483 research outputs found

    Optimization of multi-wavelength Photoplethysmographic for wearable heart rate acquisition

    Get PDF
    Photoplethysmographic is an optical measure technique for heart rate monitoring on the surface of the skin. PPG based wearable heart rate monitor has become popular in consumer targeted market. This thesis work is based on the PulseOn product development and the final implementation will be integrated into the PulseOn OHRM sensor product. Choice of the wavelength of PPG is a trade-off between power consumption and accuracy considering the activity type, skin color and skin perfusion. The subject of this thesis is implementing a channel selection algorithm, which is green and IR channel, on a commercially available PulseOn wrist band to optimize the power consumption and accuracy of the measurement. The channel selection algorithm is first implemented and evaluated in Matlab simulation and then implemented in C code. Performance of the channel selection algorithm on the device is evaluated considering various factors, including skin color, tightness of the wristband. The results show that channel selection algorithm can not only reduce the power consumption but also help to handle the measurement on different measurement conditions

    A study on the effect of contact pressure during physical activity on photoplethysmographic heart rate measurements

    Get PDF
    Heart rate (HR) as an important physiological indicator could properly describe global subject’s physical status. Photoplethysmographic (PPG) sensors are catching on in field of wearable sensors, combining the advantages in costs, weight and size. Nevertheless, accuracy in HR readings is unreliable specifically during physical activity. Among several identified sources that affect PPG recording, contact pressure (CP) between the PPG sensor and skin greatly influences the signals. Methods: In this study, the accuracy of HR measurements of a PPG sensor at different CP was investigated when compared with a commercial ECG-based chest strap used as a test control, with the aim of determining the optimal CP to produce a reliable signal during physical activity. Seventeen subjects were enrolled for the study to perform a physical activity at three different rates repeated at three different contact pressures of the PPG-based wristband. Results: The results show that the CP of 54 mmHg provides the most accurate outcome with a Pearson correlation coefficient ranging from 0.81 to 0.95 and a mean average percentage error ranging from 3.8% to 2.4%, based on the physical activity rate. Conclusion: Authors found that changes in the CP have greater effects on PPG-HR signal quality than those deriving from the intensity of the physical activity and specifically, the individual best CP for each subject provided reliable HR measurements even for a high intensity of physical exercise with a Bland–Altman plot within ±11 bpm. Although future studies on a larger cohort of subjects are still needed, this study could contribute a profitable indication to enhance accuracy of PPG-based wearable devices

    MsWH: A multi-sensory hardware platform for capturing and analyzing physiological emotional signals

    Get PDF
    This paper presents a new physiological signal acquisition multi-sensory platform for emotion detection: Multi-sensor Wearable Headband (MsWH). The system is capable of recording and analyzing five different physiological signals: skin temperature, blood oxygen saturation, heart rate (and its variation), movement/position of the user (more specifically of his/her head) and electrodermal activity/bioimpedance. The measurement system is complemented by a porthole camera positioned in such a way that the viewing area remains constant. Thus, the user''s face will remain centered regardless of its position and movement, increasing the accuracy of facial expression recognition algorithms. This work specifies the technical characteristics of the developed device, paying special attention to both the hardware used (sensors, conditioning, microprocessors, connections) and the software, which is optimized for accurate and massive data acquisition. Although the information can be partially processed inside the device itself, the system is capable of sending information via Wi-Fi, with a very high data transfer rate, in case external processing is required. The most important features of the developed platform have been compared with those of a proven wearable device, namely the Empatica E4 wristband, in those measurements in which this is possible

    Evaluation of pulse rate measurement with a wrist worn device during different tasks and physical activity

    Get PDF
    The purpose of this study was to evaluate the wrist-worn device Mio FUSE, which estimates heart rate (HR) based on photo-plethysmography, 1) in a large study group during a standardised activity, 2) in a small group during a variety of activities and 3) to investigate factors affecting HR accuracy in a real-world setting. First, 53 male participants (20 ±1 years; 1.79 ±0.07 m; 76.1 ±10.5 kg) completed a 35-km march wearing the Equivital EQ-02 as a criterion measure. Second, 5 participants (whereof 3 female; 29 ±5 years; 1.74 ±0.07 m; 67.8 ±11.1 kg) independently performed 25 activities, categorised as sitting passive, sitting active, standing, cyclic and anti-cyclic activities with the Polar H7 as a criterion device. Equivalence testing and Bland-and-Altman analyses were undertaken to assess the accuracy to the criterion devices. Third, confounders affecting HR accuracy were investigated using multiple backwards regression analyses. The Mio FUSE was equivalent to the respective criterion measures with only small systematic biases of -3.5 bpm (-2.6%) and -1.7 bpm (-1.3%) with limits of agreements of ±10.1 bpm and ±10.8 bpm during the 35-km march and during different activities, respectively. Confounding factors negatively affecting the accuracy of the Mio FUSE were found to include larger wrist size and intensified arm and/or wrist movement. The wrist-worn Mio FUSE can be recommended to estimate overall HR accurately for different types of activities in healthy adults. However, during sporting activities involving intensified arm and/or wrist movement or for detailed continuous analysis, a chest strap is preferred to the Mio FUSE to optimise HR estimation accuracy

    AEVUM: Personalized Health Monitoring System

    Get PDF
    Advancement in the field of sensors and other portable technologies have resulted in a bevy of health monitoring devices such as blue-tooth and Wi-Fi enabled weighing scales and wearables which help individuals monitor their personal health. This collected information provides a plethora of data points over intervals of time that a primary care physician can utilize to gain a holistic understanding of an individual’s health and provide a more effective and personalized treatment. A drawback of the existing health monitoring devices is that they are not integrated with the professional medical infrastructure. With the wealth of information collected, it is also not feasible for a physician to look through all the data to obtain relevant information or patterns from multiple health monitoring systems. Therefore, it would be beneficial to have a single platform of hardware devices to monitor and collect data and a software application to securely store the collected information, identify patterns for analysis, and summarize the data for the physician and the patient. The aim of this study was to design and develop an unobtrusive, user friendly system, Aevum, which would integrate technology, adapt itself to changes in consumer behavior and integrate with the existing healthcare infrastructure to help an individual monitor their health in a customized manner. Aevum is a multi-device system consisting of a smart, puck-shaped hardware product, a wristband and a software application available to the patient as well as the physician. In addition to monitoring vitals such as heart rate, blood pressure, body temperature and weight, Aevum can monitor environmental factors that affect an individual’s health and uses personalized metrics such as precise calorie intake and medication management to monitor health. This allows the user to personalize Aevum based on their health condition. Finally, Aevum identifies patterns of anomalies in the collected data and compiles the information which can be accessed by the physician to assist in their treatment

    Mobile Personal Healthcare System for Non-Invasive, Pervasive and Continuous Blood Pressure Monitoring: A Feasibility Study

    Get PDF
    Background: Smartphone-based blood pressure (BP) monitor using photoplethysmogram (PPG) technology has emerged as a promising approach to empower users with self-monitoring for effective diagnosis and control ofhypertension (HT). Objective: This study aimed to develop a mobile personal healthcare system for non-invasive, pervasive, and continuous estimation of BP level and variability to be user-friendly to elderly. Methods: The proposed approach was integrated by a self-designed cuffless, calibration-free, wireless and wearable PPG-only sensor, and a native purposely-designed smartphone application using multilayer perceptron machine learning techniques from raw signals. We performed a pilot study with three elder adults (mean age 61.3 ± 1.5 years; 66% women) to test usability and accuracy of the smartphone-based BP monitor. Results: The employed artificial neural network (ANN) model performed with high accuracy in terms of predicting the reference BP values of our validation sample (n=150). On average, our approach predicted BP measures with accuracy \u3e90% and correlations \u3e0.90 (P \u3c .0001). Bland-Altman plots showed that most of the errors for BP prediction were less than 10 mmHg. Conclusions: With further development and validation, the proposed system could provide a cost-effective strategy to improve the quality and coverage of healthcare, particularly in rural zones, areas lacking physicians, and solitary elderly populations

    Novel Methods for Weak Physiological Parameters Monitoring.

    Get PDF
    M.S. Thesis. University of Hawaiʻi at Mānoa 2017

    An Internet of Things and Fuzzy Markup Language Based Approach to Prevent the Risk of Falling Object Accidents in the Execution Phase of Construction Projects

    Get PDF
    The Internet of Things (IoT) paradigm is establishing itself as a technology to improve data acquisition and information management in the construction field. It is consolidating as an emerging technology in all phases of the life cycle of projects and specifically in the execution phase of a construction project. One of the fundamental tasks in this phase is related to Health and Safety Management since the accident rate in this sector is very high compared to other phases or even sectors. For example, one of the most critical risks is falling objects due to the peculiarities of the construction process. Therefore, the integration of both technology and safety expert knowledge in this task is a key issue including ubiquitous computing, real-time decision capacity and expert knowledge management from risks with imprecise data. Starting from this vision, the goal of this paper is to introduce an IoT infrastructure integrated with JFML, an open-source library for Fuzzy Logic Systems according to the IEEE Std 1855-2016, to support imprecise experts’ decision making in facing the risk of falling objects. The system advises the worker of the risk level of accidents in real-time employing a smart wristband. The proposed IoT infrastructure has been tested in three different scenarios involving habitual working situations and characterized by different levels of falling objects risk. As assessed by an expert panel, the proposed system shows suitable results.This research was funded by University of Naples Federico II through the Finanziamento della Ricerca di Ateneo (FRA) 2020 (CUP: E69C20000380005) and has been partially supported by the ”Programa de ayuda para Estancias Breves en Centros de Investigación de Calidad” of the University of Málaga and the research project BIA2016-79270-P, the Spanish Ministry of Science, Innovation and Universities and the European Regional Development Fund-ERDF (Fondo Europeo de Desarrollo Regional-FEDER) under project PGC2018-096156-B-I00 Recuperación y Descripción de Imágenes mediante Lenguaje Natural usando Técnicas de Aprendizaje Profundo y Computación Flexible and the Andalusian Government under Grant P18-RT-2248
    corecore