60 research outputs found

    Design of a Single-Feed Dual-Band Dual-Polarized Printed Microstrip Antenna Using a Boolean Particle Swarm Optimization

    Get PDF
    A novel dual-frequency dual-linear-polarization printed antenna element benefiting from a single-feed single-layer structure is introduced in this paper. The Boolean particle swarm optimization algorithm in conjunction with the method of moments (MoM) is employed to optimize the geometry of the antenna after considering three objectives: cross polarization, return loss, and boresight direction in both bands. A fuzzy-logic based ordered weighted averaging operator allows us to efficiently implement the multi-objective optimization technique. Prototypes of the optimized designs have been fabricated and tested. The measured results show excellent performance with more than 15 dB of return loss and 10 dB of cross polarization in both frequency bands of operation, i.e., 12 and 14 GHz. A gain of 4.8 dBi has been measured for both frequency bands

    Design of a Single-Feed Dual-Band Dual-Polarized Printed Microstrip Antenna Using a Boolean Particle Swarm Optimization

    Get PDF
    A novel dual-frequency dual-linear-polarization printed antenna element benefiting from a single-feed single-layer structure is introduced in this paper. The Boolean particle swarm optimization algorithm in conjunction with the method of moments (MoM) is employed to optimize the geometry of the antenna after considering three objectives: cross polarization, return loss, and boresight direction in both bands. A fuzzy-logic based ordered weighted averaging operator allows us to efficiently implement the multi-objective optimization technique. Prototypes of the optimized designs have been fabricated and tested. The measured results show excellent performance with more than 15 dB of return loss and 10 dB of cross polarization in both frequency bands of operation, i.e., 12 and 14 GHz. A gain of 4.8 dBi has been measured for both frequency bands

    Wideband low-profile circularly polarized antenna array

    Get PDF
    Tato bakalářská práce se zaměřuje na studii nového typu širokopásmové nízkoprofilové kruhově polarizované anténní řady s vysokým ziskem. Cílem práce je navrhnout, optimalizovat a zrealizovat navrženou anténu pro pracovní kmitočtové pásmo 5,5 - 7 GHz. Práce se zabývá teoretickými základy za účelem následné prezentace konceptu antény. Dále popisuje jednotlivé fáze návrhu a implementace. Anténa byla navržena pomocí plně vlnového simulačního programu CST Microwave Studio a vyrobena na dielektrickém substrátu. Výsledky simulovaných i měřených vlastností jsou vyhodnoceny v závěru.This bachelor’s thesis is focused on the study of a novel type of wideband low-profile circular array antenna with circular polarization and high gain. The aim of this thesis is to design, optimize and implement the proposed antenna for a 5.5 - 7 GHz frequency band. The thesis deals with theoretical fundamentals in order to subsequently present the concept of the antenna. Furthermore, it describes its design and implementation stages. The antenna was designed in the full-wave program CST Microwave Studio and fabricated on dielectric substrate. Both simulated and measured property results are evaluated in the conclusion.

    Characteristics of different focusing antennas in the near field region

    Get PDF
    Focusing antennas are of interest in many application including microwave wireless power transmission, remote (non-contact) sensing, and medical applications. Different kinds of antennas such as array antennas, reflector antennas and Fresnel zone plate (FZP) antennas have been used for these applications. Here, first, a new scheme in designing focused array antennas with desired sidelobe levels (SLLs) in the near field region is presented. The performance of the large focused array antennas is predicted based on the knowledge of the mutual admittances of a smaller array. The effects of various focal distances on the near field pattern of these antennas are investigated. Then, electric field pattern characteristics of the focused Fresnel zone plate lens antennas in the near-field region are presented. The FZP antenna fed by a circular horn is implemented and the effects of various focal lengths on the near field pattern of this antenna are examined. It is shown that the maximum field intensity occurs closer to the antenna aperture than to the focal point and this displacement increases as the focal point moves away from the antenna aperture. The focusing properties of ultra-wideband (UWB) array antennas are also presented. Large current radiator (LCR) antennas are modeled by replacing the antenna with a set of infinitesimal dipoles producing the same near field of the antenna. LCR antenna arrays are used to provide high concentration of microwave power into a small region. It is shown that the defocusing effect occurs in pulse radiating antennas as well. Invasive weed optimization (IWO), a new optimization algorithm, is also employed to optimize the pulsed array antenna. In the attempt of optimizing the focused arrays, a new scenario for designing thinned array antennas using this optimization method is introduced. It is shown that by using this method, the number of elements in the array can be optimized, which yields a more efficient pattern with less number of elements. By applying this new optimization method to UWB arrays, the peak power delivered to a localized region can be increased

    A Novel Multi-Objective Velocity-Free Boolean Particle Swarm Optimization

    Get PDF
    This paper extends boolean particle swarm optimization to a multi-objective setting, to our knowledge for the first time in the literature. Our proposed new boolean algorithm, MBOnvPSO, is notably simplified by the omission of a velocity update rule and has enhanced exploration ability due to the inclusion of a “noise” term in the position update rule that prevents particles being trapped in local optima. Our algorithm additionally makes use of an external archive to store non-dominated solutions and implements crowding distance to encourage solution diversity. In benchmark tests, MBOnvPSO produced high quality Pareto fronts, when compared to benchmarked alternatives, for all of the multi-objective test functions considered, with competitive performance in search spaces with up to 600 discrete dimensions

    Dual CP Polarization Diversity and Space Diversity Antennas Enabled by a Compact T-Shaped Feed Structure

    Get PDF
    A compact T-shaped feed structure (IFS) is reported that enables the realization of two types of diversity antennas: a polarization diversity antenna (PDA) and a spatial diversity antenna (SDA). Both systems have a high potential for mobile wireless communication applications. The IFS includes four ports and two independent coaxial channels with effective isolation between them all. The PDA is a dual CP omnidirectional antenna. Its optimized prototype achieves measured impedance bandwidths of 16.4% and 15.28% in its LHCP and RHCP states, respectively, and realized gains in both between 4.8 and 6.46 dBic. The inner thin coaxial cable (ITCC) of the TFS directly drives its LHCP subsystem, facilitating its improved omnidirectional performance. This ITCC is also used to directly feed the SDA's low-profile directional planar equiangular spiral antenna and its side port drives its omnidirectional RHCP antenna. Good hemispherical coverage is realized with a measured common impedance bandwidth larger than 14.35% with more than 40-dB isolation between its two ports. The corresponding measured realized gain of the SDA is between 4 and 7.8 dBic. The measured results for both optimized prototypes confirm their simulated performance characteristics.National Natural Science Foundation [61571289, 61571298, 61701303]; Natural Science Foundation of Shanghai [17ZR1414300]; Shanghai Pujiang Program [17PJ1404100]Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Sequential Domain Patching for Computationally Feasible Multi-objective Optimization of Expensive Electromagnetic Simulation Models

    Get PDF
    AbstractIn this paper, we discuss a simple and efficient technique for multi-objective design optimization of multi-parameter microwave and antenna structures. Our method exploits a stencil-based approach for identification of the Pareto front that does not rely on population-based metaheuristic algorithms, typically used for this purpose. The optimization procedure is realized in two steps. Initially, the initial Pareto-optimal set representing the best possible trade-offs between conflicting objectives is obtained using low-fidelity representation (coarsely-discretized EM model simulations) of the structure at hand. This is realized by sequential construction and relocation of small design space segments (patches) in order to create a path connecting the extreme Pareto front designs identified beforehand. In the second step, the Pareto set is refined to yield the optimal designs at the level of the high-fidelity electromagnetic (EM) model. The appropriate number of patches is determined automatically. The approach is validated by means of two multi-parameter design examples: a compact impedance transformer, and an ultra-wideband monopole antenna. Superiority of the patching method over the state-of-the-art multi-objective optimization techniques is demonstrated in terms of the computational cost of the design process

    Applications of the genetic algorithm optimisation approach in the design of high efficiency microwave class E power amplifiers

    Get PDF
    In this thesis Genetic Algorithm Optimisation Methods (GA) is studied and for the first time used to design high efficiency microwave class E power amplifiers (PAs) and associated load patch antennas. The difficulties of designing high efficiency PAs is that power transistors are highly non linear and classical design techniques only work for resistive loads. There are currently no high efficient and accurate procedures for design high efficiency PAs. To achieve simplified and accurate design procedure, GA and new design quadratic equations are introduced and applied. The performance analysis is based on linear switch models and non linear circuitry push-pull methods. The results of the analytical calculations and experimental verification showed that the power added efficiency (PAE) of the PAs mainly depend on the losses of the active device itself and are nearly independent on the losses of its harmonic networks. Hence, it has been proven that the cheap material PCB FR4 can be used to design high efficiency class E PAs and it also shown that low Q factor networks have only a minor effect on efficiency, allowing a wide bandwidth to be obtained. In additional, a new procedure for designing class E PAs is introduced and applied. The active device (ATF 34143) is used. Good agreement was obtained between predicted analyses and the simulation results (from Microwave Office (AWR) and Agilent ADS software). For the practical realization, class E PAs were fabricated and tested using PCB FR4. The practical results validate computer simulations and the PAE of the class E PAs are more than 71% and Gain is over 3.8 dB when input power (Pin) is equal to 14 dBm at 2 GHz
    corecore