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The next generation of multiprocessor system on chip (MPSoC) and chip multiprocessors (CMPs) will contain hundreds or
thousands of cores. Such a many-core system requires high-performance interconnections to transfer data among the cores on
the chip. Traditional system components interface with the interconnection backbone via a bus interface. This interconnection
backbone can be an on-chip bus or multilayer bus architecture. With the advent of many-core architectures, the bus architecture
becomes the performance bottleneck of the on-chip interconnection framework. In contrast, network on chip (NoC) becomes a
promising on-chip communication infrastructure, which is commonly considered as an aggressive long-term approach for on-
chip communications. Accordingly, this paper first discusses several common architectures and prevalent techniques that can deal
well with the design issues of communication performance, power consumption, signal integrity, and system scalability in an NoC.
Finally, a novel bidirectional NoC (BiNoC) architecture with a dynamically self-reconfigurable bidirectional channel is proposed

to break the conventional performance bottleneck caused by bandwidth restriction in conventional NoCs.

1. Introduction

As the density of VLSI design increases, the complexity of
each component in a system raises rapidly. To accommodate
the increasing transistor density, higher operating frequen-
cies, and shorter time-to-market pressure, multiprocessor
system on chip (MPSoC) and chip multiprocessor (CMP) ar-
chitectures, which use bus structures for on-chip communi-
cation and integrate complex heterogeneous functional ele-
ments on a single die, are more and more required in today’s
semiconductor industry. However, today’s SoC designers face
a new challenge in the design of the on-chip interconnects
beyond the evolution of an increasing number of processing
elements. Traditional bus-based communication schemes,
which lack for scalability and predictability, are not capable
to keep up with the increasing requirements of future SoCs in
terms of performance, power, timing closure, scalability, and
so on. To meet the design productivity and signal integrity
challenges of next-generation system designs, a structured
and scalable interconnection architecture, network on chip

(NoC), has been proposed recently to mitigate the complex
on-chip communication problem.

An application can be represented as a set of computa-
tional units that require a set of communication blocks to
pass information between the units. To distinguish the per-
formance impact of these two major components, computa-
tion time is dominated by gate delay whereas communication
time is dominated by wire delay. When the amount of com-
putational units is low, the communication blocks can be
done on an ad-hoc basis. However, with the shrinking size of
transistors in recent years, gate delay is ever decreasing with
respect to wire delay. Thus, we need a structured and scalable
on-chip communication architecture to fit the increasingly
complex applications on a single chip. This translates to the
design of on-chip communications architecture as being
more and more important and promotes the design concept
from computation-centric design to communication-centric
design.

System on chip (SoC) is an architectural concept devel-
oped in the last few decades, in which a processor or few



processors along with memory and an associated set of pe-
ripherals connected by busses are all implemented on a single
chip. According to the Moore’s law, the trend toward many-
core processing chips is now a well established one. Power-
efficient processors combined with hardware accelerators are
the preferred choice for most designers to deliver the best
tradeoff between performance and power consumption,
since computational power increases exponentially accord-
ing to the calculation of dynamic power dissipation [1].
Therefore, this trend dictates spreading the application tasks
into multiple processing elements where (1) each processing
element can be individually turned on or off, thereby saving
power, (2) each processing element can run at its own opti-
mized supply voltage and frequency, (3) it is easier to achieve
load balance among processor cores and to distribute heat
across the die, and (4) it can potentially produce lower die
temperatures and improve reliability and leakage. However,
while ad-hoc methods of selecting few blocks may work
based on a designer’s experience, this may not work as to-
day’s MPSoC and CMP designs which becomes more and
more complex. Consequently, SoC design nowadays needs
techniques which can provide an efficient method of ena-
bling a chip to compute complex applications and to fit area-
wise on a single chip according to today’s technology trends.
A communication scheme is composed of an intercon-
nection backbone, physical interfaces, and layered protocols
which make the on-chip communication take place among
components on a MP-SoC or CMP. As the design complex-
ity scales up, intrachip communication requirements are be-
coming crucial. Data-intensive systems such as multimedia
devices, mobile installations, and multiprocessor platforms
need a flexible and scalable interconnection scheme to handle
a huge amount of data transactions on chip. Customarily,
dedicated point-to-point wires are adopted as sets of appli-
cation-specific global on-chip links that connect the top-level
modules. However, as wire density and length grow with the
system complexity, the communication architecture based
on point-to-point wires becomes no more feasible due to
its poor scalability and reusability. Specifically, as signals are
carried by the global wires across a chip, these metal wires
typically do not scale in length with technology. Propagation
delay, power dissipation, and reliability will be the serious
issues of global wires in deep submicron VLSI technology.
According to [2], as silicon technologies advance to 50 nm
and beyond, global wires will take 6 to 10 cycles to propagate,
which will then far outweigh gate delays and make cross-chip
long wire timing difficult to meet. Keeping track of the status
in all elements and managing the global communication
among top-level modules by a centralized way are no longer
feasible. Therefore, reusable on-chip bus interconnect tem-
plates such as ARM’s AMBA [3] and IBM’s CoreConnect [4]
are commonly used in current MP-SoC amd CMP designs,
such that the modules can share the same group of intercon-
nection wires in a bus-based communication architecture.
However, on-chip bus allows only one communication
transaction at a time according to the arbitration result; thus,
the average communication bandwidth of each processing el-
ement is in inverse proportion to the total number of IP cores
in a system. This character makes a bus-based architecture
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inherently not scalable for a complex system in today’s
MP-SoC and CMP designs. Implementing multiple on-chip
buses in a hierarchical architecture or in a separated manner
may alleviate this scalability constraint, but it requires ap-
plication-specific grouping of processing elements and de-
sign of different communication protocols to meet the appli-
cation requirements. Furthermore, whenever a new applica-
tion needs to be designed for, or a new set of peripherals
needs to be added, a chip designed with only simple buses
will lack means of efficiently determining feasibility, not to
mention optimality [5]. In addition, attempts to guarantee
quality of service (QoS) for system performance will be a
manually intensive task. Therefore, bus-based design needs
to be exchanged with a method that is flexible, scalable, and
reusable.

Since the latest process technology allows for more proc-
essors and more cores to be placed on a single chip, the
emerging MP-SoC and CMP architectures, which demand
high throughput, low latency, and reliable global communi-
cation services, cannot be met by current dedicated bus-
based on-chip communication infrastructure. Trying to
achieve such designs with a bus structure could be problem-
atic for a number of reasons including timing closure, per-
formance issues, and scalability. Specifically, as the feature
size of modern silicon devices shrinks below 50 nanometers,
global interconnection delays constrain attainable processing
speed. Device parameter variations further complicate the
timing and reliability issues. A paradigm shift focusing on
communication-centric design, rather than computation-
centric design, seems to be the most promising approach to
address these communication crises [6-11]. Consequently,
in the past few years, a new methodology called network on
chip has been introduced as a means of solving these issues
by introducing a structured and scalable communication
architecture.

In the sequel, Section 2 will introduce the NoC architec-
ture and its function layers. In Section 3, we will discuss the
NoC design methodologies. Then, a bidirectional network-
on-chip (BiNoC) architecture will be given in Section 4.
Finally, conclusion will be drawn in Section 5.

2. Network-on-Chip Architecture and
Function Layers

Network on chip is the term used to describe an architecture
that has maintained readily designable solutions in face of
communication-centric trends. In this section, we will briefly
review some concepts on the design of an NoC communi-
cation system. Moreover, the NoC function can be classified
into several layers, which will be introduced sequentially.

2.1. Network-on-Chip Architecture. A typical NoC architec-
ture consists of multiple segments of wires and routers as
shown in Figure 1. In a tiled, city-block style of NoC layout,
the wires and routers are configured much like street grids of
a city, while the clients (e.g., logic processor cores) are placed
on city blocks separated by wires. A network interface (NI)
module transforms data packets generated from the client
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FiGure 1: Typical NoC architecture in a mesh topology.

logic (processor cores) into fixed-length flow-control digits
(flits). The flits associated with a data packet consist of a
header (or head) flit, a tail flit, and a number of body flits in
between. This array of flits will be routed toward the intended
destination in a hop-by-hop manner from one router to its
neighboring router.

In a city-block style NoC, each router has five input
ports and five output ports corresponding to the north, east,
south, and west directions as well as the local processing
element (PE). Each port will connect to another port on the
neighboring router via a set of physical interconnect wires
(channels). The router’s function is to route flits entering
from each input port to an appropriate output port and then
toward the final destinations. To realize this function, a
router is equipped with an input buffer for each input port, a
5 x5 crossbar switch to redirect traffic to the desired output
port and necessary control logic to ensure correctness of
routing results as shown in Figure 2.

Usually, for each data packet, the corresponding head flit
specifies its intended destination. After examining the head
flit, the router control logic will determine which output di-
rection to route all the subsequent (body and tail) flits associ-
ated with this data packet according to the routing algorithm
applied.

2.2. Network-on-Chip Function Layers. The NoC function
can be classified into several layers: application, transport,
network, data link, and physical layers. An NoC router
should contain both software and hardware implementations
to support functions of the layers.

2.2.1. Application Layer. At the application layer, target ap-
plications will be broken down into a set of computation and
communication tasks such that the performance factors like
energy and speed can be optimized. Placement of cores on an
NoC has to be optimized to reduce the amount of total com-
munication or energy but at the same time recognizing the
limitations of any one particular link. The task mapping and
communication scheduling problem is an instance of a con-
strained quadratic assignment problem which was known
to be NP-hard [12]. Given a target application described as
a set of concurrent tasks with an NoC architecture, the funda-
mental questions to answer are (1) how to topologically place
the selected set of cores onto the processing elements of the
network and (2) how to take into consideration the complex
effects of network condition, which may change dynamically
during task execution, such that the metrics of interest are
optimized [13]. To get the best tradeoff between power and
performance, application mapping and scheduling should be
considered with several kinds of architecture parameters.

2.2.2. Transport Layer. To prevent buffer overflow and to
avoid traffic congestion, some management schemes should
be applied to guide the transport of packets in an NoC. The
transport layer addresses the congestion and flow control is-
sues [14]. Key performance metrics of an NoC include low
packet delivery latency and high-throughput rate, and these
metrics are critically impacted by network congestions caus-
ed by resource contentions. Accordingly, contention resolu-
tion is a key to avoid network congestions [14]. One of the
most crucial issues for the contention resolution is, under a
premise of a deadlock- and livelock-free routing algorithm,
to enhance the utilization efficiency of available network re-
sources in order to come up with a better communication
performance.

2.2.3. Network Layer. Network topology or interconnect ar-
chitecture is an important issue in this layer, which deter-
mines how the resources of network are connected, thus,
refers to the static arrangement of channels and nodes in an
interconnection network. Irregular forms of topologies can
be derived by mixing different forms of communication
architectures in a hierarchical, hybrid, or asymmetric way by
clustering partition, which may offer more connectivity and
customizability at the cost of complexity and area. In addi-
tion, optimization of a topology, which affects the connectiv-
ity of the routers and the distance of any one core to the other,
is difficult. Furthermore, the tradeoff between generality and
customization that, respectively, facilitate scalability and per-
formance is important. As future designs become more com-
plex, the non-recurring costs of architecting and manufac-
turing a chip will become more and more expensive. A ho-
mogenous NoC is one where the cores and routers are all the
same, while a heterogeneous NoC selects individual cores
from an IP library and may have its communication archi-
tecture customized to suit the needs of an application. Since
NoC designs must be flexible enough to cover a certain range
of applications, most of the state-of-the-art NoC designs use
amesh or torus topology because of its performance benefits
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FiGure 2: Typical NoC router architecture.

and high degree of scalability for two-dimensional systems,
yet it may not achieve the best performance for a single ap-
plication [15, 16].

In addition, the network layer also needs to deal with the
routing data between processing elements. First, packetizing
algorithms deal with the decomposition of a message into
packets at source nodes and their assembly at destination
nodes. Then, the transmission of packets can be executed by
the choice of routing algorithms based on different network
topologies [6]. Routing algorithm determines the path strat-
egy of a packet from its source node to the destination node.
Determining packet routes and resolving conflicts between
packets when the same route is requested, with respect to im-
proving on-chip communication performance, are two of the
important responsibilities of a router.

Conventional design of a router consists of circuit-
switched fabrics and an arbitration controller. In each arbi-
tration decision, more than one path can be constructed by
the crossroad switch as long as no contention exists between
these paths. For most existing switch designs, virtual-channel
flow-control-based router design, which provides better flex-
ibility and channel utilization with smaller buffer size, is a
well-known technique from the domain of multiprocessor
networks [17-24].

2.2.4. Data Link and Physical Layers. The main purpose of
data-link layer protocols is to increase the reliability of the
link up to a minimum required level, under the assumption

that the physical layer by itself is not sufficiently reliable [14].
The emphasis on physical layer is focused on signal drivers
and receivers, as well as design technologies for resorting and
pipelining signals on wiring. In addition, as technology
advanced to ultradeep submicron (DSM), smaller voltage
swings and shrinking feature size translate to decreased noise
margin, which cause the on-chip interconnects less immune
to noise and increase the chances of nondeterminism in the
transmission of data over wires (transient fault) [2, 25-28].
Electrical noise due to crosstalk, electromagnetic interference
(EMI), and radiation-induced charge injection will likely
produce timing error and data errors and make reliable on-
chip interconnect hard to achieve.

Error control schemes and utilization of the physical
links to achieve reliability are the main concern of these lay-
ers. First, a credible fault model must be developed. Then,
an error control scheme that is low power, low area, high
bandwidth, and low latency must be designed. In NoC de-
sign, packet-based data transmission is an efficient way to
deal with data errors because the effect of errors is contained
by packet boundaries that can be recovered on a packet-by-
packet basis.

3. Network-on-Chip Design Methodologies

This section discusses several prevalent NoC design method-
ologies, such as flow control, routing, arbitration, quality of
service, reliability, and task scheduling.
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FiGure 3: Typical router design based on wormhole flow control.

3.1. Flow-Control Mechanism. The performance of NoC
communication architecture is dictated by its flow-control
mechanism. Adding buffers to networks significantly im-
proves the efficiency of a flow-control mechanism since a
buffer can decouple the allocation of adjacent channels.
Without a buffer, the two channels must be allocated to a
packet (or flits) during consecutive cycles, or the packet must
be dropped or misrouted [6]. More specifically, with buffered
flow control, when a packet arrives at a router, it must first
occupy some resources, such as channel bandwidth and buff-
er capacity, depending on the flow-control methodology.
Each router must juggle among multiple input data streams
from multiple input ports and route them to appropriate
output ports with the highest efficiency.

Buffered flow-control methods can be classified into pack-
et-buffer flow control and flit-buffer flow control based on
their granularity of buffer allocation and channel bandwidth
allocation [6]. Since allocating resources in unit of flit can
achieve more storage utilization efficiency than that in unit
of packet. Two types of flit-buffer flow-control architectures
are commonly used in NoC: the wormhole flow control and
the virtual-channel flow control.

3.1.1. Packet-Buffer Flow Control. Packet-buffer flow-control
allocates network resources in a packet-by-packet basis. Ex-
amples are store-and-forward flow control and virtual-cut-
through flow control. In store-and-forward method, each
node must ensure that it has already received and stored an
entire packet before forwarding it to the downstream node.
While the virtual-cut-through scheme can forward a packet
as long as there is enough buffer space to receive a packet at
the downstream node. As a result, virtual cut through intro-
duces lower communication delay than store and forward
does. However, packet-buffer flow control needs larger size
of buffer space in one node because of its inefficient use of
buffer storage. In addition, allocating channels in units of
packets will increase contention latency.

3.1.2. Wormhole Flow-Control-Based Router. Wormbhole flow
control improves performance through a finer granularity of
message allocation at flit level instead of packet level. This

technique allows more efficient use of buffer than the packet-
buffer flow-control mechanism since the buffer size in each
router can be reduced significantly [29, 30]. A typical three-
stage pipelined NoC router architecture based on wormhole
flow control is shown in Figure 3. Every input port has
a FIFO-based input buffer, which can be seen as a single
virtual channel used to hold blocked flits. To facilitate worm-
hole flow-control-based routing (6], the routing computation
(RC) module will send a channel request signal to the switch
allocator (SA) for data in each input buffer. If the down-
stream buffer at a neighboring router has vacant space, SA
will allocate the channel and route the data flits through the
crossbar switch toward the designated downstream router at
the switch traversal (ST) stage.

However, wormhole flow-control-based switching tech-
nique saves buffer size at the expense of throughput since the
channel is owned by a packet, but buffers are allocated on a
flit-by-flit basis. As such, an idle packet may continue block
a channel even when another packet is ready to use the same
channel, leading to inefficient resource utilization. This is the
well-known head of line (HoL) blocking problem. Therefore,
virtual-channel flow-control-based router architecture was
proposed to reduce blocking effect and to improve network
latency.

3.1.3. Virtual-Channel Flow-Control-Based Router. Virtual-
channel flow control assigns multiple virtual paths, each with
its own associated buffer queue, to the same physical chan-
nel; thus, it increases throughput by up to 40% over worm-
hole flow control and helps to avoid possible deadlock prob-
lems [19, 31, 32]. A virtual channel flow-control router archi-
tecture as shown in Figure 4 can be seen as a remedy to the
shortcoming of the wormhole flow-control scheme. By mul-
tiplexing multiple virtual-channels into the same input buff-
er, an idle packet will no longer block other packets that are
ready to be routed using the shared physical channel. In a
typical virtual-channel flow-control-based router, the flits
are routed via a four-stage pipeline: routing computation,
virtual-channel allocation, switch allocator, and switch traver-
sal.

One incoming flit that arrives at a router is first written
to an appropriate input virtual-channel queue and waits to
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FIGURE 4: Typical router design based on virtual-channel flow control.

be processed. When a head flit reaches the top of its virtual-
channel buffer queue and enters the RC stage, it is decoded by
the RC module and generates an associated direction request.
The direction request of this flit is then sent to the VA module
to attain virtual channel at the downstream router. There
might be some contentions among packets that request for
the same virtual channel at the downstream router. The loser
packets will be stalled at the VA stage, and the following flit in
the previous stage will also be blocked due to this contention
failure. Note that the processes of RC and VA actually take
place only on the head flit. The subsequent body flits and tail
flit of a packet simply accede to the routing decision acquired
by the head flit and require no further processing at the RC
and VA stages. Once a decision on the output virtual-channel
selection is made at the VA stage, the SA module will assign
physical channels to intrarouter flits. Flits granted with a
physical channel will traverse through the crossbar switch to
the input buffer of the downstream router during the ST
stage, and the process repeats until the packet arrives at its
destination.

3.2. Routing and Arbitration Techniques. A general problem
pertaining to the routing and arbitration algorithms can be
stated as follows: given an application graph, which can be
represented by a unique traffic pattern, and a communica-
tion architecture, find a decision function at each router for
selecting an output port that achieves a user-defined objec-
tive function.

3.2.1. Problem Decomposition. The above problem has three
main parts: a traffic pattern, an NoC communication archi-
tecture, and an algorithm which best satisfies a set of user-
defined objectives. First, the traffic patterns known ahead of
time can be dealt with by a scheduling algorithm. On the
other hand, dynamic or stochastic traffic patterns rely on the
use of a routing algorithm with a varying degree of adapta-
tion to route packets. Our focus will be on the patterns not
known ahead of time.

Second, NoC communication architectures can have dif-
ferent topologies. The most common one is a regular 2D
mesh, frequently used to display the behavior of adaptive
routing algorithms. Other work, such as [33], deal with irreg-
ular regions in meshes. Our focus is independent of topology.

The third part deals with the algorithms themselves and
the objectives to achieve. Two primary algorithms used to de-
termine where and when a packet will move are routing
and arbitration. A routing algorithm decides which direction
each input packet should travel. Arbitration is the process of
deciding which input packet request should be granted when
there are more than one input packet requests for the same
output port.

3.2.2. State of the Art. A typical router in an NoC is respon-
sible for moving the received packets from the input buffers,
with its routing and arbitration algorithms, to the output
ports. The decisions which a router makes are based on the
information collected from the network. Centralized deci-
sions refer to making decisions based on the information
gathered from the entire network [34]. Distributed decisions
refer to making decisions based only on the information gen-
erated by the local router or nearby routers. Distributed rout-
ing, the focus of this paper, allows NoCs to grow in size with-
out worrying about the increasing order of complexity with-
in a centralized routing unit. An example of centralized rout-
ing is the AntNet algorithm [35], which depends on global
information to make routing decisions, thus, needs extra ant
buffers, routing tables, and arbitration mechanisms at each
node.

There are some distributed routing algorithms which
only rely on local information. They have been proposed as
being efficient and still maintaining low overhead and high
scalability. Routing algorithms in this category include deter-
ministic and adaptive algorithms. Under realistic traffic pat-
terns which pose the problem of hotspot traffic congestion
areas, XY deterministic routing failed to avoid hotspots and
resulted in high-average latencies [36]. Adaptive routing
guides the router to react to hotspots created by different
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traffic patterns, by allowing a packet at the input buffer to re-
quest more than one output port or direction [37]. While
minimal routing algorithms prevent livelock from occurring,
adaptive routing introduces the possibility of deadlock,
which can be prevented by applying odd-even turn model re-
strictions to the routing decision [38].

As presented in [36], the DyAD router dynamically
switches from deterministic to adaptive routing when con-
gestion is detected, since deterministic routing achieves low
packet latency under low packet injection rates. Neighboring
nodes send indication to use adaptive routing when their
buffers are filled above a preset threshold. Under these condi-
tions, the router dictates that packets are routed in the di-
rection with more available input buffer slots. This minimal
adaptive algorithm, used in the presence of hotspots and in-
creasing congestion rates, pushes back the saturation point
of the traffic in the network. Another extension of adaptive
routing is the neighbors-on-path (NoP) algorithm [39],
which allows each router to monitor two hops away the input
buffers of the routers in order to detect potential congestion
earlier. By earlier detection of the buffer fill level, routes can
avoid congestion better. DyXY is an algorithm which utilizes
a history of buffer fill levels to make decisions [40]. The
algorithms presented in [41, 42] utilize variants of buffer fill
level to make decisions.

In addition to making a routing decision based on the
buffer information of downstream packets, the other part of
arouter’s decision making is the arbitration of packets. When
multiple input packets are designated to be forwarded to
the same next hop destination, arbitration algorithms such
as round-robin or first-come first-serve (FCFS) have been
proposed to resolve the output port contention. These arbi-
tration algorithms could be designed to relieve upstream
buffers with higher congestion. contention-aware input se-
lection (CAIS) algorithm [43] is an improved arbitration
algorithm that contributes to reduce the routing congestion
situation by relieving hotspots of upstream traffic, determin-
ed by requests from the upstream traffic.

More works have been proposed to deal with some vari-
ance of the routing or arbitration algorithms. Sometimes, we
categorize the former ones as methods of congestion avoid-
ance; in other words, they evaluate downstream network
conditions to avoid sending packets towards the congested
areas so as not to aggravate the congestion conditions. We
categorize the latter as methods of congestion relief; in other
words, they evaluate upstream network conditions to deter-
mine which area had the most congestion to send first in
order to quickly diffuse the congested situation.

3.3. Quality-of-Service Control. There is a wide range of pos-
sibilities for implementing guaranteed services on a network.
Referring to the state-of-the-art QoS mechanisms for NoCs,
they can be categorized into two types of schemes: connec-
tion oriented (circuit switching) and connection less (packet-
switching).

3.3.1. Connection-Oriented Scheme. In connection-oriented
schemes, guaranteed-service (GS) packets traverse on some

particular channels or buffers that were reserved for them.
Specifically, the connection path between the source and des-
tination pair of GS packets is built at the time before they are
injected onto the network [44-51]. However, this kind of
static preallocation may result in high service latency and
does not consider hotspots created by temporal shifts in data
requirements, thus, leads to a rather unscalable NoC.

Connection-oriented QoS mechanism is reliable to
achieve QoS requirement, since connections are created
guaranteeing tight bounds for specific flows. Two types of
the programming models for constructing the set-up phase
were presented: centralized programming and distributed
programming. Centralized programming sets up the reser-
vations by a configuration manager which takes over all the
resources in the network. On the contrary, distributed pro-
gram models let all the resource reservations to be handled
by each local router. The centralized method is simpler to
achieve while it is only suitable for small-size systems. De-
spite the hardware overhead in routers, distributed program
models have acquired popularity in a large system because of
its better flexibility.

However, connection-oriented QoS mechanism comes
with greater hardware overhead in control and storage for
resource reservations and poor scalability because complex-
ity grows with each node added. Furthermore, bandwidth
usage is inefficient, and resource allocation has to be consid-
ered on a worst case basis. Moreover, the set-up phase of
guaranteed traffic presents a timing overhead which may
result in inefficiency for nondeterministic applications.

3.3.2. Connection-Less Scheme. The connection-less scheme
is an alternative way to support different service levels in
NoCs where the resource authorities are prioritized accord-
ing to the QoS requirement of a traffic flow [48]. This is a
distributed technique which allows traffic to be classified into
different service levels. These service levels can often coincide
with different virtual channels inside the switch. As two traf-
fic flows with different QoS requirements are presented on
the same channel simultaneously, the higher prioritized flow
can interrupt the lower one and traverse this channel ante-
cedently [48, 52]. It is more adaptive to network traffic and
potential hotspots and can better utilize the network.

Different from the connection-oriented schemes, con-
nection-less schemes do not execute any resource reserva-
tion. In contrast, multiple traffic flows share the same priori-
ty or the same resource, thus, could cause unpredictable con-
ditions [53]. The traffic with higher service level is guaran-
teed in a relative fashion in a connection-less scheme by
prioritizing each type of traffic flow. However, while the con-
nection-less scheme provides a coarser QoS support as the
connection-oriented schemes, they can offer a better adapta-
tion of communication to the varying network traffic. Fur-
thermore, better bandwidth utilization and less hardware
cost can be achieved since the traffic is allocated with network
resources dynamically. With the consideration of perfor-
mance requirements for each service level, a network design-
er can select an appropriate bandwidth implemented in an
NoC to both meet the QoS constraints and save the wiring
cost [48, 54, 55].



Although connection-oriented communication guaran-
tees tight bounds for several traffic parameters, an erroneous
decision of resource reservation might cause an unexpected
performance penalty. While in a connection-less network,
a nonoptimal priority assignment has less degradation of
throughput though it provides coarse QoS support. As
pointed out in [20], guaranteed services require resource res-
ervation for the worst case in a connection oriented, which
causes a lot of wasted resource. In addition, some quanti-
tative modeling and comparison of these two schemes, pro-
vided in [56], has shown that under a variable-bit-rate appli-
cation, connection-less technique provides a better perform-
ance in terms of the end-to-end packet delay. These compar-
isons can help to design an application-specific NoC using a
suitable QoS scheme.

3.4. Reliability Design. The trend towards constructing large
computing systems incorporated with a many-core architec-
ture has resulted in a two-sided relationship involving relia-
bility and fault tolerance consideration. While yield has
always been a critical issue in recent high-performance cir-
cuitry implementation, the document of the International
Technology Roadmap for Semiconductor (ITRS) [57] states
that “Relaxing the requirement of 100% correctness for devices
and interconnects may dramatically reduce costs of manufac-
turing, verification and test” The general principle of fault
tolerance for any system can be divided in two categories:

(1) employment of hardware redundancy to hide the ef-
fect of faults,

(2) self-identification of source of failure and compensat-
ing the effect by appropriate mechanism.

If we can make such a strategy work, a system will be ca-
pable of testing and reconfiguring itself, allowing it to work
reliably throughout its lifetime.

3.4.1. Failure Types in NoC. Scaling chips, however, increase
the probability of faults. Faults to be considered in an NoC
architecture can be categorized into permanent (hard fault)
and transient fault (soft fault) [13, 58]. The former one re-
flects irreversible physical changes, such as electro-migration
of conductor, broken wires, and dielectric breakdowns. In
this case, permanent damages in a circuit cannot be repaired
after manufacture. Therefore, the module which is suffering
a permanent fault should turn off its function and inform
neighboring modules of this information. Then, rerouting
packets with an alternative path will be re-calculated deter-
ministically or dynamically according to the need. However,
this may induce nonminimal path routing and increase the
complexity of routing decision. Hardware redundancy such
as spare wire or reconfigurable circuitry can also be used to
avoid using of faulty modules [59-62]. In the latter case, sev-
eral phenomena, such as neutron and alpha particles, supply
voltage swing, and interconnect noise, induce the packet
invalid or misrouted. Usually, a transient fault is modeled
with a probability of bit error rate under an adequate fault
model. In an NoC system, intrarouter or interrouter func-
tionality errors may happen, to understand how to deal with
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the most common sources of failures in an NoC; Park et al.
provided comprehensive fault-tolerant solutions relevant to
all stages of decision making in an NoC router [63].

3.4.2. Reliability Design in NoC. A number of fault-tolerant
methods were proposed in [64, 65] for large-scale communi-
cation systems. Unfortunately, these algorithms are not suit-
able for an NoC, because they will induce significant area and
resource overhead. Dumitras et al. proposed a flood-based
routing algorithm for NoC, named stochastic communication,
which is derived from the fault-tolerance mechanism used in
the computer network and distributed database fields. Such
stochastic-communication algorithm separates computation
from communication and provides fault tolerance to on-chip
failures [57, 66]. However, to eliminate the high communica-
tion overhead of flood-based fault tolerance algorithm,
Pirretti et al. promoted a redundant random-walk algorithm
which can significantly reduce the overhead while maintain-
ing a useful level of fault tolerance [67]. However, the basic
idea of sending redundant information via multipath to
achieve fault tolerance may cause much higher traffic load in
the network, and the probabilistic broadcast characteristic
may also result in additional unpredictable behavior on net-
work loading.

Therefore, in a distributed NoC router considering prac-
tical hardware implementation, the error control scheme
used to detect/correct interrouter transient fault in an NoC is
required to have smaller area and shorter timing delay. An
error control code that adapts to different degrees of detec-
tion and correction and has a low timing overhead will ease
its integration into a router. The fault-tolerant method uti-
lizing error detection requires an additional retransmission
buffer specially designed for NoCs when the errors are de-
tected. Error control schemes, such as the Reed-Solomon
code proposed by Hoffman et al., have been used on NoCs
[68]. But as their results show, the long delay would degrade
the overall timing and performance of an NoC router.

3.5. Energy-Aware Task Scheduling. The availability of many
cores on the same chip promises a high level of parallelism to
expedite the execution of computation-intensive applica-
tions. To do so, a program must first be represented by a task
graph where each node is a coarse-grained task (e.g., a pro-
cedure or a subroutine). Often, a task needs to forward its in-
termediate results to another task for further processing. This
intertask data dependency is represented by a directed arc
from the origin task to the destination task in the task graph.
Tasks that have no intertask data dependency among them-
selves can be assigned for multiple processor cores to execute
concurrently. As such, the total execution time can be signif-
icantly shortened.

A real-time application is an application in which execu-
tion time must be smaller than a deadline. Otherwise, the
computation will be deemed a failure. To implement an ap-
plication on an MC-NoC platform for parallel execution,
each task in the task graph will be assigned to a processor
core. Depending on the city-block distance between two tiles,
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FI1GURE 5: Channel directions in a typical NoC and proposed BiNoC.

intertask communication will take different amount of com-
munication delay. For a particular application, proper task
assignment will reduce communication delay while max-
imizing parallelism such that the total execution time can be
minimized. For a real-time application, if the total execution
time is less than the predefined deadline of the application,
the slacks between them could be exploited to reduce energy
consumption.

The execution time of a task may vary depending on the
clock frequency the processor core is running. One technique
to adjust the clock frequency of individual time on an MC-
NoC is dynamic voltage scaling (DVS). When the clock fre-
quency slows down, often the associated energy consumed by
a running task is also reduced. Hence, in addition to assign-
ing tasks to the processor cores located at appropriate tiles,
another design objective would be to use DVS to save some
energy while conforming to the deadline constraint, with
perhaps smaller slacks.

Previously, it has been shown that the minimum energy
multiprocessor task scheduling problem is NP-hard [69-71].
For real-time applications, it was proposed that execution of
some tasks can be slowed down using DVS on corresponding
tiles without violating the deadline timing constraint [72].
Several DVS-enabled uniprocessors have been implemented.
Test results running real-world applications showed signifi-
cant power saving up to 10 times [73]. For multiprocessor
core systems implemented to execute a set of real-time de-
pendent tasks, Schmitz et al. [74-76] presented an iterative
synthesis approach for DVS-enabled processing element
based on genetic algorithms (GA). They proposed a heuristic
PV-DVS algorithm specifically for solving the voltage scaling.
Kianzad et al. improved the previous work by combining
assignment, scheduling, and power management in a single
GA algorithm [77]. However, GA-based design optimization
suffers slow convergence and lower desired quality. Chang
et al. [78] proposed using Ant Colony Optimization (ACO)
algorithm. Common to these approaches is that when PV-
DVS is applied for power reduction, it is applied to one
task (tile) at a time and is done after assignment and sched-
uling. Zhang et al. [79] and Varatkar and Marculescu [80]
proposed using a list scheduling algorithm to find an initial
task schedule, and the DVS problem was solved by integer
linear programming. The idea behind these methods is to
maximize the available slack in a schedule so as to enlarge the
solution space of using DVS. However, the communication
infrastructures used in these works are either a point-to-
point interconnect or abus architecture. Hu and Marculescu

[81] proposed an energy-aware scheduling (EAS) algorithm
that considers the communication delay on an NoC archi-

tecture. However, DVS frequency adjustment was not consi-
dered.

4. Bidirectional Network-on-Chip
(BiNoC) Architecture

A bidirectional channel network-on-chip (BiNoC) architec-
ture is proposed in this section to enhance the performance
of on-chip communication. In a BiNoC, each communica-
tion channel allows itself to be dynamically reconfigured to
transmit flits in either direction. This added flexibility prom-
ises better bandwidth utilization, lower packet delivery laten-
cy, and higher packet consumption rate. Novel on-chip rout-
er architecture is developed to support dynamic self-recon-
figuration of the bidirectional traffic flow. The flow direction
at each channel is controlled by a channel-direction-control
protocol. Implemented with a pair of finite state machines,
this channel-direction-control protocol is shown to be of
high performance, free of deadlock, and free of starvation.

4.1. Problem Description. In a conventional NoC architec-
ture, each pair of neighboring routers uses two unidirectional
channels in opposite direction to propagate data on the net-
work as shown in Figure 5(a). In our BiNoC architecture,
to enable the most bandwidth utilization, data channels be-
tween each pair of routers should be able to transmit data in
any direction at each run cycle. That is, four kinds of chan-
nel-direction combinations should be allowed for data trans-
mission as shown in Figure 5(b). However, current unidirec-
tional NoC architectures, when facing applications that have
different traffic patterns, cannot achieve the high bandwidth
utilization objective.

Note that the number of bidirectional channels between
each pair of neighboring router in BiNoC architecture is not
limited to two. The more the channels that can be used, the
better the performance results. In order to provide a fair
comparison between our BiNoC and the conventional NoC
that usually provided two fixed unidirectional channels, only
two bidirectional channels were used in BiNoC as illustrated
in Figure 5.

4.2. Motivational Example. As shown in Figure 6(a), an
application task graph is typically described as a set of con-
current tasks that have already been assigned and scheduled
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onto a list of selected PEs. Each vertex represents a task with
a value ¢; of its computational execution time, and each edge
represents the communication dependence with a value of
communication volume which is divided by the bandwidth
of a data channel.

For the most optimized mapping in a 2 X 2 2-dimen-
sional mesh NoC as shown in Figure 6(b), the conventional
NoC architecture in this case can only use three channels
during the entire simulation and result in a total execution
time of 80 cycles. However, if we can dynamically change
the direction of each channel between each pair of routers
like the architecture illustrated in Figure 6(c), the bandwidth
utilization will be improved and the total execution time be
reduced to 55 cycles. Figure 7 shows the detailed execution
schedules, where the required communication time between
nodes in BiNoC is extensively reduced.

4.3. Channel Bandwidth Utilization. During the execution of
an application, the percentage of time when a data channel is
kept busy is defined as channel bandwidth utilization U. To
be more specific,

_ 23:1 NBusy(t)

U= 1
T x NTotal ( )

where T is the total execution time, Ny, is the total number
of channels available to transmit data, and Npusy(t) is the
number of channels that are busy during clock cycle ¢. It is
obvious that U < 1.

We have developed a cycle-accurate NoC simulator to
evaluate the performance of a given NoC architecture. Addi-
tional implementation details of this NoC simulator will be
elaborated in later sections. Using this simulator, we measur-
ed the channel bandwidth utilizations of a conventional NoC
with respect to three types of synthetic traffic patterns:
uniform, regional, and transpose. The channel utilization
against different traffic volumes is plotted in Figure 8 under
both XY and odd-even routings.

Figures 8(a) and 8(b) plot the bandwidth utilizations of a
conventional NoC router with virtual-channel flow control.
Four virtual-channel buffers, each with a depth of 8-flits, are

allocated in each flow direction. Figures 8(c) and 8(d) give
the percentage of time in which exactly one channel is busy
and another channel is idle among time intervals when there
is at least one channel busy. Figures 8(e) and 8(f) give the
percentage of time that a bidirectional channel may help
alleviating the traffic jam when exactly one channel is busy
and the other is idle. Figures 8(a), 8(c), and 8(e) results are
obtained using XY routing; and Figures 8(b), 8(d), and 8(f)
use odd-even routing.

From Figures 8(a) and 8(b), it is clear that, even with the
most favorable uniform traffic pattern, the channel band-
width utilization peaks under XY routing and odd-even rout-
ing are only around 45% and 40%, respectively, under heavy
traffic. For the transpose traffic pattern under XY routing,
which is considered the worst case scenario, falls even below
20%. In other words, in a unidirectional channel setting even
with two channels between a pair of routers, at most one
channel is kept busy on average during normal NoC opera-
tion despite the deterministic routing algorithm such as XY
or adaptive routing algorithm such as odd-even.

One possible cause of the low-bandwidth utilization as
shown in Figures 8(a) and 8(b) is due to few bottleneck chan-
nels that take too long to transmit data packets in the desig-
nated direction. To validate this claim, we examine how often
both channels between a pair of routers are kept busy simul-
taneously. In Figures 8(c) and 8(d), the percentage of time in
which exactly one channel is busy and the other is idle given
that one or both channels are busy is plotted, respectively,
under XY and odd-even routings. As traffic load increases,
it is clear that a significant amount of traffic utilizes only a
single channel while the other channel is idle.

However, the situation where one channel is busy and the
other is idle could be the case where there are no data that
need to transmit in the opposite direction of the busy chan-
nel. It does not reveal whether there are additional data pack-
ets waiting in the same direction as the busy channel. These
data packets are potential candidate to take advantage of the
idle channel if the idle channel’s direction can be reversed. In
Figures 8(e) and 8(f), the percentage of time, in which there
are data packets needed to transmit along the same direction
as the busy channel while the other channel remains idle out
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of all situations where exactly a single channel is busy, is
plotted. An important observation is that, for large traffic
volume, this situation happens for about 15% of time despite
the type of traffic patterns or the routing methods.

Figure 8 gives ample evidence that the unidirectional
channel structure of current NoC cannot fully utilize avail-
able resources (channel bandwidth) and may cause longer
latency. This observation motivates us to explore the BiNoC
architecture that offers the opportunity to reverse channel
direction dynamically to relieve the high traffic volume of a
busy channel in the opposite direction.

4.4. Design Requirements. Bidirectional channels have been
incorporated into off-chip multiprocessor high-speed inter-
connecting subsystems over years. Recently, bidirectional on-
chip global interconnecting subsystems have also been stud-
ied quite extensively for supporting electronic design auto-
mation of system-on-chip platforms [82—85]. Hence, physi-
cal layer design of an NoC channel to support bidirectional
data transmission should be of little difficulty. The real chal-
lenge of embracing a bidirectional channel in an NoC is to
devise a distributed channel-direction-control protocol that
would achieve several important performance criteria as
follows.

(1) Correctness. It should not cause permanent blockage
of data transfer (deadlock, starvation) during opera-
tion.

(2) High Performance. Its performance should be scalable
to the size of the NoC fabric and robust with respect to
increasing traffic volume. In addition, it is desirable
that the performance enhancement can be achieved
across different characteristics of application traffic
patterns.

(3) Low Hardware Cost. The hardware overhead to sup-
port the bidirectional channel should be small
enough to justify the cost effectiveness of the pro-
posed architecture.

4.5. The Proposed BiNoC Router Design. To realize a dynam-
ically self-reconfigurable bidirectional channel NoC architec-
ture, we initially modified the input/output port configura-
tion and router control unit designs based on the conven-
tional router using wormhole flow control as we proposed
in [86]. In order to dynamically adjust the direction of each
bidirectional channel at run time, we add a channel control
module to arbitrate the authority of the channel direction as
illustrated in Figure 9.

Each bidirectional channel which is composed of an in-
out port inside is the main difference from the conventional
router design where unidirectional channel employs a hard-
wired input port or output port. However, the total number
of data channels is not changed as its applicable bandwidth
for each transmission direction is doubled.

In our design, each channel can be used as either an in-
put or an output channel. As a result, the width of a channel
request signal, channel_req, generated from the RC (routing
computation) modules is doubled. Two bidirectional chan-
nels can be requested in each output direction. In other
words, this router is able to transmit at most two packets to
the same direction simultaneously which decreases the prob-
ability of contentions.

The channel control module has two major functions.
One is to dynamically configure the channel direction be-
tween neighboring routers. Since the bidirectional channel
is shared by a pair of neighboring routers, every transition
of the output authority is achieved by a channel-direction-
control protocol between these two routers. The control pro-
tocol can be implemented as FSMs. The other responsibility
is that whether the channel request (channel_req) for the cor-
responding channel is blocked or not will depend on the
current status of channel direction. If the channel is able to
be used, the arb_req will be sent to the switch allocator (SA)
to process the channel allocation.

The most important point of this architecture is that we
can replace all the unidirectional channels in a conventional
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NoC with our bidirectional channels. That will increase the
channel utilization flexibility without requiring additional
transmission bandwidth compared to the conventional NoC.

5. Conclusion

In the first part of this paper, we introduced the detail of
an on-chip interconnection framework, namely, network on
chip (NoC), used in the design of multiprocessor system-on-
chip (MPSoC) and chip multiprocessor (CMP) architectures.
Then, the NoC architecture and its function layers were
reviewed, and some prevalent NoC design methodologies
were discussed. Last, we proposed a novel bidirectional chan-
nel NoC (BiNoC) backbone architecture, which can be easily
integrated into most conventional NoC designs and success-
fully improve the NoC performance with a reasonable cost.
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