
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Electrical and Computer Engineering Faculty 
Research & Creative Works Electrical and Computer Engineering 

01 Dec 2004 

Evaluating the Repair of System-on-Chip (SoC) using Connectivity Evaluating the Repair of System-on-Chip (SoC) using Connectivity 

Minsu Choi 
Missouri University of Science and Technology, choim@mst.edu 

Nohpill Park 

Vincenzo Piuri 

Fabrizio Lombardi 

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork 

 Part of the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
M. Choi et al., "Evaluating the Repair of System-on-Chip (SoC) using Connectivity," IEEE Transactions on 
Instrumentation and Measurement, vol. 53, no. 6, pp. 1464-1472, Institute of Electrical and Electronics 
Engineers (IEEE), Dec 2004. 
The definitive version is available at https://doi.org/10.1109/TIM.2004.834603 

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for 
inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized administrator 
of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for 
redistribution requires the permission of the copyright holder. For more information, please contact 
scholarsmine@mst.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229202047?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1032&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1032&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TIM.2004.834603
mailto:scholarsmine@mst.edu


1464 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 53, NO. 6, DECEMBER 2004

Evaluating the Repair of System-on-Chip (SoC)
Using Connectivity

Minsu Choi, Member, IEEE, Nohpill Park, Member, IEEE, Vincenzo Piuri, Fellow, IEEE, and
Fabrizio Lombardi, Member, IEEE

Abstract—This paper presents a new model for analyzing the
repairability of reconfigurable system-on-chip (RSoC) instrumen-
tation with the repair process. It exploits the connectivity of the
interconnected cores in which unreliability factors due to both
neighboring cores and the interconnect structure are taken into
account. Based on the connectivity, two RSoC repair scheduling
strategies, Minimum Number of Interconnections First (I-MIN)
and Minimum Number of Neighboring Cores First (C-MIN), are
proposed. Two other scheduling strategies, Maximum Number of
Interconnections First (I-MAX) and Maximum Number of Neigh-
boring cores First (C-MAX), are also introduced and analyzed to
further explore the impact of connectivity-based repair scheduling
on the overall repairability of RSoCs. Extensive parametric sim-
ulations demonstrate the efficiency of the proposed RSoC repair
scheduling strategies; thereby manufacturing ultimately reliable
RSoC instrumentation can be achieved.

Index Terms—Configurability, connectivity, reconfigurable
system-on-chip (RSoC), reliability, repair, repairability.

I. INTRODUCTION

THE INCREASING demand on operation speed, in-
tegration density, and customizability for tomorrow’s

high-performance instrumentation has motivated high perfor-
mance system development. System-on-chip (SoC) technology
provides potential advantages of high integration density,
small interconnection delay and high system performance [8],
[12]–[14], [16]–[18], [21], and [23]. Thus, SoC is one of the
key technology choices for high-performance instrumenta-
tion development [9]. For the purpose of customizability and
repairability, embedding reconfigurable components along
with ordinary cores with fixed functionality are commonly
practiced [1]–[3], [7], [10], [11], [15], [19], [20], and [22]. The
SoC with reconfigurable resources is commonly referred to as
reconfigurable system-on-chip (RSoC). In this paper, connec-
tivity-driven repair algorithms for an RSoC which exploits the
reconfigurable redundancy will be proposed. Test and repair
are essential processes for achieving high-yielding SoCs. After
the fabrication phase, each SoC undergoes a test phase where
defective cores are diagnosed and identified. Usually, defective
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cores on RSoCs are deemed to be reworked, which means that
defective cores can be repaired by reconfigurable redundancy.
The overall quality of the repair process significantly affects
the final quality of the repaired RSoC. However, the repair
process is not free from penalty, since faulty core isolation and
reconfiguration processes may affect the overall system in-
tegrity, the reconfigured interconnect structure routability, and
the neighboring cores’ functionality due to the serious intercon-
nection network reconfiguration and associated programmable
logic gate programming. For the extra long interconnects, even
signal boosters are required to guarantee the integrity of the
routed signals [5]. For more structured and reliable operations,
protocol-based interconnction networks are commonly imple-
mented for SoCs as well [4].

How densely a repair-candidate core (i.e., the core to be re-
paired since it is diagnosed as defective) is connected to the
neighboring parts of the RSoC is referred to as connectivity
[6]. If a repair-candidate core’s connectivity is high, the repair
process applied to the core may impair the reliability of the
RSoC while it repairs the core because of the physically associ-
ated components with the core. Thus, selection of a repair-can-
didate core that results in the least negative effects on the overall
reliability at each repair cycle seems to be crucial in the RSoC
repair process.

The objective of this paper is to extensively investigate the
effect of the connectivity of repair-candidate cores on the overall
yield (i.e., ratio of the total number of functional RSoCs out
of the total number of fabricated RSoCs) of the repaired RSoC
and to propose various repair scheduling strategies. Also, how
improper repair scheduling could degrade the overall quality of
repaired RSoCs will be extensively studied. Thus, results and
findings from this research will be beneficial to RSoC-based
digital instrumentation developers.

The organization of the paper is as follows. In Section II,
review and preliminaries related to this research work will be
given. In Section III, analytical characteristics of the RSoC
repair process for the proposed repair scheduling strategies will
be discussed. Section IV will describe details of the proposed
RSoC repair scheduling strategies. In Section V, extensive
parametric analysis and simulations will be provided to demon-
strate and verify the accuracy and efficiency of the proposed
approaches.

II. REVIEW AND PRELIMINARIES

In this work, an RSoC is modeled as a set of cores, their in-
terconnect structure, reconfigurable interconnects, and recon-
figurable logic redundancy is shown in Fig. 1, in which the

0018-9456/04$20.00 © 2004 IEEE
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RSoC has six cores and corresponding interconnect structure.
The repair process induces faulty core isolation, programmable
logic reconfiguration, and interconnection rerouting. Although
the process repairs the RSoC, the unreliability induced by the re-
configuration process (i.e., imperfect faulty core isolation, pro-
grammable logic reconfiguration and interconnection rerouting)
may have negative effects on the overall quality of the repaired
RSoC.

Once fabricated, embedded cores cannot be physically
replaced. Thus, embedded redundancy must be practiced for
better yielding SoCs. Since a number of embedded hybrid
cores are usually involved to design an SoC, a legacy modular
redundancy scheme (i.e., embedding of extra cores to repair
faulty cores) may require significant die area investment and its
redundancy utilization also may be very low (i.e., unused spare
cores are likely). The proposed reconfigurable redundancy
architecture for SoC repair consists of two key components:
reconfigurable logic redundancy and reconfigurable intercon-
nect redundancy. The embedded cores are tested in order to
identify faulty cores, if any. Then, the faulty cores and their
interconnects are emulated by the reconfigurable logic and
interconnect redundancy to restore the original functionality
of the RSoC. The following case study clarifies the proposed
RSoC core repair scheme based on the reconfigurable redun-
dancy. Suppose that an RSoC shown in Fig. 1 is tested and
diagnosed, and its core 4 is identified as faulty. Then, an emu-
lated core is implemented by using the reconfigurable logic
redundancy and core ’s interconnects are rerouted to the core

via the reconfigurable interconnect redundancy. As a result,
the repaired RSoC is shown in Fig. 2.

Upon proper fault simulation and analysis, the optimized
amount of the reconfigurable redundancy can be determined
prior to the fabrication of the RSoC. Thereby, both mini-
mization of the die area overhead due to the redundancy and
maximization of the RSoC yield can be achieved. Customized
circuits can also be implemented by the reconfigurable redun-
dancy, of course.

The following assumptions are made in this paper.

• RSoC is fabricated with embedded cores and each core
can be tested and diagnosed as faulty or not.

• No escaped cores are considered (i.e., 100% test coverage
is assumed).

• Repair process, including defective core isolation, redun-
dancy reconfiguration, and interconnect reconfiguration
can be applied to the RSoC.

• Each core may have an uneven number of ports which
connects to other core(s) via intrachip interconnects.

• Reconfigured and rerouted interconnects are considered as
less dependable than the original interconnects due to the
complexity of the resulting interconnect configuration.

As clearly addressed in the assumptions given above, the
repair procedure of an RSoC has not only an advantage but also
a disadvantage. Proper testing and diagnosis of the embedded
cores and reconfigurable redundancy utilization may enhance
the overall yield of the RSoC, since faulty cores can be replaced
by reconfigured cores and rerouted reconfigurable interconnects.
However, the reconfigured and rerouted interconnects may be

Fig. 1. RSoC model with reconfigurable resources.

Fig. 2. Example of repaired RSoC.

less reliable due to the complexity of the resulting interconnect
configuration. The unreliability associated with the reconfigured
redundancy is modeled as the unreliability impact factor(uif).
For example, in Fig. 1, repairing core 4 is assumed to affect
neighboring (i.e., interconnected) cores 1, 3, 6, and associated
interconnect structure. To accurately and effectively model the
effect of both advantageous repair process and disadvantageous
reconfigured and rerouted interconnects’ unreliability at the
same time, the following parameters are used to model the
overall reliability of RSoC under repair:

number of cores in the RSoC;
probability that the th individual core is
functioning, which is called reliability;
maximum number of repair cycles;
overall reliability of cores in the RSoC;
overall reliability of interconnect structure;
overall reliability of the RSoC which takes
into account both the cores and the intercon-
nect structure;

uif base unreliability impact factor due to the
repair process penalty;

uif incremental rate of uif per each repair cycle;
cuif unreliability impact factor of the neighboring

th core due to repair of the th core;
core unreliability impact factor coefficient.

. It is fully dependent on the repair
technology used. As , more reliability
degradation due to the repair process is as-
sumed to be applied to neighboring cores of
the repair-candidate core;
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expected number of interconnect lines be-
tween the th core and the th core;

iuif interconnect structure unreliability impact
factor due to repair of the th core;
interconnect structure unreliability impact
factor coefficient. . It is fully
dependent on the repair technology used. As

, more reliability degradation due to
the repair process is assumed to be applied
to the interconnect structure;
expected number of interconnect lines of the
th core;

reliability increase rate of a core due to re-
pair;
number of interconnect lines from the th
core;
number of interconnect lines between the th
and the th cores;
cumulative Poisson probability function of

(i.e., );
success rate of overall repair process, which
is called repairability (e.g., if 8 out of 10 de-
fective RSoCs are repaired during the repair
process, );
overall yield of RSoCs in which repair
process is taken into account.

III. CONNECTIVITY-BASED RSOC REPAIR PROCESS

The repair process of a core enhances the overall reliability
of the RSoC, but the process is also likely to introduce relia-
bility degradation due to the complication of the reconfiguration
process and is also prone to impair its neighboring (i.e., inter-
connected) cores’ reliability since serious rerouting of connec-
tivity would be experienced afterwards. Thus, the unreliability
impact factor is modeled to be mainly determined by the number
of interconnect lines between the repair-candidate core and its
neighboring cores.

The characteristics of the repair process, so called connec-
tivity-based repair, analyzed in this paper are given as follows:

1) The th core is assumed to have initial reliability of .
Then, (i.e., overall reliability of cores) of the given
RSoC is initially determined by

(1)

Then, the overall initial reliability of RSoC (denoted by
) is

(2)

where is the reliability of the interconnect structure of
RSoC.

2) The test and repair processes are performed after the fab-
rication phase.

3) Repair of a core degrades the reliability of the neighboring
cores and the interconnect structure of the RSoC under
repair. It is assumed that the unreliability impact factor

(denoted by uif) due to the repetition of repair cycles in-
creases as the RSoC undergoes a number of repair cycles.
uif at the th repair cycle is given as

uif uif uif uif (3)

where uif is the incremental rate of uif at each re-
pair cycle due to the increasing complexity of the repair
process as the number of repair cycles increases.

4) The repair of the th core is assumed to affect the neigh-
boring (i.e., interconnected) core , if it exists. The unreli-
ability impact factor of the th core due to the repair of the
th core is denoted by cuif . cuif is modeled as

a function of . The probability that the interconnect
lines between the th and the th cores consist of exactly

lines is

(4)

The increase in the possibility of having more degradation
due to an increment of one interconnect line from

to is also modeled to be determined by (4), since
the occurrence of degrading repair is directly influenced
by the number of interconnect lines attached to the repair
candidate core. Thus, without loss of generality, the
cumulative Poisson probability function of (i.e.,

) is the reasonable one to simulate
an incremental rate of uif imposed by the number of
interconnect lines between the th and th cores. Thus,
unreliability impact factor of the neighboring th core
due to repair of the th core is

cuif uif uif (5)

where is a technology-dependent core unreliability im-
pact factor coefficient and is a cumulative
Poisson probability function of . The parameter
simulates the efficiency of the repair process technology.
As approaches 1 and increases, more reliability
degradation is assumed to take place on the th core since
the part approaches 1. Thus, the relia-
bility of the th core after the repair of the th core can be
formulated as

cuif (6)

5) Repair of the th core is assumed to impair the intercon-
nect structure as well. The reliability impact factor of the
interconnect structure due to the repair of the th core is
denoted by

iuif uif uif (7)

where is a technology-dependent interconnect struc-
ture damage coefficient and is a cumulative

Poisson probability function
which simulates the incremental rate of the reliability
degradation due to the number of interconnect lines of
the th core. As approaches 1 and increases, more
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Fig. 3. Adjacency list representation of Fig. 1.

reliability degradation is assumed to be applied to the th
core since the part approaches 1.

6) The reliability of the th core after the repair process is
given by

(8)

7) The overall reliability of the cores on RSoC after the th
repair cycle becomes

(9)

8) The overall reliability of the interconnect structure on
RSoC after the th repair cycle can be formulated as

iuif (10)

9) The overall reliability of the RSoC after the th repair
cycle then becomes

(11)

IV. CONNECTIVITY-BASED RSOC REPAIR SCHEDULING

Every core on an RSoC is tested after the fabrication phase.
The th core can be tested and diagnosed as nonfaulty with the
probability of and as faulty with the probability of . If
there is only one faulty core detected during the test phase, the
core will be isolated and repaired. If more than one faulty core is
detected during the test phase, the order of repair (referred to as
the repair schedule) must be properly arranged. In each repair
cycle, in other words, selecting an appropriate repair-candidate
core which has the least impact on the overall RSoC reliability
is a natural choice for optimal scheduling.

The RSoC structure shown in Fig. 1 can be viewed as a
weighted graph with six vertices and nine weighted edges. A
simple way to represent the graph is to use a two-dimensional
array called an adjacency matrix representation. The equivalent
adjacency matrix of Fig. 1 is shown in Table I. The space

TABLE I
ADJACENCY MATRIX REPRESENTATION OF FIG. 1

requirement of the representation is where is the
number of cores on the RSoC.

If the RSoC is sparsely interconnected, a better solution is the
adjacency list representation as shown in Fig. 3. The space re-
quirement for this representation is , where is the
number of cores and is the number of edges between cores on
the RSoC. For RSoCs with a greater number of cores which are
sparsely interconnected, the adjacency list representation can
save the space requirement. For RSoCs with a fewer number
of cores which are densely interconnected, the adjacency ma-
trix is the choice. One of the two representations can be chosen
accordingly, in practice.

For the proposed RSoC model, the number of interconnect
lines and the number of neighboring cores attached to a repair-
candidate core determines the resulting yield of the RSoC after
each repair cycle. Four possible repair scheduling strategies are
proposed as follows:

• Minimum Number of Interconnects First (I-MIN)—
Among those diagnosed as faulty cores, the one which
has the smallest number of interconnect lines is to be
repaired first.

• Maximum Number of Interconnects First (I-MAX)—
Among those diagnosed as faulty cores, the one which
has the largest number of interconnect lines is to be
repaired first.

• Minimum Number of Neighboring Cores First (C-MIN)—
Among those diagnosed as faulty cores, the one which has
the smallest number of neighboring cores is to be repaired
first.
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• Maximum Number of Neighboring Cores First
(C-MAX)— Among those diagnosed as faulty cores,
the one which has the largest number of neighboring
cores is to be repaired first.

Since I-MAX and C-MAX repair scheduling strategies are
supposed to repair the most reliability degrading core first, they
do not have advantages in practice. However, they are also ana-
lyzed to be compared with the I-MIN and C-MIN repair sched-
uling strategies. The conceptual processes of I-MIN and C-MIN
RSoC repair strategies are depicted in the flowchart shown in
Fig. 4.

V. PARAMETRIC ANALYSIS

In this section, the effects of the connectivity-based RSoC re-
pair scheduling are investigated through numerical experiments.
An RSoC system with , for all , and

is considered. The yield of the RSoC before an
application of the repair process can be calculated as a series
product of the of all the cores [i.e., ] and the yield
of the interconnect structure (i.e., ). In Table II, the overall
RSoC yield and (i.e., ) are given where is subdivided
into six categories according to the number of defective cores on
the RSoC (denoted by ), in which is inverse yield
of RSoCs containing exactly defective core(s). The following
can be observed from Table II.

• Among those 14.0028% RSoCs with defects, 13.0298%
of them have one defective core identified, 0.9213% of
them have two defective cores identified, 0.000 403% of
them have three defective cores identified, 0.000 012% of
them have four defective cores identified, and 0.000 016%
of them have more than five defective cores identified.

• Since RSoCs with are very few and then almost
ignorable, the maximum allowed number of repair cycles

is applied.
• 0.000 86% RSoCs in the category (i.e., defective inter-

connect structure) does not have defective cores, but they
have a defective interconnect structure. Since RSoCs in
the category are very few, no repair process is applied
in this example.

To compare the proposed repair scheduling strategies, the
values of , uif, and uif are set to 0.1 and the value of is
set to 9, arbitrarily. In Tables III and IV, the repair performances
of those proposed strategies, measured in the percentage of
repaired RSoCs at each repair cycle, are shown. For example,
13.0298% of RSoCs contain one defective core and 62.4108%
of them are repaired in the first repair cycle of I-MIN, and
0.9213% of RSoCs contain two defective cores and 27.4829%
of them are repaired in the second repair cycle, and so on.

By comparing the results shown in Tables III and IV, the fol-
lowing can be observed.

1) Even with relatively small values of and (i.e.,
less core and interconnect degradation due to the repair
process), the repair scheduling plays an important role in
the RSoC repair process. Thus, it is shown that I-MIN and
C-MIN outperform I-MAX and C-MAX at every repair
cycle.

Fig. 4. I-MIN (C-MIN) flowchart.

TABLE II
r AND r OF THE GIVEN RSOC WITHOUT REPAIR

TABLE III
PERFORMANCE COMPARISON OF THE PROPOSED REPAIR STRATEGIES AT

EACH REPAIR CYCLE WHERE �, � = 0:05

TABLE IV
PERFORMANCE COMPARISON OF THE PROPOSED REPAIR STRATEGIES AT

EACH REPAIR CYCLE WHERE �, � = 0:5

2) As relatively larger values of and are ap-
plied (i.e., more core and interconnect degradation due
to the repair process), the difference in the repairability
between I-MIN (C-MIN) and I-MAX (C-MAX) becomes
even more clear.

3) An appropriate selection of the repair schedule definitely
affects repairability regardless of the values of and .

Repairability at each repair cycle is denoted by , in
which is the index of the repair cycle. Then, the overall
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success rate of the whole repair process, denoted by , and can
be calculated as follows:

(12)

where is the total number of repair cycles.
Repairability at each repair cycle (i.e., , in which is

the index of the repair cycle) and of I-MIN and C-MIN repair
strategies at different values of and are more extensively
experimented with and the results are shown in Tables V and
VI. The values of and are arbitrarily set to be equal for the
simplicity of the analysis.

Upon the available values , , and , it is possible to cal-
culate the overall yield of the RSoCs. The overall yield of the
RSoCs denoted by can be calculated by

(13)

In Figs. 5–8, (i.e., overall yield of the RSoC) of I-MIN at
different values of (i.e., 5, 10, and 15), and (i.e., 0.05,
0.1, 0.25, and 0.5), and for all i (i.e., 0.8–1.0) are shown
versus I-MAX. In Figs. 9–12, of C-MIN at different values
of (i.e., 5, 10, and 15), and (i.e., 0.05, 0.1, 0.25, and 0.5),
and for all i (i.e., 0.8–1.0) are shown versus C-MAX. By
comparing the results of Figs. 5–12, the following observations
can be drawn.

1) Using proper connectivity-based repair scheduling strate-
gies (i.e., I-MIN and C-MIN), a higher of RSoC can be
achieved.

2) I-MIN and C-MIN always outperform I-MAX and
C-MAX.

3) As and increase, the difference between of I-MIN
and of I-MAX increases. It is the same for C-MIN and
C-MAX.

4) With relatively smaller and values, of both I-MIN
and C-MIN perform similarly. However, I-MIN performs
better than C-MIN as and increase.

5) In practice, C-MIN is likely to be the choice when smaller
and values are applied, since it counts only the number

of neighboring cores which is simpler than counting the
number of interconnect lines.

6) In practice, I-MIN is likely to be the choice when larger
and values are applied since it has less impact on

of RSoC than C-MIN.

VI. DISCUSSION

The overall complexity of SoC-based instrumentation is ex-
ponentially increasing as more cores are being embedded and
the supporting interconnect structure is becoming more com-
plex. At the same time, more efficient testing and repair of such
devices are exigently required.

Thus, this paper has presented a new model for analyzing
the repairability of RSoC instrumentation with repair processes

TABLE V
REPAIR PERFORMANCE OF I-MIN FOR THE GIVEN PARAMETERS

TABLE VI
REPAIR PERFORMANCE OF C-MIN FOR THE GIVEN PARAMETERS

Fig. 5. Repairability of I-MIN and I-MAX at �, � = 0:05.

Fig. 6. Repairability of I-MIN and I-MAX at �, � = 0:1.

based on the effect of the connectivity of the repair-candi-
date core where reliability degradation of both neighboring
cores and interconnect structure due to the complexity of
the reconfigured logic and interconnect redundancy is taken
into account. Two approaches, I-MIN and C-MIN have been
proposed. Two other scheduling policies, I-MAX and C-MAX
also have been introduced and analyzed, and it has been shown
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Fig. 7. Repairability of I-MIN and I-MAX at �, � = 0:25.

Fig. 8. Repairability of I-MIN and I-MAX at �, � = 0:5.

Fig. 9. Repairability of C-MIN and C-MAX at �, � = 0:05.

how improperly scheduled repair processes could impair the
overall repairability of RSoCs under repair. Extensive para-
metric analysis and comparison of the proposed approaches
have demonstrated the efficiency of the proposed RSoC repair
scheduling strategies (i.e., I-MIN and C-MIN). From the re-
sults, it is obvious that a higher repairability of RSoCs can be

Fig. 10. Repairability of C-MIN and C-MAX at �, � = 0:1.

Fig. 11. Repairability of C-MIN and C-MAX at �, � = 0:25.

Fig. 12. Repairability of C-MIN and C-MAX at �, � = 0:5.

expected when proper RSoC repair scheduling strategies such
as I-MIN and C-MIN are applied. Also, it has been shown
that I-MIN tolerates a higher core and interconnect reliability
degradation due to the repair process (i.e., higher and ) than
C-MIN does, while C-MIN results in a higher repairability
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when less core and interconnect reliability degradation due to
the repair process (i.e., lower and ) is assumed.

The effect of the connectivity of repair-candidate cores on
the overall yield (i.e., ratio of the total number of functional
RSoCs out of the total number of fabricated RSoCs) has been
thoroughly investigated and various repair scheduling strategies
have been proposed. Also, how improper repair scheduling
could degrade the overall quality of repaired RSoCs will be
extensively studied. Thus, results and findings from this re-
search will be beneficial to RSoC-based digital instrumentation
developers.
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