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Abstract 

In this thesis Genetic Algorithm Optimisation Methods (GA) is studied and for the first time 

used to design high efficiency microwave class E power amplifiers (PAs) and associated load 

patch antennas.  

The difficulties of designing high efficiency PAs is that power transistors are highly non 

linear and classical design techniques only work for resistive loads. There are currently no 

high efficient and accurate procedures for design high efficiency PAs. To achieve simplified 

and accurate design procedure, GA and new design quadratic equations are introduced and 

applied.  

The performance analysis is based on linear switch models and non linear circuitry push-pull 

methods. The results of the analytical calculations and experimental verification showed that 

the power added efficiency (PAE) of the PAs mainly depend on the losses of the active 

device itself and are nearly independent on the losses of its harmonic networks. Hence, it has 

been proven that the cheap material PCB FR4 can be used to design high efficiency class E 

PAs and it also shown that low Q factor networks have only a minor effect on efficiency, 

allowing a wide bandwidth to be obtained.  

In additional, a new procedure for designing class E PAs is introduced and applied. The 

active device (ATF 34143) is used. Good agreement was obtained between predicted 

analyses and the simulation results (from Microwave Office (AWR) and Agilent ADS 

software). For the practical realization, class E PAs were fabricated and tested using PCB 

FR4. The practical results validate computer simulations and the PAE of the class E PAs are 

more than 71% and Gain is over 3.8 dB when input power (Pin) is equal to 14 dBm at 2 GHz.  
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Chapter 1 Introduction 

 

1.1 Background 

Nowadays, high efficiency, low cost, broad bandwidth and size limitation are the challenges 

in modern wireless communication systems, which implies higher efficiency, cheap material 

application, low Q factor and active integrated circuits need to be designed [1-13]. 

Furthermore, it required simplifying the procedure of circuit design and to increase the 

efficiency of power consumption [14-25].  

To avoid these losses and save energy, it is necessary to design high efficiency power 

amplifiers (PAs) [23, 26-32], especially class E PAs, which can achieve significantly higher 

efficiency than for conventional class B or C PAs [33-35].  

The first high efficiency class E PA was proposed by Sokal et al in 1975 [36] where an 

external capacitor was placed at the output and in parallel with the active device. A series 

resonant load circuit with a high Q factor was used to obtain the required optimum 

impedance at the design frequency and very high impedances at the harmonics of the design 

frequency [2, 37, 38]. To reduce losses caused by transients in the voltage waveform the rise 

of the output voltage was delayed until after the active device was turned off and the output 
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voltage reached its minimum value with a slow turn on.  Raab [39] by modelling the active 

device as a lossless switch derived the design equations assuming 50% duty cycle. 

Kazimierczuk [4] analysed this amplifier circuit for a range of Q factor and duty cycle, while 

Gaudio [40] produced an exact analysis, where the characteristics of the active device were 

included. In [28] explicit design equations were derived where the effect of a finite value of 

the choke inductance was taken into account. Grebennikov [17, 28, 41] showed that the 

efficiency of power conversion reduces when the operation frequency is higher than the 

maximum frequency and if the VSWR of the load decreases. In [42, 43] Jaeger investigated 

how the losses in the load network and the finite switching time affect the efficiency of power 

conversion. A push-pull power amplifier with the two transistors driven with a phase 

difference of 180
0

 was used to improve the efficiency by reducing the even harmonics in the 

load resistor. In [26] a symmetrical push-pull amplifier had a load resistor connected in 

parallel with a capacitor and the active device was driven „on‟ and „off‟ within in each of the 

half-operating period.  

There has been a continuous interest from researchers and industrial sectors in the application 

of high efficiency PAs. Recently, most of the challenges of design of high efficiency PAs are 

to simplify the design procedure and even increase the efficiency of the current PAs. [44, 45] 

 

1.2 Aims and Objectives 

From the above explanation and analysis, it can be seen that it is hard to design high 

efficiency PAs. Not only are relevant concepts of design of high efficiency PAs using 

nonlinear transistors lacking, but also lacking is a normal design procedure which increases 

both the cost and research period. To avoid this complexity, in this project a novel procedure 
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of design of high efficiency PAs has been described to reduce the research cost, and shorten 

the design period. This has been achieved by using  a novel optimum Genetic Algorithm 

(GA) based method [46, 47].  

In the design of power amplifiers, there are a large number of design parameters but an 

insufficient number of equations to obtain a unique solution, n or even to satisfy all the 

identified objectives. Consequently once the relative importance of the  objectives has been 

decided it is possible to use stochastic search methods such as simulated annealing (SA) [48, 

49], particle swarm optimisation (PSO) [50, 51] or GA [52, 53] to obtain a global solution 

from the multi-dimensional space. SA models a slow cooling process of metals in a liquid 

state; PSO models the social behaviour of a school of fish or flock of birds while GA models 

evolution and genetic recombination in nature. All the above optimization methods provide 

good solutions, without the necessity of applying rigorous mathematics to obtain closed form 

analytical solutions. It has been decided as discussed in the abstract to use GA to obtain 

optimum designs. In Chapter 2 the basic principles and implementation of GA are initially 

reviewed. Then GA is applied to optimise the design of a probe fed dual frequency matched 

patch antenna and the results of this research have been published [54].  

To achieve high efficiency of the current class E PAs, the losses of required harmonic 

networks will be investigated. A new concept will be described, which has proved that high 

Q harmonic networks are not necessary [55].This allowed a low Q = 1.9 to be used and 

efficiency of 85 % to be obtained. At microwave frequencies lumped elements of the load 

network are normally replaced by transmission lines. It is also shown in [56] the conditions to 

obtain good efficiency can be obtained by using a transmission line harmonic load network to 

satisfy the requirements up to the third harmonic.  In chapter 3 the derivations of the 

published equations are reviewed for voltage/current waveforms and the required load 
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impedance at the design frequency to obtain maximum efficiency. Then new equations are 

derived for the voltage /current waveforms and for the optimum impedance at the design 

frequency. 

To reduce the research cost, shorten the design period and save the energy of the wireless 

communication systems, a novel procedure for design of a high efficiency class E amplifier 

will be introduced in chapter 7. This uses the data sheet of an active device (ATF 34143) to 

obtain the turn-on resistance, Ron, and then the shunt capacitance, Cs, will be determined by 

using the obtained the Ron,. The design of matching networks for the class E amplifier will be 

introduced and the simulation results will be given.  

To reduce the fabrication cost, a cheap material (PCB FR4) substrate will be used to design 

the PAs and antennas. This will be the biggest challenge in this project and the final results 

will be compared with the other results, which were applied by using expensive materials, 

e.g. Duroid 5870 substrate. 

 

1.3 Research Motivation and Contribution of the Thesis 

1. Creation of GA optimisation methods for wireless communication systems design; 

2. Creation of novel methods of reducing the losses of the active device (MESFET) and the 

load harmonic networks of the high efficiency class E PAs; 

3. Implementation of GA for high efficiency class E PAs design; 

4. Invention of a new research and design procedure of designing the harmonic network of 

the high efficiency class E PAs; 
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5. Practical results validate the above creations and inventions. 

 

1.4 Organization for the Thesis 

Chapter 2 initially reviews the basic concepts and the implementation of GA. In the case of a 

dual frequency antenna there are two objectives, as matching is required to be obtained at the 

two design frequencies. They are then used in the GA, to determine the optimum dimensions 

of the patch and the position of the probe feed, to satisfy the requirements for the return loss 

at each frequency. An excellent agreement is obtained between the predicted, modelled and 

practical results and based on this work a paper has been published [54]. 

In Chapter 3 the concepts of ideal class E power amplifiers are investigated. The active 

device is modelled as a switch in series with the Ron resistance and an ideal harmonic load is 

assumed. For the ideal case when Ron is equal to zero 100 % efficiency of power conversion 

was obtained. It is found that if Ron is finite the effect is to reduce input dc power, ac output 

power and cause the current/voltage waveforms to overlap.  

In Chapter 4, the performance of the output stage for the class E amplifier is investigated, 

where the active device is still modelled as a switch in series with Ron. In [57] to reduce this 

loss caused by the harmonic currents, a high Q factor of the circuit is used. However if a high 

Q factor is used the efficiency bandwidth is reduced.  

In Chapter 5 ideal lossless transmission lines (Tlines) are used in the initial design of 

harmonic networks for high efficiency power amplifiers and then practically realised using 

microstrip lines (Mlines). To reduce such complex analysis, the losses in a Mline are 

modelled as a Tline in series with a resistance. A novel method is proposed to determine this 

resistance as a function of the length of the Mline, which is realised using both inexpensive 
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PCB FR4 and expensive Duroid 5870 substrates (see Appendix D). Then for the above two 

line models, harmonic networks are designed up to the second and third harmonics and the 

obtained losses at the design frequency are compared. Finally, the effect of the losses with 

different harmonic networks on class E PAs is investigated. 

In Chapter 6, the active device models are reviewed and the selected MESFET ATF34143 is 

described. A novel procedure for design of a high efficiency class E amplifier is introduced. 

Finally, the implementation and practical measurement are given by comparison. 

Finally, Chapter 7 gives a summary of the thesis with overall conclusions and the suggestions 

for the future works.  

These contributions are summarised in Fig. 1.1 and have led to the following publications and 

awards: 

 

  



 

7 
 

 

Figure 1.1: Summary of thesis contributions 
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Chapter 2 Review of Genetic Algorithms and Case Study 

 

2.1 Introduction 

 

In the design of power amplifiers, antennas and their integration there are a large number of 

design parameters but an insufficient number of equations to obtain a unique solution or even 

to satisfy all the identified objectives. Consequently once the relative importance of the  

objectives has been decided it is possible to use stochastic search methods such as simulated 

annealing (SA) [48, 49], particle swarm optimisation (PSO) [50, 51, 58] or GA [52, 53, 59-

64] to obtain a global solution from multi-dimensional space. SA models a slow cooling 

process of metals in a liquid state; PSO models the social behaviour of a school of fish or 

flock of birds while GA models evolution and genetic recombination in nature. All the above 

optimization methods provide good solutions without the necessity of applying rigorous 

mathematics [65] to obtain closed form analytical solutions. It has been decided as discussed 

in the abstract to use GA to obtain optimum designs. In this chapter the basic principles and 

implementation of GA is initially reviewed [61, 66-71]. Then GA is applied to optimise the 

design of a probe fed dual frequency matched patch antenna and the results of this research 

have been published [54].  
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2.2  Review of the Implementation for the Genetic Algorithm 

The step by step implementation of the iterative process of the GA proposed by Holland [52] 

is shown in Fig 2.1, 

 

Figure 2.1: Flow chart of the GA Implementation [52] 

 

Step 1: The maximum, U, and minimum, L, values of each analogue parameter are specified 

to ensure that a suitable solution can be obtained. The number of bits or genes used to code 

the analogue parameters depends on the required accuracy of the final solution.  

Step 2: The binary string of bits for each analogue variable are then sequentially co-joined 

into a global string called a chromosome. If there are „m‟ bits in each chromosome each level 

,ai, is specified by (2.1),  

  (2.1) 
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Step 3: A selected number, n, of chromosomes called a population is randomly selected out 

of the total number of chromosomes. 

 

Step 4: The digital form of each selected chromosome is converted into an analogue form and 

the fitness determined, f(xn). The total fitness function, F(xn), is the sum of the chromosome. 

Fitness is evaluated,  

. (2.2) 

Step 5: The selection probability, Psn, of each chromosome for the next generation is 

determined, 

. (2.3) 

Step 6: The area of each segment in the roulette wheel shown below is proportional to the 

probability, Psn, of each chromosome, 

 

Figure 2.2: Roulette wheel selections: Before spin of the wheel. 
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 Step 7: The roulette wheel is spun ‘n’ times and for each spin a chromosome is selected. 

Those chromosomes with high probability or having segments with a larger area are more 

likely to be selected more times. Those segments or the chromosomes not selected are not 

used in the next stage of the optimisation, 

 

Figure 2.3: Roulette wheel selections: After spin of the wheel ten times. 

 

Step 8: The random element of GA is further enhanced by using a crossover process where a 

number of bits or genes of selected pairs of chromosomes are exchanged. 

To obtain the optimum solution rapidly the criteria for selecting pairs of chromosomes and 

genes is shown followed, 

a) Mutation rate is biased towards least significant genes. 

b) The mutation rate is gradually reduced. 

c) The fitness function is gradually biased towards the optimum solution. 

The iteration of the above process is run until a convergence is obtained to produce an 

optimum solution. 

In the next section the GA optimisation method is applied to the design of a probe fed dual 

frequency patch antenna where there are four design variables and two objective functions.  
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2.3 Review and Basic Design Equations of a Patch Antenna 

Patch antennas [44, 72-74] are used in many communication systems as they are compact, 

have low profile and their manufacturing costs are reduced by using printed circuit 

technology. The main disadvantage of these types of antennas is that they have narrow 

bandwidth and hence one approach is to increase the bandwidth so that more channels can be 

transmitted in wireless communication systems [10, 54, 55, 75, 76]. The alternative approach 

is to design the antenna to transmit information in multi frequency bands or at least in dual 

mode with different polarisations [73, 77].Dual band patch antennas can be obtained using 

slots, stacked patches and shorting pins [78, 79]. 

 

In this section GA is used to obtain optimum dimensions, a and b, of a rectangular patch 

antenna and the position of the probe feed (Xp, Yp) are shown in Fig. 2.4 for the antenna to be 

matched at two modes, TM10 (1.9 GHz) and TM01 (2.4 GHz), 

 

Figure 2.4: TM10 and TM01 modes of a patch antenna and four possible feed positions. 
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The equation for the probe feed impedance [54, 72, 80] used in the objective function of the 

optimisation process is given below. 

  

  

 

The thickness of the dielectric substrate is H, k
2
 = ω

2
 μ ε0 εreff  (1 - j/Q), Q is the total quality 

factor, Wp is the diameter of the probe feed and Wp
2
 is the area of the probe feed which is 

assumed to be square. 

 

In this design it is convenient to use effective dimensions of the patch and effective 

permittivity. The effective dimensions are defined in terms of wavelengths so that fringing 

electric fields present at the edges of the antenna are ignored. The electric field at the edges of 

the patch is partly in air and partly in the dielectric. It is convenient to replace the air and the 

dielectric substrates by one substrate having a single or an effective relative permittivity.  

The effective dimensions of the patch and the effective permittivity for the TM10 and TM01 

modes are shown below [72], where H is the thickness of the substrate. 

  
 (2.5) 

  
(2.6) 
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  (2.7) 

  (2.8) 

From the above equations it can be seen that it is very difficult to apply analytical methods to 

determine the required four design variables, a, b, εreff (a) and εreff (b). Therefore, GA is used 

as shown in the following section, to obtain the optimum dimensions of the patch and the co-

ordinates off the feed position. 

 

2.4  Implementation of GA in the Design of Patch Antennas 

In this section the range of the values of the four variables are initially derived and then three 

different objective functions are evaluated in the GA to find the optimum design of patch 

antennas.  

Both the effective permittivity εreff (a) and εreff (b) are less than the relative permittivity of the 

FR4 PCB substrate εr = 4.3. Using the value of 4.3 in (2.7) and (2.8) then a =38mm and b = 

29 mm. However as εreff (a) and εreff (b) are both less than 4.3 these dimensions were increased 

to amax = 42 mm and bmax = 37 mm. The minimum values chosen are, amin = 34 mm and bmin  = 

29 mm. 

The feed position is located in the first quadrant (see Fig.2.2) and hence the range of the feed 

co-ordinates assume are , Xpmin= 0,   and 

YPmin = 0. 



 

19 
 

The return losses (RL), RL1, at 1.85 GHz and RL2, at 2.4 GHz shown below are required to be 

optimised in order that the antenna is matched at the two frequencies, 

 

   
(2.9) 

  
(2.10) 

 

GA can only determine the optimum design parameters by searching for either the minimum 

or maximum value of only one objective function. In this design as there are two objective 

functions given by (2.9) and (2.10) an optimum solution cannot be obtained directly. To 

ensure that the obtained return loss at each frequency is optimum, three different overall 

objective functions shown below were derived and used to determine the required values of 

the four design parameters. 

 

 (2.11a) 

 (2.11b) 

 (2.11c) 
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For 20 and 100 iterations the obtained dimensions of the patch, feed position and the return 

loss at each frequency are shown in the Table 2.1, 

 Objval A Objval B Objval C 

IT 20 100 20 100 20 100 

a 39.2 39.2 39.3 39.2 39.2 39.2 

b 30.1 30.1 30.2 30.2 30.3 30.2 

Xp 12.6 12.6 12.4 12.4 12.3 12.4 

Yp 8.9 8.7 8.9 8.7 8.9 8.9 

RL1  (1.85 GHz) 8.46 17.5 28.8 36.7 44.5 56.1 

RL2  (2.4 GHz) 72 65.7 18.7 35 14.1 23.0 

 

Table 2.1: Obtained dimensions, probe position and return loss for the three objective functions  

after 20 and 100 Iterations. 

 

After 100 iterations the return losses at the two frequencies are, Objavl A (RL1 = 17.5 dB, RL2 

= 65.7 dB) and Objavl C (RL1 = 56.1 dB, RL2 = 23.0 dB).The return losses at the two 

frequencies are very different and hence not suitable in a practical design. However for 

Objavl B both returns losses are very good and very close to each other (RL1 = 36.7 dB, RL2 = 

35 dB).Hence these optimum dimensions for the patch and the feed position shown below are 

used in the fabrication of the patch antenna, 

 

a = 39.2 mm, b = 30.2 mm, Xp = 12.4 mm and Yp = 8.7 mm. 
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2.5  Comparison of Predicted, Modelled and Practical Results of the 

Designed Antenna 

The photograph of the fabricated antenna is shown in Fig. 2.5 was fabricated and tested, 

 

 

Figure 2.5: Photograph of the fabricated patch antenna. 

 

The frequency responses of the return loss obtained using the Agilent network analyser 

(N5230A) and from the GA programme are shown in Fig. 2.6. At 1.85 GHz frequency there 

is an excellent agreement and at 2.4 GHz there is a difference of 2 % between the predicted 

and the practical results. 
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Figure 2.6: Predicted and practical results for the return loss 

 

The simulated polar patterns using AWR software of the antenna at 1.85 GHz and 2.4 GHz 

are shown in Fig. 2.7 where a good Radiation Pattern of the patch antenna between the two 

has been obtained. 
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(b) 

Figure 2.7: Polar patterns at (a) 1.85 GHz and (b) 2.4 GHz  

 

2.6 Summary  

In this chapter a literature review and a detailed implementation of GA were discussed. Then 

in the GA optimisation three objective functions were evaluated in the design of a dual 

frequency matched antenna. For two of the objective functions the obtained return loss was 

very different at the two frequencies however the third objective function produced excellent 

and very close results for the return loss. The above result shows how important it is to 

choose the most suitable objective function. The optimum dimensions for the patch and for 

the feed position obtained were used to fabricate the antenna. The measured return loss the 

two frequencies was approximate -30 dB and there was a very good agreement between the 

predicted and practical results. Therefore, the GA optimization methods could be used to 

design of high efficiency power amplifiers (PAs) and active integrated antennas (AIAs) in 

next few chapters.  
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Chapter 3 Literature Review and Theory of Class E 

Power Amplifiers 

  

3.1  Introduction 

A high efficiency class E power amplifier was first proposed by Sokal et al [36] where an 

external capacitor was placed at the output and in parallel with the active device. A series 

resonant load circuit with a high Q factor was used to obtain the required optimum 

impedance at the design frequency and very high impedances at the harmonics of the design 

frequency.  To reduce losses caused by transients in the voltage waveform the rise of the 

output voltage was delayed until after the active device was turned off and the output voltage 

reached its minimum value with a slow turn on.  Raab [39] by modelling the active device as 

a lossless switch derived the design equations assuming 50% duty cycle. Kazimierczuk [4] 

analysed this amplifier circuit for a range of Q factor and duty cycle, while Gaudio [40] 

produced an exact analysis where the characteristics of the active device were included. 

Grebennikov [17, 28] showed that the efficiency of power conversion reduces when the  

operation  frequency  is higher than the maximum frequency and if the VSWR of the load 

decreases, which will be proved in this project. In [42, 43] Jaeger investigated how the losses 

in the load network and the finite switching time affect the efficiency of power conversion. A 
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push-pull power amplifier with the two transistors driven with a phase difference of 180
0

 was 

used to improve the efficiency by reducing the even harmonics in the load resistor. In [81] a 

symmetrical push-pull amplifier had a load resistor connected in parallel with a capacitor and 

the active device was driven „on‟ and „off‟ within in each of the half-operating period. This 

allowed a low Q = 1.9 to be used and efficiency of 85 % was obtained [19]. At microwave 

frequencies lumped elements of the load network are normally replaced by transmission 

lines. It is also shown in [3, 35, 81, 82] the conditions to obtain good efficiency can be 

obtained by using transmission line harmonic load network to satisfy the requirements up to 

the third harmonic.  In this chapter the derivations of the published equations are reviewed for 

voltage/current waveforms and the required load impedance at the design frequency to obtain 

maximum efficiency. Then new equations are derived for the voltage /current waveforms and 

for the optimum impedance at the design frequency. 

 

3.2  Review of the Derivation of the Voltage / Current Waveforms and 

Optimum Load Impedance for a Class E Amplifier 

This section reviews the equations for the voltage and current waveforms assuming the turn 

on resistance of the active device, Ron, is equal and not equal to zero [57, 83]. The conditions 

to eliminate transients in the voltage/ current are applied. Then with Ron not equal to zero new 

equations are derived where the conditions for transients in the voltage and current 

waveforms are relaxed.  
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3.2.1  Derivations of the Equations Assuming Ron the Turn on Resistance of an Active 

Device are Equal to Zero 

A simple equivalent output circuit of an ideal class E amplifier is shown in Fig. 3.1 where a 

practical active device is modelled by a switch and a turn on resistance, Ron, and an external 

capacitor, Cs, is placed at the output terminals of the active device. Applying the below 

conditions ensures that the overlap of voltage and current waveforms is minimised [16]. 

 

Figure 3.1: Model of an ideal class E amplifier 

 

a) Lchoke is lossless and large so that only dc current, Idc, flow through it. 

b) Cs is an external linear capacitance and much larger than the inherent non-linear 

capacitance of the active device. 
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c) The switch has an infinite „off‟ resistance and a linear „on‟ resistance which is 

assumed to be zero in this section. 

d) Duty cycle is 50 %; 

e) To ensure that only a current at the design frequency flows in the load resistor RL the 

input impedance of the load harmonic network at the design and harmonic frequencies 

are given below, 

    (3.1a) 

        for  ; (3.1b) 

f) The load current IR (t) at the design frequency is given by (3.2) where the amplitude , 

a, and phase , „ ‟, need to be determined to ensure that the voltage/current waveforms 

do not overlap and maximum efficiency is obtained, 

. (3.2)                                                                                                                         

When the switch is open in Fig. 3.1 during the period (0 < t< TS/2) the current in the 

capacitor Cs is,  

; (3.3) 

Integrating (3.3) shows that the switch voltage is given by (3.4). 

 
(3.4) 
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To obtain the constants, φ and a the following two conditions are used for the switch voltage 

waveform [84] which ensures transients in the voltage and current waveforms are eliminated. 

1) The switch voltage  which ensures that when the 

switch closes the transient response in the voltage waveform is eliminated as is the 

½CV
2 

loss in the capacitor. For this condition from (3.4) in can be shown that acosφ 

= π/2; 

2) The other requirement is that at the switch voltage must be gradually 

decreasing and hence  and for this condition the current in the capacitor 

is zero. Therefore the transient response in the current waveform is eliminated as are 

½Li
2
 losses in the inductor. Substituting this condition in (3.4) it can be shown asinφ 

= -1. 

From the above two conditions, it can be readily shown that a = 1.862 and φ = -32.32
0
.  

The equations over the whole period for the switch voltage and current waveforms are 

summarized in (3.5a) and (3.5b). 

; 

(3.5a) 

. 

       

(3.5b) 

Integrating (3.5a) it can be shown that 

; (3.6) 
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Values Vdc = 5 V, Cs= 1 pF, fs = 2 GHz will be used in all the relevant equations in this and 

next chapter. The above equations are plotted in Fig. 3.2 showing that the two waveforms do 

not overlap and meet the above two conditions. 

 
(a) 

 

 
(b) 

Figure 3.2: Switch waveforms: (a) voltage and (b) current 

 

To obtain the optimum input of the load network it is necessary to determine the parameters 

of the switch voltage at the design frequency (see (3.7)) from (3.5a). From the Fourier 

analysis it can be shown that the amplitude and phase for the below equation are, av = 0.28 

and φv = 16.57º. 

            (3.7) 
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Using (3.2) and (3.7) the optimum input impedance of the ideal load harmonic is given below 

[36], 

  
        (3.8) 

For the above values of Cs and fs the real and imaginary parts of the optimum impedance are 

plotted in Fig 3.3 over the frequency range 1.4 to 2.6 GHz. 

 

Figure 3.3: the optimum input impedance of the ideal load harmonic Vs design frequency (fs) 

 

3.2.2  Derivations of the Equations for Voltage/Current Waveforms for Ron not equal to 

Zero 

A practical active device does not behave as an ideal lossless switch (Ron ≠ 0) and in this 

section based on [16] the effect of „Ron’ on the switch voltage/current waveforms is 

investigated. The details of the derivation for the voltage and current waveforms are given in 

Appendix B1. 
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For Ron ≠ 0 it is convenient to define vs1(t) as the switch voltage during the period (0 ≤ t ≤ Ts/2) 

when the switch is open and voltage vs2(t) in the period (Ts/2 ≤ t ≤ Ts) when the switch is 

closed. To derive the equations for the voltage/ current waveforms and for the parameters 

„ar‟, and, „φr’ the following two conditions are applied. 

(1) vs1(0) = vs2 (Ts) to ensure that the voltage waveform is periodic; 

(2) vs1 ( ) = vs2 ( ) = 0 to ensure that transients in the voltage and current waveforms are 

eliminated. 

For the „on‟ state ( ) when the switch is closed the current in Ron is Idc(1 - arsin(ωst 

+ φr)) . During this period the switch voltage is given by,  

        (3.9a) 

When t = Ts then from the above equation 

        (3.9b) 

Applying condition (2) when t = Ts/2, Vs2 (Ts/2) = Ron Idc( 1+arsinφr) = 0 and hence 

        (3.10) 

Using (3.10) . 
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For the „off‟ state ( ) the switch is open and the current in the capacitor Cs is  

        (3.11) 

The voltage across the capacitor vs1(t) is given by  

        (3.12) 

Integrating the above equation it can be shown that 

        (3.13) 

It is interesting to note that substituting (3.10) into (3.12) when t = Ts/2 the derivative 

dvs1(t)/dt is also equal to zero. This is the same results as shown in the previous section when 

Ron = 0 which ensures that transients in the voltage and current waveforms are eliminated. 

Using the condition (1) in (3.13), it can be shown that 

        (3.14) 

From (3.10) and (3.14) the equations for the two parameters „ar‟ and „φr‟ are shown below, 

  
      (3.15) 

        (3.16) 
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The equations for the switch voltage and current waveforms over a complete period are given 

in (3. 17) and (3. 18), 

  

     (3.17) 

   

     (3.18) 

To plot the above equations it is necessary to obtain Idc. In terms of a specified value of Vdc, 

this is obtained by integrating (3.19), 

  
      (3.19) 

In appendix B2 a simplified equation for Idc (see (3.20)) can be derived, 

  
      (3.20) 

It is interesting to note that there is an error in the above equation for Idc in [20] as expressed 

as  
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The effect of Ron (0 to 5Ω) on ar, φr and Idc is summarised in Table 3.1, 

Ron ar φr (º) Idc (A) 

0 1.862 -32.482 0.197 

1 1.873 -32.275 0.186 

2 1.883 -32.071 0.176 

3 1.894 -31.869 0.167 

4 1.905 -31.670 0.159 

5 1.915 -31.472 0.152 

 

Table 3.1: Effect of Ron on the parameters ar, φr and Idc 

 

Figures below shows how Ron (0 to 5 Ω) affects the voltage and current waveforms,  

 

              (a)                                                                                         (b) 

Figure 3.4: Switch waveforms: (a) voltage and (b) current with the variable resistances (Ron) (in Ω) 
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1) From Fig.3.4 the following conclusion can be made. In the period  as Ron 

increases the peak current decreases and the peak voltage increases. This causes the ac output 

power to decrease, the overlap between the switch voltage and current waveforms increases 

while the power dissipated in Ron increases; 

2) As Idc decreases as Ron increases the dc input power decreases; 

Consequently the above two effects cause the efficiency of dc to ac conversion to decrease. 

 

To investigate how Ron affects the optimum input impedance at the design frequency it is 

necessary to determine the magnitude and angle of „K1‟ in (3.21).   

        (3.21) 

Where 

  
      (3.22) 

The optimum input impedance of the external load harmonic network is given in (3.23). 

 

        (3.23) 
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Table 3.2 shows (see appendix B.2) how Ron (0 to 5Ω) affects the optimum impedance at the 

design frequency, 

Ron (Ω) 2|k1| v (º)
 Re(Zopt) (Ω) Im(Zopt) (Ω) 

0 8.194 16.571 14.611 16.839 

1 7.650 18.222 13.945 16.913 

2 7.165 19.917 13.283 16.995 

3 6.732 21.653 12.622 17.073 

4 6.344 23.433 11.964 17.152 

5 5.994 25.253 11.309 17.230 

 

Table 3.2: Effect of Ron on the optimum load impedance 

 

3.2.3 Derivations of New Equations for the Voltage/Current Waveforms and Optimum 

Impedance 

In the previous section the parameters „ar‟ and „φr‟ were obtained to ensure that transients in 

the voltage/current waveforms and losses ½Li
2
, ½CV

2
 were eliminated. In this section these 

conditions are not imposed and new equations are derived for the voltage/current waveforms 

and for the load optimum impedance at the design frequency. This has been done to 

investigate if this approach can reduce the overlap of the voltage and current waveforms and 

hence improve efficiency. Details of how the efficiency is affected using the new equations 

are discussed in the next chapter. 
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As in the previous, section the voltage vs1(t) is present in the period  and voltage 

vs2(t) is present during the period ), which is given by 

   
 (3.26) 

Where  

 

 

 (3.27a) 

 
 (3.27b) 

 

To obtain the values of „ar‟ and „φr‟ the following two conditions are imposed.  

1)  To ensure that the voltage waveform is periodic vs1 (0) = vs2 (Ts)   

2) To make the switch voltage waveforms continuous vs1 ( ) = vs2 ( ) but not equal to zero. 

 

Applying the above conditions to (3.27a) and (3.27b) results in a quadratic equation for „ar‟ 

and „φr‟, (see Appendix B.3) 

     (3.28) 
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It is difficult to obtain analytically the two roots (ar, φr) of (3.28). A three dimensional graph 

shown in Fig 3.7 was initially used to determine the range of the two parameters, ar (1.7~ 

2.3mm) and φr (-27º~ -34º). These ranges of values were then used in a MATLAB 

programme (see appendix B.4) to determine the two parameters. 

 

Figure 3.5: Optimum solutions Y(ar, φr) of (3.26) using variable ar and φr 

 

For the new equations Fig. 3.6 shows the voltage and current waveforms and as expected in 

both waveforms there are now sharp discontinuities. 

 

      (a)                                                                                    (b) 

Figure 3.6: Switch waveforms: (a) voltage and (b) current with the variable resistors (Ron) (in Ω)  
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The obtained parameters „ar‟ , „φr‟, Idc, 2|k1|, v and Zopt for Ron  0 to 5 Ω  are shown in Table 

3.3.  

Ron (Ω) ar φr(º) Idc (A) 2|k1| v (º) Re(Zopt)(Ω) Im(Zopt)(Ω) 

0 2.407 -49.270 0.108 7.957 9.256 15.946 26.057 

1 2.389 -48.185 0.107 7.655 10.989 15.302 25.654 

2 2.414 -47.973 0.103 7.371 12.484 14.592 25.736 

3 2.375 -50.788 0.088 6.973 8.633 16.899 28.596 

4 2.470 -47.696 0.095 6.867 15.426 13.168 25.985 

5 2.309 -50.847 0.081 6.481 8.510 17.627 29.767 

 

Table 3.3: Input impedance of the external load harmonic network vs. turn „on‟ resistor (Ron) using optimum 

values of ar, φr, 2|k1|, and v  

 

Table 3.3 shows that for the new equation Ropt has now increased and this would suggest that 

ac output power would also increase. The effect on the efficiency by the sharp discontinuities 

in the two waveforms is investigated in the next chapter. 

 

3.3  Summary 

In this chapter it has been shown that for Ron equal to zero and applying the required 

conditions the transients in the voltage/current waveforms are eliminated and the two  

waveforms do not overlap. For Ron not equal to zero two approaches have been used to 

determine the parameters ar and φr of the two waveforms. One approach was to eliminate 
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sharp changes in the voltage/current wave forms and the other was to allow sharp changes in 

both waveforms. In both cases as Ron is not equal to zero there is now an overlap in the two 

waveforms which must lead to the reduction in the efficiency of dc to ac power conversion.  

The effect of losses due to the harmonic currents in the load resistor, Ron, and losses in the 

load harmonic network will be investigated in the next chapter. This investigation will be 

carried out using the equation derived in this chapter. Then these results will then be 

compared with those obtained using Agilent ADS and AWR (Microwave Office) software 

where the nonlinear circuits are analysed using Harmonic Balance method. 
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Chapter 4 Overview the Effect of Amplifier Losses on the 

Efficiency of D.C. to A.C. Power Conversion 

 

4.1 Introduction  

In the previous chapter the ideal load harmonic network has optimum input impedance at the 

design frequency and an open circuit at all harmonics of the design frequency. Consequently 

no power is dissipated in the load resistor Ropt by the harmonic currents and the only power 

loss is in the Ron resistance. As it is not possible to realise such an ideal load harmonic 

network some power will always be dissipated in Ropt by the harmonic currents. In the design 

of a load harmonics network it is important to investigate the power loss due to the harmonic 

currents and how this loss affects efficiency of power conversion. In this chapter the ideal 

harmonic load is replaced by a series resonant circuit, as it could operate as a simply patch 

antenna. The effect of the Q factor on the losses caused by the harmonic currents in Ropt and 

on the efficiency is investigated using GA. These losses and their effect on efficiency are then 

compared with losses that occur in the resistance Ron. Finally different load harmonic 

networks are designed and the effect of losses in these networks on efficiency is investigated.  
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4.2 Effect of the Load Harmonic Currents on Efficiency 

Fig. 4.1(a) shows an ideal load harmonic network for a class E amplifier. A simple practical 

equivalent circuit of the ideal network is a series resonant circuit having a high „Q‟ factor 

shown in Fig. 4.1(b) [85]. In the investigation carried out in this section it is assumed that Ron 

is equal to zero so that the losses in the load circuit are only due to the harmonic currents 

flowing in the load resistance Ropt. 

 

(a)                                                                 (b) 

Figure 4.1: Simplified form of the load harmonic network 

 

The efficiency of dc to ac power conversion is defined as η= Pout/Pdc*100% where Pout is the 

output ac power developed in the resistor Ropt and Pdc is the dc input power obtained from the 

dc supply. From (3.6) it can be shown that Vdc = Idc/ (πωsCs) and hence Pdc =Idc
2
/ (πωsCs) For 

the ideal load harmonic network only current at the design frequency can flow in the load 

resistance Ropt and the output ac power Pout = (a Idc)
2
Ropt., Ropt is given by (3.9), a =1.862 (see 

chapter 3) and hence it can be shown that the efficiency η is 100%. 
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To investigate the losses due to the harmonic currents flowing in the resistance Ropt it is 

useful to replace the ideal harmonic network by the series resonant circuit where the „Q‟ 

factor can be modified. 

For a typical value of Cs = 1 pF and a design frequency fs = 2 GHz the optimum input 

impedance from table 3.1, is 14.61+ j16.84Ω. 

The input impedance of the above load network is given by  

.      (4.1) 

Where ω0 is the resonant frequency of the load harmonic network and ωs is the design 

frequency (fs = 2 GHz).  

The GA is used to investigate how the Q factor of the series resonant circuit affects efficiency 

and the bandwidth of the efficiency. This is achieved by determining the lowest value of the 

Q factor so that maximum efficiency is still obtained by restricting the maximum amplitudes 

of the currents of the second and third harmonics relative to the amplitude of the current 

flowing in the load circuit at the fundamental frequency. 

The objective function used in GA in the optimisation is given below. 

. 
     (4.2) 

The input dc power to the amplifier is  

.      (4.3) 
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The power loss in the resistance of the series resonant circuit at the second and third 

harmonics is given below. 

.      (4.4a) 

.      (4.4b) 

The currents flowing in the load resistance at the second and third harmonics are shown 

below. 

       (4.5a) 

       (4.5b) 

From the Fourier analysis carried out of the voltage waveform (see (3.6)) the coefficients of 

the second and third harmonics are given below,[20]. 

 

       (4.6) 

The conditions to minimize the current flowing through the load network, which will for the 

second and third current harmonics, are given below. 

 ;      (4.7a) 

 .      (4.7b) 
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Details of the implementation of the GA software are shown in appendix C.1. From the 

results obtained Fig. 4.2 shows how the efficiency depends on the Q factor and the resonant 

frequency.   

 

(a) 

  

(b) 

Figure 4.2: Simulation results (a) in dB and (b) in absolute values 

From the Fig. 4.2 (a) it can be seen that the efficiency of the ideal class E amplifier is nearly 

100% for Q ≥ 3 and is nearly independent of resonate frequency  from 1.7 to 1.95 GHz.   
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The ideal harmonic switch voltage and load harmonic current (Ron = 0) were also achieved 

below, 

Q f0 (GHz) IR (2 GHz) IR (4 GHz) IR (6 GHz) Pout (W) Pdiss (W) η (%) 

2 1.505 0.367 0.062 0.010 1.016 0.029 97.07 

5 1.783 0.368 0.032 0.005 0.995 0.008 99.22 

10 1.888 0.367 0.018 0.003 0.989 0.002 99.77 

20 1.943 0.367 0.009 0.001 0.988 0.001 99.94 

 

Table 4.1: Load harmonic current and harmonic switch voltage Vs variable Q factor 

 (a = 1.862, φ = -32.482ºand Pdc = 0.987 W) 

 

The Harmonic-Balance Analysis (HB) option in the „ADS‟ software was used to model the 

designed circuit. HB modelling can be can be used for strongly or weakly nonlinear networks 

having single or multi tone excitation. The nonlinear sub-circuit is analysed in the time 

domain while the linear circuit is analysed in the frequency domain. In this design the 

nonlinear element is the switch and the linear network is the series resonant circuit.  

The solution is obtained by an iterative process by ensuring continuity of current flow 

between the two sub-circuits for all the frequency components. 

The simulation schematic of the circuit by using Agilent ADS software is shown in Fig. 4.3 

where the period for the nonlinear network was specified as 0.5 nsec (as Ts = 1/ fs) while for 

the linear network the design frequency (fs) was specified as 2 GHz. In the schematic circuit 

below Ron is equal to zero so that only the effect on efficiency by the loss caused the 

harmonic currents in resistance Ropt, is investigated. 
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Figure 4.3: Simulation of a class E output circuit using Agilent ADS software 

 

The obtained simulated results shown in Table 4.2 confirm the above theoretical prediction 

that the Q factor and hence the losses due to the harmonic currents in the load resistance have 

very little effect on the efficiency of power conversion. The main effect of Q factor is on the 

bandwidth of efficiency and hence a circuit with a low Q factor can be used to obtain a wide 

efficiency bandwidth. 

Q f0 (GHz) η (%) Bandwidth 

(%) 

2 1.46 99.08 47 

5 1.74 99.89 26 

10 1.75 99.48 15 

20 1.885 99.42 7 
 

Table 4.2: Effect of Q on efficiency and efficiency bandwidth from ADS simulation 
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4.3 Effect of Ron on the Efficiency of Power Conversion 

4.3.1  For the Condition when the Voltage Waveform at Half Period is Zero  

Using (3.15) and (3.16) it can be shown that (see appendix D) the input dc power and ac 

output powers are given by, 

  
     (4.8) 

. 
     (4.9) 

The power dissipated in the active device can now be obtained by evaluating (3.24). 

       (4.10) 

The efficiency of power conversion is given by (4.11), 

  
     (4.11) 

The effect of Ron (1 to 5 Ω) based on the above derived equations and those obtained from 

ADS simulation on the input, output and dissipated power and efficiency is shown in table 

4.3. 
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 P dc (W) Pout (W) Pdiss (W) η (%) 

Ron (Ω) Predicted ADS Predicted ADS Predicted ADS Predicted ADS 

0 0.987 1.066 0.987 1.065 0 0.01 100 99.892 

1 0.932 1.008 0.849 0.917 0.083 0.091 91.128 90.983 

2 0.882 0.953 0.733 0.791 0.150 0.162 83.104 82.996 

3 0.837 0.911 0.635 0.690 0.204 0.221 75.804 75.693 

4 0.796 0.87 0.55 0.602 0.247 0.270 69.129 69.057 

5 0.759 0.834 0.478 0.525 0.283 0.308 62.995 63.018 

 

Table 4.3: Comparison of the Effect of Ron on the Predicted and Simulated Results (Q = 5) 

 

The above table shows that there is a good agreement between the predicted and simulated 

results. As can be see the power dissipated in the turn on resistance Ron has a major effect on 

the efficiency of power conversion. The conversion loss decreases from 100% when Ron is 

zero to 63% when Ron = 5 Ω. Consequently to obtain maximum efficiency an active device 

with the smallest Ron resistance should be used. The result of sweeping the design frequency 

(fs), is shown in Fig. 4.4. 
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Figure 4.4: Efficiency of the amplifier vs. design frequency using ADS (Q = 10) 

 

Due to the important effect of the Ron, it is necessary to further investigate another new 

methodology to improve the performance of the class E PA, when the active device FET has 

been selected.  From above figure, it can be seen that after changing operating frequency of 

the PA, its efficiency will be increased. When the design frequency (fs) was swept to 2.2 

GHz, the maximum efficiency could be achieved to 79% (see Fig.4.4), but the perfected 

waveforms were not valid, which are given in Fig. 4.6. The above figure implies that the 

smooth current and voltage waveforms can be obtained at 2 GHz (see Fig. 4.5), but not the 

maximum efficiency.  

 

   (a)                                                                (b) 

Figure 4.5: Voltage (in V) and current (in A) waveforms of the class E PA (Ron= 5 Ω) at 2 GHz 
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   (a)                                                                (b) 

Figure 4.6: Voltage (in V) and current (in A) waveforms of the class E PA (Ron= 5 Ω) at 2.2 GHz 

 

From the above discussion, it implies that the conventional methodology of class E amplifier 

is not critical especially when the Ron not equal to zero. Hence, a better method is to use the 

quadratic equation (3.28) to obtain better efficiencies, which have been fully explained in 

Chapter 3, so only the predicted and the simulation results are given in section 4.3.2 and the 

current and voltage waveforms can be seen in Fig. 3.8 and in section 4.3.3 the Genetic 

Algorithms (GA) will be used to achieve the required maximum efficiency.   
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4.3.2 Effect on the Efficiency for the Condition when the Voltage Waveform at Half 

Period Are equal but not Zero 

Using Table 3.2, the optimum efficiency of the class E amplifier could be obtained below,  

 P dc (W) Pout (W) Pdiss (W) η (%) 

Ron (Ω) Predicted ADS Predicted ADS Predicted ADS Predicted ADS 

0 0.541 0.587 0.541 0.586 0 0.002 100 99.738 

1 0.536 0.582 0.502 0.544 0.034 0.038 93.708 93.517 

2 0.516 0.561 0.453 0.492 0.063 0.069 87.732 89.636 

3 0.442 0.460 0.372 0.392 0.070 0.068 84.252 85.319 

4 0.477 0.526 0.366 0.404 0.111 0.122 76.683 76.776 

5 0.406 0.412 0.309 0.323 0.097 0.069 76.268 78.352 

 

Table 4.4: Effect of Ron on the predicted and simulated results (Q = 5) 

 

4.3.3 Application of Genetic Algorithm to Obtain Maximum Efficiency 

The maximum efficiency could be obtained by using GA, the objective function is 

. Show in the appendix derivation of the equations below, 

Using (3.22), the dc current can be obtained as 

  
   (4.12) 
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   (4.13) 

Using the input impedance of the external load harmonic network in (3.28) as given 

   
(4.14) 

The ac output powers are given by, 

 
 (4.15) 

The maximum power conversion efficiency (ηmax) is given in (4.16) as a function of ar and φr. 

 
      (4.16) 

The three dimensions graph (ar, φr), maximum power conversion efficiency (ηmax ) of 

(4.16) has been plotted as shown below, 

 

Figure 4.7: Optimum solutions ηmax of (4.16) using variable ar and φr 



 

54 
 

By applying the GA programmes, the novel optimum input impedance has been obtained for 

variable turn on impedance (Ron), which were shown below in Table 4.5 below, 

Ron (Ω) ar φr(º) Re(Zopt) (Ω) Im(Zopt) (Ω) 

0 2.508 -57.260 19.338 32.509 

1 2.521 -57.203 18.922 32.823 

2 2.577 -55.206 16.867 31.049 

3 2.561 -58.186 18.464 34.449 

4 2.683 -59.165 17.235 35.162 

5 2.647 -58.301 17.015 34.966 

 

Table 4.5: Effect of Ron on the predicted and simulated results (Q = 5) 

The voltage and current waveforms obtained from the Table 4.5 are shown in Fig. 4.8 when   

Ron= 0.01 Ω which is the smallest value allowed in the software and in Fig 4.9 when Ron = 5 

Ω. 

 

      (a)                                                                (b) 

Figure 4.8: Voltage and current waveforms of the class E PA (Ron= 0.01 Ω) 
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      (a)                                                                (b) 

Figure 4.9: Voltage and current waveforms of the class E PA (Ron= 5 Ω) 

 

After further investigation, the spikes in the current waveforms shown in Figs 4.8 and 4.9 are 

operating over 50 GHz. Depending on the size of the transistor and low pass filters are 

commonly used in Morden communalisation systems, these high frequency spikes will be 

easily absorbed and it hardly affects the efficiency of the class E PAs. 
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The optimum solutions of (4.16) will be obtained by using the Genetic Algorithms (GA) (see 

appendix C.2). Final optimum solutions of the ar and φr are achieved below, 

 P dc (W) Pout (W) Pdiss (W) η (%) 

Ron (Ω) Predicted ADS Predicted ADS Predicted ADS Predicted ADS 

0 0.403 0.415 0.396 0.412 0.007 0.003 98.121 99.342 

1 0.389 0.398 0.363 0.378 0.026 0.020 93.427 94.919 

2 0.399 0.415 0.357 0.376 0.042 0.040 89.391 90.477 

3 0.350 0.352 0.296 0.307 0.054 0.045 84.745 87.225 

4 0.327 0.329 0.265 0.277 0.062 0.053 81.055 83.948 

5 0.324 0.327 0.251 0.263 0.073 0.064 77.369 80.546 

 

Table 4.6: Effect of Ron on the predicted and simulated results (Q = 5) 

To expand values of the Ron, the application of these novel methodologies will be 

investigated next. 

 

Figure 4.10: Optimum load impedance, Ropt vs. variable turn on resistance, Ron  
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Figure 4.11: Optimum efficiency vs. variable turn on resistance, Ron 

 

From Figs 4.10 and 4.11, it could be seen that when the Ron is less than 5 Ω, the optimum 

load impedance, Ropt, is nearly constant and excellent agreement between the predicted (using 

GAs) and simulation results (using ADS) is achieved. Due to the losses in power transistors, 

the Ron is normally selected less than 5 Ω; when the Ron was bigger than 5 Ω, the novel 

equations achieved would not be valid. These figures are only used for future investigation. 

 

4.4 Effect of Losses of Different Load Harmonic Networks on the 

Efficiency 

4.4.1 Modelling with Ideal R_L_C Parallel Circuits 

To deal with ideal load harmonic networks of an ideal class E amplifier, R_L_C parallel 

circuits were used to achieve the required input impedance at 2 GHz, which is equal to 
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17.015 + j 34.966 ohms (see table 4.5). Hence, a new harmonic load network was designed 

and simulated using Agilent ADS in Fig. 4.12 below,  

 

 

Figure 4.12: Simulation of a class E output circuit using Parallel tuned circuits 

 

After applying the required complex impedances of the harmonic circuit, the anticipated 

results have been carried out and the current and voltage waveforms have been plotted in 

Fig.4.13. Furthermore, the respective load current and voltage spectrums have given in 

Fig.4.14. 
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(a)                                                                                      (b) 

Figure 4.13: Voltage and current waveforms of the class E PA (Ron = 5 Ω) 

 

 

(a)                                                                                      (b) 

Figure 4.14: Spectrum frequencies of the load voltage (a) and current (b) (Ron= 5 Ω) 

 

From Figs.4.13 and 4.14, it can be seen that even the distorted input switch voltage and 

current waveforms have been applied, the smooth output voltage and current waveforms still 

be obtained. 



 

60 
 

From the ADS simulation, the excellent results could be obtained, which is about when the 

Ron is equal to 5 ohms, 78.13% of the power efficiency could be achieved, which matches the 

predicted results in table 4.5. 

The above discussion also implies that a yield optimum input impedance of the load networks 

will be confirmed to be used in the next step of the circuits‟ design, in which the transmission 

line will be involved in the research. 

 

4.4.2 Modelling with Ideal Transmission Lines 

The transmission line takes a significant part in high frequency microwave RF circuits design. 

The ideal lumped elements which have been used in the last chapters will be transformed to 

transmission lines using ideal transmission line theory. The design frequency of the amplifier 

is 2 GHz. The simulation circuits can be seen in Fig. 4.15. 

 

Figure 4.15: Simulation of a class E output circuit using transmission lines 
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(a)                                                                                      (b) 

Figure 4.16: Voltage and current waveforms of the class E amplifier (Ron= 0.01 Ω) 

 

 

(a)                                                                                      (b) 

Figure 4.17: Spectrum frequencies of the load current (in A) (a) and voltage (in V) (b) (Ron= 0.01) 

 

From Figs.4.16 and 4.17, it can be seen that even the distorted input switch voltage and 

current waveforms pass through lossy Mlines load harmonic networks, have been applied, the  

ideal voltage and current waveforms still be obtained and the efficiency of the class E 

amplifier is equal to 99.9%, When Ron = 0. 
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4.5 Summary 

In this chapter it has been shown that as the Ron resistance of the active device increased the 

peak of the current waveform reduced and the overlap of the current and voltage waveforms 

increased. Both effects contributed to the decrease in the efficiency of power conversion. 

GA and new quadratic equations were then used to produce a design graph for a series 

resonant circuit to show the relationship between the „Q‟ factor, resonant frequency and the 

efficiency of power conversion. By modelling the amplifier, it was shown that the efficiency 

is largely dependent on Ron and independent of losses due to harmonic balance.  

Consequently the efficiency is largely dependent on the Ron while the efficiency bandwidth 

depends on the Q factor. To obtain high efficiency and high efficiency bandwidth an active 

device should have a low turn on resistance and the series resonant circuit should have a low 

Q factor (Q ≥ 2, see table 4.2).  

In next chapter, the complex mathematical analyses in this chapter will be reduced, which 

have been studied and investigated in this chapter. A novel method is proposed to determine 

this resistance as a function of the length of the Mline, which is realised using both 

inexpensive PCB FR4 and Duroid 5870 substrates. 
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Chapter 5 Effect of the Losses in the Load Harmonic 

Networks on Amplifier Efficiency 

 

5.1 Introduction  

To obtain a high efficiency of dc to ac power conversion in an amplifier, it is necessary to 

decrease the power dissipation in the active device by ensuring that the overlap of the voltage 

and current waveforms at the output terminals of the active device is minimized. This 

reduction of overlap is obtained by using load harmonic networks to shape the above 

waveforms at the active device output terminals. In the three common classes of high 

efficiency power amplifiers (PAs) (E, F and F
-1

), this shaping is obtained by attenuating 

different harmonics of the waveforms using load harmonic networks [36, 82, 86-88]. For the 

class E amplifier [1, 36] a capacitance is placed across at the output terminals of the active 

device. This is to ensure that the output voltage is delayed until the active device is turned 

„off‟ and the output voltage reaches its minimum value with a slow turn „on‟. If this device is 

driven hard „on‟ and „off‟ to obtain high efficiency as shown in [17, 85] that the input 

impedance must be very high at the harmonic frequencies. At the design frequency the 

required input impedance depends on the value of the above capacitance [28]. 
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Ideal lossless transmission lines (Tlines) are used in the initial design of harmonic networks 

for high efficiency power amplifiers and then practically realised using microstrip lines 

(Mlines). As the metal and substrate losses in Mlines are normally expressed in terms of 

attenuation constants, these losses are difficult to determine as they require solutions of 

complex mathematical equations. In this chapter, to reduce such complex analysis, the losses 

in a Mline are modelled as a Tline in series with a resistance. A novel method is proposed to 

determine this resistance as a function of the length of the Mline, which is realised using both 

inexpensive PCB FR4 and Duroid 5870 substrates. Then for the above two line models, 

harmonic networks were designed up to the second and third harmonics and the losses 

obtained losses at the design frequency are compared. Finally, the effect of the losses with 

different harmonic networks on the class E PA was investigated. 

 

5.2 Review of S Parameters of Two Port Networks Using Unequal Source 

and Load Impedance  

Fig 5.1 shows for a two port network the incident, reflected voltages/currents at the source 

and the load ports. It also shows the total voltages and currents (V1, I1, V2, I2) at the two ports.  

 

Figure 5.1: Block diagram of two ports networks 

Port 2 Port 1 
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S parameters used in the design of filters, couplers and power splitters normally assume that 

R01= R02= 50 Ω .However in the design of harmonic networks used for amplifiers R01≠ R02 so 

that maximum efficiency of power conversion can be obtained. In this section therefore, 

derivation of the S parameters for R01≠ R02 is reviewed and then they are used to investigate 

the power loss in different load harmonic networks.  

In Fig. 5.1 if E2 is made equal to zero it is shown in the appendix that the normalised 

reflected signal, a2, at the load port is given by   

 
 (5.1) 

As V2= -I2 R02 then a2 = 0 as required. 

The incident signal „b2‟ at the load port is  

 
 (5.2) 

Similarly by making E1 equal to zero the reflected signal at the source port „a1‟is given by 

 
 (5.3) 

The incident signal b1 at the source port is   
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 (5.4) 

Using the above equations the following parameters S11 and S22 can be obtained.  

 
 (5.5) 

 
 (5.6) 

Zin1 and Zin2 are the input impedances of the two port network looking from port 1 and port 2. 

Similarly the other two S parameters shown in the equations below can be obtained. 

 
 (5.7) 

 
 (5.8) 

It is convenient to use signal flow graphs to analyse microwave networks consisting of 

transmission lines. For a simple two port network a signal flow graph is shown in Fig. 5.1 

where the node (a1, b2 , a2, b2 and bs) are connected by branches  defined by the „S‟ 

parameters.   
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Figure 5.2: Signal flow graphs which for a two port network 

 

The transducer power gain GT defined is defined. 

   (5.9) 

From the signal flow analysis using Mason „non touching rule‟ it can be shown that 

  
 (5.10) 

ГS is the source reflection coefficient and ГL is the load reflection coefficient, which are 

defined by the two equations below. 

   (5.11) 

   (5.12) 
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For a matched two ports network, as , then from equations above, it can be 

obtained as and the power loss Ploss in the network is (1- ). Hence, in the 

next few sections, S21 will be used to investigate the losses of the harmonic networks. 

 

5.3 Modelling Losses in Microstrip Transmission Lines and Harmonic 

Networks 

Conductor and dielectric losses in uniform transmission lines have been derived in terms of 

attenuation constants. However in the investigation of losses in harmonic networks complex 

equations are required to be solved. To simplify the analysis the microstrip line is modelled 

as an ideal lossless transmission line (Tline) in series with a resistance „R‟ as shown in 

Fig.5.3 (a) and for each length of the Mline (see Fig. 5.3(b)), the resistance „R‟ is tuned so 

that the „S21‟ parameter in both circuits is the same.  

To reduce mismatch errors, a Tline in series with a resistance and a Mline connected in series 

with Tline (see Fig. 5.3(b)) are connected in a shunt configuration. To reduce errors due to 

the imaginary part of the input impedance of the lines, the electrical length of Tline in 

Fig.5.3(a) and the total length of the two lines in Fig. 5.3(b) should be halve-wavelength long. 

As the length of Mline is increased the electrical length of the ideal line connected in series is 

reduced to maintain that the total length of both lines is equal to the half wavelength 

throughout the measurement of the resistance. AWR software was used for different lengths 

of microstrip lines where the resistance „R‟ was tuned till S21 was the same for the two 

models.  
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Port 1 Port 2

TLine θ

R

                        

(a)                                                                            (b)  

Figure 5.3: (a) Tline in Series with Resistance „R‟; (b) Tline in Series with the Mline 

 

By using the above methodologies, the losses of the Mline (R) are linearly dependent on the 

length of the Mline, which is about 0.0376 Ohms/mm using PCB FR4 (because practical 

fabrication tolerance occurs mismatch oscillation, the least square fitting method is used to 

obtain linear response see Fig. 5.4) and 0.0035 Ohms/mm using Duroid 5870 substrates.  

 The width (W) of the microstrip line was chosen so that the characteristic impedance, Z0, was 

50Ω. The investigation was carried out at 2 GHz for two substrates, PCB FR4 where the loss 

angle of the substrate is 0.019 and RT Duroid 5870 where the loss angle is 0.002. The results 

obtained are shown in the two figures in next page. 

 

MLine LM

Port 1 Port 2

TLine θT
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Figure 5.4: Resistances, R, as a Function of Length for PCB FR4 

 

 

Figure 5.5: Resistances, R, as a Function of Length for RT Duroid 5870 
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As can be seen the resistance „R‟ is smaller for the „Duroid‟ than it is for „PCB FR4‟ substrate 

as the former substrate has a much lower dielectric loss tangent. Further the above graphs 

show that there is a linear relationship between R and the length of the microstrip line. This 

property will be used in GA in later work to optimise harmonic networks to obtain minimum 

loss at the design frequency. In the next section these results are used to compare the losses 

obtained for different topologies of harmonic networks which are realised using the two 

substrates. 

 

5.4 Design of the Load Harmonic Networks to the Second and Third 

Harmonic and the Effect of Losses on the Efficiency of Power Conversion 

In this section different load harmonic networks are designed to meet the requirement for a 

class E PA at the second harmonic. Their designs is based on the assumption Ron = 0, the 

required Zopt (as shown in chapter 3) is 14.611 + j16.682 (Ohms) and load impedance is Z0 (= 

50 Ω).  The required input impedance at the second harmonic is ideally infinity. As Ron =0 the 

only losses are in the harmonic network and due to the harmonic currents in Z0. 

In the design of networks in order to suppress harmonics, shunt transmission lines are used, 

which are either a half-wave or a quarter-wave length long. This ensures a short circuit or low 

impedance at junctions with the series transmission lines. This is to ensure that the required 

input impedance is obtained independently at each harmonic frequency. For different 

harmonic networks the losses are obtained from the S21 parameter and are compared for the 

two models of transmission lines as shown in Fig 5.3. 
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5.4.1  Losses in a Suppressed Second Harmonic Network 

In Fig. 5.6(a) the second harmonic of 4 GHz is suppressed by the Mline M1 and M2, which are 

a half wavelength and a quarter wavelength long, respectively. The short circuit at the line M2 

models the effect of placing a dc voltage supply for the amplifier. The lines M3 and M4 are 

used to obtain matching at two ports at the design frequency. As the input impedance of the 

network at 2 GHz is 14.6 +j 16.8 Ohms a conjugate value of this impedance is required by 

the source port to obtain a maximum power transfer. In the AWR software used to model the 

designed networks, the ports are required to have only real impedances. To cancel the 

reactance j16.8 a capacitor C1 of 4.67 pF is placed as shown in Fig. 5.6(a). Impedance of 

Ports 1 and 2 are 14.6 Ω and 50 Ω, respectively. M3 and M4 are used to obtain matching at the 

design frequency. Fig. 5.6(b) models each Mline with a Tline in series with the appropriate 

resistance.  

M2

M3

M4

M1

Port 1 Port 2

C

      

(a) 

T2

T3

T4

T1

Port 1

R1

R2

R3

R4

Port 2

C

 

(b) 

Figure 5.6: Harmonic Networks Using PCB and Duroid 5870 Substrates (a) MLines, (b) Modelled using TLines 

in Series with Resistance, R 
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The lengths and the values of the resistances for both substrates are summarised in the two 

tables below. 

 Length of the Microstrip Lines (mm) Equivalent Resistance (Ω) 

M1 9.4 R1 = 0.67 

M2 21.7 R2 = 1.54 

M3 3.8 R3 = 0.27 

M4 12 R4 = 0.85 

 

Table 5.1: Equivalent resistances of variable microstrip lines using PCB FR4 substrate (Z0 = 50 Ω)  

 

 Length of the Microstrip Lines (mm) Equivalent Resistance (Ω) 

M1 9.4 R1 = 0.07 

M2 21.7 R2 = 0.15 

M3 3.8 R3 = 0.03 

M4 12 R4 = 0.08 

 

Table 5.2: Equivalent resistances of variable microstrip lines using Duroid 5870 substrate (Z0 = 50 Ω)  

 

The frequency response of the S-parameters is in shown Fig. 5.7 using PCB FR4 substrate 

(using Duroid 5870 substrate can be see in Appendix D) and from S12 determines the loss 

both networks. 
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(a) 

 

(b) 
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(c) 

Figure 5.7: The obtained S-parameters (a) S11, (b) S22 using FR4 substrate and (c) S21 using both substrates 

 

The switch voltage and current waveforms for the above harmonic networks are shown in 

Fig. 5.8. As it can be seen that the effect of losses is to considerably reduce the oscillations 

during the „on‟ state and the oscillations are reduced to a lesser extent in the „off‟ state for the 

current waveforms.  

 

(a) 
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(b)  

Figure 5.8: The switch voltage / current waveforms and efficiency (a) PCB FR4 Substrate  

(b) Duroid5870 Substrate 

 

The efficiency obtained for the harmonic network for both substrates and their models are 

compared in the Table 5.3 below. 

Substrate Efficiency (%) 

PCB FR4 92.53 

Duroid 5870 98.01 

 

Table 5.3: Comparison of the efficiency using difference substrate 

Due to using the lossy substrate (PCB FR4), the efficiency of the amplifier will reduce to 

92%; less effect of the load harmonic voltage/current has less effect, which will only reduce 

the efficiency of the amplifier by about 2%. 

Finally, T junctions were included and the lengths of the microstrip lines were tuned to obtain 

optimum S parameters. Fig. 5.9 shows the parameters S11 and S22 and as can be seen matching 

has been obtained at each port. 
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(a) 

 

     (b) 

Figure 5.9: Obtain optimum S parameters: S11 and S22 

 

The obtained S12 parameter is shown in Fig. 5.10. 
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Figure 5.10: S Parameters for PCB FR4 Substrate and Duroid 5870 Substrate 

 

For PCB FR4 substrate S21 = 0.975 and the efficiency is 92.5%. For Duroid 5870 substrate S21 

= 0.997 and the efficiency is 98%.  

The voltage and current wave forms obtained for each substrate using microstrip line are 

shown in Fig. 5.11 and Fig. 5.12. 

 

     (a)                                                                         (b) 

Figure 5.11: PCB FR4 Substrate: Voltage (a) and current waveforms (b)  
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 (a)                                                        (b) 

Figure 5.12: Duroid Substrate Voltage (a) and current waveforms (b) 

 

The expected voltage waveform was obtained but again the current waveform was distorted 

showing a big spike and oscillations. From previous discussions in chapter 4, it can be seen 

that the big spikes will not affect the performance of the PAs. 

The efficiency obtained for the harmonic network with junctions is 92.3% for PCB FR4 

substrate and 96.2% for the Duroid 5870 substrate. It is interesting to note the adverse effect 

on the losses of the efficiency. 

In this section two different harmonic networks were designed using ideal lossless 

transmission lines and microstrip lines which were realised using high loss PCB FR4 

substrate and a low loss Duroid 5870 substrate. It was found that the expected voltage 

waveform was obtained but the current was distorted. However this distortion only had a 

small effect on the efficiency of power conversion which is largely dependent on the losses in 

the substrate and the effect of junctions. 

The obtained power conversion efficiencies are shown in Table 5.4, showing a good 

agreement for the two models shown in Fig. 5.7 and for the two substrates. The higher loss in 
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the PCB FR4 substrate as compared with the losses in the Duroid 5870 substrate causes the 

efficiency to reduce by about 6%. 

 Power Conversion Efficiency (%) 

TLines with R (PCB FR4) 90.52 

TLines with R (Duroid 5870) 97.51 

MLines (PCB FR4) 90.76 

MLines (Duroid 5870) 95.63 

 

Table 5.4: Power conversion efficiencies for the Two Models of the Harmonic Networks  

for PCB FR4 and Duroid 5870 Substrates  

 

5.4.2 Losses in a Suppressed Second and Third Harmonics Network 

Four topologies of a harmonic network up to third harmonic are shown in Fig. 5.13 where in 

each case the short circuit shows the position where a dc voltage for the amplifier would be 

connected. 

λ2/2

M3

M6

λ2/4

M5 Port 2

λ3/4M2 M4

M1Port 1

C

    

(a) 
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(b) 
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(c) 
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(d) 

Figure 5.13: Four Different Harmonic Networks up to the Third Harmonic 

 

In Fig. 5.13(a) the T2 is made half-wavelength at the second harmonic while T4 is made 

quarter-wavelength to ensure short circuit conditions at the junctions of T1/T3 and T3/T4. T1 is 

made quarter wavelength at the second harmonic to ensure that the input impedance is 

infinity at this frequency. To obtain the required input impedance at the third harmonic the 

length of T3 is obtained. A similar process is applied to the network in Fig. 5.13(b) except 
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now the length of T3 is obtained to obtain the required impedance at the second harmonic. A 

similar design is applied for the two networks shown in Fig. 5.13(c) and Fig. 5.13(d). In 

Figs.5.13(a) to 5.13(d) the lines T5 and T6 are used to obtain matching at the source and load 

ports.   

The real and imaginary parts of the input impedance of the above four networks is shown in 

Figs. 5.14 and 5.15 where it can be seen that the required impedances at the design frequency 

and at the two harmonics have been obtained. 

 

   

(a) 
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(b) 

 

 

(c) 

Figure 5.14: Real part of Input Impedance of the Four Networks operating at 2, 4 and 6 GHz 
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 (a) 

 

(b) 
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(d) 

Figure 5.15: Imaginary part of Input Impedance of the Four Networks operating at 2, 4 and 6 GHz. 

The frequency response of the „S‟ parameters at the design frequency are shown in Fig. 5.16. 

 

(a) 
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(b) 

Figure 5.16: Obtain optimum S parameters: S11 and S22 

 

From S21 there is no loss in the network as expected below 

 

Figure 5.17: Obtain optimum S parameters: S21  
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The switch voltage/current waveforms obtained are shown in Fig. 5.17. 

(a) 

 

(b) 

 

(c)  
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(d) 

 

(A)                                                                    (B) 

Figure 5.18: The switch voltage (in V) (A) /current (in A) (B) waveforms 

 

The efficiency obtained for four kinds of load harmonic networks are compared in the Table 

5.5 below. 

Four kinds of load harmonic networks Efficiency (%) 

(a) 99.44 

(b) 99.90 

(c) 99.72 

(d) 99.78 

 

Table 5.5: Comparison of the efficiency using difference substrate 
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From the switch voltage/current in Fig. 5.17 and the efficiency from Table 5.5, it can be 

determined that the best performing load harmonic network is (b) and it will be used to 

design the circuitry. 

The above lossless transmission lines were replaced by microstrip lines and by lossless 

transmission lines in series with the appropriate resistance. 
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(b) 

Figure 5.19: Two port networks: (a) Microstrip Line Model, and (b) Equivalent Transmission Line with R 

Model for PCB FR4 and Duroid 5870 Substrates 

 

The lengths and the values of the resistances for both PCB FR4 (and more details of using 

Duroid 5870 substrates can be see in Appendix D) are summarised in the two tables below, 
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(a) 

 Length of the Microstrip Lines (mm) Equivalent Resistance (Ω) 

M1 10.2 R1 = 0.73 

M2 20.5 R2 = 1.46 

M3 10 R3 = 0.71 

M4 6.8 R4 = 0.48 

M5 24.4 R5 = 1.73 

M6 12.2 R6 = 0.87 

 

 

(b) 

 Length of the Microstrip Lines (mm) Equivalent Resistance (Ω) 

M1 6.8 R1 = 0.48 

M2 13.5 R2 = 0.96 

M3 2.8 R3 = 0.20 

M4 10.2 R4 = 0.73 

M5 3.6 R5 = 0.26 

M6 7.8 R6 = 0.55 

(Total length = 44.7 mm) 
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(c) 

 Length of the Microstrip Lines (mm) Equivalent Resistance (Ω) 

M1 10.2 R1 = 0.73 

M2 10.2 R2 = 0.73 

M3 11.6 R3 = 0.82 

M4 13.5 R4 = 0.96 

M5 39.3 R5 = 2.79 

M6 9.5 R6 = 0.68 

 

(d) 

 Length of the Microstrip Lines (mm) Equivalent Resistance (Ω) 

M1 6.8 R1 = 0.48 

M2 6.8 R2 = 0.48 

M3 1.9 R3 = 0.13 

M4 20.5 R4 = 1.46 

M5 5.5 R5 = 0.39 

M6 11.4 R6 = 0.81 

 

Table 5.6: Equivalent resistances of variable microstrip lines using PCB FR4 substrate (Z0 = 50 Ω) (Total length 

= 52.9 mm). 
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The frequency response of the input impedance for the two models using PCB FR4 substrate 

(using Duroid 5870 substrate are given in Appendix D) is shown in Fig. 5.19. 

 

 (a) 

 

(b) 

Figure 5.20: Input Impedance (in Ω) of the load harmonic networks using (a) PCB FR4 substrate and (b) 

Equivalent circuits with R. 
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The frequency response of the „S‟ parameters using load harmonic (b) using PCB FR4 

substrate (results using Duroid 5870 could be found in Appendix D) in Fig. 5.18 is shown in 

Fig. 5.20. 

 

(a) 

 

(b) 
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(c) 

Figure 5.21: The obtained S-parameters using FR4 substrate (a) S11, (b) S22 and (c) S21 

 

Design of each of the above networks is very similar to that of the previous section and the 

frequency response of S21 for the four circuits and the two substrates shows that a very good 

agreement is obtained in Fig. 5.21using PCB FR4 and Fig. 5.22 using Duroid 5870. 
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(a) 

 

(b) 

Figure 5.22: The frequency response of S21 using PCB FR4 for the four topologies circuits using (a) Tlines with 

R and (b) Mlines   
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The obtained power conversion efficiencies are compared in Table 5.7. 

 Power Conversion Efficiency (%) 

Load harmonic networks (a) (b) (c) (d) 

Tlines with R using PCB FR4 86.27 95.96 87.60 93.35 

MLines using PCB FR4 82.91 93.65 84.28 92.42 

MLines using Duroid 5870 96.85 96.21 98.69 99.24 

Total Lengths of Mlines using 

PCB FR4substrate (mm) 

84.1 43.2  93.7  50.9  

Total Lengths of Mlines using 

Duroid 5870 substrate (mm) 

108.4 56.1 120.7 65.6 

 

Table 5.7: Efficiency of Power Conversion for Mlines and Equivalent Tlines with Resistance R, and, Total 

Lengths of Mlines 

 

From Table 5.7 there is a good agreement for efficiency obtained by the two models of 

transmission lines. From Tables 5.4 and 5.7, it can be seen that the efficiency is only slightly 

lower with the suppression of only the second harmonic networks shown in Fig. 5.10 than the 

suppression of the second and third harmonics shown in Fig. 5.22.  

Table 5.8 also shows that the power conversion efficiency increases as the total lengths of the 

microstrip lines decreases, especially for lossy PCB FR4 substrate.   
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5.5 Summary 

In this chapter the losses in Mlines are modelled as resistance in series with a Tline and a 

novel method has been used to determine how the resistance depends on the length of a Mline 

realised using PCB FR4 and Duroid 5870 substrate. The losses were compared the second 

suppressed harmonic networks with the second and third suppressed harmonics networks 

using the S21 parameter.  A good agreement was obtained for the two models. A harmonic 

network was designed for optimum input impedance at the design frequency and at second 

harmonic. The obtained losses for the two models were in good agreement and the efficiency 

of power conversion for both networks was nearly 91%.  

Four different topologies were designed up to the third harmonic and it was shown again that 

there was a good agreement in the frequency response of the S21 parameter for the two 

models. Then using the networks the effect of losses on the power conversion efficiency was 

investigated. A good agreement was obtained for the two models and it was also shown that 

as the total length of the Mlines increased the efficiency of power conversion decreased. The 

efficiencies for the suppressed second harmonic networks were nearly the same as those for 

the harmonic networks designed up to the third harmonic. From this result it can be assumed 

that it is sufficient to design harmonic networks only up to the second and third harmonic, 

especially using the lossy PCB FR4 substrate to design a class E amplifier using a nonlinear 

active device_ATF34143 transistor in next chapter. 
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Chapter 6 Design of High Efficiency Stabilized Class E 

Amplifiers Using a Nonlinear Active Device 

 

6.1 Introduction 

As investigated in the last few chapters, the large input signal is applied to drive the active 

devices hard „on‟ and „off‟ in order to obtain the high dc to ac power conversion. To reduce 

the power losses in the active device, a shunt capacitance (Cs) across the FET is required to 

minimise the overlap between the switch voltage and current waveforms. Consequently, it is 

necessary to investigate the nonlinear model of the given active device.  

In this chapter, the active device models will be reviewed in section 6.2. In section 6.3 the 

most popular and efficient method to measure the input and output impedance of the 

nonlinear active devices (device-under-test (DUT)) has been introduced using passive or 

active load/source-pull measurement methods has be introduced and the stability analysis 

equations for class E PAs are studied in section 6.4. The selected MESFET ATF34143 has 

been described in section 6.5. A novel procedure of design of a high efficiency class E 

amplifier will be introduced, which is using the data sheet of the given active device 

(ATF34143) to obtain the turn-on resistance (Ron) and then the shunt capacitance (Cs) will be 
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determined by using the obtained Ron in section 6.6 and 6.7. In section 6.8, design of 

matching networks using lumped elements for the class E amplifier will be introduced and 

design of matching networks using microstrip lines and the simulation results will be given in 

section 6.9 and 6.10. Finally, the implementation and practical measurement will be shown in 

section 6.11. 

 

6.2 Literature Review of Active Device Models 

It is well known that accurate device modelling is extremely important to develop monolithic 

integrated circuits [16, 89], consequently, it is necessary to review the relevant active device 

models first and it can give better approximations of the final design of the class E amplifiers 

if the performance of the nonlinear active model is described accurately. 

To produce a commercial compact size of integrated circuits, the Field Effect Transistor 

(FET) is used. The most commonly used FETs are the MOSFET (Metal-oxide-semiconductor 

field-effect transistor) and MESFET (Metal semiconductor field effect transistor), which are 

used for amplifying or switching electronic signals. The nonlinear MOSFET and MESFET 

models with extrinsic elements are given in Fig. 6.1. 

 

(a) 
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(b) 

Figure 6.1: Nonlinear MOSFET (a) and MESFET (b) models with extrinsic elements 

 

The nonlinear models of MOSFET and MESFET in Fig.6.1 are very similar. In the intrinsic 

models, the channel charging resistance Rags is the resistive path for the charging of the gate-

source capacitance Cgs, the feedback gate-drain capacitance Cgd, the drain-source capacitance 

Cds, the gate-source diode to model the forward conduction current igs(vgs), and the gate-drain 

diode to account for the gate-drain avalanche current igd(vgs, vds), which can occur and can be 

used for large signal operation conditions.   

Because numerous MESFET fabrication possibilities have been explored of semiconductor 

systems, its main application areas are front end low noise amplifiers of microwave 

transmitters, power amplifiers for output stages of microwave links, satellite communication, 

and commercial optoelectronics and so on and so forth.  

In this thesis the ATF34143 MESFET has been selected and its data sheet will be reviewed in 

the next section. 
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6.3 Review of the Nonlinear Analytical Methods for Class E Amplifiers 

The most popular and efficient method to measure the input and output impedance of the 

DUT is to use passive or active load/source-pull measurement methods. The objective of the 

active load/source-pull measurement method is to find the best output/input impedance of the 

required optimum values of the load impedance ZL(nf0)/source impedance Zs(nf0) in terms of 

the obtained optimized power gain and power-added efficiency (see Fig. 6.2), where n = 1, 2, 

3... When the transistor is operating in the nonlinear region, the measurements are required to 

produce large-signal operation as input and output impedance at required bias condition and 

certain frequency ranges.   

 

Figure 6.2: Topology of source/load-pull measurement systems 

 

Fig. 6.2 shows at the input/output of the DUT, the measurements of the large-signal 

impedance are achieved at fundamental frequency (f0), second harmonic (2f0), third harmonic 

(3f0) and so on.  
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6.4 Stability Analysis for Class E Amplifiers 

Oscillation can occur in RF power amplifiers (PAs) due to positive feedback caused by the 

reciprocal properties of the actives devices. It also could generate negative input impedance 

as show in chapter 5. To simplify the test procedure, the Rollett K-factor [90] is normally 

used to determine if the testing device is unconditionally stable, see (6.1). Two conditions are 

required for unconditional stability as shown below 

 
(6.1) 

Where, Δ = S11S22-S12S21. For additional conditions, any one of the following five conditions 

will ensure unconditional stability. 

 (6.2) 

 (6.3) 

 (6.4) 

 (6.5) 

 (6.6) 

It is well known that the K factor is normally used for stability analysis of linear amplifiers; 

hence, it has several limitations when used in stability analysis of nonlinear amplifiers. The 

linear analysis does not account for the instability caused by nonlinear components in PAs. 

Although the K factor is not accurate, it is simple to obtain. Hence, this analysis still available 

in used most commercial microwave circuits design.  
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6.5 Review of High Frequency Nonlinear Model of a Given FET 

When active devices (FETs) have been selected, its data sheet could be easily obtained In this 

section, the active device models MESFET ATF34143 has been selected and from the data 

sheet, the maximum drain and source voltage (Vds) is equal to 5.5 V and the maximum drain 

current (Ids) is equal to 145 mA when the Vds is equal to 1.5 V. The Statz nonlinear model of 

the ATF34143 can be see from Figs. 6.3 to 6.5, the evaluated internal capacitance (CI = Cgs) 

is equal to 0.8 pF, which will be used to determine the Cs in next section. 

 

6.6 Determine the Turn-on Resistance (Ron) and Turn–off Resistance (Roff) 

for the Given FET 

From the data sheet as mentioned above, the IV curves could be obtained and modified in 

AWR (Microwave Office) software, 

 

Figure 6.3 Typical I-V curves (VGS= -0.2 V per step) [14] 
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Because to the drain voltage (Vdd) is about equal to the one third of the maximum drain 

voltage, hence the Vdd is used as 3 V in this design for the off condition (when the VGS is 

equal to -0.6 V) and 0.8 V is used in the on condition. 

 

Figure 6.4 From the I/V curves to determine the DC resistances 

 

From the figure above, the dc resistance of the device, Ron, and Roff have been calculated, 

which are equal to 5.3 and 714 Ω. The AC load line of the load resistance (RL) could be 

determined, In Fig.1, it is can be seen that the RL is from 11 to 22 Ω (see Fig. 6.4, 

), the average optimum impedance (Ropt) is about equal to 17 Ω. Using the 

obtained Ron (which is about 5 Ω = ), the shunt capacitance across the FET will be 

determined in the next section. 
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6.7 Determine the Shunt Capacitance (Cs) Across the Active Device of the 

Class E PA 

Using the ideal waveforms of the class E amplifier, the ideal optimum impedance Ropt = RL, 

which is from 15 to 17 Ω at 2 GHz when Ron is equal to 5 Ohms [13], the equation is shown 

below, 

 
    (6.7) 

Where ωs is the angular velocity. 

When the load of this transistor was fixed (from 15 to 17 Ω), the value of Cs can be 

calculated, which value is from 0.9 to 1.07 pF. 

 

Figure 6.5: Transistor with inherent and external capacitances 

 

It is well known, the shunt capacitance is equal to the total value of the inherent and external 

capacitance, see Fig. 6.5. From the data sheet, it has been given that the inherent capacitance 



 

106 
 

(CI) is equal 0.8 pF. Hence the external capacitance (CEx) should be from 0.1 pF to 0.27 pF at 

2 GHz. 

From the empirical experience, it is hard to find the value of the capacitance is lower than 1 

pF. Hence the 1 pF external capacitance and 17 Ω optimum load (RL) will be used in next 

section. 

 

6.8 Design Matching Networks for the Class E Amplifier 

Using the obtained load resistance (RL), the class E PAs will be designed by using lump-

elements and then microstrip lines (Mlines) will be used to obtain the final results. 

As discussed, a 17 Ω load resistance will be used in this section. Using the schematic shown 

in Fig.6.6 and then the value of the inductance will be justified to obtain ideal smooth current 

and voltage waveforms (see Figs. 6.8 and 6.9). The final value of the inductance has been 

obtained, which is equal to 1.78 nH. An additional two parallel LC circuits were used to 

suppress higher harmonics such as at both 2
nd

 Harmonic (4 GHz) and 3
rd

 Harmonic (6 GHz) 

as required. 
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For the nonlinear model of the amplifier, the optimum impedance Ropt is about equal to 17 

Ohms. To obtain the input impedance of the given transistor, the schematic will be used in 

Fig. 6.6,  

 

Figure 6.6: Ideal load harmonic networks for the class E amplifier 
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The input impedance of the load harmonic network is given below, 

 

Figure 6.7: Input impedance of the load harmonic network. 

 

From the above figure, it can be observed that the input impedance of the load harmonic 

networks (ZL) is equal to 17 + j37 Ohms at 2 GHz and open circuits at 4 and 6 GHz as 

required (see Chapter 4).  
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The switch voltage/current waveforms are shown below, 

 

Figure 6.8: Switch current waveform (Ids) of the load harmonic network  

 

 

Figure 6.9: Switch voltage waveform (Vds) of the load harmonic network 

 

To design the matching networks for the class E amplifier, the first step is to obtain the input 

impedance looking into the transistor (Zin), which is given in Fig. 6.10, 
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Figure 6.10: Input impedance of the class E amplifier with a 1 pF shunt capacitor. 

 

 

Figure 6.11: Input impedance of the class E amplifier with a stabilized resistor (Rs) 
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To obtain the high efficiency stabilized class E amplifier, it is necessary to investigate the 

relationship between the stabilized resistors (Rs) and the power added efficiency, which will 

be given below, 

Rs (Ω) Zin (Ω) Power Added Efficiency (%) 

0 -3.168 – j19.24 76.39 

5 1.905 – j19.24 73.28 

12 9.008 – j19.21  69.2 

22 19.15 – j19.09 63.7 

 

Table 6.1: the relationship between the stabilized resistors (Rs) and the power added efficiency 

 

6.9 Design of a High Efficiency Stabilized Class E Amplifier using 

Microstrip Lines  

From previous section, it can be discovered that to obtain the stabilized class E amplifier, the 

stabilized resistors, Rs, have to be used, as the real part of Zin can become negative (see 

Fig.6.10). This will reduce the efficiency of the amplifier.  

The electrical and physical parameters of the substrate PCB FR4 used are: dielectric constant 

is 4.3, the height of substrate is 1.575 mm, the loss tangent is 0.019 and the thickness of the 

copper patch is 0.035mm. 

By using one of the topologies in Fig.6 (the dimensions of the class E amplifier are shown in 

Table 6.2) will be used to obtain the final results, which will be given in Table 6.3. 
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Figure 6.12: the topology of a class E amplifier with a stabilized resistor (Rs) using the topologies from chapter 

5 (see Fig. 5.8 (b)) 

 

In the above schematic, M1 and M2 are the source matching networks at the fundamental 

frequency (f0 = 2 GHz), M4 and M5 are used to create high impedance at 6 GHz (3
rd

 

Harmonic), M6 and M7 are to generate high impedance at 4 GHz (2
nd

 Harmonic), M8 and 

M9 are the matching networks at 2 GHz. The gate voltage (Vgg) is equal to -0.7 V and the 

drain voltage (Vdd) is equal to 3V. 
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 M1 M2 M3 M4 M5 M6 

Width (mm) 3 3 3 3 3 3 

Length (mm) 3 3 20.5 6.8 13.5 2.8 

 M7 M8 M9 C C1 C2 

Width (mm) 3 3 3  

1000 pF 

 

2.2 nF 

 

15 nF 
Length (mm) 10.2 7 9.1 

 

Table 6.2: The dimensions of the class E amplifier with dc block capacitance (C=100 pF) 

 

Rs (Ω) Zin (Ω) Power Added Efficiency (%) 

0 1.191 + j10.93 76.39 

5 6.359 + j10.59 73.28 

12 13.42 + j9.378 69.2 

22 22.89 + j6.274 63.7 

 

Table 6.3: the relationship between the stabilized resistors, Rs, and the power added efficiency, PAE 

 

From table 6.2 above, it can be seen that the potential efficiency of the class E amplifier is 

about 77% which is matched to the research in chapter 4, which is using a novel quadratic 

equation (3.28) (76.268 %) and Genetic Algorithms (77.369 %) when Ron is equal to 5 Ohms 

and the Rs is equal to 0 Ohms (See table 4.4 and 4.6). But unfortunately, to stabilise the class 

E amplifier and to ease design of the source matching networks, the Rs = 22 Ohms will be 

used to design the high efficiency stabilized power amplifier. 
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6.10 Simulation Results of the Class E Amplifier using PCB-FR4 

In this section, simulation is carried out for the stability K factor; switch waveforms, S 

parameters and the power added efficiency of the class E amplifier from the last section. 

First of all, using AWR (Microwave Office) simulation tools, the designed class E amplifier 

has been simulated as shown below, 

 

Figure 6.13: Simulation block diagram using AWR software 

 

Using voltage and ampere meters, the switch current flowing through the transistor and the 

switch voltage across the transistor could be obtained when the input power is equal to 12 

dBm as shown, 
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Figure 6.14: Current and voltage waveforms using AWR software 

 

The frequency response of the stability factor K is over 1.4 showing in Fig. 6.15, it can be 

obtain that the designed PA is unconditionally stable over the frequency range 1.9 to 2.1 

GHz. 

 

Figure 6.15 Simulated stability responses 
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The frequency response of the S11, S22 and S12 are shown in Figs. 6.16, 6.17 and 6.18 where 

the input power is 12 dBm. 

 

Figure 6.16: Simulated S11 at Pin = 12 dBm 

 

 

Figure 6.17: Simulated S22 at Pin = 12 dBm 
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Figure 6.18: Simulated S12 at Pin = 12 dBm 

 

Frequency response of the gain is shown below 

 

Figure 6.19: Simulated Gain when Pin = 12 dBm 
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From above figures, the gain of the designed amplifier in simulation results is over 7 dB at 2 

GHz and the simulated PAE will be equal to 59.6% at 2 GHz and input power is 12 dBm as 

shown in Fig. 6.20. 

  

Figure 6.20: The simulated PAE of the designed class E PA 

 

From above figures, it shows the balance between the matching and efficiency. When 

complexity input and output harmonic networks are used, excellent reflect coefficient 

parameters, S11 and S22 will be obtained. But when more and more Mlines are used for 

matching, more and more losses will be occurred and the efficiency will be reduced. 

In this project, high efficiency class E PAs are required and the efficiency will be the main 

objective to be concentrated. Because the load harmonic networks are more complex than 

input harmonic network, the load performance S22 is better than input performance S11. 
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6.11 Implementation and Measurement 

A photograph of the fabricated class E PA is shown in Fig. 6.21, which has the equivalent 

circuit model discussed in last sections. The model is verified using the electromagnetic 

simulator, Microwave Office (AWR). The amplifier is designed using PCB-FR4 substrate 

with a dielectric constant of 4.3. 

 

Figure 6.21 Photograph of the fabricated class E PA 

 

The measurement block diagram is shown in Fig. 6.22, and a photograph of the measurement 

is shown in Fig. 6.23. The power added efficiency and the gain are measured and shown in 

Table 6.3. An Agilent PSW signal generator was used to generate 2 GHz and up to 14 dBm 
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input signal, an Agilent Oscilloscope DSO9254A was used to measure the output power. At 

12.56 dBm input level, 4.3 dB Gain and 71.66% PAE are achieved. 

 

Figure 6.22: The block diagram of the measurement setup 

 

 

Figure 6.23: A typical measurement setup for the power amplifier 
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The input and output voltage waveforms operates at 2 GHz will be plotted below, 

 

           (a) 

 

              (b) 
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               (c) 

 

             (d) 
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           (e) 

Figure 6.24: Input and output voltage waveforms operate at 2 GHz using Agilent Oscilloscope DSO9254A 

 

Pin (dBm) Real Pin (dBm) Pout (dBm) Pdc (dBm) Idc (mA) PAE (%) Gain (dB) 

0 -0.87 0.6 7.08 1.7 6.43 1.46 

2 0.59 1.95 8.57 2.4 5.87 1.37 

4 2.44 4.52 9.82 3.2 11.25 2.09 

6 4.46 6.42 11.21 4.4 12.02 1.95 

8 6.53 9.95 12.55 6 29.98 3.42 

10 8.67 12.54 13.91 8.2 42.95 3.86 

12 10.74 14.6 15.11 10.8 52.44 3.86 

14 12.56 16.86 16.29 14.2 71.66 4.30 
 

Table 6.4: Gain and PAE vs. input power at 2 GHz 
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After counting the losses of the coaxial cables, the PAE of the designed class E amplifier has 

achieved over 71% at Pin = 12.56 dBm at 2 GHz, which is in agreement with the simulation 

results in the last sections and the predicted results in Chapter 4 by using new quadratic 

equations and GA. Even the resulting measured PAE is slightly higher than the simulation, 

because the nonlinear transistor is from the produced data sheet by vendor, which is not 

accurate.  After sweeping the operating frequency of the class E PA, the response of Gain are 

given below, 

Frequency (GHz) 

Gain (dB) 

Pin = 10 dBm Pin = 12 dBm Pin = 14 dBm 

1 7.27 6.97 6.51 

1.2 6.51 6.31 5.19 

1.4 5.33 5.27 5.15 

1.6 4.67 4.60 4.48 

1.8 4.15 4.05 4.40 

2 3.86 3.86 4.30 

2.2 3.33 3.25 3.22 

2.4 2.74 2.69 2.75 

2.6 1.61 1.69 1.67 

2.8 -0.28 -0.40 -0.36 

3 -3.33 -3.18 -3.25 

 

Table 6.5: Response of Gain by sweeping frequency from 1 to 3 GHz at various input power (Pin) 
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From Table 6.5, it can be seen that the bandwidth of the class E PA is really broad, which 

matches the results in chapter 4. And it proves that even the small „Q‟ factor networks have 

only a minor effect on efficiency, allowing a wide bandwidth to be obtained.  

The Gain of the class E PA is over 7 dB at low frequency (e.g. 1 GHz), which is matched the 

previous simulation result (see Fig. 6.19); due to the lossy material (PCB FR4) has been used, 

lower Gain (around 4dB)   is obtained at high frequency (e.g. 2 GHz). After 2.4 GHz, the 

Gain drops down dramatically, which matches the results in Fig. 6.19. 

  

6.12 Summary 

In this chapter, a novel procedure of design of a high efficiency class E amplifier has been 

introduced, which is using the data sheet of the given active device (ATF 34143) to obtain the 

turn-on resistance, Ron, and then the shunt capacitance, Cs, will be determined by using the 

obtained Ron. Finally how to design of a high efficiency stabilized class E amplifier has been 

investigated, in which the  stabilized resistors (Rs)  is equal to 12 Ohms will used in the 

practical fabrication procedure. 

In this chapter, the active device models have been reviewed.  The most popular and 

efficiency method to measure the input and output impedance of the nonlinear active devices 

is to use passive or active load/source-pull measurement methods has be introduced.  

A novel procedure of designing high efficiency class E PAs has been introduced to reduce the 

research cost, shorten the design period and save the energy of the wireless communication 

systems. The new method will increase the PAE of the conventional power to over 71%. 

From the achievement, it can be seen that if a new method could be investigated without 

stabilized resistance; the PAs could achieved over 76% or even more.  
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Finally the designed class E PAs have been fabricated and measured, the Gain of the class E 

PAs over 3.8 dB and the PAE of the class E PA has achieved over 52.44% at Pin = 12 dBm 

and 71.66% at Pin = 14 dBm at 2 GHz. 
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Chapter 7 Conclusions and Future Work 

 

7.1 Conclusions 

This section presents a brief summary of the important outcome of this research carried out 

on using mitigation technologies to increase the efficiency, reduce cost, broad bandwidth and 

simplify the procedure of circuitries design.  

Chapter 2 initially reviewed the basic concepts and the implementation of GA. In the case of 

a dual frequency antenna had two objectives, as matching was required to be obtained at the 

two design frequencies. These objective functions were combined into three possible single 

global functions. They were then used in the GA, to determine the optimum dimensions of 

the patch and the position of the probe feed, to satisfy the requirements for the return loss at 

each frequency. For two of the objective functions although good results were obtained the 

return losses at each frequency were not similar. The third global function produced excellent 

and similar results for the return loss. Using the optimised design parameters the dual 

frequency patch was manufactured and tested. An excellent agreement was obtained between 

the predicted, modelled and practical results and based on this work a paper was published 

[54]. 
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In chapter 3 which investigated the basic concepts of class E power amplifiers, the active 

device was modelled as a switch in series with the Ron resistance and an ideal harmonic load 

was assumed. For the ideal case when Ron was equal to zero, 100% efficiency of power 

conversion was obtained. It was found that if Ron was finite the effect was to reduce input dc 

power, ac output power and caused the current/voltage waveforms to overlap.  

In chapter 4, the performance of the output stage for the class E amplifier was investigated, 

where the active device was modelled as a switch in series with Ron. However the ideal 

harmonic load had been replaced by a series resonant circuit. Consequently there were 

additional losses due the harmonic currents flowing in the load resistance. In [57] to reduce 

this loss caused by the harmonic currents, a high Q factor of the circuit was used. However 

when a high Q factor was used the efficiency bandwidth was reduced.  

In Chapter 5 ideal lossless transmission lines (Tlines) have been used in the initial design of 

harmonic networks for high efficiency power amplifiers, and then practically realised using 

microstrip lines (Mlines). As the metal and substrate losses in Mlines are normally expressed 

in terms of attenuation constants, these losses are difficult to determine as they required 

solutions of complex mathematical equations. To reduce such complex analysis, losses in a 

Mline have been modelled as Tlines in series with a resistance. A novel method was proposed 

to determine this resistance as a function of the length of the Mline, which was realised using 

both inexpensive PCB FR4 and expensive Duroid 5870 substrates (see Appendix D). Then 

for the above two line models, harmonic networks were designed up to the second and third 

harmonics and the obtained losses at the design frequency compared. Finally, the effect of the 

losses with different harmonic networks on class E PAs was investigated. 
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In chapter 6 active device models were reviewed.  The most popular and efficiency method 

for measuring the input and output impedance of nonlinear active devices, the load/source-

pull measurement method, was introduced.  

A novel procedure for designing high efficiency class E PAs was introduced to reduce the 

research cost, shorten the design period and save energy in wireless communication systems. 

The new method increases the PAE of the conventional power to over 71%. However is 

limited in practice by the use of a stabilising resistor. If this can be removed the PAs could 

achieve over 76% efficiency.  

This project also proved that the power loss due to the harmonic currents in the load resistor 

is very small and hence the efficiency largely depends on Ron. Therefore low Q factor 

harmonic networks can be applied and achieve both high efficiency and a wide bandwidth 

which has been proved from practical measurement. 

Finally the designed class E PAs have been fabricated and measured, the Gain of the class E 

PAs over 3.8 dB and the PAE of the class E PA has achieved over 52.44% at Pin = 12 dBm 

and 71.66% at Pin = 14 dBm at 2 GHz. Showing good agreement with theory. 

 

7.2 Future Work 

In this section, two areas of future work are proposed. The first proposal is to investigate how 

to further increase the efficiency of the class E PAs without sacrificing stability. The second 

suggestion is to improve the bandwidth of the AIAs, by using GAs to design a coupled slot 

antenna, which will be used in the load networks of the PAs.  
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7.2.1 Investigating on Increasing the PAE of the designed Class E PAs 

From the achievement in chapter 4, it can be seen that the potential efficiency of the class E 

PAs could achieve over 80% without stabilized resistance; hence the first proposal of the 

future work will be to investigate the class E PAs to achieve the PAE over 76%.  

 

7.2.2 Investigating on Increasing the Bandwidth of the Load Patch Antennas  

By applying  Genetic Algorithms optimization methods (see chapter 2) , a probe fed patch 

antenna has been designed for replacing the load harmonic networks of the  class E power 

amplifier, which could generate the input impedance, which is equal to 50 Ohms at 2 GHz 

and high input impedance (over 100 Ohms) at 4 GHz as shown below, 

 

Figure 7.1 Input impedance of the dual frequency patch antenna 

 

From the above figures, it can be seen that by using the GA and relevant equations in chapter 

2, a dual frequency antenna could be fabricated, which could generate an input impedance Zin 
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equal to 50 Ohms at 2 GHz and high impedance (100 Ohms) at the 2
nd

 harmonic (4 GHz) as 

class E PAs require. After replace the load harmonic class E PAs by using this dual frequency 

patch antenna, the size will be reduced. 

But this narrow band patch will reduce the bandwidth of the designed class E PAs; hence, it 

is necessary to investigate the slot antenna in the future work.[15, 58, 91-97] 

The main advantages of a microstrip patch antenna that it is light weight, inexpensive to 

manufacture, has a low profile and can be fed by a variety of method [14, 54, 58, 77, 79, 98-

104]. However the main disadvantage is that it has a narrow bandwidth which can be 

increased by using a thick substrate or stacking the patches however these antennas exhibit 

poor radiation [80].  

As a part of the future work of this project, a new PhD student Lei Liu in University of 

Northumbria at Newcastle upon Tyne has already worked on it and his PhD project is using 

GA to design slot antennas and some of our collaboration research will be shown below, 

  

(a)                                                                             (b) 

Figure 7.2 The top view (a), side view (b), after fabricated of the circular polarised broadband slot patch antenna  
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Figure 7.3 Equivalent circuit of circular polarized cross slot patch antenna 

 

After designing, fabrication and testing the broad band slot antenna, it will be necessary to 

use the GA to simplify the procedure for the design of a slot antenna in the future work. 
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Appendix A Design of a Probe Fed Dual Frequency Patch 

Antenna 

Matlab programme code of design of a probe fed dual frequency patch antenna:  

function [err,Z]=objval2(x0) 

range 30-45 25-35 5-20 5-15 

x0=x0*diag([15 19])*1e-3; 

x0=x0+ones(size(x0))*diag([5 5])*1e-3; 

f=[2.38e9 1.83e9]; 

Z=zeros(size(x0,1),2); 

Z(:,1)=feed_p2(39.4e-3,30.4e-3,x0(:,1),x0(:,2),f(1)); 

Z(:,2)=feed_p2(39.4e-3,30.4e-3,x0(:,1),x0(:,2),f(2)); 

err=sum(real(Z'-50).^2)'; 

err=err+sum(imag(Z').^2)'; 

err=1./err; 

%Function to be maximised 

%objval=@(x) prod(sin(x*pi),2); 

nc=2; 

ng=20; %number of genes per chromosome 

maxit=50; % Number of iterations 

np=1e4; %Population Size 

Ch=rand(np,ng*nc)>.5;  %Throw forst population with random genes (50% ones 50% zeros) 

bits=2.^((ng:-1:1)-ng-1)';    % Number corresponding to each bit 0-4 in our case. 

inds=1:ng; 

for it=1:maxit 

    Phen=zeros(np,nc); 

    for k=0:nc-1;   Phen(:,k+1)= Ch(:,k*ng+(1:ng))*bits; end 

    [fitness,Z]= objval2(Phen); 

    [dum,i]=sort(fitness,'descend');%%%%%%%%%%%sorts each column of a matrix in descending order 

    Ch=Ch(i,:); fitness=fitness(i,:); Phen=Phen(i,:);Z=Z(i,:); 

    fitness=fitness.^6; % Accelerator to  

    [dum,inds]=histc(rand(1,np),[0 ;cumsum(fitness/sum(fitness))]); 

    sel=Ch(inds,:);    %Seltect 1 bit per chromosome to swap over for the new population and 

    sel=sel';Ch=Ch'; 

    bit=ceil(ng*rand(1,np))+(0:ng:((np*ng)-1));    sel(bit)=Ch(bit); 

    sel=sel';Ch=Ch'; 

    %Add mutation with probability pm. Mutation rate decreases with time 

    pm=0.001.^(it/20);    rm=find(rand(size(sel))<pm);%Find indices and values of nonzero elements 

    sel(rm)=~sel(rm);% not  

    Ch=sel; 

    disp([Phen(1,:)*diag([15 19])+ones(size(Phen(1,:)))*diag([5 5])]) 

    disp(Z(1,:)); 

    plot(fitness,Z),pause 

end 
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 for k=0:nc-1;   Phen(:,k+1)= Ch(:,k*ng+(1:ng))*bits; end 

     [fitness,Z]= objval(Phen); 

    [dum,i]=sort(fitness,'descend'); 

    Ch=Ch(i,:); fitness=fitness(i,:); Phen=Phen(i,:); 

    Phen(1,:)*diag([15 19])+ones(size(Phen(1,:)))*diag( [5 5]); 

f=[2.38e9 1.83e9]; 
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Appendix B  Concepts of Class E Power Amplifiers 

B.1 Derivation of the Equations for the Voltage and Current Waveforms 

for Ron ≠ 0 

The approximate equivalent circuits of the active device for the two conditions are shown 

below, 

І. ON STATE: ( )  

 

 

П. OFF STATE: ( ) 

 

For the off state the current in the capacitor given by equation (B.1), 

 
     (B.1) 

The switch voltage vs1(t) in (B.2) is obtained by integrating (B.1) where the constant 2RonIdc is 

obtained when t = 0,  
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     (B.2) 

Substituting the condition 2 in section 3.2.2, (vs1 ( ) = vs2 ( ) = 0) (B.2) results in 

                            =0            (B.3) 

and hence  

      (B.4) 

The above equation can be simplified as 

                                   (B.5) 

For the on state when the switch is closed the current now flows in the Ron resistance and 

vs2(t) = Ron Idc(  (B.6) 

 

 

Applying the condition 1 in section 3.2.2 ( vs2(Ts/2) =0) in (B.6)   

1 + ar sinφr = 0 (B.7) 

 

Using (B.5) and (B.6) it can be shown that the two constants are given by (B.7) and (B.8). 
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                             ;    
     (B.7) 

                             .      (B.8) 

B.2 Derivation of the Idc and the Optimum Impedance at the Design 

Frequency where Ron = 0 

 

  

 

  

  

  

                                            (B.9) 

Applying (B.5) and (B.7), (B.9) can be simplified as  

                                                                                         (B.10) 

Fourier series is defined as  

                                                                                                                    (B.11) 
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                                                                      (B.12) 

 

                                                                         (B.13) 

 

The integration is performed over the whole period to obtain the switch voltage at the design 

frequency is shown in (B.14).  

 

                                                         (B.14)    

The optimum input impedance of the external load harmonic network is obtained from B.15.  

found as 

 

                                                                     (B.15) 

 

B.3 Derivations of New Equations for the Voltage/Current Waveforms and 

Optimum Impedance 

When t = Ts/2 (3.9) and (3.13) are evaluated as shown below. 
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For the condition vs1 ( ) = vs2 ( ) ≠ 0 (see section 3.2.3), the required equation is shown 

below (B.16) 

  

  

.     (B.16) 

(B.9) can now be expressed as the objective function in the form shown in  B.17. 
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Objective Function could be achieved as show below,  

 

     B.17 

 

B.4 Matlab Program to Determine ‘ar’ and ‘φr’ in (B.17) 

Cs=1e-12; 

f=2e9; 

omega=2*pi*f; 

Ron=5; 

Vdc=5; 

[ar,phir]=meshgrid(1.7:0.05:2.3,-34:0.5:-27); 

phir=phir.*pi./180; 

Y=(1+(Ron*Cs*omega).^2)*4.*(ar.^2).*(cos(phir).^2)-4*pi.*ar.*cos(phir)+pi.^2-

4*Ron^2*(omega.^2)*(Cs.^2).*(ar.^2); 

surf(ar,phir,min(0,Y)) 
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Appendix C Using GA to Investigate the Class E Amplifier 

 

C.1 GA is used to investigate the Ideal Load Harmonic Networks for Class 

E Amplifiers (Ron = 0) 

 

function goal=Load_Net_fn(f0,Q) 

cs=1e-12; Ron=0.01;fs=2e9;c=3e8;Vdc=5;omegas=2*pi*fs;omega0=2*pi*f0;T0=1/fs; 

phi=-32.48/180*pi; 

dt=0.005.*T0;t=[0:dt:T0/2];f=[1e9:1e9:9e9];Idc=pi*omegas*cs*Vdc; 

av=0.522./(omegas*cs);Idc/(omegas*cs*T0); 

ar=sqrt(1+(pi/2+omegas*cs*Ron).^2);RL=14.68; 

i=sqrt(-1); 

%Switch Voltage 

 %First Harmonic  

               V1st=2*Idc./(omegas*cs*pi)*abs(pi^2/8-1-i*pi/4); 

 

%Second Harmonic  

               V2nd=2*Idc./(omegas*cs*pi)*abs((4+i*pi)/12); 

 

%Third Harmonic  

               V3rd=2*Idc./(omegas*cs*pi)*1/9; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Zopt1=abs(RL*(1+i*Q.*(omegas^2-omega0.^2)./(omega0*omegas))); 

Zopt2=abs(RL*(1+i*Q.*(4*omegas^2-omega0.^2)./(2*omega0*omegas))); 

Zopt3=abs(RL*(1+i*Q.*(9*omegas^2-omega0.^2)./(3*omega0*omegas))); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

I1=ar*Idc; 

I2=V2nd./Zopt2; 

I3=V3rd./Zopt3; 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

P1=1/2.*(abs(I1^2))*RL; 

P2=1/2.*(abs(I2.^2))*RL; 

P3=1/2.*(abs(I3.^2))*RL; 

Pdc=Idc.*Vdc; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

goal=100.*(Pdc-P2-P3)./Pdc; 

 

Plotting the Three Dimensions Figures: 

[f0,Q]=meshgrid(1.7:.002:1.95,1:.05:5); 

goal=Load_Net_fn(1e9*f0,Q); 

figure(1) 

%[C,h]=contour(f0,goal,Q); 

[C,h]=contour(f0,Q,goal); 

set(h,'ShowText','on','TextStep',get(h,'LevelStep')*2) 

xlabel('Frequency (GHz)'),ylabel('Q value'),title('Efficiency (%)') 

 

%xlabel('Frequency (GHz)'),ylabel('Efficiency (%)'),zlabel('Q value'),title('Efficiency Vs Q value Vs 

Frequency') 

%xlabel('Frequency'),ylabel('Efficiency'),title('Q value') 

colormap cool 

figure(2) 

%surf(f0,Q,10*log10(goal)),shading('interp') 

surf(f0,Q,goal),shading('interp') 

%xlabel('Frequency'),ylabel('Q value'),title('Losses in dB') 

xlabel('Frequency (GHz)'),ylabel('Q value'),zlabel('Efficiency (%)'),title('Efficiency Vs Q value Vs Frequency') 

 

C.2 GA is used to investigate the Optimum Load Harmonic Networks for 

Class E Amplifiers (Ron ≠ 0) 

nc=2; 

ng=20; %number of genes per chromosome 

maxit=50; % Number of iterations 

np=1e2; %Population Size 

Ch=rand(np,ng*nc)>.5;  %Throw first population with random genes (50% ones 50% zeros) 

bits=2.^((ng:-1:1)-ng-1)';    % Number corresponding to each bit 0-4 in our case. 

inds=1:ng; 

 

for it=1:maxit 

    Phen=zeros(np,nc); 

    for k=0:nc-1;   Phen(:,k+1)= Ch(:,k*ng+(1:ng))*bits; end 

     fitness= amplifier_e_GA(Phen); 

    [dum,i]=sort(fitness,'descend'); 

    Ch=Ch(i,:); fitness=fitness(i,:); Phen=Phen(i,:); 

    fitness=max(0,fitness)+1e-10; 

    %fitness=fitness.^6; % Accelerator to  

   [dum,inds]=histc(rand(1,np),[0 ;cumsum(fitness/sum(fitness))]); 

   sel=Ch(inds,:);    %Seltect 1 bit per chromosome to swap over for the new population and 

    %swap 

      sel=sel';Ch=Ch'; 

    bit=ceil(ng*rand(1,np))+(0:ng:((np*ng)-1));    sel(bit)=Ch(bit); 

    sel=sel';Ch=Ch'; 

    %Add mutation with probability pm. Mutation rate decreases with time 
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    pm=0.0001.^(it/20);    rm=find(rand(size(sel))<pm);    sel(rm)=~sel(rm); 

    Ch=sel; 

    disp([Phen(1,:)*diag([1.7 30])+ones(size(Phen(1,:)))*diag([ 1.3 -60])]) 

%       plot(fitness,Z),pause 

end 

 

function Efficiency=amplifier_e_GA(phen); 

ar=phen(:,1)*1.7+1.3; 

phir=phen(:,2)*30-60; 

Efficiency=amplifier_e(ar,phir); 

 

function Efficiency=amplifier_e(ar,phir) 

Cs=1e-12; 

f=2e9; 

omega=2*pi*f; 

Ron=30; 

Vdc=5; 

  

phir=phir.*pi./180; 

  

Y=(1+(Ron*Cs*omega).^2)*4.*(ar.^2).*(cos(phir).^2)-4*pi.*ar.*cos(phir)+pi.^2-

4*Ron^2*(omega.^2)*(Cs.^2).*(ar.^2); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Idc=Vdc./(1/(omega.*Cs)*(pi/4-ar.*sin(phir)./pi-ar.*cos(phir)./2)+Ron-

Ron./2.*ar.*sin(phir)+Ron.*ar.*cos(phir)./pi); 

  

Pdc=Vdc^2./(1/(omega.*Cs)*(pi/4-ar.*sin(phir)./pi-ar.*cos(phir)/2)+Ron-

Ron/2.*ar.*sin(phir)+Ron.*ar.*cos(phir)/pi); 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

ks1=Idc./(2*pi.*omega.*Cs).*((-2+ar.*cos(phir).*pi/2)-j.*(pi-2.*ar.*cos(phir)-ar./2.*pi.*sin(phir))); 

 ks1dc=-j*(Ron.*Idc./pi.*(1-ar.*sin(phir))); 

ks2=Ron.*Idc./(2*pi).*(-1.*ar.*sin(phir).*(pi/2)+j*(2+ar.*cos(phir).*(pi/2))); 

 k1=ks1+ks1dc+ks2; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Re=Idc./(2.*pi.*omega.*Cs).*(-2+ar.*cos(phir).*pi/2)-Ron.*Idc/4.*ar.*sin(phir); 

 Im=Ron.*Idc/(2.*pi).*(2+ar.*cos(phir).*pi/2)-Ron.*Idc./pi.*(1-ar.*sin(phir))-Idc./(2.*pi.*omega.*Cs).*(pi-

2.*ar.*cos(phir)-ar.*pi./2.*sin(phir)); 

V1=Re+j.*Im; 

 thetav=atan2(imag(V1),real(V1)); 

K1=abs(V1); 

 Zopt=2.*K1./(ar.*Idc).*(exp(j.*(thetav+pi./2-phir))); 

 RL=real(Zopt); 

 Pout=(ar.*Idc).^2.*RL/2; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%% 
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Efficiency=Pout./Pdc.*100; 
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Appendix D Investigate the Losses of the Harmonic 

Networks of Class E PAs 

D.1 Losses in a Suppressed Second Harmonic Network using Duroid 5870 

 

(a) 

 

(b) 
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(c) 

Figure d.1: The obtained S-parameters using Duroid 5870 substrate (a) S11, (b) S22 and (c) S21 

D.2 Losses in a Suppressed Second and Third Harmonics Network using 

Duroid 5870 

The lengths and the values of the resistances for Duroid 5870 substrates are summarised in 

the two tables below. 

(a) 

 Length of the Microstrip Lines (mm) Equivalent Resistance (Ω) 

M1 10.2 R1 = 0.071 

M2 20.5 R2 = 0.143 

M3 10 R3 = 0.070 

M4 6.8 R4 = 0.047 

M5 24.4 R5 = 0.170 

M6 12.2 R6 = 0.085 
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(b) 

 Length of the Microstrip Lines (mm) Equivalent Resistance (Ω) 

M1 6.8 R1 = 0.047 

M2 13.5 R2 = 0.094 

M3 2.8 R3 = 0.020 

M4 10.2 R4 = 0.071 

M5 3.6 R5 = 0.025 

M6 7.8 R6 = 0.054 

(Total length = 44.7 mm) 

(c) 

 Length of the Microstrip Lines (mm) Equivalent Resistance (Ω) 

M1 10.2 R1 = 0.071 

M2 10.2 R2 = 0.071 

M3 11.6 R3 = 0.081 

M4 13.5 R4 = 0.094 

M5 39.3 R5 = 0.279 

M6 9.5 R6 = 0.066 
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(d) 

 Length of the Microstrip Lines (mm) Equivalent Resistance (Ω) 

M1 6.8 R1 = 0.047 

M2 6.8 R2 = 0.047 

M3 1.87 R3 = 0.013 

M4 20.5 R4 = 0.143 

M5 5.5 R5 = 0.038 

M6 11.4 R6 = 0.078 

 

Table D.1 Equivalent resistances of variable microstrip lines using Duroid 5870 substrate (Z0 = 50 Ω)  

 

 



 

157 
 

 

(a) 

 

(b) 

D.2: Input Impedance (in Ω) of the load harmonic networks using (a) Duroid 5870 substrate 

and (b) Equivalent circuits with R. 
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(a) 

 

(b) 
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(c) 

Figure d.3: The obtained S-parameters using Duroid 5870 substrate (a) S11, (b) S22 and (c) S21 

       

(a) 
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 (b) 

Figure D.4 The frequency response of S21 using Duroid 5870 for the four topologies circuits using (a) Tlines 

with R and (b) Mlines  

 


