10 research outputs found

    A Survey Addressing on High Performance On-Chip VLSI Interconnect

    Get PDF
    With the rapid increase in transmission speeds of communication systems, the demand for very high-speed lowpower VLSI circuits is on the rise. Although the performance of CMOS technologies improves notably with scaling, conventional CMOS circuits cannot simultaneously satisfy the speed and power requirements of these applications. In this paper we survey the state of the art of on-chip interconnect techniques for improving performance, power and delay optimization and also comparative analysis of various techniques for high speed design have been discussed

    Evaluating the Repair of System-on-Chip (SoC) using Connectivity

    Get PDF
    This paper presents a new model for analyzing the repairability of reconfigurable system-on-chip (RSoC) instrumentation with the repair process. It exploits the connectivity of the interconnected cores in which unreliability factors due to both neighboring cores and the interconnect structure are taken into account. Based on the connectivity, two RSoC repair scheduling strategies, Minimum Number of Interconnections First (I-MIN) and Minimum Number of Neighboring Cores First (C-MIN), are proposed. Two other scheduling strategies, Maximum Number of Interconnections First (I-MAX) and Maximum Number of Neighboring cores First (C-MAX), are also introduced and analyzed to further explore the impact of connectivity-based repair scheduling on the overall repairability of RSoCs. Extensive parametric simulations demonstrate the efficiency of the proposed RSoC repair scheduling strategies; thereby manufacturing ultimately reliable RSoC instrumentation can be achieved

    High-Speed and Low-Energy On-Chip Communication Circuits.

    Full text link
    Continuous technology scaling sharply reduces transistor delays, while fixed-length global wire delays have increased due to less wiring pitch with higher resistance and coupling capacitance. Due to this ever growing gap, long on-chip interconnects pose well-known latency, bandwidth, and energy challenges to high-performance VLSI systems. Repeaters effectively mitigate wire RC effects but do little to improve their energy costs. Moreover, the increased complexity and high level of integration requires higher wire densities, worsening crosstalk noise and power consumption of conventionally repeated interconnects. Such increasing concerns in global on-chip wires motivate circuits to improve wire performance and energy while reducing the number of repeaters. This work presents circuit techniques and investigation for high-performance and energy-efficient on-chip communication in the aspects of encoding, data compression, self-timed current injection, signal pre-emphasis, low-swing signaling, and technology mapping. The improved bus designs also consider the constraints of robust operation and performance/energy gains across process corners and design space. Measurement results from 5mm links on 65nm and 90nm prototype chips validate 2.5-3X improvement in energy-delay product.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/75800/1/jseo_1.pd

    Networks on Chips: Structure and Design Methodologies

    Get PDF

    Multilayer Modeling and Design of Energy Managed Microsystems

    Get PDF
    Aggressive energy reduction is one of the key technological challenges that all segments of the semiconductor industry have encountered in the past few years. In addition, the notion of environmental awareness and designing “green” products is yet another major driver for ultra low energy design of electronic systems. Energy management is one of the unique solutions that can address the simultaneous requirements of high-performance, (ultra) low energy and greenness in many classes of computing systems; including high-performance, embedded and wireless. These considerations motivate the focus of this dissertation on the energy efficiency improvement of Energy Managed Microsystems (EMM or EM2). The aim is to maximize the energy efficiency and/or the operational lifetime of these systems. In this thesis we propose solutions that are applicable to many classes of computing systems including high-performance and mobile computing systems. These solutions contribute to make such technologies “greener”. The proposed solutions are multilayer, since they belong to, and may be applicable to, multiple design abstraction layers. The proposed solutions are orthogonal to each other, and if deployed simultaneously in a vertical system integration approach, when possible, the net benefit may be as large as the multiplication of the individual benefits. At high-level, this thesis initially focuses on the modeling and design of interconnections for EM2. For this purpose, a design flow has been proposed for interconnections in EM2. This flow allows designing interconnects with minimum energy requirements that meet all the considered performance objectives, in all specified system operating states. Later, models for energy performance estimation of EM2 are proposed. By energy performance, we refer to the improvements of energy savings of the computing platforms, obtained when some enhancements are applied to those platforms. These models are based on the components of the application profile. The adopted method is inspired by Amdahl’s law, which is driven by the fact that ‘energy’ is ‘additive’, as ‘time’ is ‘additive’. These models can be used for the design space exploration of EM2. The proposed models are high-level and therefore they are easy to use and show fair accuracy, 9.1% error on average, when compared to the results of the implemented benchmarks. Finally, models to estimate energy consumption of EM2 according to their “activity” are proposed. By “activity” we mean the rate at which EM2 perform a set of predefined application functions. Good estimations of energy requirements are very useful when designing and managing the EM2 activity, in order to extend their battery lifetime. The study of the proposed models on some Wireless Sensor Network (WSN) application benchmark confirms a fair accuracy for the energy estimation models, 3% error on average on the considered benchmarks

    Process-induced Structural Variability-aware Performance Optimization for Advanced Nanoscale Technologies

    Get PDF
    Department of Electrical EngineeringAs the CMOS technologies reach the nanometer regime through aggressive scaling, integrated circuits (ICs) encounter scaling impediments such as short channel effects (SCE) caused by reduced ability of gate control on the channel and line-edge roughness (LER) caused by limits of the photolithography technologies, leading to serious device parameter fluctuations and makes the circuit analysis difficult. In order to overcome scaling issues, multi-gate structures are introduced from the planar MOSFET to increase the gate controllability. The goal of this dissertation is to analyze structural variations induced by manufacturing process in advanced nanoscale devices and to optimize its impacts in terms of the circuit performances. If the structural variability occurs, aside from the endeavor to reduce the variability, the impact must be taken into account at the design level. Current compact model does not have device structural variation model and cannot capture the impact on the performance/power of the circuit. In this research, the impacts of structural variation in advanced nanoscale technology on the circuit level parameters are evaluated and utilized to find the optimal device shape and structure through technology computer-aided-design (TCAD) simulations. The detail description of this dissertation is as follows: Structural variation for nanoscale CMOS devices is investigated to extend the analysis approach to multi-gate devices. Simple and accurate modeling that analyzes non-rectilinear gate (NRG) CMOS transistors with a simplified trapezoidal approximation method is proposed. The electrical characteristics of the NRG gate, caused by LER, are approximated by a trapezoidal shape. The approximation is acquired by the length of the longest slice, the length of the smallest slice, and the weighting factor, instead of taking the summation of all the slices into account. The accuracy can even be improved by adopting the width-location-dependent factor (Weff). The positive effect of diffusion rounding at the transistor source side of CMOS is then discussed. The proposed simple layout method provides boosting the driving strength of logic gates and also saving the leakage power with a minimal area overhead. The method provides up to 13% speed up and also saves up to 10% leakage current in an inverter simulation by exploiting the diffusion rounding phenomena in the transistors. The performance impacts of the trapezoidal fin shape of a double-gate FinFET are then discussed. The impacts are analyzed with TCAD simulations and optimal trapezoidal angle range is proposed. Several performance metrics are evaluated to investigate the impact of the trapezoidal fin shape on the circuit operation. The simulations show that the driving capability improves, and the gate capacitance increases as the bottom fin width of the trapezoidal fin increases. The fan-out 4 (FO4) inverter and ring-oscillator (RO) delay results indicate that careful optimization of the trapezoidal angle can increase the speed of the circuit because the ratios of the current and capacitance have different impacts depending on the trapezoidal angle. Last but not least, the electrical characteristics of a double-gate-all-around (DGAA) transistor with an asymmetric channel width using device simulations are also investigated in this work. The DGAA FET, a kind of nanotube field-effect transistor (NTFET), can solve the problem of loss of gate controllability of the channel and provide improved short-channel behavior. Simulation results reveal that, according to the carrier types, the location of the asymmetry has a different effect on the electrical properties of the devices. Thus, this work proposes the n/p DGAA FET structure with an asymmetric channel width to form the optimal inverter. Various electrical metrics are analyzed to investigate the benefits of the optimal inverter structure over the conventional GAA inverter structure. In the optimum structure, 27% propagation delay and 15% leakage power improvement can be achieved. Analysis and optimization for device-level variability are critical in integrated circuit designs of advanced technology nodes. Thus, the proposed methods in this dissertation will be helpful for understanding the relationship between device variability and circuit performance. The research for advanced nanoscale technologies through intensive TCAD simulations, such as FinFET and GAA, suggests the optimal device shape and structure. The results provide a possible solution to design high performance and low power circuits with minimal design overhead.ope

    System-on-Chip design for reliability

    Get PDF

    Design of complex integrated systems based on networks-on-chip: Trading off performance, power and reliability

    Get PDF
    The steady advancement of microelectronics is associated with an escalating number of challenges for design engineers due to both the tiny dimensions and the enormous complexity of integrated systems. Against this background, this work deals with Network-On-Chip (NOC) as the emerging design paradigm to cope with diverse issues of nanotechnology. The detailed investigations within the chapters focus on the communication-centric aspects of multi-core-systems, whereas performance, power consumption as well as reliability are considered likewise as the essential design criteria
    corecore