles. 

Table 4.5:  Binomial Test of significance between ensembles 
 B1 B2 B3 D1 D2 D3 T1 T2 T3 E 

B1 -          

B2 0.44 -         

B3 6.06 5.62 -        

D1 8.20 8.64 14.22 -       

D2 2.09 1.65 3.97 10.28 -      

D3 8.17 7.74 2.12 6.31 6.09 -     

T1 5.58 6.02 11.61 2.63 7.67 13.71 -    

T2 1.47 1.03 4.59 9.67 0.62 6.71 7.05 -   

T3 3.15 2.71 2.91 11.34 1.06 50.3 8.72 1.68 -  

E 9.65 9.22 3.61 17.76 7.57 1.49 15.17 8.19 6.52 - 

 

Figures 4.1 – 4.3: shows the land cover map of the ensemble classification results.  

Appendix A presents other generated maps from the investigation. It can be seen 

from the map that all the land cover classes are properly labelled. 
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Figure 4.1: Map generated with BSI using 2 bands 

 

Figure 4.2: Map generated with DSI using 2 bands 
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Figure 4.3: Map generated with TDSI using 2 bands 

4.1.3 Conclusion  

The results bring to the fore the challenge that comes with including diversity 

measures in ensemble classification research. Clearly its use in determining diversity 

for land cover mapping is counter intuitive. The problem may stem from using the 

classifier output as the basis upon which to measure diversity. Whereas diversity, as 

defined in ensemble classification research, is premised on having decision 

boundaries which err differently, using outputs to determine the measure of diversity 

presupposes that using different decision boundaries would yield different results. In 

the case of ensemble feature selection, base classifiers from different features 

certainly result in decision boundaries which err differently (and hence exhibit 

diversity), however, their final classification outputs are similar as the higher 

coefficients of correlation depict. Hence, base on the outputs as a measure of 

diversity clearly gives a poor reflection of how diverse the ensemble is (Gidudu et 

al., 2008a).  
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In their concluding remarks, Shipp and Kuncheva (2002) posit that the quantification 

of diversity and its use in determining diversity in ensembles will only be possible 

when a more precise formulation of the notion of diversity is obtained. Until then 

different heuristics will have to be employed. Whereas ensemble classification 

presents a unique approach to land cover mapping, the quantification of diversity and 

its consequent influence in determining the type of ensembles is clearly still open for 

research. This is a future work that needs to be addressed. 

4.2 Ensemble feature selection for hyperspectral imagery  

Table 4.6 shows the results of the different ensembles considered. The classification 

accuracy is given in terms of the Kappa coefficient of agreement (Cohen, 1960), 

which is a measure of how well the derived map compares with ground truth data. It 

ranges from 0 to 1 with 0 implying no agreement between predicted land cover and 

ground truth, and 1 indicating complete agreement. All the ensembles had ten base 

classifiers, the figure ten having been arbitrarily chosen. The base classifiers in 

Ensembles 1, 2, 3 and 4 consisted of 10, 14, 18 and 18 features (bands) respectively, 

each with different band combinations (feature configurations). Ensembles 1 and 2 

were derived from an exhaustive search strategy, with the ten best base classifiers 

being selected based on their separability indices. Ensemble 3 was constituted by 

sequentially arranging the 180 bands into ten base classifiers, each with 18 features. 

On the other hand, all the features constituting the base classifiers in Ensemble 4 

were randomly selected. Table 4.6 revealed that in all cases single best had better 

results than majority voting. It is also observed that in general, results from ensemble 

3 were the poorest, while ensemble 4 yielded the best results. 
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Table 4.6: Ensemble feature selection classification accuracy results 
Ensemble 1 2 3 4 

BC 1 0.6209 0.6214 0.4591 0.6176 

BC 2 0.6134 0.6323 0.4737 0.6531 

BC 3 0.6112 0.6264 0.3383 0.6084 

BC 4 0.6232 0.6418 0.3937 0.6605 

BC 5 0.6128 0.6317 0.4141 0.6276 

BC 6 0.6149 0.6323 0.4687 0.6314 

BC 7 0.6125 0.6281 0.4885 0.5803 

BC 8 0.619 0.6242 0.5288 0.6425 

BC 9 0.6202 0.6168 0.4067 0.6151 

BC 10 0.6338 80.6435 0.3593 0.5989 

MV 0.6212 0.6314 0.4707 0.6482 

SB 0.6338 0.6418 0.5288 0.6605 

 

Where: Ens.–Ensemble, BC– Base Classifier, MV–Majority Vote, SB–Single Best 

Figures 4.4 to 4.7 are the land cover accuracy maps obtained when compared with 

the reference map (the ground truth). It can be seen that the maps reflect a mixture of 

the pure signatures of the various materials found within the spatial extent of the 

ground instantaneous field view of the imaging instrument. It is obvious that, the 

mixture of materials affected the accuracy results obtained. 
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Figure 4.4: Land cover map obtained from an ensemble of 10 bands (Ensemble 1)  

 

Figure 4.5: Land cover map obtained from an ensemble of 14 bands (Ensemble 2) 
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Figure 4.6: Land cover map obtained from an ensemble of 18 bands (Ensemble 3) 

 

 Figure 4.7: Land cover map obtained from an ensemble of 18 bands             

(Randomly selected, ensemble 4) 
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4.2.1 Binomial Test of significance 

To get a better appreciation of the differences between these results, a binomial test 

of significance was carried out for each ensemble to ascertain the pairwise difference 

between majority voting and single best, results of which are illustrated in Table 4.7. 

Table 4.7 Binomial Test of Significance between Majority Vote and Single Best 
Ensemble |z| 

1 0.99 

2 0.82 

3 4.43 

4 0.99 

 

In the simple case of determining if there is a difference between two classifications 

(2 sided test), the null hypothesis (Ho) that there is no significant difference will be 

rejected if |Z| > 1.96 (Congalton et al., 1983; Rosenfield et al., 1986; Congalton et 

al., 1998). In this case, it is only in ensemble 3 that there is a significant difference 

between majority vote and single best approaches. The same test was carried out to 

establish if there was any significant difference between the different ensembles, the 

results of which are shown in Table 4.8 and 4.9. Table 4.8 depicts the pairwise 

difference between the ensembles based on the majority vote values, while Table 4.9 

refers to single best values. In both tables E1, E2, E3 & E4 refer to Ensembles 1, 2, 3 

and 4 respectively. Tables 4.8 & 4.9 show that the results of ensemble 4 are 

significantly better than the results from ensembles 1 & 3. Though the results of 

ensemble 4 are better than ensemble 2, the difference is insignificant. Results from 

ensemble 3 are significantly worse than all the results of the ensembles 1, 2 & 4.  
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Table 4.8: Binomial tests of significance between the different ensembles based on 

majority vote values 

 

E 1 E2 E3      E4 

E1 0 

   E2 0.80 0 

  E3 11.65 2.47 0 

 E4 2.14 1.33   184    0 

Table 4.9: Binomial tests of significance between the different ensembles based on 

single best values 
E1 E2 E3 E4 

 E1 0 

   E2 0.63 0 

  E3 8.15 8.79 0 

 E4 2.13 1.49 10.31 0 

 

4.2.2 Conclusion 

Of the ensembles considered, evidently the one based on random selection yielded 

the best classification results. Sequentially selecting bands into base classifiers 

yielded significantly poorer results. Feature selection resulted in better classification 

results compared to sequentially selecting the features. However ensemble 2 

performed better than ensemble 1. This may have been as a result of using more 

features in each base classifier. The difference however was not significant.  
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4.3 Effect of ensemble size on classification accuracy  

Table 4.10 shows a tabular representation of how classification accuracy varied as 

the number of base classifiers and bands per ensemble increased. These results were 

then used to generate Figure 4.8, in a bid to further illustrate the variation of 

classification accuracy as the number of base classifiers increased within each 

ensemble.  

 Table 4.10: Ensemble size classification Accuracy results  

 

 

 

 

 

 

 

The series in the legend represents the accuracy variation within each ensemble. As 

can be observed in all ensembles, the almost flat trend is evidence that the 

classification accuracy varied minimally as the number of base classifiers increases. 

Each series in Figure 4.8 represents a given ensemble, each with a given number of 

bands per ensemble. Two of the land cover accuracy maps generated are shown in 

Figures 4.9 and 4.10. Other generated maps can be seen in appendix B. 

N
u
m

b
er

 o
f 

b
as

e 
cl

as
si

fi
er

s 

 Number of Bands Per Ensemble 

 2 4 6 8 10 12 14 

3 0.470 0.566 0.606 0.600 0.617 0.632 0.628 

4 0.467 0.561 0.596 0.613 0.620 0.628 0.630 

5 0.470 0.564 0.609 0.612 0.617 0.635 0.630 

6 0.473 0.563 0.606 0.615 0.617 0.629 0.633 

7 0.475 0.562 0.610 0.618 0.617 0.630 0.630 

8 0.480 0.561 0.607 0.618 0.619 0.632 0.631 

9 0.487 0.562 0.604 0.615 0.620 0.632 0.633 

10 0.483 0.563 0.606 0.620 0.621 0.628 0.631 



 

 

 

82 

 

 

 

 

Figure 4.8: Graphical illustration of accuracy variation.  

Series: 1, 2, 3, 4, 5, 6, 7 respectively represent bands 2, 4, 6, 8, 10, 12 and 14 per 

ensemble. General observation from the result reveals that classification accuracy 

increased as the number of bands per ensemble increased (Gidudu et al., 2009b; Abe 

et al., 2010). This increase was most obvious when the number of bands per 

ensemble increased from two to four. As the number of bands per ensemble 

increased from four to six, the improvement in accuracy became less pronounced, 

reducing even further as the number of bands per ensemble increased. A look at 

ensembles 6 and 7 representing 12 and 14 bands per ensemble are virtually 

indistinguishable implying that at that stage any additional increase in the number of 

bands per ensemble, regardless of the number of base classifiers, may not translate 

into a significant increase in classification accuracy. 



 

 

 

83 

 

 

 

 

Figure 4.9: Ensemble made up of 4 bands classification Accuracy map 

 

Figure 4.10: Ensemble made up of 6 bands classification Accuracy map 

Whereas the results in Table 4.10 and Figure 4.8 depict differences in classification 

accuracy as the number of bands per ensemble increased, a binomial test of 

significance was applied to ascertain if these differences were significant.  
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4.3.1 Binomial Test of Significance  

Tables 4.11, 4.12 and 4.13 were derived to illustrate the variation in accuracy 

between ensembles while maintaining a fixed number of base classifiers. Tables 

4.11, 4.12 and 4.13 show the binomial test of significance at the 95% confidence 

interval, such that significant difference is deducted when Z > 1.96. In the Tables 

4.11, 4.12 and 4.13 the number of base classifiers considered was 3, 6 and 10 

respectively.  

Table 4.11: Between-ensemble Binomial test of significance for 3 base classifiers 

 

E2 E4 E6 E8 E10 E12 

E2 - 

     E4 7.36 - 

    E6 10.53 3.13 - 

   E8 10.04 2.64 0.48 - 

  E10 11.41 3.99 0.86 1.34 - 

 E12 12.57 5.13 2 2.48 1.14 - 

E14 12.28 4.85 1.72 2.2 0.86 0.28 

 

In all the tables the general trend is that, ensembles E2 and E4 (i.e. ensembles with 2 

and 4 bands per base classifier) were significantly inferior to the rest of the ensemble 

classifiers (i.e. E6, E8, E10, E12 and E14). In tandem with Figure 2, Tables 4.11, 

4.12 and 4.13 depict that as the number of features per base classifier increase, so 

does the significance between the classification accuracies decrease. Even as only 

these three tables are presented here, they are representative of all the other tables. 
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Table 4.12: Between-ensemble Binomial test of significance for 6 base classifiers 

 

E2  E4  E6  E8  E10  E12 

E2  - 

     E4  6.89 - 

    E6  10.26 3.33 - 

   E8  10.98 4.04 0.7 - 

  E10  11.09 4.15 0.82 0.11 - 

 E12  12.11 5.14 1.81 1.1 0.99 - 

E14  12.37 5.41 2.07 1.36 1.25 0.26 

Table 4.13: Between-ensemble Binomial test of significance for 10 base classifiers 

 

E2 E4 E6 E8 E10 E12 

E2  - 

     E4  6.07 - 

    E6  9.46 3.36 - 

   E8  10.55 4.43 1.07 - 

  E10  10.67 4.56 1.20 0.13 - 

 E12  11.20 5.08 1.72 0.64 0.52 - 

E14  11.49 5.36 2.00 0.93 0.80 0.28 

 

Of the series in Figure 4.11, it is only series 1 (E2) which showcases the largest 

within ensemble variation. Hence, it was used to ascertain if cumulatively increasing 

the number of base classifiers can result into any statistically significant increase in 

classification accuracy. Table 4.14 presents within ensemble binomial test of 

significance for E2 (i.e. where number of features per ensemble are two). From the 

results it is evident that even with the biggest in-ensemble variation none of the base 

classifier accuracies were significantly different from the other. 
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Table 4.14: Within-ensemble Binomial test of significance for 2 features 

 

E3 E4 E5 E6 E7 E8 E9 

E3 - 

      E4 0.18 - 

     E5 0.02 0.19 - 

    E6 0.27 0.45 0.26 - 

   E7 0.38 0.56 0.37 0.11 - 

  E8 0.85 1.02 0.83 0.57 0.47 - 

 E9 1.32 1.5 1.3 1.04 0.94 0.47 - 

E10 1.04 1.21 1.02 0.76 0.66 0.19 0.28 

4.3.2 Conclusion 

In conclusion, the results demonstrate that in the design of ensemble classification 

systems for land cover mapping, classification accuracy increases as the number of 

bands per ensemble increase. The results however, show that there is a ‘peaking’ 

effect beyond which increasing the number of features per ensemble does not 

translate into an increase in classification accuracy. It can also be concluded that for 

ensemble feature classification, in its application for land cover mapping, there isn’t 

any significant benefit in having many base classifiers. From these results, the 

minimum number of base classifiers (in this case 3) suffices. 

4.4 Random Ensemble Feature Selection Classification 

Table 4.15 shows the result obtained from the investigation using a random selection 

approach to classification accuracy for land cover mapping. Results show that in 

general, there is a significant improvement in classification accuracy as the number 

of bands per base classifier increased. This could be due to the fact that given the 

high number of classes, 16 classes in this case more features were needed to 



 

 

 

87 

 

 

 

appropriately separate the classes. On the other hand, whereas there were few 

instances where incrementally adding base classifiers to the ensemble significantly 

improved the classification accuracy, the general trend is that there is no 

improvement in accuracy as the number of base classifiers increased (Gidudu et al., 

2009b).  

 Table 4.15:  Random selection ensemble accuracy results 

Appendix B presents the land cover accuracy maps generated from the investigation.  

4.4.1 Binomial test for significance between ensembles for 3 

classifiers 

Table 4.16 revealed the results obtained for a binomial test of significance. Looking 

at E2, E4 and E6 from the table shows a significant increase in classification 

accuracy. As the ensemble size increases, (E8, E10, E12) there is no significant 

improvement in classification accuracy. Binomial test of significance was also 

conducted for 9 base classifiers to ascertain the effect of ensemble size on land cover 

classification. From Table 4.17, E2, E4 and E6 show significant classification 
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 Number of Bands per Ensemble 

  2 4 6 8 10 12 14 

3  0.412 0.438 0.570 0.627 0.623 0.636 0.651 

4  0.396 0.467 0.569 0.626 0.633 0.627 0.642 

5  0.400 0.442 0.582 0.629 0.625 0.637 0.649 

6  0.382 0.483 0.595 0.627 0.639 0.632 0.642 

7  0.407 0.497 0.559 0.634 0.632 0.634 0.648 

8  0.426 0.523 0.543 0.639 0.641 0.642 0.643 

9  0.435 0.521 0.542 0.646 0.645 0.642 0.646 

10  0.433 0.540 0.560 0.645 0.641 0.639 0.643 
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accuracy, while E8, E10 and E12 show no significant increase in classification 

accuracy.  

Table 4.16: Between-ensemble Binomial test of significance for 3 base classifiers 

 

E2 E4 E6 E8 E10 E12 

E2 - - - - - - 

E4 2 - - - - - 

E6 12.2 10.1 - - - - 

E8 16.8 14.7 4.5 - - - 

E10 16.5 14.3 4.2 0.3 - - 

E12 17.5 15.4 5.2 0.7 1 - 

E14 18.8 16.7 6.4 1.9 2.3 1.3 

Table 4.17:  Between-ensemble Binomial test of significance for 9 base classifiers 

 

E2 E4 E6 E8 E10 E12 

E2 - - - - - - 

E4 6.58 - - - - - 

E6 8.19 15.96 - - - - 

E8 16.54 9.78 8.16 - - - 

E10 16.48 9.72 8.1 0.06 - - 

E12 16.22 9.46 7.85 0.31 0.25 - 

E14 16.53 9.77 8.15 0.01 0.05 0.3 

In conclusion, size in ensemble systems does matter, but only if the number of bands 

per base classifier is increased. These results principally inform us that in the design 

of ensemble feature selection classification systems, increasing the number of base 

classifiers may not necessarily translate into improved ensemble classification 

accuracies. In which case, the minimum possible number of base classifiers will 

suffice. Increasing the number of base classifiers evidently doesn’t improve 

classification accuracy (Gidudu et al., 2009b). 
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4.5 Spectral Unmixing Analysis for land cover classification 

accuracy 

The discussion on the results of our research on the endmember spectral response 

determination is presented. The session also discusses the performance of the SVM 

and RF classifiers investigated.  

4.5.1 Results of Endmember Spectral Response Determination 

Figure 4.11 shows the result obtained, wherein the extreme pixels correspond to 

endmember spectral responses in each projection that are recorded. The total number 

of times that each pixel is marked as extreme is noted. A threshold value of (65%) is 

used to define how many pixels are marked as extreme at the ends of the projected 

vector. 

 

Figure 4.11: Purest pixels occur at the edges of the projected vector 

The estimated number of endmember spectral responses and the corresponding 

spectral signatures were obtained by using ENVI visualizer. At the completion of 

specified iterations, ten images (P) were created in which the value of each pixel 
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corresponds to the number of times that a pixel was recorded as extreme. The bright 

pixels in the PPI image are generally the image endmember spectral responses to 

characterize the vegetation structure. Figure 4.12 shows the generated images and the 

Root Mean Square (RMS) error of the image. 

 

Figure 4.12: Generated images and RMS error from PPI method 

4.5.2 Results of Land Cover Classification 

Tables 4.18 – 4.22 present the confusion matrixes obtained by each classifier 

showing the correlation between the class labels. The confusion matrix (also known 

as error matrix) is a widely accepted method to report the error of raster data and to 
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assess the classification accuracy of a classifier (Congalton, 1991). The matrix 

expresses the number of sample units allocated to each land cover type as compared 

to the reference data. The diagonal of the matrix designates agreement between the 

reference data and the interpreted land cover types (Congalton, 1991). From Table 

4.20 (SVMs), scl, snt, cnt have 100% classification accuracy while others have some 

of the pixel members misclassified. The remaining classifiers have some of their 

class labels misclassified.  

Table 4.18: Neural Network Confusion Matrix 
a b c d e f g h i j classified as 

205 0 0 3 27 0 9 0 20 0 a = gp 

0 126 15 19 0 25 0 18 0 0 b = scl 

0 32 220 17 0 22 1 58 0 0 c = snt 

0 41 77 157 12 71 1 66 0 0 d = smn 

2 0 4 2 284 2 7 1 31 6 e = gt 

1 70 53 31 16 122 0 66 0 0 f = cnt 

1 0 0 1 2 0 275 0 0 0 g = hw 

0 30 60 28 4 52 0 131 0 0 h = cmn 

107 0 0 0 0 0 0 0 291 2 i = woods 

48 0 0 0 84 1 8 0 124 35 j = bg 
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Table 4.19:  Support Vector Machines Confusion Matrix 
a b c d e f g h i j classified as 

246 0 0 0 15 0 0 0 1 2 a = gp 

0 203 0 0 0 0 0 0 0 0 b = scl 

0 0 350 0 0 0 0 0 0 0 c = snt 

0 1 0 424 0 0 0 0 0 0 d = smn 

0 0 0 0 333 6 0 0 0 0 e = gt 

0 0 0 0 0 359 0 0 0 0 f = cnt 

0 0 0 0 1 0 278 0 0 0 g = hw 

0 0 0 0 0 4 0 301 0 0 h = cmn 

8 0 0 0 0 0 0 0 391 1 i = woods 

5 0 0 0 7 2 0 0 0 286 j = bg 

 

Table 4.20: Random Forest Confusion Matrix 
a b c d e f g h i j classified as 

247 0 0 0 15 0 1 0 1 0 a = gp 

0 203 0 0 0 0 0 0 0 0 b = scl 

0 0 347 0 0 2 0 1 0 0 c = snt 

0 0 3 420 0 1 0 1 0 0 d = smn 

1 0 0 0 332 6 0 0 0 0 e = gt 

0 1 0 2 0 356 0 0 0 0 f = cnt 

0 0 0 0 1 0 278 0 0 0 g = hw 

0 0 1 0 0 4 0 300 0 0 h = cmn 

2 0 0 0 0 0 0 0 398 0 i = woods 

0 0 0 0 9 2 1 0 3 285 j = bg 
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Table 4.21: C4.5 Confusion Matrix 
a b c d e f g h i j classified as 

215 0 0 0 26 0 8 0 10 5 a = gp 

0 144 3 20 3 26 0 7 0 0 b = scl 

0 12 290 10 0 27 0 11 0 0 c = snt 

1 20 39 303 5 24 1 32 0 0 d = smn 

1 0 0 1 312 7 0 0 10 8 e = gt 

0 29 21 10 5 256 1 37 0 0 f = cnt 

2 0 0 0 2 0 275 0 0 0 g = hw 

0 10 13 14 2 32 0 234 0 0 h = cmn 

59 0 0 0 1 1 0 0 327 12 i = woods 

35 1 0 1 67 2 3 0 83 108 j = bg 

 

Table 4.22: Bagging Confusion Matrix 
a b c d e f g h i j classified as 

239 0 0 1 7 0 7 0 7 3 a = gp 

0 171 9 10 2 9 0 2 0 0 b = scl 

0 7 326 2 0 10 0 5 0 0 c = snt 

0 7 9 399 3 3 0 4 0 0 d = smn 

19 1 0 0 299 6 2 0 6 6 e = gt 

0 9 5 7 1 329 1 7 0 0 f = cnt 

1 0 0 0 0 0 277 0 0 1 g = hw 

0 3 10 6 1 9 0 276 0 0 h = cmn 

18 0 0 0 0 0 0 0 374 8 i = woods 

26 0 0 0 14 2 4 0 43 211 j = bg 
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Table 4.23 presents the summary and comparison of the overall accuracy results. It is 

obvious that not all the instances in each case were correctly classified. All the 

classifiers performed well with classification accuracy above 70% except the neural 

network. The low performance of neural network could be that the volume of data 

used is not enough to train the classifier (Zhang, 2000; Marwala, 2009; Taskin, 

2009). However, SVM and RF predictions are tremendous (Abe et al., 2012). 

Comparing the Kappa statistics values obtained, the SVM has the highest percentage 

followed by RF. The tables also revealed that there are no unclassified instances 

during the classification procedure.  

Table 4.23:  Spectral unmixing classification accuracy results 
C CCI ICI UI KS MAE RMSE RAE (%) RRSE (%) A (%) 

NN 1846 1378 0 0.5243 0.1049 0.234 58.5418 78.1656 57.26 

SVMs  3171 53 0 0.9817 0.0033 0.0573 1.8343 19.1535 98.34 

RF 3166 58 0 0.9799 0.0286 0.0875 15.954 29.2364 98.20 

C 4.5 2464 760 0 0.7371 0.0627 0.1771 34.9938 59.1559 76.43 

B 2901 323 0 0.8882 0.0553 0.1394 30.8356 46.5581 89.98 

Where: C – Classifier, CCI – Correctly Classified Instances, ICI–Incorrectly 

Classified Instances, UI – Unclassified Instances, KS –  Kappa Statistic, MAE – 

Mean Absolute Error,  RSE – Root Mean Squared error,  RAE–  Relative Absolute 

Error, RRSE – Root Relative Squared Error, A –Accuracy, NN – Neural network, 

SVM – Support vector machines, RF – Random forest, B – Bagging. 
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We also looked at the performances of the classifiers against each class label and the 

outcome is as shown in Table 4.24. The table shows that each classifier performance 

on each class label is remarkable. Comparing the performance of the each classifier 

against the individual class label, SVM produces a higher level of classification 

accuracy per class label as compared to others. 

Table 4.24: Overall percentage accuracy results’ analysis of different classification 

schemes performance on the land cover classes 
Class label Random forest Neural 

Network 

C4.5 SVMs Bagging 

gp 96.00 91.84 93.70 99.04 92.84 

bg 92.99 90.73 92.43 99.47 91.07 

woods 95.32 87.56 89.24 99.69 87.75 

scl 95.07 93.74 94.91 100 93.77 

snt 92.15 89.18 92.34 100 89.27 

smn 90.23 86.79 91.63 99.97 86.85 

gt 93.42 89.52 91.22 99.10 90.11 

cnt 91.35 88.90 91.50 100 88.90 

hw 97.89 91.38 93.58 99.97 91.97 

cmn 92.25 90.57 93.74 99.88 90.60 

 

The entire accuracy assessment procedure is that the error matrix must be a 

representative of the entire area mapped from the remotely sensed data (Congalton, 

1988) and is calculated using the formula (Story and Congalton, 1986; Congalton, 

2005): 
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Where:  C = classification accuracy 

  Z = all entries in the major diagonal of the matrix 

  M = total number of sample units in the matrix 

If all the non-major diagonal elements of the error matrix are zero, then it means no 

area in the map has been misclassified and the map accuracy is 100 percent. 

Otherwise, there are certain percentages of misclassified instances (Congalton et al., 

1983; Congalton, 1991; Rodriguez-Galiano et al., 2011). In our experiment from 

Table 4.23 shows the misclassified instances as follows: NN, 1378 instances = 

44.74%, SVMs, 53 instances = 1.66%, RF, 58 instances = 1.8%, C4.5, 760 instances 

= 23.57%, Bagging, 323 instances = 10.02% respectively. The overall accuracy for 

correctly classified instances, incorrectly classified instances, unclassified instances 

and the Kappa statistic are identified from the error matrices (Landgrebe, 1998; 

Congalton and Green, 2009; Abe et al., 2012).  

In order to further evaluate the results of the classification accuracy so as to establish 

which of the classifiers performed better, the results obtained by each classifier per 

land cover in Figure 4.24 is subjected to Friedman test. Friedman test is a non-

parametric statistical test alternative to ANOVA with repeating measures. According 

to Japkowicz and Shah (2011), the null hypothesis is that all the classifiers perform 

equally, and rejection of that null hypothesis means that: there exists at least one pair 

of classifiers with significantly different performances.  
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Should the null hypothesis be rejected, the Post-hoc test will be conducted. The job 

is to identify the significantly different pairs of classifiers. Its objective is to identify 

the specific pair or pairs of factors with a difference in rank sums that is statistically 

significant, and which may have caused the rejection of the global null hypothesis. 

The Friedman test is used to investigate if there is a difference between the 

predictions obtained per land cover class by Random Forest, Support Vector 

Machines, C4.5 and Bagging using alpha = 0.05. The null hypotheses are; 

H0: there is no difference between the five conditions. 

H1: there is a difference between the five conditions. 

To calculate the degree of freedom (df), we used  

df = k -1 (where k is the number of classifiers to be compared) 

df = 5- 1 = 4 (we used 4 degrees of freedom). Thereafter we find the decision rule. 

The critical value will be 9.48773, if we calculate Chi square value (  ) and it is 

greater than 9.48773, the hypothesis will be rejected. To calculate Friedman Test the 

following equation is used: 

   
  

  (   )
∑     (   ) 

Where   represents the number of class labels,   is the number of classifiers and  is 

the classifiers considered. From our calculation, the null hypothesis was rejected 

because the value obtained is greater than the critical value. The Friedman’s test 

shows that there is a significant difference among the classifiers being tested. Hence, 

we used Nemenyi test to pinpoint where the difference lies using the formula; 
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(n is the number of domains and k, the number of classifiers). From the Friedman 

test, 

 ̅      ̅      ̅      ̅      ̅     

Where,  

 ̅   Random forest,  ̅  Neural Network,  ̅  Support Vector Machines,  ̅  

 C4.5 and  ̅   Bagging  

We obtained,           ,          ,          ,           ,     

     ,          ,          ,          ,           ,            

        for       (   must be larger than     for the hypothesis that y and z 

perform equally to be rejected). 

Therefore, we reject the null hypothesis in the case of RF and NN, RF and C4.5, RF 

and Bagging, NN and SVMs, NN and C4.5, NN and Bagging, SVMs and Bagging, 

and C4.5 and Bagging, but not in the case of RF and SVMs. 

Kappa statistic (Bishop et al., 1975; Congalton, 1991) a discrete multivariate 

technique is used to determine (i) if the remotely sensed classification is better than a 

random classification, (ii) if two or more error matrices are significantly different 

from each other. The outcome of performing Kappa analysis is a KHAT statistic, 

which can be viewed as a measure of accuracy or agreement. The KHAT statistic is 
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calculated using the following formula (Cohen, 1960; Congalton and Mead, 1983; 

Congalton, 1991, Landgrebe, 1998): 

 

 

 




 







r

i
ii

r

i

r

i
iiii

xxN

xxxN

K

1

2

1 1

   (4.2) 

Where, r = number of rows in the matrix 

  xii
 = no. of observation in row i and column i 

 xi
 and x i

 = the marginal totals of row i and column i respectively 

 N = total number of observations  

According to (Demir and Ertürk, 2007), the kappa value depicts Kappa coefficient of 

agreement which is a measure of how well the classifier’s prediction compares with 

the reference (ground truth) data. ,It ranges from – 1 to 1, with negative values 

meaning agreement worse than expected. Low negative values (0 to – 0.10) 

generally imply no agreement between the classified land cover and ground truth 

while 1 indicates complete agreement. Kappa statistic calculated value obtained for 

both SVM, RF models were very significant taking into account the complexity of 

the study area and the large number of categories, which indicate that the method 

used for the image processing and the application of GRG optimization technique is 

very effective. Evaluating the performances of the classifiers in a land cover 

classification context are in the sequence, the SVM has the highest classification 

accuracy, followed by RF, Bagging (ensemble classifiers), followed by C4.5, then 
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the neural network (Abe et al., 2012). Other results obtained from the experiment are 

presented in Appendix C. 

4.5.3 Conclusion  

The classification accuracy results obtained from the unmixing spectral analysis 

using generalized reduced gradient approach was presented. The results obtained 

proved that, the generalized reduced gradient approach to image processing is very 

effective as applied to hyperspectral image. Evaluating the classifiers on 

classification accuracy bases, generalized Support Vector Machine’s performance is 

the best, followed by Random Forest, Bagging, C4.5 and NN has the least 

performance. However, using Random Forest instead of Support Vector machine is 

far less computationally expensive (Abe et al., 2012). 

4.6 Hyperspectral Image Classification using Random 

Forests and Neural Networks 

This section presents the results and discussion of the experiment conducted on the 

Washington DC Mall dataset 

4.6.1 Endmembers determination 

The first experiment performed aimed to obtain endmembers from image dataset 

using the ENVI software application. The MNF transformation of the input 

hyperspectral image was performed for dimension reduction. The next stage of the 

endmember determination is to select a set of endmembers by applying the PPI 

algorithm on the extracted Region of Interest (ROI) pixels. Figure 4.13 shows this 

result, wherein the extreme pixels corresponding to the endmembers in each 

projection are recorded and the total number of times each pixel is marked as 
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extreme is noted. A threshold value of 1 is used to define how many pixels are 

marked as extreme at the ends of the projected vector (Abe et al., 2012). 

 

Fig 4.13: Purest pixels occur at the edges of the projected vector 

The estimated number of spectral endmembers and their corresponding spectral 

signatures are obtained using ENVI visualizer. Figure 4.14 shows the generated six 

fractional endmembers of the image from the PPI method (Abe et al., 2012).  
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Endmember 1 

 
Endmember 2 

 
Endmember 3 

 
Endmember 4 

 
Endmember 5 

 
Endmember 6 

Fig 4.14: Fraction images for each endmember 

At the completion of specified iterations, a PPI image is created in which the value 

of each pixel corresponds to the number of times that a pixel was recorded as 

extreme. The bright pixels in the PPI image are generally the image endmembers to 

characterize the land cover structure. This study presents six endmember models to 

characterize the land cover structure which are: Roofs, Street, Path, Grass, Trees, 

Water and Shadow. Normalized numerical values of the fractional abundant 

generated were calculated from the spectral signatures of the land cover label. 

4.6.2 Results of Land Cover Classification 

RF and NN classifiers are evaluated using the error confusion matrix method, which 

is a representation of the entire classification result. According to (Benediktsson et 

al., 1990), the error confusion matrix can be used to compute the overall accuracy 

and the individual class label accuracy. The error confusion matrix is a widely 

accepted method to report error of raster data and to assess the classification 

accuracy of a classifier. The matrix expresses the number of sample units allocated 
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to each land cover type as compared to the reference data. The diagonal of the matrix 

designates agreement between the reference data and the interpreted land cover types 

(Congalton, 1991; Abe et al., 2012).  

Table 4.25 shows the result of the error confusion matrix for the performance of RF 

classifier. This result shows that roofs, paths, water, streets, trees and grass have 

100% classification accuracy because none of their pixel’s member is misclassified 

while the shadow has one of the pixels’ members misclassified. 

Table 4.25: Random forests error confusion matrix 

a b c d e f g classified as 

724 0 0 0 0 0 0 a = Roofs 

0 211 0 0 0 0 0 b = Paths 

0 0 703 0 0 0 0 c = Water 

0 0 0 404 0 0 0 d = Streets 

0 0 0 0 398 0 0 e = Trees 

0 0 1 0 0 96 0 f = Shadow 

0 0 0 0 0 0 818 g = Grass 

 

Table 4.26 records the result of the error confusion matrix for the performance of 

NN. From the table, it can be observed that roofs and grass are 100% classified while 

other land cover classes have some of their pixels misclassified. 
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Table 4.26: Neural networks error confusion matrix 

a b c d e f g classified as 

724 0 0 0 0 0 0 a = Roofs 

1 210 0 0 0 0 0 b = Paths 

1 0 699 0 0 3 0 c = Water 

1 0 2 401 0 0 0 d = Streets 

0 0 0 0 398 0 0 e = Trees 

0 0 17 0 0 80 0 f = Shadow 

0 0 0 0 0 0 818 g = Grass 

 

Generally, the two classifiers performed excellently well. Considering the individual 

class label, RF produces a higher level of classification accuracy per class label as 

compared to the NN. The entire accuracy assessment procedure is that the error 

confusion matrix must be a representative of the entire area mapped from the 

remotely sensed data (Story and Congalton, 1986). The overall accuracy for correctly 

classified instances, incorrectly classified instances, unclassified instances and the 

Kappa statistic are identified from the error confusion matrices (Story and 

Congalton, 1986; Congalton, 1988; Abe et al., 2012). 

If all the non-major diagonal elements of the error confusion matrix are zero, then it 

means no area in the map has been misclassified and the map accuracy is 100 

percent. Otherwise, there are certain percentages of misclassified instances 

(Congalton, 1988). In our experiment, RF as compared to NN has only 1 instance 

misclassified, while NN has 25 instances misclassified.  

The Kappa coefficient of agreement is a measure of how well the accuracy of the 

classifier compares with the reference or ground truth data (Congalton, 1988). It 
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ranges from 0 to 1, with 0 implying no agreement between the classified land cover 

and ground truth and 1 indicates complete agreement. Table 4.27 shows the result of 

error, Kappa statistics and overall accuracy classification.  

Table 4.27: Classification accuracy 

C 

 

CCI 

 

ICI 

 

UI 

 

KS 

 

MAE 

 

RMSE 

 

RAE  

(%) 

RRSE 

 (%) 

Accuracy 

 (%) 

RF 3354 1 0 0.9996 0.0015 0.0176 0.6568 5.1615 99.9702 

NN 3330 25 0 0.9909 0.003 0.0379 1.2835 11.1095 99.2548 

Where: C– Classifier, CCI – Correctly Classified Instances, ICI–Incorrectly 

Classified Instances, UI – Unclassified Instances, KS –  Kappa Statistic, MAE – 

Mean Absolute Error,  RSE – Root Mean Squared error,  RAE – Relative Absolute 

Error, RRSE – Root Relative Squared Error 

The process used for results analysis in section 4.5 was also used in this section. 

According to this result, there are no unclassified instances during the RF and NN 

classification procedures and the overall classification accuracies of the classifiers 

are seen to be comparable. It can be deduced from the predictions that RF 

outperformed NN. In addition, RF is more computational effective as compared to 

NN (Abe et al., 2012). 

Conclusion 

This study aimed to establish a performance comparison between RF and NN 

classifiers for land cover classification. The performance assessment was done, 

giving overall accuracy and error confusion matrix. Experimental results 

demonstrate that the generation of RF and NN based land cover classification 

systems significantly improves overall accuracy. As a result, the classifiers can 
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significantly contribute to land cover classification system as a source of analysis 

and increase its accuracy. The comparability and high accuracy performance of RF 

and NN indicates that the GRG method introduced in this study is effective for 

solving a linear spectral unmixing problem of land cover classification (Abe et al., 

2012). 
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CHAPTER 5 

Remark and Conclusions  

This chapter highlights the objectives of the study, how they were achieved and the 

major findings. It also presents the limitation and the future work to be done. 

5.1 Remark 

This section gives a recap on the study objectives, how they were achieved and the 

major findings. 

 Diversity through training a given classifier on different features and land 

cover accuracy: This was achieved by using ensemble feature selection to 

impose diversity in ensembles. The features of the constituent base classifiers 

for each ensemble were created through an exhaustive search algorithm using 

different separability indices. For each ensemble, the classification accuracy 

was derived as well as a diversity measure purported to give a measure of the 

in-ensemble diversity. The correlation between ensemble classification 

accuracy and diversity measure was determined to establish the interplay 

between the two variables. The study was carried out using Indiana pines 

dataset. The investigation reveals that diversity measures as formulated do 

not provide an adequate means upon which to constitute ensembles for land 

cover mapping. 

 Interplay between the structure of ensemble and land cover classification 

accuracy: The study was done by cumulatively increasing the ensemble size 

(of both the number of base classifiers and bands) and consequently evaluates 

its effect on the ensemble classification accuracy. The investigations were 
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carried out using the online Indiana Pines hyperspectral dataset. The main 

finding of this investigation was that as the number of bands per ensemble 

increased, so did the classification accuracy significantly improve. On the 

other hand, increasing the number of base classifiers in the ensemble system 

portrayed no significant influence on land cover mapping classification 

accuracy. 

 Fully constrained spectral unmixing analysis for land cover classification: 

This investigation was carried out using Indiana pines and Washington DC 

Mall hyperspectral image datasets. The pixel purity index algorithm was used 

to obtain endmember spectral responses from the datasets. The generalized 

reduced gradient optimization algorithm is thereafter executed on the 

research datasets to estimate fractional abundances in the hyperspectral 

images, thereby obtain the numeric values for land cover classification. The 

Waikato environment for knowledge analysis (WEKA) data mining 

framework is selected as a tool to carry out the classification process. The 

classifiers used were; support vector machines, random forests, neural 

network, Bagging and C4.5. Results show that the performances of all the 

classifiers are remarkable, but support vector machines ensemble is 

comparable with that of random forests. 

 Interplay between combination rules of the ensemble and land cover 

classification accuracy: The study explores the ensemble feature selection as 

a means of ensuring diversity for land cover mapping of Indiana pines 

hyperpectral data. Two ensemble feature selection techniques were used, 

namely exhaustive search and random selection of feature subsets. The 

evaluation function for the exhaustive search was the Bhattacharyya Distance 

separability index. The results of the base classifiers in each ensemble were 
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combined using two methods; majority voting and an adaptation of Cross 

Validation majority (CVM) also called single best. In CVM, cross validation 

data is used as a basis for selecting the best out of the whole ensemble. 

Results show that random selection of features (bands) yielded the best 

results as compared to building base classifiers depending on search 

algorithms or as was used in the study, sequentially arranging the features 

into base classifiers. Of the combination techniques, the single best technique 

yielded better results than majority vote. However, in most cases the 

difference between the results was not significant. 

5.2  Conclusions 

In this research, we investigated the effect of ensemble classification on land cover 

mapping. This was carried out by looking at the interplay between ensemble system 

size and classification accuracy for land cover mapping. The work also explores the 

ensemble feature selection as a means of ensuring diversity for land cover mapping 

of hyperspectral data. It was observed from the results that; 

 There is a ‘peaking’ effect beyond which increasing the number of features 

per ensemble does not translate into an increase in classification accuracy 

 In application of ensemble feature classification for land cover mapping, 

there is no significant benefit in having many base classifiers. The minimum 

number of base classifier (in this was 3) should be enough. 

 Diversity measures as currently formulated does not provide an adequate 

means upon which to constitute ensembles for land cover mapping. 

 The random selection of bands yielded a good result compared to building 

base classifiers depending on the bands search algorithm.  
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Investigation of classification accuracy was also conducted using spatial and spectral 

signature of AVIRIS hyperspectral imagery data. The numeric values of the 

estimated fractional abundance obtained from Generalized Reduced Gradient based 

approach was adequate for land cover classification. The classifiers predictions 

ascertained that the approach was cost and computational effective with SVM having 

the best predicted using Indiana pine dataset. 

In the same vain, the experimental results demonstrate that the generation of RF and 

NN based land cover classification systems significantly improves overall accuracy. 

As a result, the classifiers can significantly contribute to land cover classification 

system as a source of analysis and increase its accuracy. The comparability and high 

accuracy performance of RF, SVM and NN indicates that the GRG method 

introduced in this study is effective for solving a linear spectral unmixing problem of 

land cover classification. 

5.3 Future works 

The limitation of this work is the non-availability of different remote sensing data to 

allow for more experiments. This is due to the high cost involved in procuring or 

acquiring remote sensing data. The investigator used data available online, which has 

been researched by various researchers all over the world.    

As future work we want to: 

 Look into the quantification of diversity measure and its consequent 

influence in determining the type of ensemble classification for land cover 

mapping.  
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 Further investigations will be conducted on various hyperspectral datasets 

using the Generalized Reduced Gradient base approach to authenticate its 

efficiency on other datasets. 

 Generalized Reduced Gradient algorithm shall be implemented using Matlab. 
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Appendix A 

Land cover classification accuracy maps for Kampala dataset 

Bhattacharyya separability index 

 

Map generated from accuracy result of Ensemble using BSI with 3 bands 

 

Map generated from accuracy result of Ensemble using BSI with 4 bands 
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Map generated from accuracy result of Ensemble using BSI with 5 bands 

Divergence separability index 

 

Map generated from accuracy result of Ensemble using DSI with 3 bands  



 

 

 

137 

 

 

 

 

Map generated from accuracy result of Ensemble using DSI with 4 bands  

 

 

Map generated from accuracy result of Ensemble using DSI with 5 bands 
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Transformed divergence separability index 

 

Map generated from accuracy result of Ensemble using TDSI with 3 bands 

 

 

Map generated from accuracy result of Ensemble using TDSI with 4 bands 
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Map generated from accuracy result of Ensemble using TDSI with 5 bands 

 

No seperability measure  

 

Map generated from accuracy result of Ensemble using NSM with 6 bands  
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Appendix B 

Indiana land cover accuracy maps on effect of ensemble size on 

Classification  

 

Ensemble made up of 8 bands classification Accuracy map 

 

Ensemble made up of 10 bands classification Accuracy map 
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Ensemble made up of 12 bands classification Accuracy map 

 

Ensemble made up of 14 bands classification Accuracy map 


