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ABSTRACT

This paper extends boolean particle swarm optimization to a multi-objective setting, to our knowledge
for the first time in the literature. Our proposed new boolean algorithm, MBOnvPSO, is notably
simplified by the omission of a velocity update rule and has enhanced exploration ability due to
the inclusion of a “noise” term in the position update rule that prevents particles being trapped in
local optima. Our algorithm additionally makes use of an external archive to store non-dominated
solutions and implements crowding distance to encourage solution diversity. In benchmark tests,
MBOnvPSO produced high quality Pareto fronts, when compared to benchmarked alternatives, for
all of the multi-objective test functions considered, with competitive performance in search spaces
with up to 600 discrete dimensions.

Keywords Binary PSO · Boolean PSO ·Multi-objective optimization · Velocity-free

1 Introduction

There are many real-world discrete optimization problems in both single and multi-objective settings, for example in
electrical engineering [1] [2] and feature selection [3], and therefore a need for efficient and versatile algorithms that
can solve such problems. Particle swarm optimization (PSO) [4] and genetic algorithms (GAs) are both biologically
inspired, effective algorithms, with discrete single and multi-objective variants; however, PSO has been shown to be less
computationally demanding than GAs [5]. In this work we propose MBOnvPSO, a new, boolean PSO for application to
multi-objective optimization problems such as feature selection [3], a boolean (natively binary) approach being both
efficient (as noted in [6]) and of potential value in facilitating a hardware implementation. To our knowledge there have
been no previous presentations of multi-objective boolean PSOs. This will be the primary novel contribution of our
work.

Our second contribution will be to add to the evidence [3] [7] that PSOs operating in a discrete search space may find
good solutions more easily without a traditional velocity update rule, particularly for multi-objective problems, as
evidenced in [8]. Velocity-free algorithms appear superior in this sense. Our MBOnvPSO algorithm, in which “nv”
denotes “no velocity”, was inspired by the velocity-free binary PSO of [7], though with substantial differences (in
addition to being boolean rather than binary) relating to how both integral and additional exploration are carried out. As
will be seen later, MBOnvPSO has proved very effective when compared to the benchmarked alternatives, including a
multi-objective variant of [7].

2 Background and related work

2.1 Continuous, binary, and boolean PSO

PSO was first introduced in Kennedy and Eberhart [4]. It is a nature-inspired population-based search algorithm
modelled after the flocking behavior of birds and other animals. The PSO optimization process, for the ith particle, is
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guided by cognitive (via a personal best position vector, pi and social (via a global best, g) influences, and defined, for
an N -dimensional search space, by the velocity and position update rules

vt+1
i = wvt

i + c1r1(pt
i − xt

i) + c2r2(gt − xti), (1)

xt+1
i = xt

i + vt+1
i , (2)

in which pt
i is the best parameter position found at time t by particle i, gt the best position found by any particle,

c1 and c2 are positive constants most often set to 2.0 [8], r1 and r2 are random numbers ∈ [0, 1], and w is a usually
iteration-decreasing “inertia weight” that controls the extent to which new search directions are pursued. It is also
usually recommended to clip the velocity to a maximum magnitude Vmax so that the search remains within useful
bounds.

The update equations (1), (2) assume a continuous search space. However, Kennedy and Eberhart also proposed a
binary PSO (BPSO) [9], in which to generate an updated binary position, velocities are transformed into [0, 1] by a
sigmoid transfer function sig(), with Prob(xij = 1) = sig(vij). The vast majority of later BPSOs have retained the
concept of velocity, as well as the use of a transfer function to generate the velocity update. However, simpler BPSOs,
without a velocity update rule, have proven to be equally, if not more, effective [3] [7], a central theme of this current
work.

An alternative to the use of BPSOs in a discrete space is the boolean PSO of [6], which eliminates problems such as the
velocity, in BPSO, not being associated with the likelihood of a change in position. Boolean PSO considers all variables
to be binary and all arithmetic operators to be logical operators, with velocity and position update equations

vt+1
i = w.vt

i + r1.(pt
i ⊕ xti) + r2.(gt ⊕ xt

i), (3)

xt+1
i = xt

i ⊕ vt+1
i , (4)

where “.” is the AND operator, “+” the OR operator, "⊕" the XOR operator (all operators being applied bitwise),
and where Prob(r1 = 1) = ρ1, Prob(r2 = 1) = ρ2, Prob(w = 1) = ω. We note that Vmax is now defined as the
maximum number of velocity bits allowed to flip from 0 to 1 or 1 to 0.

There have been a number of applications of boolean single-objective PSO in electrical engineering that demonstrate its
simplicity and computational efficiency, such as its application to antenna design in [6] and [10]. Outside of electrical
engineering, a single-objective boolean PSO was used in [11] for feature selection, with encouraging results that suggest
a multi-objective variant, such as we propose here, might be an effective way forward in this area.

2.2 Multi-objective optimization

Unlike single-objective problems, multi-objective problems have conflicting objectives [12]. It is therefore necessary to
obtain a non-dominated solution set, based on Pareto dominance, because no single solution can be considered ideal
with respect to all objectives. The non-dominated set of the entire solution space is termed the Pareto-optimal set, and
the boundary of this region is termed the Pareto-optimal front. Multi-objective PSO (MOPSO) was first proposed in
[13], using Pareto dominance during the fitness evaluation stage. MOPSO then stores the non-dominated solutions
produced by each particle in an external global best repository, the repository helping each particle to select a global
best guidance during the search process.

3 Benchmarked algorithms

This section will briefly describe each of the algorithms used for benchmarking, summarized in Table 1. We note that
examples of binary MOPSOs are relatively few, and that examples of boolean MOPSOs are limited to the current work.
Hence, some benchmarks will be first uses of the underlying single-objective PSO in a multi-objective setting.

3.1 Boolean benchmark

As previously noted, there have been no previous examples of a boolean multi-objective PSO in the literature. However,
it is possible to extend a single-objective boolean algorithm to the multi-objective domain. For this purpose, we choose
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Table 1: Summary of benchmarks
Ref. Acronyms Binary or Boolean
[14] MBOPSO Boolean
[9] MBPSO Binary
[15] MVPSO Binary
[3] MSBPSO Binary
[7] MBnvPSO Binary

the algorithm proposed by one of the current authors in [14], which added a “noise” term to the velocity update rule of
[6], to enhance exploration, especially effectively in high dimensional search spaces. The velocity update rule of [14]
(the position update rule being equation (4), as in [6]) is

vt+1
i = b+ b̄.w.vti + r1.(pt

i ⊕ xti) + r2.(gt ⊕ xti), (5)

where the overbar denotes bitwise negation, and where Prob(b = 1) = β. β ∈ [0, 1] is an exploration parameter that
permits a small portion of the position update rule to be free from the influence of current velocity, and of personal or
global best position. Our multi-objective implementation will be termed MBOPSO.

3.2 Binary benchmarks

The most common BPSO to be extended to multi-objective problems is the original proposal of [9], used, for example,
in [16] to prune a decision tree classifier, and in [17] to select test cases in software testing. Though there are many
closely related variants of [9] (for example, the slightly modified sigmoid of [18]), as the representative of this most
“traditional” group of BPSOs we have chosen to benchmark a multi-objective version of [9], given this algorithm’s long
history of use for multi-objective problems; this first of our binary benchmarks will be referred to MBPSO.

Moving from sigmoid-type to differently shaped transfer functions, our next benchmark choice is the binary PSO with a
V-shaped transfer function (VPSO) proposed in [15]. VPSO is a successful single-objective binary PSO, with more
than 650 citations; however, it has never to our knowledge been used in a multi-objective setting. VPSO replaces the
sigmoid function with a V-shaped function defined as

T (x) =
∣∣(2/π) tan−1((π/2)x)

∣∣ . (6)

VPSO also changes the position update rule by assigning the previous position as the new position when the updated
velocity is less or equal to a random number and assigning the complement of the previous position otherwise. We refer
to its multi-objective variant as MVPSO.

Sticky binary PSO (SBPSO), proposed in [3] and applied to feature selection problems in [19], represents a more
substantial departure from the original BPSO of [9]. We have chosen this algorithm as a benchmark due to its recency
and intrinsic interest. SBPSO replaces the velocity update rule with a “flipping probability”, with the update rule for the
jth bit of particle i’s position given by

Prob(xt+1
ij → x̄tij) = im(1− stij) + ip

∣∣ptij − xtij∣∣+ ig
∣∣gtj − xtij∣∣ , (7)

where stij is the particle’s “stickiness” (equivalent to momentum in a traditional PSO), im controls the degree to which
the stickiness operates, and ip and ig control the particle’s tendency to follow its personal and global best positions. We
refer to our multi-objective version of SBPSO, the first such implementation in the literature, as MSBPSO.

The most radical binary PSO we benchmark here in a multi-objective setting is the proposal of [7]. This algorithm is
also the closest in form to our own. The novelty in the BPSO of [7] is its simplicity and its complete removal of the
velocity update rule, with its position update rule defined by

xt+1
ij =


xtij if 0 < vij ≤ α
ptij if α < vij ≤ (1 + α)/2

gtj if (1 + α)/2 < vij ≤ 1

, (8)

where α is a probability ∈ (0, 1) that determines the amount of exploration carried out; when α is smaller, it can be
seen from equations (8) that the particle is less likely to remain in its current position. Additionally, to help prevent
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the algorithm from being trapped in local minima, a potential problem in all non-trivial optimization problems, as
an integral part of the algorithm 10% of the particles are selected to search randomly instead of following equations
(8). This velocity-free algorithm has been used successfully in many areas [20] and was additionally modified and
applied to multi-objective problems in [8]. This modification, however, took the form only of further exploration via
a mutation-like term, which in our own experiments we did not find helpful. Hence, as our final binary benchmark
algorithm, we have selected to implement a multi-objective variant of the original algorithm of [7]. It will be referred to
as MBnvPSO, with the “nv” to emphasize its radical discarding of the velocity update rule.

4 Methodology

4.1 The proposed multi-objective boolean no-velocity particle swarm optimization (MBOnvPSO)

Our proposed new algorithm, multi-objective boolean no-velocity PSO (MBOnvPSO), like [7], removes the velocity
update (indicated by the “nv” in its acronym), but differs substantially from [7] in its basic mechanisms and in the way
it handles exploration, this latter point relating to both exploration integral to the algorithm (i.e., is a part of the position
update rule) and also to additional exploration carried out in order to help avoid local minima.

The MBOnvPSO position update rule (there is, of course, no velocity update for the algorithm) is given by

xt+1
i = b.x̄ti + b̄.[a1.xti + ā1.(ā2.pt

i + a2.gt)], (9)

in which all operators are boolean, as in equations (3)-(5), in which the overbar denotes bitwise negation, as in equation
(5), and in which a1, a2, and b are bits generated with probabilities Prob(a1 = 1) = α1, Prob(a2 = 1) = α2, and
Prob(b = 1) = β. Clearly, while MBOnvPSO shares its “no-velocity” concept with [7], it differs substantially in its
mechanisms, as can be seen by comparing the form of equation (9) to that of equations (8).

The parameter α2 in equation (9) balances the roles of social (i.e., following the global best, with probability α2) and
cognitive (i.e., following the personal best, with probability 1− α2) guidance. Since there is no reason to weight these
contributions differently, we take α2 = 0.5. The parameters α1 and β, however, are critical exploration parameters.
Ideally, such parameters would be chosen for each problem using a grid search. However, rigorous searches of parameter
spaces were unfeasible due to the computation time required. Hence parameters were selected in part guided by those
values used in the work of others, and in part after a result of preliminary experimentation.

α1 is the probability the particle stays at its current position, as opposed to exploring by following either cognitive or
social guidance, and is equivalent to the α parameter in [7]. In MBOnvPSO, α1 is chosen to linearly increase from 0.3
to 0.7, so that the chance of exploring is higher earlier in the search process, later decreasing, to encourage convergence.
However, the α parameter of [7], both in the original presentation and in subsequent works based on it (for example
[21]), is set to linearly decrease (from 0.5 to 0.33), resulting in the opposite, namely more exploration later in the search
process. This seems counterintuitive for an optimization algorithm and likely to damage convergence, and, indeed, in
preliminary experiments, proved to give inferior Pareto fronts when compared to our choice of a linearly increasing α1.

β is another exploration-related parameter, which governs the amount of additional exploration carried out, separate
from the intrinsic processes of the PSO, so particles are less likely to be trapped in local minima. The means by which
this is done in MBOnvPSO is related to [14]: when the “noise bit” b = 1, which occurs with a probability β, 5% of
particles in each dimension have this probability of flipping a bit to 0 or 1 without influence from their current personal
or global best positions. This is an instance in which we chose parameters differently from the recommendation of a
previous work; in [7], 10% of particles are bit-flipped with a probability of 1.0, but the much higher level of random
search in [7] has a damaging effect for most of the test functions in Table 2, as will be seen in the Results.

4.2 Implementation of multi-objective optimization

Pareto archive. We implement an archiving system based on that of [13], having both a global best repository and
personal best repository. In the case of the global best repository, each particle’s updated position and fitness values in
the swarm are checked and filtered against those of the rest of the particles in the swarm. All the dominated solutions in
that iteration are removed, while the remaining non-dominated solutions are then compared to the solutions saved in
the global best repository, again removing any dominated solutions. In the case of the personal best repository, each
particle’s updated objective value is compared to its personal best flight experience in the personal best repository in
each subsequent iteration after the first. If such an objective value is dominated by any values saved in its personal best
history, then this objective value and position will not be saved in the archive. Any dominated solutions in the personal
best repository will also be removed.
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Crowding distance for personal best and global best selection. A single personal best solution and a single global
best solution are selected using a crowding distance strategy [22] for the position update process. The crowding distance
strategy was used to increase the diversity of the solutions, so that the personal and global best values selected from the
personal best and global best repositories always come from the least populated solution regions.

4.3 Performance metrics

The performance metrics used in this research are those typically used in the multi-objective optimization literature,
namely hypervolume (HV),

HV =
⋃

xi∈X
Vx, (10)

where X is the set of all solutions on the obtained Pareto front, and Vx is the volume for the corresponding point in X
and the reference point, generational distance (GD),

GD =

√∑|Q|
i=1 d

2
i

|Q|
, (11)

where Q is the obtained the Pareto front, and di is the Euclidean distance between the ith solution on the obtained
Pareto front and the nearest solution on the true Pareto front, and, finally, the number of points on the Pareto front
(NoP), whose definition is self-explanatory. Given a set of solutions and their corresponding objective values, the HV is
the volume generated by a reference point and the points on the approximated Pareto front. GD is a measure of the
closeness of the approximated Pareto front to the true Pareto front and considers both the accuracy and the diversity of
the approximated Pareto front; we note that the requirement to know the true Pareto front will constrain our choice of
test problems. HV and GD were calculated using the PyMoo library developed by Blank and Deb [23].

4.4 Test problems

Test problems for multi-objective optimization, particularly ones for which the true Pareto fronts are known, are limited.
The test functions in Table 2, on the following page, are frequently used in work on multi-objective optimization and
have also been used in this work. Note that in this table the xk, with i = 1, . . . , n, are real-valued, i.e., from the original
definitions of these multi-objective problems; in our implementations of the binary and boolean algorithms, each xk
will become a B-dimensional bit string. The Schaeffer function N.1 is the easiest amongst those listed, as it only has
one real dimension, and hence its solution space is that of 20-bit strings. Conversely, the ZDT function N.4 is the
hardest, as it has 219 different local Pareto-optimal fronts [8].

4.5 Experimental setup

100 runs of the search process were carried out, in each case using 100 particles and 300 iterations. A bit string of
length B = 20 was used to represent each real-valued variable in the test functions, such that the search is carried out in
an nB-dimensional discrete (boolean) space. B = 20 was picked as being the most common choice in work using
boolean PSO for single-objective function optimization, such as [14].

Parameters governing the benchmark algorithms were set to values advised in the relevant papers. For MBPSO and
MVPSO, c1 and c2 were set to be 2, while the inertia weight parameter decreased linearly from 0.9 to 0.4. For MSBPSO,
im = 0.25, ib = 0.25, ig = 0.5, and the step parameter was set to 50. For MBnvPSO, α linearly decreased from 0.5 to
0.33. For our MBOnvPSO, the β parameter was set at 0.5.

5 Results

First, we consider examples of Pareto fronts from our experiments, before turning in the following subsection to a
comparative analysis of the performance of the six considered algorithms, as summarized in Table 3.

5.1 Evaluation and comparison: Pareto fronts

The example Pareto fronts, shown in Figure 1 on p. 8, are selected based on the median GDs over the 100 runs of the
experiments.
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Table 2: Test functions
Schaeffer Function N.1

Minimize
{
f1(x) = x2

f2(x) = (x− 2)2

−10 ≤ x ≤ 10
ZDT Function N.1

Minimize


f1(x) = x1
f2(x) = g(x) · h(f1(x), g(x))

g(x) = 1 + 9
29

∑n
k=2 xk

h(f1(x), g(x)) = 1−
√

f1(x)
g(x)

0 ≤ xk ≤ 1, k = 1, . . . , n, where n = 30
ZDT Function N.2

Minimize


f1(x) = x1
f2(x) = g(x) · h(f1(x), g(x))

g(x) = 1 + 9
n−1

∑n
k=2 xk

h(f1(x), g(x)) = 1− ( f1(x)
g(x) )2

0 ≤ xk ≤ 1, k = 1, . . . , n, where n = 30
ZDT Function N.3

Minimize


f1(x) = x1
f2(x) = g(x) · h(f1(x), g(x))

g(x) = 1 + 9
n−1

∑n
k=2 xk

h(f1(x), g(x)) = 1−
√

f1(x)
g(x) − ( f1(x)

g(x) ) sin (10πf1)

0 ≤ xk ≤ 1, k = 1, . . . , n, where n = 30
ZDT Function N.4

Minimize


f1(x) = x1
f2(x) = g(x) · h(f1(x), g(x))

g(x) = 1 + 10(n− 1) +
∑n

k=2(x2k − 10 cos (4πxk))

h(f1(x), g(x)) = 1−
√

f1(x)
g(x)

0 ≤ x1 ≤ 1; −10 ≤ xk ≤ 10, k = 2, . . . , n, where n = 10
ZDT Function N.6

Minimize


f1(x) = 1− e(−4x1)sin6(6πx1)

f2(x) = g(x) · h(f1(x), g(x))

g(x) = 1 + 9[
∑n

k=2 xk

9 ]0.25

h(f1(x), g(x)) = 1− ( f1(x)
g(x) )2

0 ≤ xk ≤ 1, k = 1, . . . , n, where n = 10
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Table 3: Test results for all six algorithms
AlgorithmTest

Function Metric MBPSO MVPSO MOBPSO MSBPSO MBnvPSO MBOnvPSO
GD 0.003±0.00 0.003±0.00 0.003±0.00 0.003±0.00 0.003± 0.00 0.003±0.00
HV 0.887±0.00 0.884±0.00 0.887±0.00 0.887±0.00 0.887±0.00 0.887±0.00Schaeffer
NoP 5294±224 1095±36 6588±353 6551±179 6691±243 6999±288
GD 0.254±0.08 0.229± 0.07 0.175±0.06 0.098±0.03 0.006±0.00 0.005±0.00
HV 0.389±0.09 0.464±0.11 0.590±0.07 0.707±0.04 0.871±0.00 0.873±0.00ZDT1
NoP 6.08±1.9 8.65±3.3 17.80±5.0 25.35±4.3 511.3±170 566.7±204
GD 0.179±0.09 0.121±0.07 0.152±0.05 0.123± 0.04 0.004±0.00 0.004±0.00
HV 0.278±0.09 0.469±0.11 0.490±0.07 0.497±0.06 0.769±0.01 0.768±0.01ZDT2
NoP 4.07±1.7 10.09±4.0 16.84±4.1 13.19±3.3 808.0±370 710.1±333
GD 0.216±0.09 0.334±0.14 0.147±0.05 0.067±0.03 0.007±0.00 0.006±0.00
HV 0.394±0.08 0.207±0.10 0.522±0.07 0.668±0.05 0.852±0.01 0.858±0.01ZDT3
NoP 11.5±3.0 7.15±2.1 18.89±4.3 28.88±5.2 114.7±39.0 111.9±41
GD 59.9±6.8 71.03±7.3 20.99±13.3 23.00±6.8 6.97±3.7 7.20±5.1
HV 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.032±0.17 0.055±0.22ZDT4
NoP 6.48±2.4 8.06±3.0 4.38±2.5 4.25±1.6 282.1±250 168.7±168
GD 6.604±0.41 6.756±0.49 4.742±0.50 4.966±0.34 0.457±0.44 0.446±0.48
HV 0.017±0.04 0.015±0.04 0.016±0.05 0.007±0.04 0.279±0.27 0.305±0.28ZDT6
NoP 15.06±3.2 14.23±3.4 12.52±3.7 14.58±3.8 362.8±486 245.6±295

In the case of the Schaeffer function N.1, all six algorithms have approximated the Pareto front easily, which is
unsurprising given the simplicity of this problem, with only one real dimension in the search space. However, for all
five ZDT functions, it can be seen that the two velocity-free algorithms, the proposed MBOnvPSO and MBnvPSO, are
clearly and visibly better at approximating the Pareto fronts, with MBOnvPSO producing better fronts for the ZDT4 and
ZDT6 functions. The worst Pareto fronts, in relation to both the number of discovered points and their distance from
the true Pareto fronts, were produced by MBPSO and MVPSO, suggesting algorithms which utilize transfer functions
in their implementation of velocity may be especially vulnerable to producing only a small number of low-quality
trade-off solutions.

5.2 Evaluation and comparison: results of Table 3

To further investigate the quality of the obtained Pareto fronts in Figure 1 we measured the HV, GD, and NoP values of
the fronts for all six algorithms. The results for our MBOnvPSO and the five benchmark algorithms are presented in
Table and discussed below. Note that the table does not distinguish between performances which are not statistically
significantly different; there are thus a number of “ties” in Table 3. It does, however, distinguish between a win or tie at
0.001 < p ≤ 0.05 (bold font only) and a win at p ≤ 0.001 (bold font and grey shading).

5.2.1 Schaeffer function N.1

The Schaeffer function N.1 is the easiest problem among the test functions because it has only one real-valued variable.
Unsurprisingly, therefore, the difference in the quality of the Pareto fronts found by the six algorithms is small, with a
statistically significantly different performance seen only in the case of the NoP metric, where our MBOnvPSO was the
best-performing of the algorithms.

5.2.2 ZDT functions

For each of the ZDT functions, it can be seen that one or both of the two velocity-free algorithms (our MBOnvPSO
and the MBnvPSO of [7]) in every case does statistically significantly better than those four algorithms that include a
traditional concept of velocity (MBOPSO, MBPSO, MVPSO, MSBPSO). This difference is most marked for the ZDT4
function, acknowledged to be the most difficult of the set [8], with the results produced by MBOnvPSO and MBnvPSO
here drastically different from the other four algorithms. It is notable that the HV values for all of the algorithms that use
a velocity concept are zero; this situation arises due to the highly inaccurate location of the front in these cases, together
with the use of a standard definition of HV reference point. Of the two velocity-free algorithms, our MBOnvPSO has
more outright wins at p ≤ 0.001 than does MBnvPSO (four as opposed to one), and thus may be considered overall the
best of the algorithms trialed. However, it is beaten twice by MBnvPSO on the NoP metric, once at 0.001 < p ≤ 0.05,
in the case of ZDT2, and once at p ≤ 0.001, in the case of ZDT4, for possible reasons that are discussed further below.

7



A Novel Multi-Objective Velocity-Free Boolean Particle Swarm Optimization

Figure 1: Pareto fronts produced by MBOnvPSO and the five benchmark algorithms, for the Schaeffer function N.1 and
the five ZDT functions.

5.2.3 Discussion of results

Table 3 evidences MBOnvPSO to be the overall best-performing algorithm, with statistically significantly better results
than all five benchmarks five out of eighteen times, while its closest competitor, the binary velocity-free MBnvPSO, has
statistically significantly better results than all other competitors only two out of eighteen times. It is noteworthy that
the two best-performing algorithms are those that discard the concept of velocity.

Turning then, to a more detailed comparison of MBOnvPSO and MBnvPSO, one possible reason for the generally
superior performance of MBOnvPSO lies in the way the additional search (beyond what is done within the position
update rule) is performed. In order to prevent particles from being trapped in local minima, MBOnvPSO introduces
randomness by allowing 5% of particles a 50% chance in each dimension to flip a bit randomly without influence from
their current personal or global best positions, while in contrast MBnvPSO’s method forces 10% of the particles to
search randomly. MBOnvPSO’s more moderate use of the additional random search may better preserve the information
gained in the PSO search process.
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We also note that MBnvPSO, following the construction of the single-objective algorithm on which it was based [7],
caused the amount of search within the PSO update rule itself to increase with the number of iterations, rather than
decrease, as would be more usually done to promote convergence. These choices would have caused MBnvPSO
to utilize a level of search that would possibly inhibit convergence in the majority of cases. However, there may
be situations in which the higher level of search in MBnvPSO is beneficial; the proposed MBOnvPSO is beaten by
MBnvPSO, both times with respect to the NoP metric, for the functions ZDT2 and ZDT4, with this most marked
(p < 0.001) in the case of ZDT4, which has many local minima.

6 Conclusion

This work has introduced MBOnvPSO, a novel boolean PSO algorithm for multi-objective optimization. In addition to
its use of boolean operators in the position update process and an extra exploration capacity through the added “noise”
term in the position update rule, the proposed MBOnvPSO notably removes the traditional PSO velocity update rule, as
indicated by the “nv” (“no velocity”) in its acronym, this latter feature appearing to be of substantial importance in its
success.

In benchmarking tests, the proposed MBOnvPSO was compared to five other algorithms, including the multi-objective
variant of a single-objective boolean PSO proposed by one of the current authors [14]—this algorithm, MOBPSO,
along with MBOnvPSO, being the first implementations of a boolean multi-objective PSO in the literature—and a
single-objective binary PSO that is also velocity-free [7] (its multi-objective variant, as implemented by us, being
termed here MBnvPSO).

The two velocity-free algorithms were, as noted, by far the best performing. It is also interesting to note that the
third-best performing algorithm appeared to be MSBPSO (though this conclusion would likely require further runs to
assure statistical significance); while MSBPSO does not discard velocity entirely, its implementation of the concept
is non-standard. Based on the experimental results of this work, it thus appears the traditional PSO velocity update
mechanism may not benefit the discrete search process for multi-objective optimization problems, and that this is
especially evident with respect to the NoP metric: many more points are discovered by the velocity-free algorithms.

Future work will take two directions. First, we will aim to improve MBOnvPSO’s ability to handle problems such as
ZDT4, with a large number of local minima, without using (as does MBnvPSO) an excess amount of undirected search
that may be damaging to the performance in other cases. Second, as discussed in Section 3, there are many instances of
binary PSO application in feature selection in machine learning [24][25], and thus future work will also investigate the
efficacy of the proposed MBOnvPSO in feature selection.
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