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Abstract 

 
 

Focusing antennas are of interest in many application including microwave wireless power 

transmission, remote (non-contact) sensing, and medical applications. Different kinds of 

antennas such as array antennas, reflector antennas and Fresnel zone plate (FZP) antennas have 

been used for these applications. 

Here, first, a new scheme in designing focused array antennas with desired sidelobe 

levels (SLLs) in the near field region is presented. The performance of the large focused array 

antennas is predicted based on the knowledge of the mutual admittances of a smaller array. The 

effects of various focal distances on the near field pattern of these antennas are investigated. 

Then, electric field pattern characteristics of the focused Fresnel zone plate lens antennas in the 

near-field region are presented. The FZP antenna fed by a circular horn is implemented and the 

effects of various focal lengths on the near field pattern of this antenna are examined. It is shown 

that the maximum field intensity occurs closer to the antenna aperture than to the focal point and 

this displacement increases as the focal point moves away from the antenna aperture. 

The focusing properties of ultra-wideband (UWB) array antennas are also presented. 

Large current radiator (LCR) antennas are modeled by replacing the antenna with a set of 

infinitesimal dipoles producing the same near field of the antenna. LCR antenna arrays are used 

to provide high concentration of microwave power into a small region. It is shown that the 

defocusing effect occurs in pulse radiating antennas as well. Invasive weed optimization (IWO), 

a new optimization algorithm, is also employed to optimize the pulsed array antenna. In the 
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attempt of optimizing the focused arrays, a new scenario for designing thinned array antennas 

using this optimization method is introduced. It is shown that by using this method, the number 

of elements in the array can be optimized, which yields a more efficient pattern with less number 

of elements. By applying this new optimization method to UWB arrays, the peak power 

delivered to a localized region can be increased.  
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Chapter 1 
 

INTRODUCTION 
 

 

Antennas are commonly designed and characterized based on their far-field radiation 

patterns in order to deliver the signal energy to a large distance from the antenna aperture. 

However, in some applications we need to focus the microwave power at a point close to the 

antenna aperture. These kinds of antennas, called focused antennas, are of interest in non-contact 

(remote) sensing, medical applications, and microwave wireless power transmissions. 

One of the foremost applications of focused antennas is in non-contact microwave 

sensing, where we need a focused beam for a precise sensing. In this application, the energy of 

the focused antenna should be mostly confined on the region we want to sense [1]-[2]. Another 

application of focused antennas is to achieve microwave-induced hyperthermia for medical 

applications. It is desired to maximize the power deposition in the near-field of the antenna to 

heat the cancerous tissue without the heating of healthy tissues adjacent to the tumor [3]-[5]. 

Another motivation for the development of this kind of antenna comes from the concept 

of wireless power transmission. This concept has been proposed to transmit continuous power 

without using transmission lines [6]-[8]. This application can include providing power from earth 

to space or from space to space to supply the power of orbiting satellites from a power station on 

earth or an orbiting power satellite, respectively [9]. In addition, it can be used to provide the 
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power from solar power satellite systems in space to terrestrial markets [10]. For this purpose we 

need a large focusing antenna to transmit the power to a focused point or a desired near field 

region.  

The earliest work on focused antennas was that of Wehner, reported in a 1949 Rand 

report [11]. Subsequently, Cheng [12], [13] calculated defocus regions, while Bickmore [14] 

calculated depth of field and measured far-field pattern in the near field of a focused linear slot 

array antenna. In 1962, Sherman published several calculated patterns of focused antennas [15]. 

Wheeler [16] discussed the effects of focusing on different patterns. Partially coherent excitation 

was treated by D’Auria and Solimini [17]. Measurements of focused lenses were made by 

Bachynski and Bekefi [l8] and of focused linear arrays by Fahey et al. [19]. Synthesis of the 

axial field pattern in the radiation near field region was investigated by Graham [20]. The effects 

of the focused aperture amplitude tapering on axial lobes (forelobes and aftlobes) were 

investigated by Hansen [21]. 

Pendry in 2000 [22] showed that a planar slab of negative refractive index material can 

manipulate the near field in such a way that it achieves perfect imaging, i.e., a perfect 

reconstruction of the source’s near field. He also showed that the near field could be focused 

with a negative permittivity slab. The experimental verification of negative refraction [23] and 

sub-wavelength focusing using negative refractive index [24], negative permittivity [25], [26], 

and negative permeability slabs [27] have demonstrated that near-field lenses are in fact a reality.  

Array antennas have been recently considered as focused antennas for different 

applications [1], [2], and [28]. Conventional and shaped reflector antennas are also used as 

focusing antennas [7], [29]-[30]. Other alternative focused antennas are the dielectric lens 
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antennas as well as Fresnel zone plate (FZP) lens antennas consisting of a set of alternative open 

and opaque annuli arranged on flat or curvilinear surfaces [31]-[35].  

Providing a high concentration of electromagnetic energy into small regions can also be 

done by using an array of pulsed antennas. Precise control of the time delays of the pulses 

radiated from the individual elements (ultra-wide band antennas) allows the concentration of 

energy within a region [3], [36]-[41]. 

Chapter 2 presents the array antenna design procedure to focus the microwave power in 

the radiation near-field region of the antenna. In this part, a small focused array antenna is 

implemented using microstrip patch elements to achieve the desired sidelobe levels in the 

Fresnel region based on Dolph-Chebyshev design. Then, larger arrays are designed by using the 

knowledge of the mutual admittances between the elements of the smaller array. Chapter 3 

presents the focusing properties of Fresnel zone plate (FZP) lens antennas in the near-field region. 

In Chapter 4, the radiated field properties of a large current radiator (LCR), an ultra-wideband 

antenna, are investigated. Chapter 5 presents a new optimization algorithm inspired from 

colonizing weeds for electromagnetics applications. In chapter 6, this optimization method is 

applied to arrays of LCR pulse antennas in order to increase the peak power delivered to a 

localized region.  
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Chapter 2 
 

FOCUSED MICROSTRIP ARRAY 

ANTENNA 

 

 

2.1 Introduction 
 

One of the important problems encountered in focused antennas is the need to design 

these antennas based on the desired properties of their near field radiation patterns. In other 

words, we need a design method to achieve specific sidelobe levels (SLL), half power beam 

width (HPBW), depth of focus (the distance between the axial -3dB points about the maximum 

intensity plane) and so on in the near field and Fresnel regions not only to achieve higher 

efficiencies and desired near field patterns for specific applications but also to avoid side effects 

of the near field power. 

 Among the most serious side effects are high SLLs decreasing the accuracy of the 

measurements in the non-contact sensing or heating healthy tissues adjacent to the tumor in 

medical applications. Moreover, in power transmission applications, higher SLLs may cause 

lower efficiency of the system and also interference to the adjacent communication systems or 

satellite receiving antennas. 
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Some attempts have been made to characterize the properties of the focused apertures in 

the radiation near field region. It was proven theoretically that the desired axial and transversal 

field patterns can be achieved from the proper aperture phase and amplitude distributions [15], 

[20]. Moreover, the effects of the focused aperture amplitude tapering on axial lobes (forelobes 

and aftlobes) were investigated [21]. 

The main purpose of this chapter is to present a design method for large array microstrip 

patch antennas to achieve desired SLLs in the radiation near field pattern based on a Dolph-

Chebyshev array design. The new method is to include the mutual coupling between array 

elements in order to have more realistic results from the design of large focusing array antennas. 

Here, we first describe the design procedure of the focused array antennas. Then, we present 

simulation and measured data for a 4 × 4 focused array microstrip patch antenna to verify the 

efficiency of this design method. In the next section, larger focused array antennas are designed 

by using the predicted mutual admittances between elements in a smaller array of the same 

lattice and the same element type and size. A verification of the proposed method is shown by 

comparing the results from the present method to those obtained from full wave analysis of the 

array. Finally, the effects of various focal distances on both axial and transverse near field 

patterns of larger array antennas are investigated.  

 

2.2 Design Procedure 

It has been proven theoretically that in the focal plane near the axis of a focused aperture, 

the electric field will have all the properties of the far field radiation pattern if a quadratic phase 

taper is adjusted on the aperture of the antenna [15], [20]. Therefore, in order to achieve a spot 

beam with a desired shape at a focal distance, F, from the antenna aperture, a quadratic phase 

distribution of 
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and an adequate amplitude tapering can be used, where x, y are the coordinates of the antenna 

aperture and  k = 2π / λ. However, since the wave emanating from the aperture spreads 

spherically, the maximum intensity of the field along the axial direction doesn’t occur at the 

focal point. In other words, although the focused antenna is designed to have a spot beam at the 

focal plane, where all the rays add up in phase, a narrower spot beam can be obtained at a plane 

closer to the aperture. However, it can be shown that the transverse electric field at this plane, 

near the axis of the aperture, has almost all the properties of the electric field at the focal plane 

provided these two planes are close to each other. According to Fig. 2.1, if the focal and 

maximum intensity points are relatively close to each other we can show that:  

 

2121 rrrr ′−′≅−                                                   (2.2) 

 

where, r1 and r2 are the vectors from (x1, y1, 0) and (x2, y2, 0) points on the aperture to the focal 

point, F, respectively. Moreover, r′1 and r′2 are the vectors from the same points on the aperture 

to the maximum intensity point, F′, respectively. In other words, although the rays don’t add up 

in phase at point F′, the phase difference between them is negligible. Therefore, by applying 

quadratic phase and proper amplitude distributions to microstrip array antennas, the desired 

radiation near fields at both focal and maximum intensity planes can be obtained. On the other 

hand, if the focal point and the maximum intensity points are far from each other, (2.2) won’t be 

true anymore. Therefore, the pattern in the maximum intensity plane is different with the one in 

the focal plane.  
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Fig. 2.1.  Geometry of the focused aperture. 

 

2.3 Focused Array Antenna Design 

In order to illustrate the concept and the method, a 4 × 4 microstrip patch antenna array is 

designed to operate at the frequency of 10 GHz. A quadratic phased array with a tapered Dolph-

Chebyshev amplitude distribution [42] is applied to the elements of the array to obtain -20dB 

SLL and a focal distance of 20 cm. An RT/duroid substrate of thickness 0.254 mm was used to 

minimize the radiation from the feeding network. Each inset-fed patch is 10.02 mm long and 

11.47 mm wide and the distance between each two elements is 22.5 mm. Fig. 2.2 (a) shows a 

photo of the antenna prototype. In order to design the array antenna, the feeding network was 

first designed by using transmission line theory. Then, IE3D [43], a MoM-based electromagnetic 

simulator, was used for modeling the feeding network to adjust the length and the width of each 

line to achieve the required phase shifts and amplitude levels. Finally, the entire feeding network 

and the array are modeled to achieve the near field radiation patterns. The simulated and 

measured S11 of the array are shown in Fig. 2.2 (b). 
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(a) 

 

(b) 

Fig. 2.2.  4 × 4 Microstrip patch antenna array (a) photo and (b) reflection coefficient.  
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The University of Mississippi planar near-field set up is used to measure the near field 

pattern of the antenna at different planes. Fig. 2.3 shows the measured and simulated electric 

field of the antenna in the axial direction. It can be seen that the measured and simulated results 

are in good agreement. The maximum intensity of the electric field is at z = 6.2 cm distance 

while the focal point is at z = 20 cm distance from the antenna aperture.   

Contour plots of the measured near field of the antenna at the focal and maximum 

intensity planes are depicted in Figs. 2.4(a) and 2.4(b), respectively. It can be seen that the beam 

is narrower at the maximum intensity plane than that at the focal plane. In addition, Fig. 2.5 

shows the simulated and measured E-plane and H-plane near-field radiation patterns of the array 

antenna at the focal plane. Notice the double representation of the x-axis, which is represented in 

terms of position and the angular direction. Notice also that the angular axis is not uniform. 

Moreover, the simulated and measured E-plane and H-plane near-field radiation patterns at the 

maximum intensity plane are shown in Fig. 2.6. Measured and simulated results are in agreement 

in both planes especially around the main beams and within ±45
o
 view angular range. It can be 

seen that as the observation angle moves beyond 45
o
 from the broad side angle, the agreement 

between the measured and computed patterns degrades. The reason for the disagreement is that 

an infinite ground plane is assumed in simulations while the measured results for a finite ground 

plane are given. It should be noted that the probe is located well beyond the antenna physical 

aperture where the edge diffraction have stronger effects. Comparing these figures one would see 

that the half power beamwidth (HPBW) at the maximum intensity plane is less than that at the 

focal plane. Moreover, SLLs are less than -20 dB in both E and H-planes as expected. A Cross-

polarization measurement is also performed and cross-polarization values less than -20 dB are 

obtained in both planes.  



10 

 

 

 

Fig. 2.3.  The simulated and measured normalized electric field intensity of the 4 × 4 microstrip 

patch antenna array versus the axial distance. 
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(a) 

 

(b) 

Fig. 2.4.  Measured normalized electric field distribution of the 4 × 4 focused array antenna at the 

(a) focal plane, z = 20 cm and (b) maximum intensity plane, z = 6.2 cm. 
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(a) 

 

(b) 

Fig. 2.5. The simulated and measured normalized electric field distributions of the 4 × 4 focused 

array antenna at the focal plane (a) E-plane and (b) H-plane. 
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(a) 

 

(b) 

Fig. 2.6. The simulated and measured normalized electric field distributions of the 4 × 4 focused 

microstrip array antenna at the maximum intensity plane (a) E-plane and (b) H-plane. 
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2.4 Large Array Microstrip Patch Antenna 

2.4 .1  Theory and Formulation 

In order to design large finite arrays, the design procedure would be similar to the 

procedure used in the previous sections. However, full wave analysis for the array would be 

difficult to achieve because of the required huge computational resources. To avoid that and have 

an efficient method for the design of large arrays, we implement a technique used in [44] to 

predict a large array performance from small array measurements including the mutual coupling 

effects between the array elements. By knowing the mutual admittance of a small array, the 

mutual admittance matrix of the large array can be constructed while the coupling beyond the 

small array size is ignored [44], [45]. 

If an array of N identical elements in the xy-plane is considered, the total electric field 

pattern of such an array at a distance r from the antenna is the summation of the electric field 

patterns of all elements, given by [42] , [44]: 
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i e)(A)(                                      (2.3) 

 

where Ai is the effective excitation voltage of i-th element including the mutual coupling effect 

and Ei (|r - ri |) is the electric field pattern of the same element at r, and ri is the position of that 

element. In other words, the total electric field pattern of an array can be obtained by the 

summation of the electric field patterns of the elements while the effective excitation coefficients, 

Ai, are replaced with the excitation voltage coefficients, Vi. 
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The effective excitation voltage of i-th element can be defined in terms of the source 

voltage as:  

ii VA
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where Ei-coup(r) is the electric field at the terminal of the i-th element including the mutual 

coupling effects, i.e. the electric field due to the effective excitation voltage. By some simple 

manipulations, the effective voltage can be obtained as: 
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where Pi, Vi and Ii are the radiation power, voltage source and current excitation of i-th element, 

respectively. Moreover, Pi-coup, Vi-coup, and Ii-coup are the radiation power, voltage and current at 

the antenna terminal including the mutual coupling effect. The current Ii is determined through 

the relation 

iiii VYI =                                                           (2.6) 

where Yii is the input admittance of i-th element. The current Ii-coup can also be obtained through 

the relation: 

∑
=

− =
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1

                                                      (2.7) 

where Yij  is the mutual admittance between i-th and j-th elements. By obtaining the effective 

excitation voltage coefficients of the array, the radiation near field pattern of the array can be 

obtained using equation (3). In brief, the effective excitation voltage coefficients are introduced 

to take the mutual coupling effects into account while the pattern multiplication method is used.  
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2.4.2 Design validity 

In order to evaluate the validity and efficiency of this method, an 8 × 8 microstrip patch 

array is designed and modeled using the presented method. This array antenna, having the same 

dimensions and element distances of the presented focused antenna, is solved by the full wave 

MoM software [43], array pattern multiplication (APM), and the new method, array pattern 

multiplication including the mutual coupling (APM/MC). The mutual admittance matrix of this 

array is constructed using the presented focused 4 × 4 microstrip patch antenna array. The mutual 

admittance matrix of the presented small array, which is of order 4 × 4, is achieved by 

considering the presence of all the patch elements of the array. The mutual coupling between the 

elements of the same relative distances and positions in the large matrix is kept the same as in the 

small matrix. It should be noticed that the mutual coupling between elements with distance larger 

than 3d is ignored, where d is the distance between neighboring elements. 

 In this design example, each array element is fed separately by a coaxial feed probe to 

avoid the feed network spurious radiation contributing to the radiation pattern of the antenna. 

Two substrate layers can be used and the microstrip feed lines are designed on the bottom side of 

the lower substrate to eliminate the feed network radiation on the antenna side. A Dolph-

Chebyshev amplitude tapering and a quadratic phase distribution with the focal distance equal to 

40 cm are considered for this 8 × 8 array antenna.  The simulated E-plane and H-plane near field 

radiation patterns at the maximum intensity plane, 17.5 cm away from the antenna aperture, are 

computed using the present method and compared with the results obtained from the full wave 

analysis based on MoM shown in Fig. 2.7. Good agreement between both results is obtained.  
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(a) 

 

 
(b) 

Fig. 2.7. Normalized electric field distributions of the 8 x 8 microstrip patch array antenna at the 

maximum intensity plane (a) E-plane and (b) H-plane. 
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In the next example, 8 × 8 array antennas with smaller distances between elements, λ/2, 

are considered to allow stronger coupling between elements and evaluate the performance of the 

presented method. Two antennas, respectively, with SLLs equal to -20 dB and -40 dB with the 

same focal distance as the previous example are designed. The mutual admittance matrices of 

these arrays are constructed using a 4 × 4 microstrip patch antenna with the same elements and 

the new distances between elements. Figs. 2.8 and 2.9 show the near field radiation patterns of 

these antennas at Z = 20 cm away from the antenna aperture in both E and H-planes. It can be 

seen that by including the mutual coupling in the analysis, accurate near field patterns are 

obtained. The element patterns used in the APM/MC method are needed to be obtained from one 

active element within a 4 × 4 array antenna. In other words, one of the patch elements in the 4 × 

4 array is excited in the presence of all other patches. By using this method, the distortion of the 

current distribution on the patch due to the mutual coupling is taken into account and more 

accurate results are achieved. It can be concluded that in the case of high mutual coupling 

between elements the element pattern within the array is needed. Moreover, the effect of the 

mutual coupling is more critical when lower SLLs are required [46], [47]. It should be clear that 

the mutual admittance depends only on frequency, element positions, and their input ports 

relative to their position in the element. Therefore, designing for certain specifications such as 

sidelobe levels or beam scanning is controlled by the signals to the ports of the antenna elements. 

If the mutual coupling is affecting the desired sidelobe levels or the beam scanning direction, one 

might reevaluate these signals to obtain the desired specification for the array using the same 

mutual admittance matrix. 
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(a) 

 

(b) 

Fig. 2.8.   Normalized electric field distributions of the condensed 8 × 8 microstrip patch array 

antenna with -20dB SLL at Z = 0.2 m away from the antenna aperture (a) E-plane and (b) H-

plane. 
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(a) 

 

(b) 

Fig. 2.9.  Normalized electric field distributions of the condensed 8 × 8 microstrip patch array 

antenna with -40dB SLL at Z = 0.2 m away from the antenna aperture (a) E-plane and (b) H-

plane. 
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2.4.3  Large Focusing Array Antenna 

In this section, two focused large array antennas, a 16 × 16 and a 64 × 64 microstrip 

patch array, are considered. Both antennas are designed based on the same element type and size 

of the presented focused antenna. The 16 × 16 array has the distance between elements of the 

condensed array antenna of λ/2. However, the 64 × 64 array has the same distances between 

elements of the 4 × 4 presented focused antenna, which is 3λ/4. The mutual admittance matrices 

of these large arrays are constructed using 4 × 4 microstrip patch antenna arrays with the same 

dimensions and distances between elements. 

For the 16 × 16 array antenna, Dolph-Chebyshev amplitude tapering and various 

quadratic phase distributions are considered to focus the power at Z = 0.5, 1, 1.5 and 2 meters 

away from the antenna aperture and all have -20 dB SLLs. The element pattern within the array 

is considered to obtain the near field pattern of this array. The transverse electric field 

distributions of this antenna versus the axial distance are shown in Fig. 2.10. All the plots are 

normalized to the highest maximum intensity value to show a comparison between these values 

for different focal distances. It can be seen that the maximum intensity of the electric field 

doesn’t occur at the focal point. For the focal point close to the antenna aperture, the maximum 

intensity is close to the focal point but as the focal point moves away from the antenna aperture, 

the focal shift increases. In other words, by increasing the focal distance, the maximum intensity 

distance increases with a much lower rate and cannot go beyond a certain distance. This is 

because of the spherical spreading of the wave-front away from the source. In other words, the 

magnitude of the field emanating from the aperture is inversely proportional to the distance, r, 

and as the focal distance increases, the effect of this spreading factor on the focal shift increases. 
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The focusing properties of this antenna are summarized in Table 2.1. As the focal point 

moves away from the antenna aperture the electric field intensity at the maximum intensity point 

and the depth of focus decreases and the forlobe levels increase. Therefore, choosing a large 

focal distance, much larger than the antenna aperture, deteriorates the focusing properties of the 

antenna. 

Fig. 2.11 shows the electric field distributions of the antenna at the focal planes for both 

E and H-planes. It can be seen that the desired sidelobe levels at all the focal distances are 

achieved. It should be noted that since the near field patterns are plotted at different distances 

from the antenna aperture, they have different angular view ranges. Therefore, the near field 

patterns for the smaller focal distances are observed in wider view angular ranges. The electric 

field distributions at the maximum intensity planes are shown in Fig 2.12. It can be observed that 

the desired sidelobe levels are achieved for the lowest focal distance. However, by increasing the 

focal distance the sidelobe levels are increased (See Table 2.1). The sidelobe deterioration is due 

to the increased distance between the focal plane and maximum intensity plane position. 

In the next design example a 64 × 64 array with Dolph-Chebyshev amplitude tapering 

and various quadratic phase distributions is considered to focus the power at Z = 3, 5, 7, 9 and 11 

meters distances from the antenna aperture and all have -40 dB SLLs. Fig. 2.13 shows the 

transverse electric field distributions on the axis of the antenna versus the axial distance from the 

aperture. It can be seen that similar to the previous antenna, for the focal point close to the 

antenna aperture, the maximum intensity is very close to the focal point, but as the focal point 

moves away from the antenna aperture, the focal shift increases. The focusing properties of this 

antenna are summarized in Table 2.2. It can be seen that lower forlobe levels are obtained for 

this large array antenna compared to the previous one.  



23 

 

 

 

 

Fig. 2.10. Normalized Electric field intensity of the 16 × 16 microstrip patch array antenna 

versus the axial distance for different focal distances. 
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(a) 

 

(b) 

Fig. 2.11. Normalized electric field distributions of the 16 × 16 microstrip patch array antenna at 

the focal plane for various focal distances (a) E-plane and (b) H-plane. 
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(a) 

 

(b) 

Fig. 2.12.  Normalized electric field distributions of the 16 × 16 microstrip patch array antenna at 

the maximum intensity plane for various focal distances (a) E-plane and (b) H-plane. 
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Table 2.1. Focusing properties of 16 × 16 array antenna for different focal distances. 

Focal Distance (m) 0.5 1 1.5 2 

Electric Field Maximum Intensity (dB) 0 -3.28 -4.66 -5.41 

Maximum Intensity Distance (m) 0.35 0.47 0.52 0.55 

Depth of Focus (m) 0.341 0.573 0.685 0.75 

Forelobe levels (dB) -5.2 -2.54 -1.42 -0.83 

HPBW (m) 0.047 0.065 0.075 0.081 

Max sidelobe level (dB) -20.0 -18.85 -17.82 -17.41 

 

 

Fig. 2.13. Normalized Electric field intensity of the 64 × 64 microstrip patch array antenna 

versus the axial distance for different focal distances. 
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The normalized E-plane and H-plane electric field distributions of the antenna at the 

maximum intensity planes for various focal distances are shown in Fig. 2.14. It can be seen that 

by moving the focal point away from the antenna aperture, HPBW increases. Moreover, it should 

be noticed that the SLLs are about -40dB at the maximum intensity planes for various focal 

distances since the electric field patterns are shown in a small angular range from the axial axis 

of the antenna. It should be also noticed that by increasing the focal distance, leading to the 

increase of the focal shift, higher SLLs appear.  

 

Table 2.2. Focusing properties of 64 × 64 array antenna for different focal distances. 

Focal Distance (m) 3 5 7 9 11 

Electric Field Maximum 

Intensity (dB) 

0 -4.1 -6.7 -8.5 -9.8 

Maximum Intensity 

Distance (m) 

2.87 4.57 6.03 7.22 8.23 

Depth of Focus (m) 0.90 2.28 4.01 5.84 7.33 

Forelobe levels (dB) -12.3 -8.5 -7.0 -5.9 -5.0 

HPBW (m) 0.076 0.121 0.161 0.197 0.228 
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(a) 

 

(b) 

Fig. 2.14. Normalized electric field distributions of the 64 × 64 microstrip patch array antenna at 

the maximum intensity plane for various focal distances (a) E-plane and (b) H-plane. 
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2.5 Conclusion 

 
A new scheme in designing focused array antennas with desired SLLs in the near field 

region was presented. A 4 x 4 array microstrip patch antenna with beam focused in the radiation 

near field region was examined. Moreover, large focused array antennas based on the knowledge 

of the mutual admittances of a smaller array was predicted. The effects of various focal distances 

on the near field pattern of these antennas were investigated. It was shown that the maximum 

intensity of the electric field was shifted toward the antenna aperture from the focal point where 

all of the rays contribute in phase because of the quadratic phase distribution on the aperture. In 

addition, it was shown that if the focal and maximum intensity points are close to each other, 

desired sidelobe levels at the maximum intensity plane, close to the axis of the antenna, can be 

achieved. 
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Chapter 3 

 

FOCUSING PROPERTIES OF FRESNEL 

ZONE PLATE LENS ANTENNAS 

 

 

 

3.1 Introduction 

Array antennas [1], [2], [28] and conventional reflector antennas [29], [30] have been 

widely used to generate quadratic phase distributions and focus the power at nearby points. 

However, a precise generation of a quadratic phase distribution for large array antennas is 

complex, costly and limited due to the difficulties in implementing the beam forming networks. 

On the other hand, the ability to produce a desired aperture distribution using a conventional 

reflector like parabolic reflector antenna is limited. Although the problem can be solved using 

shaped reflectors, their implementation is very costly.  

Another alternative focused antenna is the Fresnel zone plate (FZP) lens consisting of a 

set of alternating open and opaque annuli arranged on flat or curvilinear surfaces [48]-[50]. The 

plane FZP lens has the benefit of being lighter and easier to design and manufacture compared to 

the array antennas and reflectors. Moreover, FZP lenses are lighter and thinner than traditional 
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lens antennas especially when a large antenna aperture is needed. In fact, the flatness aspect of 

the FZP antenna is very advantageous in the manufacturing process.  

The focusing behavior of the plane and spherical FZP antennas was first presented in [51]. 

Later, some axial defocusing characteristics of FZP lens antennas were presented in [32], [33]. In 

[34] the focusing behaviors of curvilinear and plane FZP lenses were studied. It was shown that 

the curvilinear FZP lenses don’t necessarily have superior focusing abilities compared to the 

plane FZP lenses. In [35] it was shown that zone plate and hyperbolic lens antennas have similar 

focusing properties except that the FZP antennas deliver less power to their focal points.  

In this chapter, some new focusing characteristics of Soret FZP lens antennas are 

examined. Although it is well known that phase corrected (Wood-type) zone plate antennas are 

more efficient than Soret zone plate antennas, the latter one is much simpler to design and 

fabricate in order to generally represent the focusing properties of FZP lens antennas. Different 

FZP lens antennas are designed to investigate the effect of focal lengths on both  

axial and transverse near-field patterns. Simulation and measurement results show the 

displacement of the maximum intensity of the electric field along the axial  

direction. Finally, the scanning characteristics of the FZP antenna focused beam are  

presented.  

 

3.2 Design Procedure 

The geometrical optic (GO) method is used in the design of FZP antennas to achieve 

constructive interference at the focal point. Fig. 3.1 shows the two dimensional configuration of 

the FZP fed by a circular corrugated horn antenna. The design is performed in the plane (two-

dimensional) and then the shape is completed by revolving it around the axis of symmetry.  
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The FZP is designed as circular concentric zones with radius of rm for the m-th zone. Dm 

is the diameter and F1 and F2 are the focal lengths of the FZP. The values of rm should be 

determined such that a ray emanating from one focal point adds up in phase at the other focal 

point by satisfying 

 

( ) 22121 λmFFLL mm =+−+                                          (3.1) 

 

where m is an integer, λ is the wavelength, and L1m and L2m are the distances between the m-th 

ring and the first and second focal points, respectively. This equation can be rewritten as 
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The exact values of rm can be obtained by solving this equation. 

 

Fig. 3.1. Two-dimensional configuration of the FZP fed by a circular horn antenna. 
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3.3 Simulated and Measured Results 

FZP antennas with diameter of 0.16 m and various focal lengths, F2 = 0.05 m, 0.075 m, 

0.15 m, 0.30 m, 0.45 m, 0.6 m, 0.75 m and 0.9 m, are designed and modeled by a full wave MoM 

solution [52]. The diameter and the number of zones of each FZP are presented in Table 3.1. It 

should be mentioned that the antennas with first three focal lengths are focused in the near-field 

region and the others are focused in the Fresnel region of the antennas. A corrugated circular 

horn antenna with left-handed circular polarization (LHCP) is used as the antenna feed. Fig. 3.2 

shows the V and H cut measured radiation pattern of the horn antenna at the frequency of 32 

GHz. A subtended angle of 40 degrees is chosen to have an edge taper value of about -15 dB on 

FZP rims with the focal length of F1 = 0.095 m. 

 

Table 3.1. The number of zones and diameter of each Zone plate 

Focal length (m) Number of Zones Diameter (m) 

0.05 16 0.168 

0.075 14 0.158 

0.15 10 0.156 

0.3 8 0.155 

0.45 8 0.163 

0.6 8 0.167 

0.75 6 0.171 

0.9 6 0.171 
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In order to verify the simulated results, two FZP antennas with F2 = 0.15 m and 0.45 m 

are fabricated by etching on an RT/duroid 5880 laminate. Fig. 3.3 illustrates the antenna under 

test at the University of Mississippi planar near-field set up.  

The simulated and measured transverse electric field distributions along the axial 

direction for the FZP with the focal length of 0.15 m are shown in Fig. 3.4. A good agreement 

between the simulated and measured results is observed. The maximum intensity of the electric 

field occurred at z = 0.137 m distance from the antenna aperture. The simulated and measured 

electric field distribution of the antenna at the focal plane (z = 0.15 m) and the maximum 

intensity plane (z = 0.137 m) are shown in Figs. 3.5 and 6, respectively. Notice the triple 

representation of the x-axis in terms of position, angular direction and radial distance. It can be 

seen that simulated and measured results are in agreement especially around the main beam.  

 

Fig. 3.2. V and H cuts of the measured radiation pattern of the LHCP feed horn antenna at the 

frequency of 32 GHz.  
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Fig. 3.3. FZP lens antenna test set-up.  

 

 

Fig.3.4. Simulated and measured normalized electric field intensity of the FZP antenna with the 

focal length of 0.15 m along its axial direction. 

 

The electric field distribution of the FZP antenna with the focal length of 0.45 m is also 

measured in different planes. Fig. 3.7 shows the simulated and measured electric field 



36 

 

distribution of the antenna versus the axial distance. The maximum intensity of the electric field 

for both the simulated and measured results occur at z = 0.343 m distance from the antenna 

aperture. Figs. 3.8 and 3.9 show the simulated and measured near field pattern at the focal plane 

(z = 0.45 m) and the maximum intensity plane (z = 0.343 m), respectively. Comparing the near 

field distributions at the focal plane and the maximum intensity plane for both FZP antennas, one 

can observe that a narrower beam is obtained at the maximum intensity plane compared to the 

focal plane.  

 

 

Fig. 3.5. Simulated and measured normalized electric field intensity of the FZP antenna with the 

focal length of 0.15 m at the focal plane (z = 0.15 m). 
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Fig. 3.6. Simulated and measured normalized electric field intensity of the FZP antenna with the 

focal length of 0.15 m at the maximum intensity plane (z = 0.137 m).  

 

 

Fig. 3.7. Simulated and measured normalized electric field intensity of the FZP antenna with the 

focal length of 0.45 m along its axial direction. 
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Fig. 3.8. Simulated and measured normalized electric field intensity of the FZP antenna with the 

focal length of 0.45 m at the focal plane (z = 0.45 m). 

 

Fig. 3.9. Simulated and measured normalized electric field intensity of the FZP antenna with the 

focal length of 0.45 m at the maximum intensity plane (z = 0.34 m). 
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In order to evaluate the focusing properties of FZP antenna, the electric field distributions 

versus the axial distance for FZP antennas with different focal lengths are plotted in Fig. 3.10. It 

can be seen that the maximum intensity of the electric field is displaced from the focal point 

toward the antenna aperture. Fig. 3.11 shows this displacement for different focal lengths. The 

normalized maximum intensity values of the FZP antenna versus the focal length are shown in 

Fig. 3.12.  It is observed that as the focal point moves away from the antenna aperture the focal 

displacement increases and the maximum intensity value decreases. It should be noted that by 

increasing the focal length, the maximum intensity length increases with a lower rate and cannot 

go beyond a certain distance. The reason for this displacement is the spherical spreading of the 

wave front away from the source. Since the magnitude of the radiating field decays as 1/r, where 

r is the distance from the source, by increasing the focal length, the effect of this spreading factor 

on the focal displacement increases. Although, all rays emanating from the source contribute in 

phase at the focal point, they add up partly in phase with higher intensities at closer points to the 

aperture causing the occurrence of the maximum intensity point and therefore the focal shift. 
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Fig. 3.10. Normalized electric field intensity of the FZP antenna versus the axial direction for 

different focal lengths.  

 

Fig. 3.11. Focal displacement of FZP antenna versus the focal length 



41 

 

 

Fig. 3.12. Normalized maximum intensity values of the FZP antenna versus the focal length. 

 

The normalized electric field distributions of the antenna for different focal lengths at the 

maximum intensity planes and focal planes are shown in Figs. 3.13 and 3.14, respectively. It can 

be observed that by increasing the focal length, the half power beam width (HPBW) at both the 

focal plane and maximum intensity plane increases. It should be noted that since the near field 

patterns are plotted at different distances from the antenna aperture, the pattern for the smaller 

focal lengths are observed in wider range of view angles. The variations of HPBW and depth of 

focus versus the focal lengths are depicted in Fig. 3.15. The depth of focused is defined as the 

distance between the axial -3dB points about the maximum intensity plane [15]. It is seen that by 

increasing the focal length, not only the HPBW but also the depth of focus, increases. The 

variation of the sidelobe levels (SLL) of the electric field patterns at maximum intensity planes 

and focal planes versus the focal length are shown in Fig. 3.16. It can be seen that by increasing 

the focal length in the Fresnel region, SLLs of the electric field patterns at both maximum 
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intensity and focal planes are increased. Sidelobe levels in the maximum intensity plane increase 

faster than that in the focal plane since by increasing the focal length, the focal shift increases. 

Therefore, increasing the focal length of the antenna causes a wider focusing beam and higher 

SLLs.  

 

Fig. 3.13. Normalized electric field distribution of the FZP at the focal plane for different focal 

lengths.  

 

Fig. 3.14. Normalized electric field distribution of the FZP at the maximum intensity plane for 

different focal lengths. 
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Fig. 3.15. Variations of depth of focus and half power beam width of the electric field pattern at 

maximum intensity plane versus the focal length of the FZP antenna. 

 

 
Fig. 3.16. Variations of sidelobe level of the electric field pattern at maximum intensity planes 

and focal planes versus the focal length of the FZP antenna.  
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3.4 Beam Scanning by Feed Motion 

Scanning the antenna’s focused beam is of interest in many applications. Although it is 

costly and complicated to scan the large antenna beam using phased arrays, it can be done easily 

in FZP antennas.  

The beam scanning is accomplished by displacing the feed horn antenna along its 

transverse axis. Fig. 3.17 shows the simulated and measured electric field distribution of the FZP 

with the focal length of 0.45 m at the maximum intensity plane for various feed displacements. 

These results are summarized in Table 3.2. It can be seen that the beam is steered by 

approximately 0.015 m for each 0.005 m displacement of the feed. It should be mentioned that 

the steered beams have approximately the same maximum intensity length, depth of focus and 

HPBW as the original focused antenna. In other words, although the feed is displaced from the 

FZP focal point, the scanned beams degradations are negligible.  

 

 

Table 3.2. The Steered focused beam properties of the FZA with the focal length of 0.45 m. 

Feed Displacement (m) 0 0.005 0.010 0.015 0.020 

Focused beam 

displacement (m) 

0 -0.0148 -0.0297 -0.0447 -0.0602 

SLL (dB) -14.51 -13.87 -13.68 -13.01 -12.44 
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(a) 

 

(b) 

Fig. 3.17. (a) Simulated and (b) measured steered focused beam of the FZP antenna with the 

focal length of 0.45 m at the maximum intensity plane for various feed displacements. 
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3.5 Conclusion 

Electric field pattern characteristics of the focused Fresnel zone plate lens antenna in the 

near-field region were presented. The FZP antenna fed by a circular corrugated horn was 

implemented and the effects of various focal lengths on the near field pattern of this antenna 

were examined. It was shown that the maximum intensity occurred closer to the focal point and 

this displacement was increased as the focal point moved away from the antenna aperture. By 

increasing the focal length of the antenna, HPBW, depth of focus and side lobe levels were 

increased. In addition, the focused beam scanning of the FZP antenna was implemented by 

displacing the feed from the FZP focal point.  
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Chapter 4 
 

LARGE CURRENT RADIATOR (LCR) 
 

 

4.1 Introduction 

The Large Current Radiator (LCR), which is one of the promising UWB radiators, was 

proposed by F. Harmuth in 1977 [53]-[55]. This radiator is named Large Current Radiator 

because it is possible to create a large amplitude current in the radiating element with a relatively 

small driving voltage. Principally the LCR is a segment of a line conductor through which a 

current pulse of short duration but large amplitude is driven. Fig 4.1 shows the configuration of 

an LCR consisting of a generator, a closed loop and a ferrite plate. The LCR is inherently a non-

resonating structure and thus permits to radiate electromagnetic (EM) waves with either 

sinusoidal or non-sinusoidal time variation [56]-[60].  
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Fig. 4.1.  The schematic of an LCR.  

 

4.2 LCR Modeling 

Fig. 4.2 shows the dimension of the chosen LCR. In order to model the LCR with the 

Ferrite plate, only the radiator is modeled while the backward radiation is ignored to model the 

effect of the ferrite plate. The antenna is modeled in the frequency domain using a MoM based 

software (FEKO) from 50MHz to 3GHz frequency band and the time-domain radiated pattern is 

computed by using the inverse Fourier transform. The time-domain pattern, F(θ,φ,t,r), can be 

shown at certain time instances (t = t0), distances (r = r0) from the aperture, or observation angles 

(θ = θ0 ,φ = φ0).  
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Fig. 4.2. The configuration of modeled LCR. 

 

Fig. 4.3. Input voltage pulse excited the large current radiator. 

 

The LCR is excited by a voltage pulse with amplitude of 1 V and duration of 5.4 ns as 

shown in Fig. 4.3. The radiated field by the LCR at a distance of z = 1.2 m from the antenna is 

shown in Fig. 4.4. The time-domain near-field pattern of the LCR at the distance of z = 1.2 m 

from the antenna in both E and H-plane are shown in Fig. 4.5.  
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Fig. 4.4. Time variation of pulse radiated by the large current radiator at broadside observation 

angles (θ = 0 , φ = 0) and a distance of r = 1.2 m from the antenna. 

 

In the other effort, the LCR is excited by a Gaussian pulse G(t) with different variances. 
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where σ is the standard deviation and µ is the mean.   

The advantage of the Gaussian pulse over the step pulse is that it has a limited bandwidth.  

The input Gaussian pulses are shown in Fig 4.6 and the radiated pulses at the distance of the z = 

1.2 m from the LCR antenna are shown in Fig. 4.7. The near field pattern obtained by exciting 

the LCR with the Gaussian pulse is shown in Fig. 4.8. 
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(a) 

 

(b) 

Fig. 4.5. Time-domain near-field pattern of the LCR at the time instance of t = 1.2/c, and the 

distance of r = 1.2 m from the antenna aperture in the (a) E-Plane and (b) H-plane. 
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(a) 

 

 

(b) 

Fig. 4.6. Input Gaussian pulse (a) time-domain and (b) frequency domain.  
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(a) 

 

 

(b) 

Fig. 4.7. Pulse radiated by the LCR at broadside observation angles (θ = 0  ,φ = 0) and a distance 

of r = 1.2 m from the antenna (a) Time-domain and (b) Frequency domain. 
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(a) 

 

(b) 

Fig. 4.8. Time-domain near-field pattern of the LCR at the time instance of t = 1.2/c and a 

distance of r = 1.2 m from the antenna aperture in the (a) E-Plane and (b) H-plane. 
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4.3 Mutual Coupling Effects 

It has been shown that LCR elements can be employed to achieve antenna arrays with 

high efficiencies [61]-[63]. This can be done by spacing the LCRs at a distance much larger than 

the spatial duration of the radiated field pulse. In this case, there is no coupling between elements 

and the array antenna pattern can be obtained by the summation of each element pattern. In order 

to show the accuracy of this method, two LCRs spaced at a distance d = 0.3 m are considered. 

One of the elements is excited by a step pulse and the other one is terminated to a matched load. 

Fig 4.9 shows the near field pattern of this configuration at both E and H-planes compared to the 

near field pattern of one LCR element. It can be seen that very similar patterns are obtained for 

both planes. In other words, the presence of the loaded antenna at a distance larger than the 

spatial duration of the radiated pulse doesn’t affect the radiation pattern of the LCR.  

 

4.4 Conclusion  

The radiation near field properties of LCR was examined. An actual LCR excited by both 

step function and Gaussian pulses and modeled by a MoM solution. In addition, the effect of the 

mutual coupling between two LCRs spaced at a distance larger than spatial duration of the 

radiated pulse was presented. 
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(a) 

 

(b) 

Fig. 4.9. Comparison between the near field pattern of one LCR and two LCR element array at 

the time instance of t = 1.2/c and a distance of r = 1.2 m from the antenna aperture in the (a) E-

plane and (b) H-plane. 
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Chapter 5 
 

INVASIVE WEED OPTIMIZATION AND 

ITS FEATURES IN 

ELECTROMAGNETICS  

 

 

5.1 Introduction 

Electromagnetic design problems usually involve several parameters that are non-linearly 

related to the objective functions. In order to solve these problems efficiently, evolutionary 

optimization algorithms have been considered and successfully applied to electromagnetic 

problems. Among these optimizers, genetic algorithm (GA) [61] and particle swarm optimization 

(PSO) [62] have received considerable attention by the electromagnetic community due to their 

efficiency and simplicity [63]-[66]. In addition, other optimization methods including Ant 

Colony Optimizer (ACO) [67] and Simulated Annealing (SA) [68] have shown high capability 

of searching for a global minimum in electromagnetic optimization problems [69]-[73].  
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Here, a new optimization algorithm, invasive weed optimization (IWO) and some of its 

new features are introduced by illustrating its application to various electromagnetic problems. 

This numerical stochastic optimization algorithm, inspired from weed colonization, was first 

introduced by Mehrabian and Lucus in 2006 [74].  It is shown that this optimizer not only 

outperforms other optimizers like PSO in certain instances, but also is capable of handling some 

new electromagnetic optimization problems.  

The main purpose of this chapter is to introduce the desirable attributes and new features 

of the IWO for electromagnetic problems to be applied to the design of the focusing antenna 

array. Of course, the efficiency of this optimization method compared to the other optimizers 

depends on the problem and the choice of control parameters.  Below, we first represent the 

proposed IWO algorithm and its desirable features. Then, by conducting several array antenna 

synthesis problems, including linear and thinned array antennas, the efficiency and specific 

features of this new algorithm are shown. Finally, the method is employed in designing a U-slot 

microstrip patch antenna fed by an L-probe to have the desired reflection coefficient for dual-

band applications.  

 

5.2 IWO 

5.2.1  The Inspiration Phenomenon 

 The IWO, inspired from the phenomenon of colonization of invasive weeds in nature, is 

based on weed biology and ecology. It has been shown that capturing the properties of the 

invasive weeds leads to a powerful optimization algorithm. The behavior of weed colonization in 

a cropping field can be explained as follows:  
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Weeds invade a cropping field (system) by means of dispersal and occupy opportunity spaces 

between the crops. Each invading weed takes the unused resources in the field and grows to a 

flowering weed and produces new weeds through its seeds, independently. The number of new 

weeds produced by each flowering weed depends on the fitness of that flowering weed in the 

colony. Those weeds that have better adaptation to the environment and take more unused 

resources grow faster and produce more seeds. The new produced weeds are randomly spread 

over the field and grow to flowering weeds. This process continues till the maximum number of 

weeds is reached on the field due to the limited resources. Now, only those weeds with better 

fitness can survive and produce new weeds. This competitive contest between the weeds causes 

them to become well adapted and improved over the time. 

 

5.2.2 Algorithm 

Before considering the algorithm process, the new key terms used to describe this 

algorithm should be introduced. Table 5.1 shows these terms. Each individual or agent, a set 

containing a value of each optimization variable, is called a seed. Each seed grows to a flowering 

plant in the colony. The meaning of a plant is one individual or agent after evaluating its fitness. 

Therefore, growing a seed to a plant corresponds to evaluating an agent’s fitness. 

To simulate the colonizing behavior of weeds the following steps, pictorially shown in 

Fig. 5.1, are considered: 

 

1. First of all, the N parameters (variables) that need to be optimized should be selected. Then, 

for each of these variables in the N-dimensional solution space, a maximum and minimum 

value should be assigned (Define the solution space).  
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2. A finite number of seeds are randomly dispersed over the defined solution space. In other 

words, each seed takes a random position in the N-dimensional problem space. Each seed’s 

position is an initial solution, containing N values for the N variables, of the optimization 

problem (Initialize a population). 

3. Each initial seed grows to a flowering plant. That is, the fitness function, defined to represent 

the goodness of the solution, returns a fitness value for each seed. After assigning the fitness 

value to the corresponding seed, it is called a plant (Evaluate the fitness of each individual).  

4. Before the flowering plants produce new seeds, they are ranked based on their assigned 

fitness values. Then, each flowering plant is allowed to produce seeds depending on its 

ranking in the colony. In other words, the number of seeds produced by each plant depends 

on the rank of the seed in the colony and increases from the minimum possible seed 

production, smin, to its maximum, smax. Those seeds that solve the problem better correspond 

to the plants which are more adapted to the colony and consequently produce more seeds. 

This step adds an important property to the algorithm by allowing all of the plants to 

participate in the reproduction contest (Rank the population and reproduce new seeds).  
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Table 5.1. Some of the key terms used in the IWO 

Agent/ Seed 

Each individual in the colony containing values 

of optimization variables 

Fitness 

A value representing the goodness of the solution 

for each seed 

Plant one agent/seed after evaluating its fitness 

Colony The entire agents or seeds 

Population Size The number of plants in the colony 

Maximum number of plants 

The maximum number of plants allowed to 

produce new seeds in the colony 

 

 

Fig. 5.1.   Flow Chart showing the IWO algorithm. 
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5. The produced seeds in this step are dispersed over the search space by normally distributed 

random numbers with mean value equal to the location of the producing plants and varying 

standard deviations. The standard deviation (SD) at the present time step can be expressed 

by:  

( )
( )

( )
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iter

iteriter
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−
=
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max                                       (5.1) 

 

 where 
maxiter  is the maximum number of iterations, 

initialσ  and 
finalσ  are defined initial and 

final standard deviations, respectively, and n is the nonlinear modulation index. Fig. 5.2 

shows the standard deviation (SD) over the course of a run with 100 iterations and different 

modulation indexes. It can be seen that the SD is reduced from the initial SD to the final SD 

with different rates. The algorithm starts with such a high initial SD that the optimizer can 

explore through the whole solution space. By increasing the number of iterations, the SD 

value is decreased gradually to search around the local minima or maxima to find the global 

optimal solution (Dispersion).  

 

 

Fig. 5.2.  Standard deviation over the course of the run. 
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6. After that all seeds have found their positions over the search area, the new seeds grow to the 

flowering plants and then they are ranked together with their parents. Plants with lower 

ranking in the colony are eliminated to reach the maximum number of plants in the colony, 

maxP . It is obvious that the number of fitness evaluations, the population size, is more than the 

maximum number of plants in the colony (Competitive exclusion). 

7. Surviving plants can produce new seeds based on their ranking in the colony. The process is 

repeated at step 3 till either the maximum number of iterations is reached or the fitness 

criterion is met (Repeat).  

 

5.2.3 Selection of Control Parameter Values 

Among the parameters affecting the convergence of the algorithm, three parameters, the 

initial SD, σinitial, the final SD, σfinal, and the nonlinear modulation index, n, should be tuned 

carefully in order to achieve the proper value of the SD in each iteration according to (5.1). A 

high initial standard deviation should be chosen to allow the algorithm to explore the whole 

search area, aggressively. It seems that the IWO works well if the initial SD is set around 1 to 5 

percent of the dynamic range of each variable. The final SD should be selected carefully to allow 

the optimizer to find the optimal solution as accurately as possible. A finer local optimum 

solution can be achieved by decreasing this parameter. However, it should be noticed that tuning 

the final SD much smaller than the precision criteria of the optimization variables doesn’t 

improve the final error level and may deteriorate the convergence rate of the optimization. 

Therefore, the final SD in each dimension should be selected based on the precision effect of that 

variable on the objective function. It was shown that the value of nonlinear modulation index has 

a considerable effect on the performance of IWO [74]. It was suggested that the best choice for n 
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is 3. Besides (5.1), other functions to describe the standard deviation over the optimization 

process were considered. However, simulation results showed that (5.1) with n = 3 is the best 

choice. 

Maximum and minimum numbers of seeds are the two other important parameters 

needed to be selected. Based on different examples, it can be concluded that selecting the 

maximum number of seeds between 3 and 5 leads to a good performance of the optimizer. 

Moreover, the minimum number of seeds is set to one for all examples. 

The maximum number of plants is another parameter that should be chosen in the IWO. 

Parametric studies show that increasing this parameter does not necessarily increase the 

performance of the algorithm. It was found that the best performance can be achieved for many 

problems when the maximum number of plant is set between 10 and 20.  

 

5.3 IWO Features 

One important property of the IWO is that it allows all of the agents or plants to 

participate in the reproduction process. Fitter plants produce more seeds than less fit plants, 

which tends to improve the convergence of the algorithm. Furthermore, it is possible that some 

of the plants with the lower fitness carry more useful information compared to the fitter plants. 

The IWO gives a chance to the less fit plants to reproduce and if the seeds produced by them 

have good fitness in the colony, they can survive.   

Another important feature of IWO is that weeds reproduce without mating. Each weed 

can produce new seeds, independently. This property adds a new attribute to the algorithm that 

each agent may have different number of variables during the optimization process. Thus, the 

number of variables can be chosen as one of the optimization parameters in this algorithm. By 
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optimizing the number of variables, some new electromagnetic design problems can be handled. 

The effectiveness of this kind of optimization for designing aperiodic thinned array antennas is 

shown in section 5.5.  

Finally, comparing some aspects of the IWO with two common and standard optimizers, 

GA and PSO, can clarify some features of this new algorithm. Provided that the number of 

iterations and the population size are considered as common requirements for all evolutionary 

algorithms, the initial and final standard deviation, nonlinear modulation index, and maximum 

and minimum number of seeds are the parameter of the IWO need to be tuned. In the GA, 

crossover and mutation rates and in the PSO, inertial weight, W, cognitive rate, 1c , social rate, 

2c , and the maximum velocity, Vmax, should be controlled to achieve the desired convergence. It 

has been shown that the choice of boundary conditions and also the maximum velocity are 

critical in convergence of the PSO algorithm [75]-[77]. Moreover, in the case of GA, both 

crossover and mutation rates affect the convergence of the problem [78]. The effect of these 

tuning parameters on the GA and PSO convergences are difficult to perceive, but by tuning the 

critical parameters in the IWO, the initial and final SD, a high-level control in the convergence 

and accuracy of the algorithm is achieved [79]-[80] . In addition, the IWO shows a high stability 

with different boundary conditions.  

 

5.4 Array Antenna Design Problems 

In this section, both the IWO and PSO are applied to the problem of synthesizing the far-

field radiation patterns of linear array antennas. The consideration focuses on the optimizing of 

array antennas to achieve the desired radiation patterns given by user defined functions. For an 
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array antenna with N elements, separated by a uniform distance d, the normalized array factor is 

given by 
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where In are amplitude coefficients, θ is the angle from the normal to the array axis, AFmax is the 

maximum value of the magnitude of the array factor, and d is assumed to be λ/2, where λ is the 

wavelength.  

Comparisons are made between the performances of the IWO and the PSO in achieving 

desired radiation patterns. In the case of the IWO, restricted and invisible boundary conditions 

are two possible choices. The restricted boundary condition relocates the particle on the 

boundary that the particle hits. However, the invisible boundary condition allows a particle to 

stay outside the solution space while the fitness evaluation of that particle is skipped and a bad 

fitness value is assigned to that errant particle. The PSO with the Invisible Boundary Condition 

(IBC), Reflective Boundary Condition (RBC), Absorbing Boundary Condition (ABC), Damping 

Boundary Condition (DBC), invisible/reflecting boundary condition, and invisible/damping 

boundary conditions are tested [76]. In addition, the velocity-clipping technique, showing good 

performance in the PSO, is implemented for different Vmax values [69], [75]. 

The same population size and number of iterations are chosen for different algorithms. 

The population size is fixed to 40 for both algorithms. It should be noted that in the case of the 

IWO, the population size is fixed by choosing the maximum number for the plant population and 

also minimum and maximum number of seeds. In the coming examples, the maximum number 

of plants is fixed to 10 and the number of seeds increases linearly from 1 to 5. In the case of PSO, 
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both the cognitive rate ( 1c ) and the social rate ( 2c ) are set to 2.0 and the inertial weight is varied 

linearly from 0.9 to 0.2 as suggested in [69], [77]. It should be also pointed out that various 

realizations of the same experiment produced results that are close to each other. All results 

reported are the average of 50 independent runs of the PSO or IWO algorithms and found to be 

sufficient. 

 

5.4.1 Optimizing Sidelobe Patterns 

In this section, a linear 40-element array is considered to achieve the desired radiation 

pattern by optimizing the amplitude coefficients. The objective pattern is to obtain sidelobe 

levels less than a tapered sidelobe mask that decreases linearly from -40dB to  

-50dB. The beamwidth of the array pattern is 11º and the number of sampling points is 359. It 

should be pointed out that a “Don’t exceed criterion” is utilized in the formulation of the 

objective function, which means an error will be reported only if the sidelobe levels of the array 

factor exceed the desired levels. The cost function is defined as follow 
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where AFd(m) and AFo(m) are the desired and obtained array factors at the mth observation angle, 

respectively, and Nob is the number of observation points.  

Fig. 5.3 (a) shows the desired and obtained radiation patterns achieved by the IWO. Since 

the desired envelope is symmetric, we exploit the symmetry of the current distribution. Thus, the 

number of optimization parameters reduces to half of the array elements. The parameters used 

for the IWO are summarized in Table 5.2. The performance of the IWO compared to the PSO for 
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different boundary conditions is shown in Fig. 5.3 (b). It can be seen that the performance of the 

PSO is dramatically changed by choosing different boundary conditions or changing the 

maximum velocity. Moreover, the algorithm is trapped in a local minimum when the absorbing 

boundary condition is used while IWO achieves better performance for both invisible and 

restricted boundary conditions. The PSO algorithm tested by different boundary conditions [76]-

[77] doesn’t show any better performances. The average numbers of fitness evaluations required 

per successful run for both the IWO and PSO with different boundary conditions are shown in 

Table 5.3. It can be seen that the IWO is faster than the PSO to achieve the same optimization 

goal for this problem.  

The performance of the IWO for different standard deviations is shown in Fig. 5.3 (c). 

Different initial and final standard deviations are tried for IWO with the restricted boundary 

condition to evaluate the performance of this algorithm. It can be observed that by changing 

these parameters, the performance of the algorithm is slightly changed. Thus, by applying 

different boundary conditions or different standard deviation parameters, the IWO shows more 

stability compared to the PSO. The desired and obtained radiation patterns obtained by the PSO 

for different boundary conditions are shown in Fig. 5.4. It is seen that the obtained SLLs are 

above the desired mask for ABC, DBC, and RBC with Vmax = 0.3.  It should be mentioned that 

the 50 independent runs of the same experiment for each curve of the IWO algorithm are closer 

to each other compared to those for the PSO. These results for the PSO and the IWO are shown 

in Fig. 5.5 and 5.6, respectively. It can be seen that the curves in Fig. 5.6 are closer to each other 

compared to those in Fig. 5.5. In other words, the IWO shows more stability compared to the 

PSO for different independent runs. 
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Table 5.2. IWO parameter values for the linear 40-element array optimization 

itmax
 

pmax smax smin n initial SD final SD 

1000 10 5 0 3 0.015 0.00005 

 

Table 5.3. Comparison of average number of fitness evaluations required per successful run in 

the PSO and the IWO algorithms for the linear 40-element array optimization. 

Algorithm 

Average number of fitness evaluations 

required per successful run 

PSO-ABC - 

PSO-DBC 162328 

PSO-RBC (Vmax = 1) 92485 

PSO-RBC (Vmax = 0.3) 62677 

PSO-RBC (Vmax = 0.1) 42329 

PSO-IBC 52496 

IWO-Restricted BC 14692 

IWO-Invisible BC 18212 
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(a) 

 

 

(b) 
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(c) 

Fig. 5.3. Amplitude-only synthesis for a linear 40-elemet array (a) radiation pattern obtained 

using IWO, (b) convergence curves for the IWO and PSO with different boundary conditions. 

The maximum velocity limit is changed for the PSO, and (c) convergence curves for the IWO 

with restricted boundary condition and different values of initial and final standard deviations.  
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(a) 

 

 

(b) 
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(c) 

 

(d) 

Fig. 5.4. Radiation patterns of the linear 40-elemet array obtained by PSO for (a) absorbing 

boundary condition, (b) damping boundary condition, (c) reflective boundary condition with Vmax 

= 0.3, and (d) invisible boundary condition. 
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(a) 

 

(b) 
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(c) 

 

 

(d) 
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(e) 

 

(f) 

Fig. 5.5. Convergence curves of 50 independent runs for a linear 40-elemet array using the PSO 

with (a) absorbing boundary condition, (b) damping boundary condition, (c) invisible boundary 

condition, (d) reflective boundary condition with Vmax = 1, (e) reflective boundary condition with 

Vmax = 0.3, and (f) boundary condition with Vmax = 0.1. 
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(a) 
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(c) 

 

 

(d) 
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(e) 

 

 

(f) 
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(g) 

Fig. 5.6. Convergence curves of 50 independent runs for a linear 40-element array using the PSO 

with (a) invisible boundary condition with σinitial = 0.015 and σfinal = 0.00005, (b) restricted 

boundary condition with σinitial = 0.015 and σfinal = 0.00005, (c) restricted boundary condition 

with σinitial = 0.015 and σfinal = 0.000015, (d) restricted boundary condition with σinitial = 0.015 and 

σfinal = 0.00015, (e) restricted boundary condition with σinitial = 0.05 and σfinal = 0.00005, (f) 

restricted boundary condition with σinitial = 0.05 and σfinal = 0.000015, and (g) restricted boundary 

condition with σinitial = 0.05 and σfinal = 0.00015. 
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5.4.2 Shaped Beam Synthesis 

The amplitude and phase optimization of a linear 50-element array antenna to achieve the 

desired radiation pattern is considered. Shaping the main beam requires minimizing the absolute 

difference between the desired and obtained radiation pattern. Meanwhile, the “Don’t Exceed” 

criterion is considered in the sidelobe region. Therefore, the objective is to obtain sidelobe levels 

less than the mask in the sidelobe regions and a main beam equal to the mask in the main beam 

region. The same cost function presented in section 5.4.1 is used. The beamwidth of the array 

pattern is 20 degrees and the number of sampling points is 719. 

 

 

 

(a) 
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(b) 

 

(c) 

Fig. 5.7. Amplitude and phase synthesis for a linear 50-element array (a) Radiation pattern 

obtained using IWO, (b) Convergence curves for the IWO with different boundary conditions 

and PSO with reflective boundary condition (RBC) and different maximum velocity limit, and 

(c) Convergence curves for the IWO with invisible boundary condition and different number of 

initial and final standard deviations. 
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The desired and obtained radiation patterns by using the IWO are shown in  

Fig. 5.7 (a). The same optimization parameters, shown in Table 5.2, are used for this synthesis 

problem, except for the number of iterations, which is set to 2000. The convergence curves for 

both the IWO with different boundary conditions and the PSO with reflective boundary 

condition (RBC) and different maximum velocities are shown in Fig. 5.7(b). It can be seen that 

the IWO convergence curves for both restricted and invisible boundary conditions converge to 

the same level. However, In the case of the PSO, by varying the maximum velocity limit, the 

performance of algorithm dramatically changes. Although in some cases the PSO is faster in 

convergence compared to the IWO, it traps in local minima. In addition, the 50 various 

realizations of the same experiment for each curve of the IWO algorithm are closer to each other 

compared to those for the PSO. Table 5.4 shows the average numbers of fitness evaluations per 

successful run for both the IWO and PSO. The effect of varying the initial and final standard 

deviations on the convergence of the IWO with invisible boundary condition is shown in Fig. 

5.7(c). It can be seen that by varying the initial SD, the convergence rate of the algorithm is 

improved and compete with the results obtained by PSO in the first number of iterations. 

However, neither the initial nor the final SD has any critical effect on the final error level. The 

IWO appears to be more stable since by applying different boundary conditions or different 

initial or final standard deviation values, the convergence speed or the level of the cost function 

doesn’t change too much. Therefore, the IWO doesn’t need much effort on tuning the parameters.  
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Table 5.4. Comparison of average number of fitness evaluations required per successful run in 

PSO and IWO algorithms for the linear shaped beam synthesis optimization 

 

Average number of fitness evaluations 

required per successful run 

PSO-RBC (Vmax = 1) 130023 

PSO-RBC (Vmax = 0.3) 88026 

PSO-RBC (Vmax = 0.1) 28695 

IWO-Restricted BC 19432 

IWO-Invisible BC 13352 

 

5.5 Thinned Array Antenna 

In this section, thinned planar array antennas are considered as the next optimization 

problem to show the effectiveness and some special features of the IWO. By some modifications 

in the IWO, the number of elements and the position of those elements can be optimized, which 

results in a new scenario for developing thinned arrays.  By applying this scenario, planar 

thinned arrays with less number of elements and higher efficiencies are obtained. 

Thinned arrays, generally produced by removing certain elements from a fully populated 

half wavelength spaced array, are usually designed to generate low sidelobe levels. Different 

optimization algorithms including GA, PSO, Simulated Annealing, and Ant Colony have been 

applied to remove the elements in such a way to have the lowest possible sidelobe levels [79]-

[86]. Although, the thinned arrays obtained by using these algorithms produce low sidelobe 

levels, it has been shown that by considering the aperiodic arrangements, lower sidelobe levels 
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can be achieved. This can be done by optimizing the inter-element spacing of periodic arrays or 

already thinned arrays to have lower sidelobe levels [80],[81], [87]-[90].  

In this section, by some modifications in the IWO, the number of elements and at the 

same time their locations, the inter-element spacing, are optimized. It is shown that by using this 

algorithm, capable of optimizing such a problem, lower sidelobe levels with less number of 

elements can be achieved. Fewer elements for a given aperture mean reducing the cost and 

weight of the antenna system. It should be pointed out that the array is uniformly excited (all 

elements have identical current amplitude and phase). The advantage of uniform amplitude 

excitation is clear from the point of view of the feed network.  

 

5.5.1 Modified IWO 

As was mentioned in section 5.2, in the IWO, each weed (agent) may have a different 

number of variables during the optimization process. By taking this feature of the algorithm, 

different number of variables for each agent can be considered during the optimization. This 

modified IWO works similarly to the routine explained in section 5.2. Some modifications, 

however, should be made in the algorithm process to take the number of elements as an 

optimization parameter. 

In this modified version of the IWO, each agent, corresponding to an array antenna, has a 

different number of elements. Thus, the fitness value of each agent is calculated based on the 

number of elements and the position of each element in that agent. Similar to the general IWO 

algorithm, each flowering plant produces new seeds based on its ranking in the colony, which 

means the new arrays appear in the colony.  However, the reproduction process is modified to 

have a different number of elements for each produced array antenna. In the reproduction 
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process, each element in the array is removed and then reproduces some new elements in that 

array. The number of the new elements produced by each old element is defined to be a constant 

value in each iteration. Then, these new elements are dispersed over the aperture by normally 

distributed random numbers with mean equal to the location of the producing element and 

varying standard deviations. The standard deviation (SD) is defined similar to (5.1) where it 

starts from a large value, called the initial SD, and decreases gradually to a small value, called 

the final SD.  

Without any limitations on the reproduced elements, the number of elements increases 

dramatically. Moreover, the distance between elements should be controlled not to have elements 

very close to each other. In order to overcome these problems, each new produced element is 

allowed to be located on the aperture if it is not closer than a predefined value (usually half 

wavelength or the size of the antenna element of the array) to any of the other elements already 

located on the aperture.  

By choosing a relatively large value for the initial SD, the new elements are dispersed 

over the aperture and the possibilities of different numbers of elements over the aperture are 

tested. Then, by decreasing the SD to a small value, the position of each element on the aperture 

is optimized. Therefore, the number of elements and the location of each element are optimized.  

It should be noted that in this modified version of IWO the whole process explained in 

section 5.2 is carried out. Meanwhile, the modified reproduction process is taken into account for 

each agent.  
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5.5.2 Planar Thinned Array Examples 

As the first design problem of thinned arrays, a rectangular planar array with the aperture 

of λλ 5.45.9 ×  is considered. The objective is to minimize the maximum SLL in the φ = 0º and φ 

= 90º planes. This problem is selected to compare the obtained result with the results in [79] and 

[88]. In [79] a 20 × 10 element planar array with a half a wavelength distance between uniformly 

spaced elements was thinned using GA by turning off some elements in that aperture. The 

optimal solution is a thinned array with 108 turned on elements on the rectangular aperture [79, 

Fig. 7]. The optimized SLLs are equal to -20.07 dB in φ = 0º plane and -19.76 dB in φ = 90º 

plane [79, Fig. 9]. The fitness value of the optimal solution, defined as the sum of maximum 

SLLs in both planes, is -39.83 dB. The same problem is considered in [88] by optimizing the 

inter-element spacing between 108 elements of the obtained thinned array in [79], using a 

modified real GA to achieve lower SLLs. The optimal solution [88, Fig. 6] shows a lower fitness 

value, -45.456 dB, and SLLs equal to -29.597 dB and -15.859 dB in φ = 0º and φ = 90º, 

respectively [88, Fig. 5].  

In order to optimize this problem by using the IWO and based on the described method, 

the number of elements and their positions are optimized to obtain the lowest SLLs at the desired 

planes. The normalized array factor of a planar array with N elements is given by: 
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where Lxn and Lyn are the locations of elements in x and y direction, respectively. This equation 

assumes that the array lies in the x-y plane. Since the desired pattern is symmetric about the x-

axis and y-axis, a quarter of the aperture is considered to reduce the number of optimization 
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parameters to the quarter of the array elements. The minimum distance between elements is 

assumed to be half wavelength. It should be noted that the amplitude coefficients, In, are assumed 

to be 1.  

Set up of the IWO algorithm for solving this problem is summarized in table 5.5. The 

final SD is chosen to be a small value to optimize the location of each element with a high 

precision. An averaging of five runs is considered and found to be sufficient. The best thinned 

array obtained is presented in Table 5.6. Fig. 5.8(a) shows the radiation patterns of the obtained 

thinned array in both φ = 0º and φ = 90º planes. The fitness value, the sum of maximum SLLs in 

both planes, is -65.40 dB and the obtained SLLs are -34.72 dB in φ = 0º plane and -30.68 dB in φ 

= 90º plane. The array configuration of the thinned array for the upper right quarter of the 

aperture is depicted in Fig. 5.8(b) (Compare with [88, Fig. 6] and [79, Fig. 7]). 18 elements (72 

elements for the whole aperture) are the optimized number of elements to achieve the lowest 

SLLs. Comparing these results with those in [79] and [88] it can be concluded that by employing 

this algorithm, much lower SLLs at both planes are achieved with more than 25% saving on the 

number of elements. Fig. 5.8 (d) shows the average and single convergence curves of the 

optimization as the function of the number of iterations.  

 

Table 5.5. IWO parameters for the thinned array optimization problems 

itmax
 

pmax smax smin n initial SD final SD 

500 55 5 0 3 0.25λ 0.0005λ 
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Table 5.6. The coordinates of the array elements in wavelength: i(xi, yi) 

1(0.264,1.720) 2(0.269,0.254) 3(0.354,0.860) 4(0.593,1.314) 

5(0.864,0.435) 6(1.093,2.250) 7(1.111,1.324) 8(1.413,0.283) 

9(1.576,0.789) 10(1.913,0.253) 11(2.014,1.845) 12(2.249,1.331) 

13(2.644,0.301) 14(2.796,0.969) 15(3.192,0.306) 16(3.568,0.742) 

17(4.061,0.295) 18(4.708,0.935)   

 

 

(a) 
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(b) 

 

(c) 
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(d) 

Fig. 5.8. Optimized thinned array antenna for reduction of SLL in the φ=0º and φ=90º planes, (a) 

radiation patterns in the φ=0º and φ=90º, (b) the array configuration of the optimized thinned 

array, (c) 3D radiation pattern, and (d) convergence curves for five runs and the average of them. 

 

Another optimization problem is the reduction of SLLs in all φ planes. It can be seen 

from Fig. 5.8(b) that most of the elements are around the x and y axes. Such an array 

configuration produces high SLLs at some other planes as shown in Fig. 5.8(c). In order to 

reduce the SLLs in all the φ planes, we decided to define the fitness function as the maximum 

SLL in φ = 0º, φ = 45º and φ = 90º planes to have more elements at the central part of the 

aperture. This fitness function helps to have less computation and avoid an expensive 

optimization process. The same optimization parameters shown in Table 5.5 are chosen for this 

problem. Table 5.7 represents the obtained thinned array configuration. The array radiation 

pattern cuts in φ = 0º, φ = 45º and φ = 90º for the best optimal solution are shown in Fig. 5.9(a). 

The array configuration, shown in Fig. 5.9(b), consists of 80 elements (for the whole aperture) 
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distributed on the aperture. It is observed that more elements are located at the central part of the 

aperture as it was expected. Fig. 5.9(c) is the 3D radiation pattern of this array. Though low 

SLLs are obtained at the three cuts shown in Fig. 5.9(a), SLLs haven’t decreased effectively in 

the other φ planes. The average and single convergence curves of the optimization are shown in 

Fig 5.9 (d). 

Table 5.7. The coordinates of the array elements in wavelength: i (xi, yi) 

1(0.271,0.186) 2(0.289, 0.254) 3(0.292,0.763) 4(0.537,1.250) 

5(0.855, 0.258) 6(0.907, 0.785) 7(1.103,2.023) 8(1.184,1.269) 

9(1.530, 0.893) 10(1.672,0.257) 11(1.772,2.234) 12(2.174,0.315) 

13(2.241,1.112) 14(2.669, 0.399) 15(2.944,1.433) 16(3.188,0.846) 

17(3.568,1.535) 18(4.053,0.318) 19(4.701,0.421) 20(4.712,1.691) 

 

 

(a) 
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(b) 

 

 

(c) 
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(d) 

Fig. 5.9. Optimized thinned array antenna for reduction of SLL in the φ=0º, φ=45º and φ=90º 

planes, (a) radiation patterns in the φ=0º, φ=45º and φ=90º, (b) the array configuration of the 

optimized thinned array, (c) 3D radiation pattern, and (d) convergence curves for five runs and 

the average of them. 

 

In order to have low SLLs in all planes, the fitness function is defined as the maximum 

SLLs in all the φ planes. The same optimization parameters are selected for this problem. The 

result of optimization is a thinned planar array with 92 elements (for the whole aperture) 

depicted in Table 5.8. Fig. 5.10(a) shows the array configuration on a quarter of the aperture. The 

radiation pattern of this array is shown in Fig. 5.10(b) where the maximum SLL is -21.2 dB. 

comparing this results to that of [88], where GA is used to minimize the SLLs for 100 elements 

sparse array [88, Fig. 7 and Fig. 8], one can see that the IWO results lower SLL (-18.84 dB in 

[88]) with less number of elements. The convergence curves for five runs and the average of 

them are shown in Fig. 5.10 (c). 
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 Table 5.8. The coordinates of the array elements in wavelength: i (xi, yi) 

1(0.271,2.119) 2(0.285,0.866) 3(0.385,0.369) 4(0.425,1.457) 

5(0.832,1.015) 6(0.940,2.159) 7(1.106,0.316) 8(1.182,1.465) 

9(1.511,0.936) 10(1.688,0.273) 11(1.878,1.475) 12(2.118,0.750) 

13(2.213,0.251) 14(2.398,2.139) 15(2.770,0.266) 16(2.751,1.061) 

17(3.363,0.327) 18(3.367,1.655) 19(3.690,0.979) 20(4.127,0.393) 

21(4.218,1.734) 22(4.750,0.350) 23(4.750,1.007)  

 

 

 

 

 

(a) 
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(b) 

 

(c) 

Fig. 5.10. Optimized thinned array antenna for reduction of SLL in all φ planes, (a) The array 

configuration of the optimized thinned array. (b) 3D radiation pattern. (c) convergence curves for 

five runs and the average of them. 
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Another idea to improve the SLLs of the antenna aperture is to remove the symmetry 

planes and optimize the number of elements and their location for the whole aperture. Fig. 5.11 

(a) shows the obtained results where the fitness function is defined as the maximum SLLs in all 

the φ planes. It can be seen that a thinned array antenna with 81 elements is achieved. The 3D 

radiation pattern is shown in Fig. 5.11 (b) where the maximum SLL is -22.06 dB. Although the 

optimization process takes longer for this problem, less number of elements and lower SLLs are 

achieved. The convergence curves for five runs and the average of them are shown in Fig. 5.11 

(c). 

 

 

 

(a) 
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(b) 

 

(c) 

Fig. 5.11. Optimized thinned array antenna for reduction of SLL in all φ planes without using the 

symmetry planes (a) the array configuration of the optimized thinned array. (b) 3D radiation 

pattern. (c) convergence curves for five runs and the average of them. 
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5.6 Dual-Band U-Slot Patch Antenna 

In this section, the design of a U-slot patch antenna [91]-[92] to have the desired dual-

band characteristics is considered. This concept was introduced in [93]-[94] where a U-slot in the 

patch fed by an L-probe produces notches within the matching band. Fig. 5.12 shows the 

configuration of the antenna structure. The L-probe feeding technique is used to have a wideband 

patch antenna [95]-[96] and then the U-slot is cut on the patch to introduce notches, resulting in 

dual-band operation. The length (L) and the width (W) of the patch and also the position (Pf) and 

height of L-probe (HL) are predefined. Then, the optimization of seven other parameters, H, LL, 

Ua, Ub, Ud, Ux and Uy is required. Since these parameters are not independent, their ranges 

should be chosen carefully.  

 

Fig. 5.12.  The configuration of the U-slot patch antenna fed by an L-probe with top view (top) 

and side view (lower). 
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Table 5.9. Final dimensions of the obtained U-slot patch antenna in mm 

W L H* HL LL* Ua* Ub* Ud* Ux* Uy* Pf 

44.5 36.4 10.572 7.0 15.941 1.203 1.756 9.333 14.525 21.799 1.0 

* Optimized parameter 

 

The purpose of the optimization is to achieve the desired reflection coefficient within the 

matching band, 2-4 GHz. The IWO is linked to a MoM program that simulates the antenna 

reflection coefficient at 20 points within the frequency range. The fitness function is defined as 

the summation of differences between the relative values of the desired and obtained reflection 

coefficient at all 20 frequencies. The objective is to have a -12 dB reflection coefficient at 2.4 

GHz and 3.3 GHz frequencies and zero at the other frequencies. The reason for choosing -12 dB 

as the desired reflection coefficient is that decreasing this value results in a very low value in one 

frequency but relatively high at the other one.  

The restricted boundary condition is applied to this optimization problem. The maximum 

number of plant population is selected to be 10 and the number of seeds is varied linearly from 4 

to zero. The nonlinear modulation index is set to 3 over 100 iterations. 

The optimized parameters of the U-slot patch antenna are shown in Table 5.9. After 

simulating the antenna with more number of frequencies within the frequency range, the 

reflection coefficient shown in Fig. 5.13(a) is achieved. Fig 5.13(b) illustrates the convergence 

curve of IWO algorithm which is the normalized curve of the fitness function in dB. It can be 

seen that the desired reflection coefficient within the frequency range of the U-slot antenna is 

achieved. 
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(a) 

 

(b) 

Fig. 5.13. U-slot patch antenna fed by an L-probe (a) the obtained reflection coefficient, and (b) 

the convergence curve. 
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5.7 Conclusion 

A numerical stochastic optimization algorithm based on the weed ecology was introduced 

for electromagnetic applications. The Invasive Weed Optimization algorithm is capturing the 

properties of the invasive weeds, which led to a powerful optimization algorithm. By applying 

the IWO to array antenna synthesis problems, the performance of this algorithm was investigated. 

It was shown that in certain instances the IWO outperforms the PSO in the convergence rate as 

well as the final error level. Moreover, the performance of the IWO for different boundary 

conditions and tuning parameters was evaluated. From the simulation results, it was observed 

that this algorithm is very stable and efficient against different parameter values. The IWO was 

also utilized to design aperiodic planar thinned array antennas by optimizing the number of 

elements and at the same time their positions. It was shown that by using this technique, thinned 

arrays with less number of elements and lower sidelobe levels, compared to the results already 

achieved from other methods were obtained. Also, the IWO was applied to the design of a U-slot 

patch antenna fed by an L-probe to have a dual band performance with the desired reflection 

coefficient. 

 

 

 

 

 

 

 



103 

 

 

Chapter 6 
 

ULTRA-WIDEBAND TWO-

DIMENSIONAL FOCUSED ARRAY 

ANTENNA 

 

 

6.1 Introduction 

Focused array antennas based on UWB impulse waveforms can provide high 

concentration of electromagnetic energy into small regions by controlling the timing of pulses 

radiated by each element [38]-[41], [97]-[99]. The performance of the focused array can be 

improved by increasing the number of elements or element spacing [100]-[104]. However, 

increasing the number of elements or increasing the spacing between elements produces a larger 

aperture array. Using thinned arrays, higher performance with less number of elements and the 

same aperture size can be obtained [98]. In addition, sparse focused array antennas are used to 

achieve a higher performance for this kind of antenna [104]-[105]. These antennas are of interest 

in medical applications, radar, homeland security systems and communication systems [3], [36]-

[41], [104] [106]-[108].  
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In this chapter, UWB focused arrays excited by a Gaussian impulse are considered. Each 

impulse antenna element (LCR) is replaced by a set of infinitesimal dipoles to model the array 

antenna [109]-[113]. It is assumed that LCR elements are spaced at distances larger than the 

spatial duration of the pulse to ignore the mutual coupling as well as multiple scattering effects 

between elements. Different UWB focused arrays are optimized to achieve lower SLLs for the 

focused beam. The number of elements, polarization, and location of each element are the 

parameters to be optimized. The near field radiation pattern of each array is compared with a 

conventional uniformly spaced UWB array antenna. Simulation results show the improvements 

in the focused beam and sidelobe levels of the optimized array antenna. 

 

6.2 Infinitesimal Dipole Modeling 
 

6.2.1 Methodology 

 

 

The concept of IDM was first introduced in [109] for modeling the near field of radiating 

structures in biomedical applications. The idea was formulated in [110]-[113] to find sets of 

infinitesimal dipoles by using genetic algorithm. Later, the concept was extended by applying 

quantum particle swarm optimization to the problem and a method of predicting the mutual 

coupling between antenna elements was proposed [114]. In [115]-[116] IDMs for dielectric 

resonators in multi layer structures obtained by using the particle swarm optimization method. In 

[117] a procedure of getting IDMs for wideband antennas was proposed and applied for a 

wideband stacked dielectric resonator antenna.  

A set of infinitesimal dipoles (electric or magnetic), representing an actual antenna, can 

be obtained by using an optimization algorithm to minimize the difference between the near field 
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of the dipoles and those of the actual antenna. Each dipole is represented by seven parameters: 

the position of the elements (x, y, z coordinates); the complex dipole moment (the real and 

imaginary part), and its orientation (θ and φ). It should be mentioned that the dipole locations are 

limited within the volume of the actual antenna. Although electric dipoles, magnetic dipoles, or a 

combination of them can be used, we use only electric dipoles to represent the antenna. 

In this algorithm, the IDM can be achieved by minimizing the error of the near field data 

defined as 
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where No and Mo are the number of observation points and frequency points, respectively. 

),( mna frE
r

and ),( mnd frE
r

 are the electric fields on the observation surfaces, obtained by a full 

wave solution (FEKO) [52] or measurements, and the electric dipoles, respectively. The vector rn 

is the position vector of the nth sampling point, fm is the frequency, and P is the maximum value 

of the electric field used for normalization as  

 

{ }),(,, mndada frEMaxP
r

= .                                             (6.2) 

 

The subscript a is used to denote the measured or accurate solution obtained for the actual 

problem, and the subscript d is used to denote the desired solution obtained by IDM model. It 

should be noted that in (6.1) the near field data is normalized. This is because the IDM is used to 
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obtain the spatial distribution of the near field but not the exact values depending on the 

excitation of the antenna. The exact field values due to the excitation of V0 can be achieved by 

multiplying all the dipole moments with a factor of 
da PPV0

 [117]. 

 

6.2.2 LCR and Its Infinitesimal Dipole Model 

 

The LCR introduced in chapter 4 is considered. The near-field is computed on a square 

observation plane with side lengths of 1000 mm located at a distance 500 mm from the antenna 

aperture. The near field is computed at 60 frequency points from 50 MHz to 3GHz. The total 

number of samples is 121 points at each frequency. The modified IWO algorithm with restricted 

boundary condition is applied. The total number of 30 electric dipoles is obtained after the 

optimization. The moments, locations and orientations of dipoles are shown in Table 6.1. The 

electric field components of the near-field due to the dipoles compared to those obtained by 

Method of Moment (MoM) solution are shown in Fig. 6.1 (a). It is seen that a good agreement is 

achieved. The IWO convergence curve is shown in Fig. 6.1 (b). 
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Table 6.1.  The moments, positions and orientations of electric dipoles equivalent to LCR. 

Element 

Number 

The dipole 

moment 
The position of dipole (mm) 

The orientation 

of dipole 

(degrees) 

Real 

part 

Imagin

ary part 
X Y Z θ φ 

1 -9.06 1.19 19.89 -19.99 -21.88 112.63 239.42 

2 3.76 -0.22 5.97 -0.13 -27.95 23.97 242.16 

3 -4.82 -3.65 9.82 5.32 -25.35 138.35 157.90 

4 -7.98 -2.64 4.40 -11.55 -17.66 32.49 110.24 

5 -9.97 -6.60 -11.38 -8.62 -10.92 174.85 259.74 

6 4.97 -9.46 -7.34 -1.58 -5.10 74.82 275.18 

7 7.63 0.84 6.20 7.58 -8.87 55.39 260.80 

8 -9.94 1.09 18.56 17.05 -18.67 79.64 320.77 

9 -1.02 -6.79 -3.62 -1.37 -10.24 65.30 320.38 

10 -5.13 5.75 -19.99 6.73 -29.58 108.75 280.00 

11 -6.17 -6.41 -1.58 -7.57 -17.34 170.72 290.79 

12 -9.44 6.13 -19.99 -2.03 -15.49 88.84 226.77 

13 1.36 7.18 12.83 8.59 -14.53 174.06 296.97 

14 5.41 9.57 5.78 16.98 -29.99 43.67 273.48 

15 -1.09 -2.25 -14.12 -0.16 -12.34 15.53 231.54 

16 1.76 9.16 -10.26 -8.21 -10.30 122.64 3.47 

17 -9.03 -3.99 -7.24 8.58 -13.78 76.00 219.89 

18 -0.96 4.82 20.00 -0.60 -27.36 98.59 277.40 

19 7.76 -4.99 -19.27 -13.93 -8.64 98.38 140.27 

20 -0.84 -8.64 -5.78 14.34 -8.39 49.60 335.47 

21 6.01 4.48 -5.29 -5.53 -29.17 99.50 245.04 

22 -9.61 -7.46 0.21 -4.03 -29.99 61.59 82.82 

23 0.98 -2.09 -19.13 3.45 -8.50 31.63 93.30 

24 9.62 5.65 11.09 -12.51 -16.29 143.32 100.75 

25 -0.38 0.99 8.06 19.72 -18.46 3.44 111.36 

26 -6.38 7.93 8.59 16.93 -8.98 26.60 35.00 

27 -2.05 -6.40 4.77 -4.17 -21.33 91.46 39.86 

28 -6.09 -0.75 14.53 19.61 -13.39 84.00 254.96 

29 -4.89 7.60 -14.74 11.01 -5.19 1.49 292.09 

30 3.01 3.69 16.87 -5.11 -11.74 26.07 54.03 
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(a) 

 

(b) 

Fig. 6.1 The optimized dipoles equivalent to the LCR (a) Comparison of the electric field 

components of the near fields due to the actual antenna and IDMs over lines passing through the 

middle of the observation plane. (b) The convergence curve of the IWO. 
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6.2.3 Time-Domain Results 

 

The electric and magnetic field radiated by an infinitesimal dipole in the near field region 

can be expressed as [53], [56] 

 

 

(6.3) 

 

 

 

where I is the radiator current, l is the dipole length , Z0 is the wave impedance of the free space, 

c is the velocity of light and r is the radius vector to the observation point.  

In order to show the efficiency and accuracy of infinitesimal dipole modeling, the same 

time-domain analysis presented in section 4.2 is applied to the obtained infinitesimal dipole set. 

In other words, the infinitesimal dipole set is excited by the same Gaussian pulse (σ = 2e-10). 

The radiated near field patterns of the LCR obtained by using IDMs and MoM solution at a time 

instance of t =1.2/c and a distance of r = 1.2 m from the antenna aperture are shown in Fig. 6.2. 

It can be seen that a good agreement is achieved. Therefore, by replacing the antenna by IDM, a 

very fast and efficient method for modeling the antenna is achieved. In other words, instead of 

solving the LCR by using a full wave method, it is replaced by a set of dipoles.  
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(a) 

 

(b) 

Fig. 6.2. Comparison between the near field patterns of an LCR obtained using the MoM and the 

IDM excited by a Gaussian pulse at a time instance of t =1.2/c and a distance of r = 1.2 m from 

the antenna aperture in the (a) E-plane and (b) H-plane. 
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6.3 Uniformly Spaced Focused Arrays 

6.3.1 2 by 2 LCR Array 

In order to evaluate the validity and efficiency of this method, a 2 × 2 LCR array is 

designed and modeled using the IDM method. This array antenna, having the same dimensions 

and element distances of the presented LCR antenna in section 4.3, is solved by a full wave 

MoM software, and IDM method. The same Gaussian pulse presented in the previous section is 

used to excite each LCR element. Since the distance between the LCRs is much higher than the 

spatial duration of the radiated field pulse, the mutual coupling between the elements is ignored. 

A comparison between the time-domain near field patterns of the array at a time instance of t = 

1.2/c at the distance of r = 1.2 m from the antenna, obtained by MoM and IDM is shown in Fig. 

6.3. It can be seen that a good agreement is achieved.  
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(a) 

 

(b) 

Fig. 6.3. Comparison between the near field patterns of the 2 by 2 antenna array obtained using 

the MoM and the IDM at a time instance of t = 1.2/c at the distance of r = 1.2 m from the 

antenna, in the (a) E-plane and (b) H-plane. 
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6.3.2  4 by 4 LCR Array 

A two-dimensional square array composed of 16 (4 by 4) elements is considered. The 

array elements are uniformly spaced in the xz-plane with separation of d = 0.3 m between 

elements (Fig. 6.4). Each LCR element replaced by dipoles is excited by the same Gaussian 

pulse. Therefore, there is an equally weighted amplitude distribution for the array. The array 

antenna can focus the radiated pulse by setting a proper delay time at each element. Therefore, 

the radiating waves arrive simultaneously and add up in phase at the desired focusing point. For 

a focusing distance F from the antenna aperture the time delay of i-th element should be set up as  

 

c

LF
t

i

i

22 +
=                                                        (6.4) 

 

where c is the speed of light and Li is the distance of the i-th element form the center of the 

square aperture. The radiation near field pattern of the array at the focal distance from the 

aperture at time t can be obtained by the summation of the radiated field of each element. Fig. 

6.5 shows the three dimensional normalized focused beam pattern at the time instance of t = F/c 

and the focal plane (F = 1.2 m) of the antenna array. The two dimensional near field pattern at 

the time instance of t = F/c and the focal plane, F, is shown in Fig 6.6. The near field pattern 

versus the axial length of the antenna array at the same time instance is illustrated in Fig. 6.7. It 

seems that the maximum intensity occurs at the focal point of the antenna. However, observing 

the field variations at different time instances, we can see that a higher intensity value occurs at a 

point closer to the antenna aperture compared to the focal point (Fig. 6.8). The bold line in Fig. 
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6.8 shows the field at the time instance t = 1.2/c. The variation of peak power values for different 

time instances are shown in Fig. 6.9.   

 

Fig. 6.4. Geometry of uniformly spaced two-dimensional array antenna. 

 

 

Fig. 6.5. 3D near field pattern of the 4 by 4 uniformly spaced array antenna at the time instance 

of t = F/c and the focal plane (F = 1.2 m). 



115 

 

 

Fig. 6.6.  2D near field pattern of the 4 by 4 uniformly spaced array antenna at the time instance 

of t = F/c and the focal plane (F = 1.2 m). 

 

 

Fig. 6.7.  The normalized field distribution of the 4 by 4 uniformly spaced array versus the axial 

distance at the time instance of t = F/c. 
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Fig. 6.8.  The normalized field distribution of the 4 by 4 uniformly spaced array versus the axial 

distance at different time instances. The bold line shows the field at the time instance t = F/c.  

 

 

Fig. 6.9. The variation of peak power values for different time instances. 
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6.3.3 8 by 8 LCR Array 

 

In this section, a larger array antenna composed of 64 (8 by 8) elements is considered. 

The array elements are separated with d = 0.3 m between elements and a Gaussian pulse excites 

each element. The antenna is designed to have a focal length of 2.4 m. Fig. 6.10 shows the three-

dimensional normalized focused beam pattern at the focal plane of the antenna array. The two 

dimensional field pattern of the antenna at the focal plane is shown in Fig 6.11. Fig. 6.12 shows 

the variation of the near field pattern versus the axial length of the antenna at one time instance. 

Calculating the near field pattern versus the axial length at different time instances, one can see 

that the maximum intensity occurs at y = 2.35 m from the antenna aperture (Fig. 6.13). The bold 

line in this figure shows the field at the time instance t = F/c. The variation of the peak power for 

different instances illustrated in Fig. 6.14, shows the focal shift in the field pattern of the array 

antenna. 

 

Fig. 6.10. Three-dimensional normalized power pattern of the 8 by 8 array at the time instance t 

= F/c and focal plane (y = 2.4 m). 



118 

 

 

Fig. 6.11. Normalized power pattern of the 8 by 8 array antenna at the time instance t = F/c and 

focal plane (y = 2.4 m). 

. 

Fig. 6.12. Variation of the normalized power pattern of the 8 by 8 array antenna with F = 2.4 m 

versus the axial distance at the time instance of t = F/c. 
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Fig. 6.13. the variation of the near field pattern versus the axial length at different time instances 

for the 8 by 8 array with F = 2.4m. The bold line shows the field at the time instance t = F/c.  

 

 

Fig. 6.14. The variation of the peak power at different time instances for the 8 by 8 array with F 

= 2.4 m at the focal point.  
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In the next example, the same 8 by 8 array antenna is considered with a focal length of 

4.8 m. Fig. 6.15 shows the variation of the normalized power versus the axial distance at one 

instance. The variation of the power distribution versus the axial distance for different time 

instances is shown in Fig. 6.16. The bold line shows the field at the time instance t = F/c.  It can 

be seen that the maximum intensity occurs at y = 4.48 m from the antenna aperture. The 

variation of the peak power versus the different time instances for the 8 by 8 array is shown in 

Fig. 6.17. Table 6.2 depicts the variations of the maximum intensity length and the difference 

between the power values at the focal point and maximum intensity point for different focal 

lengths of the 8 by 8 array antenna. It can be seen that similar to narrow band antennas, for the 

focal point close to the antenna aperture, the maximum intensity is very close to the focal point, 

but as the focal point moves away from the antenna aperture, the focal shift increases. 

 

Fig. 6.15. The variation of the normalized power pattern of the 8 by 8 array antenna with F = 4.8 

m versus the axial distance.  
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Fig. 6.16. the variation of the near field pattern versus the axial length at different time instances 

for the 8 by 8 array with F = 4.8 m. The bold line shows the field at the time instance t = F/c.  

 

Fig. 6.17. The variation of the peak power versus the different time instances for the 8 by 8 array 

with F = 4.8 m at the focal point.  

 



122 

 

Table 6.2. Focusing properties of the 8 by 8 array at different focal lengths 

Focal length (m) 1.2 2.4 3.6 4.8 6 7.2 8.4 9.6 

Maximum Intensity 

length (m) 
1.18 2.35 3.44 4.48 5.39 6.21 6.96 7.6 

Peak Power 

Difference (dB) 
0.005 0.074 0.17 0.30 0.46 0.60 0.86 1.04 

 

 

6.4 Array Antenna Optimization 
 

6.4.1 Polarization Optimization of the Array 

 
The invasive weed optimization is employed to optimize the polarization of each of the 

LCR elements to obtain the minimum SLL for the near field pattern of the 4 by 4 array antenna. 

The polarization of each LCR can be changed by rotating each element around its axis. The 

objective function is to minimize the maximum side lobe level of the near field pattern at the 

focal plane. The convergence curve of the optimization process is shown in Fig. 6.18. Fig. 6.19 

shows the 3D radiation pattern of the antenna at the focal plane. The comparison between the 

near field pattern of the optimized array and the conventional one in the x plane is shown in Fig. 

6.20. Similar near field patterns are achieved in the other plane. It can be seen that both the 

sidelobe levels and half power beam width are decreased. The maximum sidelobe level is 

decreased from -12.26 to -14.43 dB after the optimization. The angle of rotation for the upper 

right quarter of the array is shown in Table 6.3. 
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Fig. 6.18. The convergence curve for the polarization optimization of the 4 by 4 array. 

 

 

Fig 6.19. 3D radiation pattern of the dual-polarized optimized antenna at the time instance of t = 

F/c and the focal plane. 
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Fig. 6.20. Comparison between the near field pattern of the optimized array and the conventional 

one versus the x axis at the time instance of t = F/c and the focal plane.   

 

 

Table 6.3. The angle of rotation for the upper right quarter of the optimized 4×4 array. 

 Element # 1 Element # 2 Element # 3 Element # 4 

Location (x,z) 

(m) 

(0.45,0.45) (0.15,0.45) (0.45,0.15) (0.15,0.15) 

Angle of 

rotation 

(Degrees) 

110.4 159.8 158.8 179.7 
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In order to show the efficiency of the polarization optimization, an 8 by 8 array antenna is 

considered. In this example, the focal length is 2.4 m and the spacing between elements is 0.3 m. 

The 3D radiation pattern of the optimized array is shown in Fig. 6.21. A comparison of the 

normalized near field pattern of the single and dual polarized (optimized) antenna in both the x 

and z planes is shown in Fig. 6.22. The maximum SLL is decreased from -19.45 dB for the 

conventional design to -22.67 dB for the optimized array.  

 

 

Fig. 6.21. 3D radiation pattern of the 8 by 8 dual-polarized optimized antenna at the time 

instance of t = F/c and the focal plane F = 2.4 m. 
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(a) 

 

(b) 

Fig. 6.22. A comparison of the normalized near field pattern of the single and dual polarized 

(optimized) antenna at the time instance of the t = F/c in the (a) x-plane and (b) z-planes of the 

focal plane.  
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6.4.2 Thinned array Optimization 

 

In this section, the modified invasive weed optimization method is employed to obtain an 

ultra-wideband thinned focused array. The same aperture dimension of the 8 by 8 uniformly 

spaced array described in section 6.4.1 is considered. The number of elements, the location and 

the rotational angle of each element is optimized to obtain the minimum SLL for the near field 

focused pattern at the focal point of the antenna. It should be noticed that a maximum distance of 

0.3 m between elements is assigned during the optimization. Set up of the IWO for the 

optimization is summarized in Table 6.4. Fig. 6.23 shows the 3D near field pattern of the 

optimized thinned array antenna at the focal plane (F = 2.4 m). The near field pattern of the 

thinned array is compared with those of the single and dual polarized uniformly spaced arrays in 

Fig. 6.24. The maximum SLL of -24.53 dB is achieved for the thinned array. The array 

configuration of the thinned array for the upper right quarter of the aperture is depicted in Fig. 

6.25. The locations and angles of rotation of elements for the upper right quarter of the array are 

shown in Table 6.5. 32 elements are the optimized number of elements to achieve the lowest 

SLLs. It can be concluded that lower SLLs and lower half power beam width are achieved with 

50% saving on the number of elements. Fig. 6.26 shows the convergence curve of the 

optimization.  
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Table 6.4. Set up of the IWO for the thinned array optimization. 

itmax Pmax Smax Smin n initial SD final SD 

1000 90 5 0 3 0.1 0.000005 

 

 

 

Fig. 6.23. 3D near field pattern of the thinned array antenna at the time instance of t = F/c and 

the focal plane. 
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(a) 

 

(b) 

Fig. 6.24. A comparison between the near field pattern of the thinned array and single and dual 

polarized uniformly spaced array at the time instance of t = F/c and in the (a) x- plane and (b) z-

plane of the focal plane.  
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Fig. 6.25. The upper right quarter of the thinned array. 

 

 

Fig. 6.26. The convergence curve of the thinned array optimization. 
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Table 6.5. The locations and angles of rotation of elements in the thinned array. 

Element 

number 

Location (x , z) 

(m) 

Angle of rotation 

(Degrees) 

1 (0.558 , 0.759) 4.82 

2 (0.999 , 0.943) 11.18 

3 (0.273 , 1.034) 8.82 

4 (1.042 , 0.283) 13.03 

5 (0.715 , 1.049) 0.34 

6 (0.150 , 0.749) 13.82 

7 (1.0401 , 0.642) 19.91 

8 (0.764 , 0.152) 0 

 

 

6.5 Conclusion 
 

Some focusing properties of the ultra-wideband time-domain focused array antennas 

were presented. By replacing each LCR element with a set of dipoles a fast and accurate 

simulation tool was achieved.  Calculating the variation of the power distributions versus the 

axial length at different time instances showed the focal shift effect in the near-field pattern. It 

was shown that the maximum intensity occurred closer to the focal point and this displacement 

was increased as the focal point moved away from the antenna aperture. 

To improve the focusing characteristics of the array, the invasive weed optimization 

algorithm is employed to optimize ultra-wideband focused array antennas. The rotational angle 
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of each UWB element for a uniformly spaced array was optimized to achieve lower sidelobe 

levels. The number of elements, the location and rotational angle of each element were optimized 

as the next optimization problem to achieve a thinned array. It was shown that lower SLLs are 

achieved with 50% saving of the elements.   
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Chapter 7 
 

CONCLUDING REMARKS AND FUTURE 

WORK 

 

 

The theory and implementation of different antennas for focusing applications were 

presented. Large microstrip patch arrays, Fresnel zone plate lens antennas and ultra-wideband 

time-domain focused array antennas were designed and modeled to focus the microwave power 

at a point close to the antenna aperture. All introduced antennas were modeled by full wave 

solutions to have an accurate prediction of the field variation near to the antenna aperture. It was 

shown that the maximum intensity of the electric field along the axial direction was displaced 

from the focal point towards the aperture for all the narrowband antennas. This displacement 

decreases as the aperture size increases. A very similar behavior was observed in UWB pulse 

antennas. Moreover, a new optimization algorithm was implemented and applied to the ultra-

wideband focused array to increase the peak power delivered to a localized region.  

The contribution of this work can be summarized in three main points. First, a new 

concept in designing large array antennas to focus the microwave power in the radiation near-

field region was presented. A small focused array antenna using microstrip patch elements to 
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achieve the desired sidelobe levels in the Fresnel region based on Dolph-Chebyshev design was 

implemented. Larger arrays were designed by using the knowledge of the mutual admittances 

between the elements of smaller arrays. Second, some new focusing properties of Fresnel zone 

plate (FZP) lens antennas in the near-field region were presented. In addition, the focused beam 

scanning of the FZP lens antennas in the radiation near-field was examined. Finally, some new 

focusing characteristics of ultra-wideband time-domain array antenna were investigated. In 

addition, a new ultra-wideband thinned focused array antenna using a new strategy in designing 

thinned arrays was implemented. It was shown that lower SLLs with less number of elements in 

the array were achieved.  

In addition to the contributions made related to the focused antennas, a new numerical 

stochastic optimization algorithm was proposed for electromagnetic applications. This algorithm, 

Invasive Weed Optimization (IWO) was compared to the particle swarm optimization (PSO) 

algorithm by applying both algorithms to the linear array antenna synthesis, the standard problem 

used by antenna engineers. It was shown that in certain instances the IWO outperforms the PSO 

in the convergence rate as well as the final error level. Moreover, The IWO was utilized to 

design aperiodic planar thinned array antennas by optimizing the number of elements and at the 

same times their positions. By implementing this new scenario, thinned arrays with less number 

of elements and lower sidelobes, compared to the results achieved by genetic algorithm (GA) for 

the same aperture dimensions, were obtained. 
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