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Abstract 
In this paper, we discuss a simple and efficient technique for multi-objective design optimization of 
multi-parameter microwave and antenna structures. Our method exploits a stencil-based approach for 
identification of the Pareto front that does not rely on population-based metaheuristic algorithms, 
typically used for this purpose. The optimization procedure is realized in two steps. Initially, the initial 
Pareto-optimal set representing the best possible trade-offs between conflicting objectives is obtained 
using low-fidelity representation (coarsely-discretized EM model simulations) of the structure at hand. 
This is realized by sequential construction and relocation of small design space segments (patches) in 
order to create a path connecting the extreme Pareto front designs identified beforehand. In the second 
step, the Pareto set is refined to yield the optimal designs at the level of the high-fidelity 
electromagnetic (EM) model. The appropriate number of patches is determined automatically. The 
approach is validated by means of two multi-parameter design examples: a compact impedance 
transformer, and an ultra-wideband monopole antenna. Superiority of the patching method over the 
state-of-the-art multi-objective optimization techniques is demonstrated in terms of the computational 
cost of the design process. 
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1 Introduction 
Design of contemporary microwave and antenna components is a challenging process that involves 

adjustment of geometrical parameters of the structures so that given performance requirements are satisfied. 
Modern structures are often characterized by complex and multi-parameter geometries with non-intuitive 
relations between dimensions and the performance characteristics. Therefore, conventional design 
approaches based on repetitive parameter sweeps (mostly one parameter at a time) guided by engineering 
experience turn to be inefficient and unable to yield truly optimum solutions. For that reason, automated 
determination of the optimum structure dimensions by means of numerical optimization techniques is 
highly desirable yet quite challenging. The main obstacle is that—in most cases—performance 
characteristics of modern microwave and antenna structures can be accurately evaluated only by means of 
high-fidelity electromagnetic (EM) simulations. At the same time, numerical optimization using both local 
(e.g., gradient-based (Nocedal and Wright, 2006)) methods as well as global ones (e.g., evolutionary 
algorithms (Kuwahara, 2005)) involves hundreds, thousands or even tens of thousands of model 
evaluations. Consequently, application of such algorithms is computationally prohibitive if expensive EM 
simulation models are utilized for performance evaluation of the structures under design. 

In many situations, design of real-life microwave and antenna structures requires simultaneous 
handling of several, often conflicting, design requirements such as minimization of return loss within the 
frequency band of interest, reduction of the power split error, or maximization of gain (Koziel and 
Ogurtsov, 2013). There may be also objectives related to the structure geometry, e.g., reduction of its 
size or volume (Koziel and Ogurtsov, 2013). Obtaining comprehensive data concerning the best possible 
trade-offs between such figures (a so-called Pareto front) is often indispensable for making application-
dependent design decisions (Deb 2001). Population-based metaheuristics (evolutionary algorithms (Deb, 
2001), particle swarm optimizers (Afshinmanesh, Marandi and Shahabadi, 2008), etc.) belong to the 
most popular solution approaches for solving design tasks with multiple design requirements. Although 
the mentioned techniques allow for yielding the entire representation of the Pareto front in one algorithm 
run, they are not practical for solving real-world design problems that involve computationally expensive 
EM models. The reason is their tremendous CPU cost (Bekasiewicz and Koziel, 2015). 

The difficulties related to high computational cost of multi-objective optimization can be partially 
alleviated by means of surrogate-based optimization (SBO) techniques. SBO allows for shifting the 
optimization burden to a fast yet less accurate representation of the structure at hand (a so-called 
surrogate model). The latter is normally constructed from coarsely discretized EM simulation model or 
equivalent network models in case of certain microwave structures (such as filters). Surrogate-based 
techniques have been successfully utilized for solving multi-objective design problems. For instance, 
in (Koziel and Ogurtsov, 2013) a response surface approximation (RSA) model obtained from 
coarsely-discretized simulation data has been utilized along with a multi-objective evolutionary 
algorithm (MOEA) to yield an initial approximation of the Pareto front. The final Pareto front has 
been generated using sufficient response correction technique. In (Koziel et al., 2014), co-kriging 
surrogates have been exploited to improve the quality of the MOEA-based Pareto front by 
incorporating high-fidelity model data to the RSA. Moreover, applicability of these techniques has 
been extended to multi-parameter design problems by using design space reduction techniques 
(Koziel, Bekasiewicz and Zieniutycz, 2014). 

Despite advancements in expedited multi-objective optimization, a common weakness of the 
aforementioned techniques is the necessity of using population-based metaheuristics for identification of 
the Pareto front. Moreover, these techniques require a rather careful allocation of the designn space 
subset containing the optimum designs (Koziel, Bekasiewicz and Zieniutycz, 2014). Additionally, 
construction of the fast approximation models required in mentioned works is subject to various 
limitations, particularly the curse of dimensionality (exponential growth of the necessary number of 
training data samples with the number of antenna geometry parameters) (Forrester and Keane, 2009). In 
order to address these difficulties, a multi-objective optimization technique that does not require 
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population-based metaheuristic algorithms for identification of the Pareto set has been proposed in 
(Koziel, Bekasiewicz and Leifsson, 2015). The technique generates an initial approximation of the Pareto 
front by means of a stencil-based sequential patching of the design space sub-region limited by the 
extreme Pareto optimal solutions obtained using design space reduction techniques (Koziel, Bekasiewicz 
and Zieniutycz, 2014). The path between the extreme designs consists of a predetermined number of 
patches (intervals in n-dimensional design space). The patching process is executed at the level of 
coarse-discretization EM model, whereas the final representation of the Pareto front is obtained using 
response correction methods and local approximation surrogates. 

In this work, we demonstrate applicability of the sequential domain patching (SDP) technique for 
numerically demanding design problems with multiple adjustable parameters. The original SDP 
algorithm is supplemented with a mechanism that automatically determines the size of the patch based on 
sensitivity analysis. Two design cases are used for illustration: a compact ultra-wideband (UWB) 50-to-
130 Ohm microstrip impedance transformer with 15 design parameters and a 13-variable ultra-wideband 
monopole antenna.  

2 Multi-Objective Optimization Using Domain Patching 
In this section, we describe the multi-objective problem and provide details of the sequential domain 

patching procedure. We also describe the algorithm for automated determination of patch size and 
briefly discuss the technique for refinement of the selected Pareto-optimal designs. 

2.1 Multi-Objective Problem Formulation 
Let Rf(x) be a response of the high-fidelity EM model of the structure under design, where x is a 

vector of designable parameters. Then, let Fk(x), k = 1, …, Nobj, be a k-th design objective. If Nobj > 1 
then any two designs x(1) and x(2) for which Fk(x

(1)) < Fk(x
(2)) and Fl(x

(2)) < Fl(x
(1)) for at least one pair 

k ≠ l, are not commensurable, i.e., none is better than the other in the multi-objective sense. In this 
case, a Pareto dominance relation  is utilized (Deb, 2001). We say, for any two designs x and y, that 
x dominates over y (x  y) if Fk(x) ≤ Fk(y) for all k = 1, …, Nobj, and Fk(x) < Fk(y) for all at least one k. 
A goal of multi-objective optimization is to find a representation of a so-called Pareto optimal set XP 

composed of the non-dominated designs from the solution space X, such that for any x ∈ XP, there is 
no y ∈ X for which y  x (Deb, 2001). 

2.2 Design Space Reduction 
The aim of the design space reduction procedure is to narrow the ranges of the structure parameters to 

the region consisting the Pareto-optimal designs. The procedure can be formulated as follows (Koziel, 
Bekasiewicz and Zieniutycz, 2014). Let l and u be the arbitrarily defined lower/upper bounds of the 
solution space. Let  

 

( )* arg min ( )
l x u

x R xk k cF
≤ ≤

=       (1) 

 
where k = 1, …, Nobj be an optimum design of the low-fidelity model Rc obtained with respect to the 
kth objective. The designs xc

*(k) are found for all of the considered objectives, one at a time.  
The numerical cost of solving (1) depends on the dimensionality of the design problem. Typically, it 

corresponds to about a hundred to a few hundreds of the low-fidelity model evaluations. Once the 
“extreme” Pareto optimal designs are identified, the sequential domain patching algorithm can be 
executed to approximate Pareto front. 
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2.3 Sequential Domain Patching Algorithm 
The initial Pareto-optimal set is obtained by means of the SDP method. The process exploits the 

“extreme” designs obtained using (1). The conceptual illustration of the algorithm is shown in Fig. 1. 
The procedure assumes two-objective setup. The SDP algorithm works as follows (Koziel, 
Bekasiewicz and Leifsson, 2015): 

 
1. Execute the algorithm of Section 2.4 to automatically determine size of the patch d = [d1 … dn]

T, 
where n is the number of structure adjustable parameters; 

2. Set the current points xc1 = x1
* and xc2 = x2

*; 
3. Evaluate n perturbations of the size d around xc1

* (towards xc2
* only) and select the one which leads 

to the best improvement w.r.t. the objective F2; 
4. Relocate the patch so that its center is at the best perturbation selected in Step 3; update xc1; 
5. Evaluate n perturbations of the size d around xc2

* (towards xc1
* only) and select the one which leads 

to the best improvement w.r.t. the objective F1.  
6. Relocate the patch so that its center is at the best perturbation selected in Step 5 and update xc2; 
7. If the path between x1

* and x2
* is not complete, go to 3; 

 
The SDP algorithm yields the initial approximation of the Pareto-optimal designs, as well as a set of 

boxes within the initially defined design space that cover these solutions (see Fig. 1). The numerical 
cost of the algorithm depends only on the dimensionality of the problem at hand and on the number of 
patches. It can be estimated from above (excluding the cost of solving (1)) as (M – 1)⋅(n – 1), where M 
= j = 1,…,n mj, and is mj the number of intervals in the direction j computed using procedure of Section 
2.4. In practice, the cost is lower since some of the necessary perturbations have been already evaluated 
while considering previous patches or do not need to be evaluated due to the problem constraints. 

2.4 Automated Determination of Patch Sizes 
Selection of the appropriate patch size is important from the algorithm efficiency standpoint. 

Generally, the distance between the “extreme” Pareto designs x1
* and x2

* in each dimension j have to 
be divided into the integer number of intervals denoted as mj so that the norm-wise change of the 
structure responses is similar when executing patch-size perturbations. Here, we use the notation x1

* = 
[x1.1

* … x1.n
*]T (similarly for x2

*).  
The vector of intervals M is obtained as follows: 

1. Evaluate Rc at n points x1-2
(j) = [x1.1

* … x1.j–1
* x2.j

* x1.j+1
* … x1.n

*]T and calculate E1.j = ||Rc(x1-2
(j)) – 

Rc(x1
*)||/||Rc(x1

*)||; 
2. Evaluate Rc at n points x2-1

(j) = [x2.1
* … x2.j–1

* x1.j
* x2.j+1

* … x2.n
*]T and calculate E2.j = ||Rc(x2-1

(j)) – 
Rc(x2

*)||/||Rc(x2
*)||; 

3. Set Ej = (E1.j + E2.j)/2; 
4. Normalize Ej = Ej/max{Ej: j = 1,...,n}; 
5. Set mj = max{2, mmax⋅Ej }. 

The coefficients E1.j represent the relative changes of the structure responses for the variation of the 
jth component of the design x1

* towards x2
* (similarly for E2.j), whereas Ej are their average values. 

They can be utilized to estimate the variations of structure responses between the “extreme” Pareto 
designs along each dimensions. The minimum number of intervals is 2 whereas the maximum mmax is 
defined by the user. The other (intermediate) values are determined as integers proportional to Ej. It 
should be noted that mmax can be estimated as follows: mmax = max{Ek : k = 1,…,n}/Emax  (calculated 
for non-normalized Ej coefficients). The value can be also approximated with respect to the assumed 
computational budget of the SDP given in Section 2.3. 
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(a) 

 
(b) 

Fig. 1. A conceptual illustration of SDP algorithm (n = 3): (a) “extreme” Pareto designs obtained from 
(1) ( ); (b) SDP-based Pareto-optimal solutions ( ). Left- and right-hand side figures represent path in 
the design space and the feature space, respectively. 

 

2.5 Initial Pareto Set Refinement 
The Pareto set generated by the SDP algorithm (cf. Section 2.3) is obtained using the coarse-

discretization model Rc and thus it has to be elevated to the Rf model level to obtain the final Pareto 
set. The latter can be obtained for the selected designs xc

(k) (k = 1, …, K) using the following output 
space mapping procedure: 
 

( )
( )

2 2

( ) ( )
1

, ( ) ( )
arg min ( )

≤

← +
x x x

x R x R
k

f

k k
f s

F F
F d                   (2) 

 

where dR(k) = Rf(xf
(k)) – Rs(xf

(k)). The refinement process is aimed at improving the first objective 
without degrading the second one. The starting point for (2) is xf

(k) = xc
(k) and the process is iterated 

until convergence (typically obtained within two or three iterations). The correction term dR(k) ensures 
zero-order consistency (i.e., Rs(xf

(k)) = Rf(xf
(k))) at the beginning of each iteration (Koziel and 

Ogurtsov, 2013). The surrogate model Rs is constructed as a simplified second-order polynomial 
approximation (without mixed terms) of the Rc model at 2n + 1 perturbed designs around xc

(k) obtained 
using a star-distribution design of experiments. The perturbation size corresponds to patch size 
determined using the algorithm of Section 2.4. Note that at last half of the necessary data is already 
available from the patching process (cf. Section 2.3). 

3 Demonstration Examples 
In this section, we present numerical verification of the SDP method. Its operation is demonstrated 

using a 15-variable compact microstrip impedance transformer and a 13-parameter planar ultra-
wideband (UWB) monopole antenna. Both structures operate within UWB frequency range. 
Comparison with benchmark multi-objective optimization algorithms is also provided. 

F1

F
2

F1
F

2
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3.1 Miniaturized Impedance Transformer  
Our first example is a compact 50-to-130 Ohm impedance transformer shown in Fig. 2. The circuit 

is constructed as a cascade of three compact microstrip resonant cells (Kurgan, Bekasiewicz, and 
Kitlinski, 2015). It is implemented on a 0.762 mm thick Taconic RF-35 dielectric substrate (εr = 3.5; 
tan  = 0.0018). Design variables are: x = [w11 w21 w31 l21 l31 w12 w22 w32 l22 l32 w13 w23 w33 l23 l33]

T, whereas 
wi1 = 1.7, wi2 = 0.17 and l0 = 1. The unit for all dimensions is mm. The ranges of adjustable parameters 
are limited by the following lower/upper bounds are: l = [0.15 0.15 0.15 0.5 0.15 0.15 0.15 0.15 0.5 0.15 
0.15 0.15 0.15 0.5 0.15]T and u = [1 1 1 5 0.5 1 1 1 5 0.5 1 1 1 5 0.5]T

. 

The transformer models are implemented in CST Microwave Studio and simulated using its time 
domain solver (CST, 2013). The high-fidelity model Rf(x) consists of about 1,200,000 hexahedral mesh 
cells and its average simulation time on a dual Intel Xeon E5540 machine is 12 min. The low-fidelity model 
Rc(x) contains ~120,000 cells (typical simulation time 49 s). Two design objectives are considered: 
minimization of maximal transformer in-band return loss defined as F1(x) = max(|S11|2 GHz to 5.5 GHz) and 
reduction of structure area defined as F2(x) = A × B, where A = 2 (l2 1+ l31) + w21 + w12 + 2 (l22 + l32) + w22 + 
w13 + 2 (l23 + l33) + w23 and B = w11+ w31 + l31. It should be noted that only designs for which satisfies 
requirement F1(x)  –10 dB are of interest. 

The “extreme” Pareto-optimal designs x1
* = [0.39 0.89 1.66 0.44 0.15 0.21 2.33 0.15 0.16 0.15 

2.32 0.15]T and x2
* = [0.24 0.49 0.86 0.36 0.16 0.25 1.73 0.15 0.17 0.20 1.80 0.15]T have been 

obtained using design space reduction procedure of Section 2.2. Note that the dimensionality of the 
problem has been reduced to 12 variables, in particular, the parameters w21 = 0.15, l31 = 0.15 and w33 = 
0.15 are fixed. Subsequently, the vector of intervals M = [15 16 16 10 2 7 14 2 2 2 13 2] has been 
obtained using the procedure of Section 2.4. The initial representation of the Pareto front shown in 
Fig. 3 has been identified by means of the SDP algorithm of Section 2.3. Finally, a set of 10 designs 
has been selected along the Pareto front and refined to the high-fidelity model level. The obtained 
results (see Fig. 3) indicate that transformer responses vary by 5.3 dB and 9.2 mm2 (over 40 percent) 
along Pareto front for objective F1(x) and F2(x), respectively. The geometrical details of selected high-
fidelity Pareto-optimal designs are gathered in Table 1, whereas their corresponding frequency 
responses are shown in Fig. 4(b). 

The cost of multi-objective optimization of the transformer includes: 520, 12 and 587 Rc simulations for 
determination of the “extreme” Pareto designs, calculation of the patching intervals and optimization using 
SDP algorithm, respectively, as well as 250 Rc and 30 Rf evaluations for the designs refinement.  

The algorithm has been compared with two benchmark techniques based on multi-objective 
evolutionary algorithm (MOEA). The first method is based on utilization of response surface approximation 
model constructed using Rc data obtained within the region of the solution space limited by the “extreme” 
Pareto designs (Koziel, Bekasiewicz and Zieniutycz, 2014). The algorithm setup is: 500 individuals and 50 
generations. The second method directly exploits the Rc model of the transformer for MOEA optimization 
(setup: 100 individuals, 100 iterations). It should be noted that utilization of the low-fidelity models is 
necessary because the estimated cost of direct MOEA optimization of Rf transformer model (10000 
simulations) is over 83 days. The comparison of the methods has been performed under the assumption 
that the “extreme” Pareto designs are known. The results shown in Fig. 5 indicate that initial SDP-based 
front approximation is slightly dominated.  

 
 

 
Fig. 2. Geometry of a compact UWB impedance transformer (Kurgan, Bekasiewicz and Kitlinski, 2015). 
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Fig. 3. The low- ( ) and high-fidelity ( ) designs obtained using sequential domain patching. 
 

 
Fig. 4. Frequency characteristics of the transformer designs of Table 1. 
 

 
Fig. 5. Comparison of initial Pareto fronts obtained using SDP ( ), as well as first ( ) and second (×) 
benchmark method. 

 

Table 1: Compact Impedance Transformer – Optimization Results 

 F1 
[dB] 

F2 

[mm2]
Design variables 

w11 w31 l21 w12 w22 w32 l22 l32 w13 w23 l23 l33 

xf
(1) –15.6 20 0.41 0.85 1.73 0.41 0.16 0.22 2.24 0.15 0.16 0.16 2.17 0.15

xf
(4) –14.6 18 0.42 0.74 1.66 0.35 0.16 0.24 2.04 0.16 0.15 0.16 2.08 0.16

xf
(5) –13.6 17 0.41 0.69 1.64 0.37 0.16 0.24 2.01 0.16 0.16 0.16 2.09 0.16

xf
(7) –12.5 14 0.40 0.64 1.20 0.37 0.16 0.23 1.75 0.16 0.16 0.16 2.09 0.16

xf
(10) –10.3 11 0.29 0.50 0.87 0.40 0.16 0.20 1.74 0.17 0.15 0.16 2.18 0.17
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The computational cost of multi-objective design optimization using the benchmark techniques 

corresponds to about 68 and 681 Rf model simulations for the first and the second benchmark technique, 
respectively. At the same time, the cost of SDP is about 41 Rf which is 40% and 94% lower compared to 
MOEA-based methods. 
 

3.2 Planar Monopole Antenna 
The second example is an UWB monopole shown in Fig. 6 (Koziel, Bekasiewicz and Zieniutycz, 

2014). The structure consists of a driven element in the form of three stacked trapezoids fed through a 
50 Ohm microstrip line and it is designed on a 0.762 mm thick Taconic RF-35 substrate. Design 
parameters are: x = [a1 a2 a3 a4 a5 a6 b1 b2 b3 w2 l d o]T. whereas w1 = 1.7 to ensure 50 Ohm input 
impedance (all dimensions are in mm). The initial design bounds are: l = [5 5 5 5 5 5 1 1 1 0.2 8 20 5]T 
and u = [25 25 25 25 25 25 15 15 15 2 15 40 10]T. 

The high-fidelity model (2,500,000 mesh cells, simulation time: 10 min) and the low-fidelity one 
(~33,600 cells, simulation time 22 s) are both implemented in CTS Microwave Studio.. Design objectives 
are: F1 – minimization of the antenna reflection within 3.1 GHz to 10.6 GHz frequency and F2 – 
reduction of the size defined by A × B rectangle, where A = l + d + b1 + b2 + b3 + o and B = w2 + o.    

The “extreme” Pareto designs are: x1
* = [10.07 21.63 22.2 21 20.8 22.7 3.9 3.8 12.32 0.6 11.15 

28.34 5]T and x2
* = [10.97 21.76 22.2 22.79 21.01 23.7 3.9 3.92 13.02 0.67 10.6 35.35 5]T. The vector 

of intervals is M = [4 3 2 4 3 3 3 2 4 5 3 15 3]. The initial representation of the Pareto front obtained 
using the SDP algorithm and ten designs evenly distributed along the Pareto front are shown in Fig. 7. 
Based on the obtained results one can conclude that the antenna responses w.r.t. objective F1 and F2 vary 
by 4.6 dB and 308 mm2 (almost 22 percent), respectively. The antenna frequency responses for the selected 
designs from Table 2 are shown in Fig. 8. The cost of multi-objective antenna optimization includes 800, 13 
and 248 Rc simulations for determination of “extreme” Pareto designs, determination of the vector of 
intervals and SDP optimization, respectively. Refinement of the selected designs required 270 Rc and 30 Rf 
model evaluations.  

The algorithm has been compared with two MOEA-based optimization techniques. The first method 
exploits the RSA model constructed using Rc data acquired within the part of the solution space defined by 
the “extreme” designs (setup: 500 individuals and 50 generations). In the second method, MOEA 
optimization is performed directly on the Rc model (setup: 100 individuals, 100 iterations). Similarly as in 
Section 3.1, the comparison has been performed using the low-fidelity model because direct optimization of 
the high-fidelity model would be prohibitively expensive. The results shown in Fig. 9 indicate that SDP-
based front is similar to the MOEA-based ones. 

The computational cost of multi-objective design optimization using the benchmark techniques 
(excluding single-objective optimizations run to find the “extreme” designs) corresponds to 58, 367 Rf 
simulations for the first and second MOEA-based method. The cost of SDP is ~9 Rf which is 84% and 98% 
lower compared to the MOEA-based optimization methods. 

 

 
Fig. 6. Geometry of the considered monopole antenna (Koziel, Bekasiewicz and Zieniutycz, 2014). 
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Fig. 7. The low- ( ) and high-fidelity ( ) designs obtained using sequential domain patching. 
 

 
Fig. 8. Frequency characteristics of transformer designs of Table 2. 
 

 
Fig. 9. Comparison of initial Pareto fronts obtained using SDP ( ), as well as first ( ) and second (×) 
benchmark method. 

 
Table 2: UWB Monopole Antenna – Optimization Results 

 F1 
[dB]

F2 

[mm2]
Design variables  

a1 a2  a3  a4  a5  a6  b1 b2 b3  w2 l  d  o 

xf
(1) -10.3 1123 10.7 21.63 22.20 21.0 20.94 23.70 3.9 3.8 12.32 0.60 10.79 28.34 5.00

xf
(4) -11.5 1205 11.2 21.60 22.20 21.5 21.01 23.81 3.9 3.8 12.42 0.60 10.61 30.68 5.00

xf
(5) -12.4 1254 11.4 21.63 22.20 21.9 20.94 23.70 3.9 3.8 12.67 0.62 10.79 31.61 5.00

xf
(7) -13.5 1331 10.8 21.64 22.20 21.7 20.97 23.77 3.9 3.8 13.12 0.61 10.70 33.34 5.00

xf
(10) -14.6 1395 11.0 21.59 22.20 21.5 21.01 24.00 3.9 3.9 13.19 0.60 10.81 34.85 5.00
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4 Conclusion 
In this work a sequential-domain patching algorithm with automated determination of the patch 

sizes has been discussed. The method exploits variable-fidelity EM simulation models and allows for 
unattended expedited multi-objective optimization of microwave and antenna structures without the 
necessity of exploiting population-based metaheuristic algorithms. Our method has been compared to 
the state-of-the-art methods based on multi-objective evolutionary algorithms and proved its 
superiority in terms of computational cost and, in some cases, the quality of the obtained Pareto fronts. 
Our further work will focus on experimental verification of the obtained designs. Moreover, extension 
of the sequential domain patching algorithm to handle structures with more complex responses such as 
microwave couplers, or narrow band antennas will also be considered. 
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